]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/traps.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / traps.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 *
6 * Modified by Cort Dougan (cort@cs.nmt.edu)
7 * and Paul Mackerras (paulus@samba.org)
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of hardware exceptions
12 */
13
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h> /* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69 #include <asm/stacktrace.h>
70 #include <asm/nmi.h>
71
72 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
73 int (*__debugger)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
80
81 EXPORT_SYMBOL(__debugger);
82 EXPORT_SYMBOL(__debugger_ipi);
83 EXPORT_SYMBOL(__debugger_bpt);
84 EXPORT_SYMBOL(__debugger_sstep);
85 EXPORT_SYMBOL(__debugger_iabr_match);
86 EXPORT_SYMBOL(__debugger_break_match);
87 EXPORT_SYMBOL(__debugger_fault_handler);
88 #endif
89
90 /* Transactional Memory trap debug */
91 #ifdef TM_DEBUG_SW
92 #define TM_DEBUG(x...) printk(KERN_INFO x)
93 #else
94 #define TM_DEBUG(x...) do { } while(0)
95 #endif
96
97 static const char *signame(int signr)
98 {
99 switch (signr) {
100 case SIGBUS: return "bus error";
101 case SIGFPE: return "floating point exception";
102 case SIGILL: return "illegal instruction";
103 case SIGSEGV: return "segfault";
104 case SIGTRAP: return "unhandled trap";
105 }
106
107 return "unknown signal";
108 }
109
110 /*
111 * Trap & Exception support
112 */
113
114 #ifdef CONFIG_PMAC_BACKLIGHT
115 static void pmac_backlight_unblank(void)
116 {
117 mutex_lock(&pmac_backlight_mutex);
118 if (pmac_backlight) {
119 struct backlight_properties *props;
120
121 props = &pmac_backlight->props;
122 props->brightness = props->max_brightness;
123 props->power = FB_BLANK_UNBLANK;
124 backlight_update_status(pmac_backlight);
125 }
126 mutex_unlock(&pmac_backlight_mutex);
127 }
128 #else
129 static inline void pmac_backlight_unblank(void) { }
130 #endif
131
132 /*
133 * If oops/die is expected to crash the machine, return true here.
134 *
135 * This should not be expected to be 100% accurate, there may be
136 * notifiers registered or other unexpected conditions that may bring
137 * down the kernel. Or if the current process in the kernel is holding
138 * locks or has other critical state, the kernel may become effectively
139 * unusable anyway.
140 */
141 bool die_will_crash(void)
142 {
143 if (should_fadump_crash())
144 return true;
145 if (kexec_should_crash(current))
146 return true;
147 if (in_interrupt() || panic_on_oops ||
148 !current->pid || is_global_init(current))
149 return true;
150
151 return false;
152 }
153
154 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
155 static int die_owner = -1;
156 static unsigned int die_nest_count;
157 static int die_counter;
158
159 extern void panic_flush_kmsg_start(void)
160 {
161 /*
162 * These are mostly taken from kernel/panic.c, but tries to do
163 * relatively minimal work. Don't use delay functions (TB may
164 * be broken), don't crash dump (need to set a firmware log),
165 * don't run notifiers. We do want to get some information to
166 * Linux console.
167 */
168 console_verbose();
169 bust_spinlocks(1);
170 }
171
172 extern void panic_flush_kmsg_end(void)
173 {
174 printk_safe_flush_on_panic();
175 kmsg_dump(KMSG_DUMP_PANIC);
176 bust_spinlocks(0);
177 debug_locks_off();
178 console_flush_on_panic(CONSOLE_FLUSH_PENDING);
179 }
180
181 static unsigned long oops_begin(struct pt_regs *regs)
182 {
183 int cpu;
184 unsigned long flags;
185
186 oops_enter();
187
188 /* racy, but better than risking deadlock. */
189 raw_local_irq_save(flags);
190 cpu = smp_processor_id();
191 if (!arch_spin_trylock(&die_lock)) {
192 if (cpu == die_owner)
193 /* nested oops. should stop eventually */;
194 else
195 arch_spin_lock(&die_lock);
196 }
197 die_nest_count++;
198 die_owner = cpu;
199 console_verbose();
200 bust_spinlocks(1);
201 if (machine_is(powermac))
202 pmac_backlight_unblank();
203 return flags;
204 }
205 NOKPROBE_SYMBOL(oops_begin);
206
207 static void oops_end(unsigned long flags, struct pt_regs *regs,
208 int signr)
209 {
210 bust_spinlocks(0);
211 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
212 die_nest_count--;
213 oops_exit();
214 printk("\n");
215 if (!die_nest_count) {
216 /* Nest count reaches zero, release the lock. */
217 die_owner = -1;
218 arch_spin_unlock(&die_lock);
219 }
220 raw_local_irq_restore(flags);
221
222 /*
223 * system_reset_excption handles debugger, crash dump, panic, for 0x100
224 */
225 if (TRAP(regs) == 0x100)
226 return;
227
228 crash_fadump(regs, "die oops");
229
230 if (kexec_should_crash(current))
231 crash_kexec(regs);
232
233 if (!signr)
234 return;
235
236 /*
237 * While our oops output is serialised by a spinlock, output
238 * from panic() called below can race and corrupt it. If we
239 * know we are going to panic, delay for 1 second so we have a
240 * chance to get clean backtraces from all CPUs that are oopsing.
241 */
242 if (in_interrupt() || panic_on_oops || !current->pid ||
243 is_global_init(current)) {
244 mdelay(MSEC_PER_SEC);
245 }
246
247 if (panic_on_oops)
248 panic("Fatal exception");
249 do_exit(signr);
250 }
251 NOKPROBE_SYMBOL(oops_end);
252
253 static int __die(const char *str, struct pt_regs *regs, long err)
254 {
255 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
256
257 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s%s %s\n",
258 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
259 PAGE_SIZE / 1024,
260 early_radix_enabled() ? " MMU=Radix" : "",
261 early_mmu_has_feature(MMU_FTR_HPTE_TABLE) ? " MMU=Hash" : "",
262 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
263 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
264 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
265 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
266 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
267 ppc_md.name ? ppc_md.name : "");
268
269 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
270 return 1;
271
272 print_modules();
273 show_regs(regs);
274
275 return 0;
276 }
277 NOKPROBE_SYMBOL(__die);
278
279 void die(const char *str, struct pt_regs *regs, long err)
280 {
281 unsigned long flags;
282
283 /*
284 * system_reset_excption handles debugger, crash dump, panic, for 0x100
285 */
286 if (TRAP(regs) != 0x100) {
287 if (debugger(regs))
288 return;
289 }
290
291 flags = oops_begin(regs);
292 if (__die(str, regs, err))
293 err = 0;
294 oops_end(flags, regs, err);
295 }
296 NOKPROBE_SYMBOL(die);
297
298 void user_single_step_report(struct pt_regs *regs)
299 {
300 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip, current);
301 }
302
303 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
304 unsigned long addr)
305 {
306 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
307 DEFAULT_RATELIMIT_BURST);
308
309 if (!show_unhandled_signals)
310 return;
311
312 if (!unhandled_signal(current, signr))
313 return;
314
315 if (!__ratelimit(&rs))
316 return;
317
318 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
319 current->comm, current->pid, signame(signr), signr,
320 addr, regs->nip, regs->link, code);
321
322 print_vma_addr(KERN_CONT " in ", regs->nip);
323
324 pr_cont("\n");
325
326 show_user_instructions(regs);
327 }
328
329 static bool exception_common(int signr, struct pt_regs *regs, int code,
330 unsigned long addr)
331 {
332 if (!user_mode(regs)) {
333 die("Exception in kernel mode", regs, signr);
334 return false;
335 }
336
337 show_signal_msg(signr, regs, code, addr);
338
339 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
340 local_irq_enable();
341
342 current->thread.trap_nr = code;
343
344 /*
345 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
346 * to capture the content, if the task gets killed.
347 */
348 thread_pkey_regs_save(&current->thread);
349
350 return true;
351 }
352
353 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
354 {
355 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
356 return;
357
358 force_sig_pkuerr((void __user *) addr, key);
359 }
360
361 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
362 {
363 if (!exception_common(signr, regs, code, addr))
364 return;
365
366 force_sig_fault(signr, code, (void __user *)addr, current);
367 }
368
369 /*
370 * The interrupt architecture has a quirk in that the HV interrupts excluding
371 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
372 * that an interrupt handler must do is save off a GPR into a scratch register,
373 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
374 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
375 * that it is non-reentrant, which leads to random data corruption.
376 *
377 * The solution is for NMI interrupts in HV mode to check if they originated
378 * from these critical HV interrupt regions. If so, then mark them not
379 * recoverable.
380 *
381 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
382 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
383 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
384 * that would work. However any other guest OS that may have the SPRG live
385 * and MSR[RI]=1 could encounter silent corruption.
386 *
387 * Builds that do not support KVM could take this second option to increase
388 * the recoverability of NMIs.
389 */
390 void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
391 {
392 #ifdef CONFIG_PPC_POWERNV
393 unsigned long kbase = (unsigned long)_stext;
394 unsigned long nip = regs->nip;
395
396 if (!(regs->msr & MSR_RI))
397 return;
398 if (!(regs->msr & MSR_HV))
399 return;
400 if (regs->msr & MSR_PR)
401 return;
402
403 /*
404 * Now test if the interrupt has hit a range that may be using
405 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
406 * problem ranges all run un-relocated. Test real and virt modes
407 * at the same time by droping the high bit of the nip (virt mode
408 * entry points still have the +0x4000 offset).
409 */
410 nip &= ~0xc000000000000000ULL;
411 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
412 goto nonrecoverable;
413 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
414 goto nonrecoverable;
415 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
416 goto nonrecoverable;
417 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
418 goto nonrecoverable;
419
420 /* Trampoline code runs un-relocated so subtract kbase. */
421 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
422 nip < (unsigned long)(end_real_trampolines - kbase))
423 goto nonrecoverable;
424 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
425 nip < (unsigned long)(end_virt_trampolines - kbase))
426 goto nonrecoverable;
427 return;
428
429 nonrecoverable:
430 regs->msr &= ~MSR_RI;
431 #endif
432 }
433
434 void system_reset_exception(struct pt_regs *regs)
435 {
436 unsigned long hsrr0, hsrr1;
437 bool nested = in_nmi();
438 bool saved_hsrrs = false;
439
440 /*
441 * Avoid crashes in case of nested NMI exceptions. Recoverability
442 * is determined by RI and in_nmi
443 */
444 if (!nested)
445 nmi_enter();
446
447 /*
448 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
449 * The system reset interrupt itself may clobber HSRRs (e.g., to call
450 * OPAL), so save them here and restore them before returning.
451 *
452 * Machine checks don't need to save HSRRs, as the real mode handler
453 * is careful to avoid them, and the regular handler is not delivered
454 * as an NMI.
455 */
456 if (cpu_has_feature(CPU_FTR_HVMODE)) {
457 hsrr0 = mfspr(SPRN_HSRR0);
458 hsrr1 = mfspr(SPRN_HSRR1);
459 saved_hsrrs = true;
460 }
461
462 hv_nmi_check_nonrecoverable(regs);
463
464 __this_cpu_inc(irq_stat.sreset_irqs);
465
466 /* See if any machine dependent calls */
467 if (ppc_md.system_reset_exception) {
468 if (ppc_md.system_reset_exception(regs))
469 goto out;
470 }
471
472 if (debugger(regs))
473 goto out;
474
475 /*
476 * A system reset is a request to dump, so we always send
477 * it through the crashdump code (if fadump or kdump are
478 * registered).
479 */
480 crash_fadump(regs, "System Reset");
481
482 crash_kexec(regs);
483
484 /*
485 * We aren't the primary crash CPU. We need to send it
486 * to a holding pattern to avoid it ending up in the panic
487 * code.
488 */
489 crash_kexec_secondary(regs);
490
491 /*
492 * No debugger or crash dump registered, print logs then
493 * panic.
494 */
495 die("System Reset", regs, SIGABRT);
496
497 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
498 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
499 nmi_panic(regs, "System Reset");
500
501 out:
502 #ifdef CONFIG_PPC_BOOK3S_64
503 BUG_ON(get_paca()->in_nmi == 0);
504 if (get_paca()->in_nmi > 1)
505 nmi_panic(regs, "Unrecoverable nested System Reset");
506 #endif
507 /* Must die if the interrupt is not recoverable */
508 if (!(regs->msr & MSR_RI))
509 nmi_panic(regs, "Unrecoverable System Reset");
510
511 if (saved_hsrrs) {
512 mtspr(SPRN_HSRR0, hsrr0);
513 mtspr(SPRN_HSRR1, hsrr1);
514 }
515
516 if (!nested)
517 nmi_exit();
518
519 /* What should we do here? We could issue a shutdown or hard reset. */
520 }
521
522 /*
523 * I/O accesses can cause machine checks on powermacs.
524 * Check if the NIP corresponds to the address of a sync
525 * instruction for which there is an entry in the exception
526 * table.
527 * Note that the 601 only takes a machine check on TEA
528 * (transfer error ack) signal assertion, and does not
529 * set any of the top 16 bits of SRR1.
530 * -- paulus.
531 */
532 static inline int check_io_access(struct pt_regs *regs)
533 {
534 #ifdef CONFIG_PPC32
535 unsigned long msr = regs->msr;
536 const struct exception_table_entry *entry;
537 unsigned int *nip = (unsigned int *)regs->nip;
538
539 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
540 && (entry = search_exception_tables(regs->nip)) != NULL) {
541 /*
542 * Check that it's a sync instruction, or somewhere
543 * in the twi; isync; nop sequence that inb/inw/inl uses.
544 * As the address is in the exception table
545 * we should be able to read the instr there.
546 * For the debug message, we look at the preceding
547 * load or store.
548 */
549 if (*nip == PPC_INST_NOP)
550 nip -= 2;
551 else if (*nip == PPC_INST_ISYNC)
552 --nip;
553 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
554 unsigned int rb;
555
556 --nip;
557 rb = (*nip >> 11) & 0x1f;
558 printk(KERN_DEBUG "%s bad port %lx at %p\n",
559 (*nip & 0x100)? "OUT to": "IN from",
560 regs->gpr[rb] - _IO_BASE, nip);
561 regs->msr |= MSR_RI;
562 regs->nip = extable_fixup(entry);
563 return 1;
564 }
565 }
566 #endif /* CONFIG_PPC32 */
567 return 0;
568 }
569
570 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
571 /* On 4xx, the reason for the machine check or program exception
572 is in the ESR. */
573 #define get_reason(regs) ((regs)->dsisr)
574 #define REASON_FP ESR_FP
575 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
576 #define REASON_PRIVILEGED ESR_PPR
577 #define REASON_TRAP ESR_PTR
578
579 /* single-step stuff */
580 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
581 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
582 #define clear_br_trace(regs) do {} while(0)
583 #else
584 /* On non-4xx, the reason for the machine check or program
585 exception is in the MSR. */
586 #define get_reason(regs) ((regs)->msr)
587 #define REASON_TM SRR1_PROGTM
588 #define REASON_FP SRR1_PROGFPE
589 #define REASON_ILLEGAL SRR1_PROGILL
590 #define REASON_PRIVILEGED SRR1_PROGPRIV
591 #define REASON_TRAP SRR1_PROGTRAP
592
593 #define single_stepping(regs) ((regs)->msr & MSR_SE)
594 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
595 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
596 #endif
597
598 #if defined(CONFIG_E500)
599 int machine_check_e500mc(struct pt_regs *regs)
600 {
601 unsigned long mcsr = mfspr(SPRN_MCSR);
602 unsigned long pvr = mfspr(SPRN_PVR);
603 unsigned long reason = mcsr;
604 int recoverable = 1;
605
606 if (reason & MCSR_LD) {
607 recoverable = fsl_rio_mcheck_exception(regs);
608 if (recoverable == 1)
609 goto silent_out;
610 }
611
612 printk("Machine check in kernel mode.\n");
613 printk("Caused by (from MCSR=%lx): ", reason);
614
615 if (reason & MCSR_MCP)
616 pr_cont("Machine Check Signal\n");
617
618 if (reason & MCSR_ICPERR) {
619 pr_cont("Instruction Cache Parity Error\n");
620
621 /*
622 * This is recoverable by invalidating the i-cache.
623 */
624 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
625 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
626 ;
627
628 /*
629 * This will generally be accompanied by an instruction
630 * fetch error report -- only treat MCSR_IF as fatal
631 * if it wasn't due to an L1 parity error.
632 */
633 reason &= ~MCSR_IF;
634 }
635
636 if (reason & MCSR_DCPERR_MC) {
637 pr_cont("Data Cache Parity Error\n");
638
639 /*
640 * In write shadow mode we auto-recover from the error, but it
641 * may still get logged and cause a machine check. We should
642 * only treat the non-write shadow case as non-recoverable.
643 */
644 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
645 * is not implemented but L1 data cache always runs in write
646 * shadow mode. Hence on data cache parity errors HW will
647 * automatically invalidate the L1 Data Cache.
648 */
649 if (PVR_VER(pvr) != PVR_VER_E6500) {
650 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
651 recoverable = 0;
652 }
653 }
654
655 if (reason & MCSR_L2MMU_MHIT) {
656 pr_cont("Hit on multiple TLB entries\n");
657 recoverable = 0;
658 }
659
660 if (reason & MCSR_NMI)
661 pr_cont("Non-maskable interrupt\n");
662
663 if (reason & MCSR_IF) {
664 pr_cont("Instruction Fetch Error Report\n");
665 recoverable = 0;
666 }
667
668 if (reason & MCSR_LD) {
669 pr_cont("Load Error Report\n");
670 recoverable = 0;
671 }
672
673 if (reason & MCSR_ST) {
674 pr_cont("Store Error Report\n");
675 recoverable = 0;
676 }
677
678 if (reason & MCSR_LDG) {
679 pr_cont("Guarded Load Error Report\n");
680 recoverable = 0;
681 }
682
683 if (reason & MCSR_TLBSYNC)
684 pr_cont("Simultaneous tlbsync operations\n");
685
686 if (reason & MCSR_BSL2_ERR) {
687 pr_cont("Level 2 Cache Error\n");
688 recoverable = 0;
689 }
690
691 if (reason & MCSR_MAV) {
692 u64 addr;
693
694 addr = mfspr(SPRN_MCAR);
695 addr |= (u64)mfspr(SPRN_MCARU) << 32;
696
697 pr_cont("Machine Check %s Address: %#llx\n",
698 reason & MCSR_MEA ? "Effective" : "Physical", addr);
699 }
700
701 silent_out:
702 mtspr(SPRN_MCSR, mcsr);
703 return mfspr(SPRN_MCSR) == 0 && recoverable;
704 }
705
706 int machine_check_e500(struct pt_regs *regs)
707 {
708 unsigned long reason = mfspr(SPRN_MCSR);
709
710 if (reason & MCSR_BUS_RBERR) {
711 if (fsl_rio_mcheck_exception(regs))
712 return 1;
713 if (fsl_pci_mcheck_exception(regs))
714 return 1;
715 }
716
717 printk("Machine check in kernel mode.\n");
718 printk("Caused by (from MCSR=%lx): ", reason);
719
720 if (reason & MCSR_MCP)
721 pr_cont("Machine Check Signal\n");
722 if (reason & MCSR_ICPERR)
723 pr_cont("Instruction Cache Parity Error\n");
724 if (reason & MCSR_DCP_PERR)
725 pr_cont("Data Cache Push Parity Error\n");
726 if (reason & MCSR_DCPERR)
727 pr_cont("Data Cache Parity Error\n");
728 if (reason & MCSR_BUS_IAERR)
729 pr_cont("Bus - Instruction Address Error\n");
730 if (reason & MCSR_BUS_RAERR)
731 pr_cont("Bus - Read Address Error\n");
732 if (reason & MCSR_BUS_WAERR)
733 pr_cont("Bus - Write Address Error\n");
734 if (reason & MCSR_BUS_IBERR)
735 pr_cont("Bus - Instruction Data Error\n");
736 if (reason & MCSR_BUS_RBERR)
737 pr_cont("Bus - Read Data Bus Error\n");
738 if (reason & MCSR_BUS_WBERR)
739 pr_cont("Bus - Write Data Bus Error\n");
740 if (reason & MCSR_BUS_IPERR)
741 pr_cont("Bus - Instruction Parity Error\n");
742 if (reason & MCSR_BUS_RPERR)
743 pr_cont("Bus - Read Parity Error\n");
744
745 return 0;
746 }
747
748 int machine_check_generic(struct pt_regs *regs)
749 {
750 return 0;
751 }
752 #elif defined(CONFIG_E200)
753 int machine_check_e200(struct pt_regs *regs)
754 {
755 unsigned long reason = mfspr(SPRN_MCSR);
756
757 printk("Machine check in kernel mode.\n");
758 printk("Caused by (from MCSR=%lx): ", reason);
759
760 if (reason & MCSR_MCP)
761 pr_cont("Machine Check Signal\n");
762 if (reason & MCSR_CP_PERR)
763 pr_cont("Cache Push Parity Error\n");
764 if (reason & MCSR_CPERR)
765 pr_cont("Cache Parity Error\n");
766 if (reason & MCSR_EXCP_ERR)
767 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
768 if (reason & MCSR_BUS_IRERR)
769 pr_cont("Bus - Read Bus Error on instruction fetch\n");
770 if (reason & MCSR_BUS_DRERR)
771 pr_cont("Bus - Read Bus Error on data load\n");
772 if (reason & MCSR_BUS_WRERR)
773 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
774
775 return 0;
776 }
777 #elif defined(CONFIG_PPC32)
778 int machine_check_generic(struct pt_regs *regs)
779 {
780 unsigned long reason = regs->msr;
781
782 printk("Machine check in kernel mode.\n");
783 printk("Caused by (from SRR1=%lx): ", reason);
784 switch (reason & 0x601F0000) {
785 case 0x80000:
786 pr_cont("Machine check signal\n");
787 break;
788 case 0: /* for 601 */
789 case 0x40000:
790 case 0x140000: /* 7450 MSS error and TEA */
791 pr_cont("Transfer error ack signal\n");
792 break;
793 case 0x20000:
794 pr_cont("Data parity error signal\n");
795 break;
796 case 0x10000:
797 pr_cont("Address parity error signal\n");
798 break;
799 case 0x20000000:
800 pr_cont("L1 Data Cache error\n");
801 break;
802 case 0x40000000:
803 pr_cont("L1 Instruction Cache error\n");
804 break;
805 case 0x00100000:
806 pr_cont("L2 data cache parity error\n");
807 break;
808 default:
809 pr_cont("Unknown values in msr\n");
810 }
811 return 0;
812 }
813 #endif /* everything else */
814
815 void machine_check_exception(struct pt_regs *regs)
816 {
817 int recover = 0;
818 bool nested = in_nmi();
819 if (!nested)
820 nmi_enter();
821
822 __this_cpu_inc(irq_stat.mce_exceptions);
823
824 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
825
826 /* See if any machine dependent calls. In theory, we would want
827 * to call the CPU first, and call the ppc_md. one if the CPU
828 * one returns a positive number. However there is existing code
829 * that assumes the board gets a first chance, so let's keep it
830 * that way for now and fix things later. --BenH.
831 */
832 if (ppc_md.machine_check_exception)
833 recover = ppc_md.machine_check_exception(regs);
834 else if (cur_cpu_spec->machine_check)
835 recover = cur_cpu_spec->machine_check(regs);
836
837 if (recover > 0)
838 goto bail;
839
840 if (debugger_fault_handler(regs))
841 goto bail;
842
843 if (check_io_access(regs))
844 goto bail;
845
846 if (!nested)
847 nmi_exit();
848
849 die("Machine check", regs, SIGBUS);
850
851 /* Must die if the interrupt is not recoverable */
852 if (!(regs->msr & MSR_RI))
853 nmi_panic(regs, "Unrecoverable Machine check");
854
855 return;
856
857 bail:
858 if (!nested)
859 nmi_exit();
860 }
861
862 void SMIException(struct pt_regs *regs)
863 {
864 die("System Management Interrupt", regs, SIGABRT);
865 }
866
867 #ifdef CONFIG_VSX
868 static void p9_hmi_special_emu(struct pt_regs *regs)
869 {
870 unsigned int ra, rb, t, i, sel, instr, rc;
871 const void __user *addr;
872 u8 vbuf[16], *vdst;
873 unsigned long ea, msr, msr_mask;
874 bool swap;
875
876 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
877 return;
878
879 /*
880 * lxvb16x opcode: 0x7c0006d8
881 * lxvd2x opcode: 0x7c000698
882 * lxvh8x opcode: 0x7c000658
883 * lxvw4x opcode: 0x7c000618
884 */
885 if ((instr & 0xfc00073e) != 0x7c000618) {
886 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
887 " instr=%08x\n",
888 smp_processor_id(), current->comm, current->pid,
889 regs->nip, instr);
890 return;
891 }
892
893 /* Grab vector registers into the task struct */
894 msr = regs->msr; /* Grab msr before we flush the bits */
895 flush_vsx_to_thread(current);
896 enable_kernel_altivec();
897
898 /*
899 * Is userspace running with a different endian (this is rare but
900 * not impossible)
901 */
902 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
903
904 /* Decode the instruction */
905 ra = (instr >> 16) & 0x1f;
906 rb = (instr >> 11) & 0x1f;
907 t = (instr >> 21) & 0x1f;
908 if (instr & 1)
909 vdst = (u8 *)&current->thread.vr_state.vr[t];
910 else
911 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
912
913 /* Grab the vector address */
914 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
915 if (is_32bit_task())
916 ea &= 0xfffffffful;
917 addr = (__force const void __user *)ea;
918
919 /* Check it */
920 if (!access_ok(addr, 16)) {
921 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
922 " instr=%08x addr=%016lx\n",
923 smp_processor_id(), current->comm, current->pid,
924 regs->nip, instr, (unsigned long)addr);
925 return;
926 }
927
928 /* Read the vector */
929 rc = 0;
930 if ((unsigned long)addr & 0xfUL)
931 /* unaligned case */
932 rc = __copy_from_user_inatomic(vbuf, addr, 16);
933 else
934 __get_user_atomic_128_aligned(vbuf, addr, rc);
935 if (rc) {
936 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
937 " instr=%08x addr=%016lx\n",
938 smp_processor_id(), current->comm, current->pid,
939 regs->nip, instr, (unsigned long)addr);
940 return;
941 }
942
943 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
944 " instr=%08x addr=%016lx\n",
945 smp_processor_id(), current->comm, current->pid, regs->nip,
946 instr, (unsigned long) addr);
947
948 /* Grab instruction "selector" */
949 sel = (instr >> 6) & 3;
950
951 /*
952 * Check to make sure the facility is actually enabled. This
953 * could happen if we get a false positive hit.
954 *
955 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
956 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
957 */
958 msr_mask = MSR_VSX;
959 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
960 msr_mask = MSR_VEC;
961 if (!(msr & msr_mask)) {
962 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
963 " instr=%08x msr:%016lx\n",
964 smp_processor_id(), current->comm, current->pid,
965 regs->nip, instr, msr);
966 return;
967 }
968
969 /* Do logging here before we modify sel based on endian */
970 switch (sel) {
971 case 0: /* lxvw4x */
972 PPC_WARN_EMULATED(lxvw4x, regs);
973 break;
974 case 1: /* lxvh8x */
975 PPC_WARN_EMULATED(lxvh8x, regs);
976 break;
977 case 2: /* lxvd2x */
978 PPC_WARN_EMULATED(lxvd2x, regs);
979 break;
980 case 3: /* lxvb16x */
981 PPC_WARN_EMULATED(lxvb16x, regs);
982 break;
983 }
984
985 #ifdef __LITTLE_ENDIAN__
986 /*
987 * An LE kernel stores the vector in the task struct as an LE
988 * byte array (effectively swapping both the components and
989 * the content of the components). Those instructions expect
990 * the components to remain in ascending address order, so we
991 * swap them back.
992 *
993 * If we are running a BE user space, the expectation is that
994 * of a simple memcpy, so forcing the emulation to look like
995 * a lxvb16x should do the trick.
996 */
997 if (swap)
998 sel = 3;
999
1000 switch (sel) {
1001 case 0: /* lxvw4x */
1002 for (i = 0; i < 4; i++)
1003 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1004 break;
1005 case 1: /* lxvh8x */
1006 for (i = 0; i < 8; i++)
1007 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1008 break;
1009 case 2: /* lxvd2x */
1010 for (i = 0; i < 2; i++)
1011 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1012 break;
1013 case 3: /* lxvb16x */
1014 for (i = 0; i < 16; i++)
1015 vdst[i] = vbuf[15-i];
1016 break;
1017 }
1018 #else /* __LITTLE_ENDIAN__ */
1019 /* On a big endian kernel, a BE userspace only needs a memcpy */
1020 if (!swap)
1021 sel = 3;
1022
1023 /* Otherwise, we need to swap the content of the components */
1024 switch (sel) {
1025 case 0: /* lxvw4x */
1026 for (i = 0; i < 4; i++)
1027 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1028 break;
1029 case 1: /* lxvh8x */
1030 for (i = 0; i < 8; i++)
1031 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1032 break;
1033 case 2: /* lxvd2x */
1034 for (i = 0; i < 2; i++)
1035 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1036 break;
1037 case 3: /* lxvb16x */
1038 memcpy(vdst, vbuf, 16);
1039 break;
1040 }
1041 #endif /* !__LITTLE_ENDIAN__ */
1042
1043 /* Go to next instruction */
1044 regs->nip += 4;
1045 }
1046 #endif /* CONFIG_VSX */
1047
1048 void handle_hmi_exception(struct pt_regs *regs)
1049 {
1050 struct pt_regs *old_regs;
1051
1052 old_regs = set_irq_regs(regs);
1053 irq_enter();
1054
1055 #ifdef CONFIG_VSX
1056 /* Real mode flagged P9 special emu is needed */
1057 if (local_paca->hmi_p9_special_emu) {
1058 local_paca->hmi_p9_special_emu = 0;
1059
1060 /*
1061 * We don't want to take page faults while doing the
1062 * emulation, we just replay the instruction if necessary.
1063 */
1064 pagefault_disable();
1065 p9_hmi_special_emu(regs);
1066 pagefault_enable();
1067 }
1068 #endif /* CONFIG_VSX */
1069
1070 if (ppc_md.handle_hmi_exception)
1071 ppc_md.handle_hmi_exception(regs);
1072
1073 irq_exit();
1074 set_irq_regs(old_regs);
1075 }
1076
1077 void unknown_exception(struct pt_regs *regs)
1078 {
1079 enum ctx_state prev_state = exception_enter();
1080
1081 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1082 regs->nip, regs->msr, regs->trap);
1083
1084 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1085
1086 exception_exit(prev_state);
1087 }
1088
1089 void instruction_breakpoint_exception(struct pt_regs *regs)
1090 {
1091 enum ctx_state prev_state = exception_enter();
1092
1093 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1094 5, SIGTRAP) == NOTIFY_STOP)
1095 goto bail;
1096 if (debugger_iabr_match(regs))
1097 goto bail;
1098 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1099
1100 bail:
1101 exception_exit(prev_state);
1102 }
1103
1104 void RunModeException(struct pt_regs *regs)
1105 {
1106 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1107 }
1108
1109 void single_step_exception(struct pt_regs *regs)
1110 {
1111 enum ctx_state prev_state = exception_enter();
1112
1113 clear_single_step(regs);
1114 clear_br_trace(regs);
1115
1116 if (kprobe_post_handler(regs))
1117 return;
1118
1119 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1120 5, SIGTRAP) == NOTIFY_STOP)
1121 goto bail;
1122 if (debugger_sstep(regs))
1123 goto bail;
1124
1125 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1126
1127 bail:
1128 exception_exit(prev_state);
1129 }
1130 NOKPROBE_SYMBOL(single_step_exception);
1131
1132 /*
1133 * After we have successfully emulated an instruction, we have to
1134 * check if the instruction was being single-stepped, and if so,
1135 * pretend we got a single-step exception. This was pointed out
1136 * by Kumar Gala. -- paulus
1137 */
1138 static void emulate_single_step(struct pt_regs *regs)
1139 {
1140 if (single_stepping(regs))
1141 single_step_exception(regs);
1142 }
1143
1144 static inline int __parse_fpscr(unsigned long fpscr)
1145 {
1146 int ret = FPE_FLTUNK;
1147
1148 /* Invalid operation */
1149 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1150 ret = FPE_FLTINV;
1151
1152 /* Overflow */
1153 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1154 ret = FPE_FLTOVF;
1155
1156 /* Underflow */
1157 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1158 ret = FPE_FLTUND;
1159
1160 /* Divide by zero */
1161 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1162 ret = FPE_FLTDIV;
1163
1164 /* Inexact result */
1165 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1166 ret = FPE_FLTRES;
1167
1168 return ret;
1169 }
1170
1171 static void parse_fpe(struct pt_regs *regs)
1172 {
1173 int code = 0;
1174
1175 flush_fp_to_thread(current);
1176
1177 code = __parse_fpscr(current->thread.fp_state.fpscr);
1178
1179 _exception(SIGFPE, regs, code, regs->nip);
1180 }
1181
1182 /*
1183 * Illegal instruction emulation support. Originally written to
1184 * provide the PVR to user applications using the mfspr rd, PVR.
1185 * Return non-zero if we can't emulate, or -EFAULT if the associated
1186 * memory access caused an access fault. Return zero on success.
1187 *
1188 * There are a couple of ways to do this, either "decode" the instruction
1189 * or directly match lots of bits. In this case, matching lots of
1190 * bits is faster and easier.
1191 *
1192 */
1193 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1194 {
1195 u8 rT = (instword >> 21) & 0x1f;
1196 u8 rA = (instword >> 16) & 0x1f;
1197 u8 NB_RB = (instword >> 11) & 0x1f;
1198 u32 num_bytes;
1199 unsigned long EA;
1200 int pos = 0;
1201
1202 /* Early out if we are an invalid form of lswx */
1203 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1204 if ((rT == rA) || (rT == NB_RB))
1205 return -EINVAL;
1206
1207 EA = (rA == 0) ? 0 : regs->gpr[rA];
1208
1209 switch (instword & PPC_INST_STRING_MASK) {
1210 case PPC_INST_LSWX:
1211 case PPC_INST_STSWX:
1212 EA += NB_RB;
1213 num_bytes = regs->xer & 0x7f;
1214 break;
1215 case PPC_INST_LSWI:
1216 case PPC_INST_STSWI:
1217 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1218 break;
1219 default:
1220 return -EINVAL;
1221 }
1222
1223 while (num_bytes != 0)
1224 {
1225 u8 val;
1226 u32 shift = 8 * (3 - (pos & 0x3));
1227
1228 /* if process is 32-bit, clear upper 32 bits of EA */
1229 if ((regs->msr & MSR_64BIT) == 0)
1230 EA &= 0xFFFFFFFF;
1231
1232 switch ((instword & PPC_INST_STRING_MASK)) {
1233 case PPC_INST_LSWX:
1234 case PPC_INST_LSWI:
1235 if (get_user(val, (u8 __user *)EA))
1236 return -EFAULT;
1237 /* first time updating this reg,
1238 * zero it out */
1239 if (pos == 0)
1240 regs->gpr[rT] = 0;
1241 regs->gpr[rT] |= val << shift;
1242 break;
1243 case PPC_INST_STSWI:
1244 case PPC_INST_STSWX:
1245 val = regs->gpr[rT] >> shift;
1246 if (put_user(val, (u8 __user *)EA))
1247 return -EFAULT;
1248 break;
1249 }
1250 /* move EA to next address */
1251 EA += 1;
1252 num_bytes--;
1253
1254 /* manage our position within the register */
1255 if (++pos == 4) {
1256 pos = 0;
1257 if (++rT == 32)
1258 rT = 0;
1259 }
1260 }
1261
1262 return 0;
1263 }
1264
1265 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1266 {
1267 u32 ra,rs;
1268 unsigned long tmp;
1269
1270 ra = (instword >> 16) & 0x1f;
1271 rs = (instword >> 21) & 0x1f;
1272
1273 tmp = regs->gpr[rs];
1274 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1275 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1276 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1277 regs->gpr[ra] = tmp;
1278
1279 return 0;
1280 }
1281
1282 static int emulate_isel(struct pt_regs *regs, u32 instword)
1283 {
1284 u8 rT = (instword >> 21) & 0x1f;
1285 u8 rA = (instword >> 16) & 0x1f;
1286 u8 rB = (instword >> 11) & 0x1f;
1287 u8 BC = (instword >> 6) & 0x1f;
1288 u8 bit;
1289 unsigned long tmp;
1290
1291 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1292 bit = (regs->ccr >> (31 - BC)) & 0x1;
1293
1294 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1295
1296 return 0;
1297 }
1298
1299 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1300 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1301 {
1302 /* If we're emulating a load/store in an active transaction, we cannot
1303 * emulate it as the kernel operates in transaction suspended context.
1304 * We need to abort the transaction. This creates a persistent TM
1305 * abort so tell the user what caused it with a new code.
1306 */
1307 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1308 tm_enable();
1309 tm_abort(cause);
1310 return true;
1311 }
1312 return false;
1313 }
1314 #else
1315 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1316 {
1317 return false;
1318 }
1319 #endif
1320
1321 static int emulate_instruction(struct pt_regs *regs)
1322 {
1323 u32 instword;
1324 u32 rd;
1325
1326 if (!user_mode(regs))
1327 return -EINVAL;
1328 CHECK_FULL_REGS(regs);
1329
1330 if (get_user(instword, (u32 __user *)(regs->nip)))
1331 return -EFAULT;
1332
1333 /* Emulate the mfspr rD, PVR. */
1334 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1335 PPC_WARN_EMULATED(mfpvr, regs);
1336 rd = (instword >> 21) & 0x1f;
1337 regs->gpr[rd] = mfspr(SPRN_PVR);
1338 return 0;
1339 }
1340
1341 /* Emulating the dcba insn is just a no-op. */
1342 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1343 PPC_WARN_EMULATED(dcba, regs);
1344 return 0;
1345 }
1346
1347 /* Emulate the mcrxr insn. */
1348 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1349 int shift = (instword >> 21) & 0x1c;
1350 unsigned long msk = 0xf0000000UL >> shift;
1351
1352 PPC_WARN_EMULATED(mcrxr, regs);
1353 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1354 regs->xer &= ~0xf0000000UL;
1355 return 0;
1356 }
1357
1358 /* Emulate load/store string insn. */
1359 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1360 if (tm_abort_check(regs,
1361 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1362 return -EINVAL;
1363 PPC_WARN_EMULATED(string, regs);
1364 return emulate_string_inst(regs, instword);
1365 }
1366
1367 /* Emulate the popcntb (Population Count Bytes) instruction. */
1368 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1369 PPC_WARN_EMULATED(popcntb, regs);
1370 return emulate_popcntb_inst(regs, instword);
1371 }
1372
1373 /* Emulate isel (Integer Select) instruction */
1374 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1375 PPC_WARN_EMULATED(isel, regs);
1376 return emulate_isel(regs, instword);
1377 }
1378
1379 /* Emulate sync instruction variants */
1380 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1381 PPC_WARN_EMULATED(sync, regs);
1382 asm volatile("sync");
1383 return 0;
1384 }
1385
1386 #ifdef CONFIG_PPC64
1387 /* Emulate the mfspr rD, DSCR. */
1388 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1389 PPC_INST_MFSPR_DSCR_USER) ||
1390 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1391 PPC_INST_MFSPR_DSCR)) &&
1392 cpu_has_feature(CPU_FTR_DSCR)) {
1393 PPC_WARN_EMULATED(mfdscr, regs);
1394 rd = (instword >> 21) & 0x1f;
1395 regs->gpr[rd] = mfspr(SPRN_DSCR);
1396 return 0;
1397 }
1398 /* Emulate the mtspr DSCR, rD. */
1399 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1400 PPC_INST_MTSPR_DSCR_USER) ||
1401 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1402 PPC_INST_MTSPR_DSCR)) &&
1403 cpu_has_feature(CPU_FTR_DSCR)) {
1404 PPC_WARN_EMULATED(mtdscr, regs);
1405 rd = (instword >> 21) & 0x1f;
1406 current->thread.dscr = regs->gpr[rd];
1407 current->thread.dscr_inherit = 1;
1408 mtspr(SPRN_DSCR, current->thread.dscr);
1409 return 0;
1410 }
1411 #endif
1412
1413 return -EINVAL;
1414 }
1415
1416 int is_valid_bugaddr(unsigned long addr)
1417 {
1418 return is_kernel_addr(addr);
1419 }
1420
1421 #ifdef CONFIG_MATH_EMULATION
1422 static int emulate_math(struct pt_regs *regs)
1423 {
1424 int ret;
1425 extern int do_mathemu(struct pt_regs *regs);
1426
1427 ret = do_mathemu(regs);
1428 if (ret >= 0)
1429 PPC_WARN_EMULATED(math, regs);
1430
1431 switch (ret) {
1432 case 0:
1433 emulate_single_step(regs);
1434 return 0;
1435 case 1: {
1436 int code = 0;
1437 code = __parse_fpscr(current->thread.fp_state.fpscr);
1438 _exception(SIGFPE, regs, code, regs->nip);
1439 return 0;
1440 }
1441 case -EFAULT:
1442 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1443 return 0;
1444 }
1445
1446 return -1;
1447 }
1448 #else
1449 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1450 #endif
1451
1452 void program_check_exception(struct pt_regs *regs)
1453 {
1454 enum ctx_state prev_state = exception_enter();
1455 unsigned int reason = get_reason(regs);
1456
1457 /* We can now get here via a FP Unavailable exception if the core
1458 * has no FPU, in that case the reason flags will be 0 */
1459
1460 if (reason & REASON_FP) {
1461 /* IEEE FP exception */
1462 parse_fpe(regs);
1463 goto bail;
1464 }
1465 if (reason & REASON_TRAP) {
1466 unsigned long bugaddr;
1467 /* Debugger is first in line to stop recursive faults in
1468 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1469 if (debugger_bpt(regs))
1470 goto bail;
1471
1472 if (kprobe_handler(regs))
1473 goto bail;
1474
1475 /* trap exception */
1476 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1477 == NOTIFY_STOP)
1478 goto bail;
1479
1480 bugaddr = regs->nip;
1481 /*
1482 * Fixup bugaddr for BUG_ON() in real mode
1483 */
1484 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1485 bugaddr += PAGE_OFFSET;
1486
1487 if (!(regs->msr & MSR_PR) && /* not user-mode */
1488 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1489 regs->nip += 4;
1490 goto bail;
1491 }
1492 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1493 goto bail;
1494 }
1495 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1496 if (reason & REASON_TM) {
1497 /* This is a TM "Bad Thing Exception" program check.
1498 * This occurs when:
1499 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1500 * transition in TM states.
1501 * - A trechkpt is attempted when transactional.
1502 * - A treclaim is attempted when non transactional.
1503 * - A tend is illegally attempted.
1504 * - writing a TM SPR when transactional.
1505 *
1506 * If usermode caused this, it's done something illegal and
1507 * gets a SIGILL slap on the wrist. We call it an illegal
1508 * operand to distinguish from the instruction just being bad
1509 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1510 * illegal /placement/ of a valid instruction.
1511 */
1512 if (user_mode(regs)) {
1513 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1514 goto bail;
1515 } else {
1516 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1517 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1518 regs->nip, regs->msr, get_paca()->tm_scratch);
1519 die("Unrecoverable exception", regs, SIGABRT);
1520 }
1521 }
1522 #endif
1523
1524 /*
1525 * If we took the program check in the kernel skip down to sending a
1526 * SIGILL. The subsequent cases all relate to emulating instructions
1527 * which we should only do for userspace. We also do not want to enable
1528 * interrupts for kernel faults because that might lead to further
1529 * faults, and loose the context of the original exception.
1530 */
1531 if (!user_mode(regs))
1532 goto sigill;
1533
1534 /* We restore the interrupt state now */
1535 if (!arch_irq_disabled_regs(regs))
1536 local_irq_enable();
1537
1538 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1539 * but there seems to be a hardware bug on the 405GP (RevD)
1540 * that means ESR is sometimes set incorrectly - either to
1541 * ESR_DST (!?) or 0. In the process of chasing this with the
1542 * hardware people - not sure if it can happen on any illegal
1543 * instruction or only on FP instructions, whether there is a
1544 * pattern to occurrences etc. -dgibson 31/Mar/2003
1545 */
1546 if (!emulate_math(regs))
1547 goto bail;
1548
1549 /* Try to emulate it if we should. */
1550 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1551 switch (emulate_instruction(regs)) {
1552 case 0:
1553 regs->nip += 4;
1554 emulate_single_step(regs);
1555 goto bail;
1556 case -EFAULT:
1557 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1558 goto bail;
1559 }
1560 }
1561
1562 sigill:
1563 if (reason & REASON_PRIVILEGED)
1564 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1565 else
1566 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1567
1568 bail:
1569 exception_exit(prev_state);
1570 }
1571 NOKPROBE_SYMBOL(program_check_exception);
1572
1573 /*
1574 * This occurs when running in hypervisor mode on POWER6 or later
1575 * and an illegal instruction is encountered.
1576 */
1577 void emulation_assist_interrupt(struct pt_regs *regs)
1578 {
1579 regs->msr |= REASON_ILLEGAL;
1580 program_check_exception(regs);
1581 }
1582 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1583
1584 void alignment_exception(struct pt_regs *regs)
1585 {
1586 enum ctx_state prev_state = exception_enter();
1587 int sig, code, fixed = 0;
1588
1589 /* We restore the interrupt state now */
1590 if (!arch_irq_disabled_regs(regs))
1591 local_irq_enable();
1592
1593 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1594 goto bail;
1595
1596 /* we don't implement logging of alignment exceptions */
1597 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1598 fixed = fix_alignment(regs);
1599
1600 if (fixed == 1) {
1601 regs->nip += 4; /* skip over emulated instruction */
1602 emulate_single_step(regs);
1603 goto bail;
1604 }
1605
1606 /* Operand address was bad */
1607 if (fixed == -EFAULT) {
1608 sig = SIGSEGV;
1609 code = SEGV_ACCERR;
1610 } else {
1611 sig = SIGBUS;
1612 code = BUS_ADRALN;
1613 }
1614 if (user_mode(regs))
1615 _exception(sig, regs, code, regs->dar);
1616 else
1617 bad_page_fault(regs, regs->dar, sig);
1618
1619 bail:
1620 exception_exit(prev_state);
1621 }
1622
1623 void StackOverflow(struct pt_regs *regs)
1624 {
1625 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1626 current->comm, task_pid_nr(current), regs->gpr[1]);
1627 debugger(regs);
1628 show_regs(regs);
1629 panic("kernel stack overflow");
1630 }
1631
1632 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1633 {
1634 enum ctx_state prev_state = exception_enter();
1635
1636 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1637 "%lx at %lx\n", regs->trap, regs->nip);
1638 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1639
1640 exception_exit(prev_state);
1641 }
1642
1643 void altivec_unavailable_exception(struct pt_regs *regs)
1644 {
1645 enum ctx_state prev_state = exception_enter();
1646
1647 if (user_mode(regs)) {
1648 /* A user program has executed an altivec instruction,
1649 but this kernel doesn't support altivec. */
1650 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1651 goto bail;
1652 }
1653
1654 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1655 "%lx at %lx\n", regs->trap, regs->nip);
1656 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1657
1658 bail:
1659 exception_exit(prev_state);
1660 }
1661
1662 void vsx_unavailable_exception(struct pt_regs *regs)
1663 {
1664 if (user_mode(regs)) {
1665 /* A user program has executed an vsx instruction,
1666 but this kernel doesn't support vsx. */
1667 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1668 return;
1669 }
1670
1671 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1672 "%lx at %lx\n", regs->trap, regs->nip);
1673 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1674 }
1675
1676 #ifdef CONFIG_PPC64
1677 static void tm_unavailable(struct pt_regs *regs)
1678 {
1679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1680 if (user_mode(regs)) {
1681 current->thread.load_tm++;
1682 regs->msr |= MSR_TM;
1683 tm_enable();
1684 tm_restore_sprs(&current->thread);
1685 return;
1686 }
1687 #endif
1688 pr_emerg("Unrecoverable TM Unavailable Exception "
1689 "%lx at %lx\n", regs->trap, regs->nip);
1690 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1691 }
1692
1693 void facility_unavailable_exception(struct pt_regs *regs)
1694 {
1695 static char *facility_strings[] = {
1696 [FSCR_FP_LG] = "FPU",
1697 [FSCR_VECVSX_LG] = "VMX/VSX",
1698 [FSCR_DSCR_LG] = "DSCR",
1699 [FSCR_PM_LG] = "PMU SPRs",
1700 [FSCR_BHRB_LG] = "BHRB",
1701 [FSCR_TM_LG] = "TM",
1702 [FSCR_EBB_LG] = "EBB",
1703 [FSCR_TAR_LG] = "TAR",
1704 [FSCR_MSGP_LG] = "MSGP",
1705 [FSCR_SCV_LG] = "SCV",
1706 };
1707 char *facility = "unknown";
1708 u64 value;
1709 u32 instword, rd;
1710 u8 status;
1711 bool hv;
1712
1713 hv = (TRAP(regs) == 0xf80);
1714 if (hv)
1715 value = mfspr(SPRN_HFSCR);
1716 else
1717 value = mfspr(SPRN_FSCR);
1718
1719 status = value >> 56;
1720 if ((hv || status >= 2) &&
1721 (status < ARRAY_SIZE(facility_strings)) &&
1722 facility_strings[status])
1723 facility = facility_strings[status];
1724
1725 /* We should not have taken this interrupt in kernel */
1726 if (!user_mode(regs)) {
1727 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1728 facility, status, regs->nip);
1729 die("Unexpected facility unavailable exception", regs, SIGABRT);
1730 }
1731
1732 /* We restore the interrupt state now */
1733 if (!arch_irq_disabled_regs(regs))
1734 local_irq_enable();
1735
1736 if (status == FSCR_DSCR_LG) {
1737 /*
1738 * User is accessing the DSCR register using the problem
1739 * state only SPR number (0x03) either through a mfspr or
1740 * a mtspr instruction. If it is a write attempt through
1741 * a mtspr, then we set the inherit bit. This also allows
1742 * the user to write or read the register directly in the
1743 * future by setting via the FSCR DSCR bit. But in case it
1744 * is a read DSCR attempt through a mfspr instruction, we
1745 * just emulate the instruction instead. This code path will
1746 * always emulate all the mfspr instructions till the user
1747 * has attempted at least one mtspr instruction. This way it
1748 * preserves the same behaviour when the user is accessing
1749 * the DSCR through privilege level only SPR number (0x11)
1750 * which is emulated through illegal instruction exception.
1751 * We always leave HFSCR DSCR set.
1752 */
1753 if (get_user(instword, (u32 __user *)(regs->nip))) {
1754 pr_err("Failed to fetch the user instruction\n");
1755 return;
1756 }
1757
1758 /* Write into DSCR (mtspr 0x03, RS) */
1759 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1760 == PPC_INST_MTSPR_DSCR_USER) {
1761 rd = (instword >> 21) & 0x1f;
1762 current->thread.dscr = regs->gpr[rd];
1763 current->thread.dscr_inherit = 1;
1764 current->thread.fscr |= FSCR_DSCR;
1765 mtspr(SPRN_FSCR, current->thread.fscr);
1766 }
1767
1768 /* Read from DSCR (mfspr RT, 0x03) */
1769 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1770 == PPC_INST_MFSPR_DSCR_USER) {
1771 if (emulate_instruction(regs)) {
1772 pr_err("DSCR based mfspr emulation failed\n");
1773 return;
1774 }
1775 regs->nip += 4;
1776 emulate_single_step(regs);
1777 }
1778 return;
1779 }
1780
1781 if (status == FSCR_TM_LG) {
1782 /*
1783 * If we're here then the hardware is TM aware because it
1784 * generated an exception with FSRM_TM set.
1785 *
1786 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1787 * told us not to do TM, or the kernel is not built with TM
1788 * support.
1789 *
1790 * If both of those things are true, then userspace can spam the
1791 * console by triggering the printk() below just by continually
1792 * doing tbegin (or any TM instruction). So in that case just
1793 * send the process a SIGILL immediately.
1794 */
1795 if (!cpu_has_feature(CPU_FTR_TM))
1796 goto out;
1797
1798 tm_unavailable(regs);
1799 return;
1800 }
1801
1802 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1803 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1804
1805 out:
1806 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1811
1812 void fp_unavailable_tm(struct pt_regs *regs)
1813 {
1814 /* Note: This does not handle any kind of FP laziness. */
1815
1816 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1817 regs->nip, regs->msr);
1818
1819 /* We can only have got here if the task started using FP after
1820 * beginning the transaction. So, the transactional regs are just a
1821 * copy of the checkpointed ones. But, we still need to recheckpoint
1822 * as we're enabling FP for the process; it will return, abort the
1823 * transaction, and probably retry but now with FP enabled. So the
1824 * checkpointed FP registers need to be loaded.
1825 */
1826 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1827
1828 /*
1829 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1830 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1831 *
1832 * At this point, ck{fp,vr}_state contains the exact values we want to
1833 * recheckpoint.
1834 */
1835
1836 /* Enable FP for the task: */
1837 current->thread.load_fp = 1;
1838
1839 /*
1840 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1841 */
1842 tm_recheckpoint(&current->thread);
1843 }
1844
1845 void altivec_unavailable_tm(struct pt_regs *regs)
1846 {
1847 /* See the comments in fp_unavailable_tm(). This function operates
1848 * the same way.
1849 */
1850
1851 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1852 "MSR=%lx\n",
1853 regs->nip, regs->msr);
1854 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1855 current->thread.load_vec = 1;
1856 tm_recheckpoint(&current->thread);
1857 current->thread.used_vr = 1;
1858 }
1859
1860 void vsx_unavailable_tm(struct pt_regs *regs)
1861 {
1862 /* See the comments in fp_unavailable_tm(). This works similarly,
1863 * though we're loading both FP and VEC registers in here.
1864 *
1865 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1866 * regs. Either way, set MSR_VSX.
1867 */
1868
1869 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1870 "MSR=%lx\n",
1871 regs->nip, regs->msr);
1872
1873 current->thread.used_vsr = 1;
1874
1875 /* This reclaims FP and/or VR regs if they're already enabled */
1876 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1877
1878 current->thread.load_vec = 1;
1879 current->thread.load_fp = 1;
1880
1881 tm_recheckpoint(&current->thread);
1882 }
1883 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1884
1885 void performance_monitor_exception(struct pt_regs *regs)
1886 {
1887 __this_cpu_inc(irq_stat.pmu_irqs);
1888
1889 perf_irq(regs);
1890 }
1891
1892 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1893 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1894 {
1895 int changed = 0;
1896 /*
1897 * Determine the cause of the debug event, clear the
1898 * event flags and send a trap to the handler. Torez
1899 */
1900 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1901 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1902 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1903 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1904 #endif
1905 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1906 5);
1907 changed |= 0x01;
1908 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1909 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1910 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1911 6);
1912 changed |= 0x01;
1913 } else if (debug_status & DBSR_IAC1) {
1914 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1915 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1916 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1917 1);
1918 changed |= 0x01;
1919 } else if (debug_status & DBSR_IAC2) {
1920 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1921 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1922 2);
1923 changed |= 0x01;
1924 } else if (debug_status & DBSR_IAC3) {
1925 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1926 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1927 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1928 3);
1929 changed |= 0x01;
1930 } else if (debug_status & DBSR_IAC4) {
1931 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1932 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1933 4);
1934 changed |= 0x01;
1935 }
1936 /*
1937 * At the point this routine was called, the MSR(DE) was turned off.
1938 * Check all other debug flags and see if that bit needs to be turned
1939 * back on or not.
1940 */
1941 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1942 current->thread.debug.dbcr1))
1943 regs->msr |= MSR_DE;
1944 else
1945 /* Make sure the IDM flag is off */
1946 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1947
1948 if (changed & 0x01)
1949 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1950 }
1951
1952 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1953 {
1954 current->thread.debug.dbsr = debug_status;
1955
1956 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1957 * on server, it stops on the target of the branch. In order to simulate
1958 * the server behaviour, we thus restart right away with a single step
1959 * instead of stopping here when hitting a BT
1960 */
1961 if (debug_status & DBSR_BT) {
1962 regs->msr &= ~MSR_DE;
1963
1964 /* Disable BT */
1965 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1966 /* Clear the BT event */
1967 mtspr(SPRN_DBSR, DBSR_BT);
1968
1969 /* Do the single step trick only when coming from userspace */
1970 if (user_mode(regs)) {
1971 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1972 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1973 regs->msr |= MSR_DE;
1974 return;
1975 }
1976
1977 if (kprobe_post_handler(regs))
1978 return;
1979
1980 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1981 5, SIGTRAP) == NOTIFY_STOP) {
1982 return;
1983 }
1984 if (debugger_sstep(regs))
1985 return;
1986 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1987 regs->msr &= ~MSR_DE;
1988
1989 /* Disable instruction completion */
1990 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1991 /* Clear the instruction completion event */
1992 mtspr(SPRN_DBSR, DBSR_IC);
1993
1994 if (kprobe_post_handler(regs))
1995 return;
1996
1997 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1998 5, SIGTRAP) == NOTIFY_STOP) {
1999 return;
2000 }
2001
2002 if (debugger_sstep(regs))
2003 return;
2004
2005 if (user_mode(regs)) {
2006 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2007 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2008 current->thread.debug.dbcr1))
2009 regs->msr |= MSR_DE;
2010 else
2011 /* Make sure the IDM bit is off */
2012 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2013 }
2014
2015 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2016 } else
2017 handle_debug(regs, debug_status);
2018 }
2019 NOKPROBE_SYMBOL(DebugException);
2020 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2021
2022 #if !defined(CONFIG_TAU_INT)
2023 void TAUException(struct pt_regs *regs)
2024 {
2025 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
2026 regs->nip, regs->msr, regs->trap, print_tainted());
2027 }
2028 #endif /* CONFIG_INT_TAU */
2029
2030 #ifdef CONFIG_ALTIVEC
2031 void altivec_assist_exception(struct pt_regs *regs)
2032 {
2033 int err;
2034
2035 if (!user_mode(regs)) {
2036 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2037 " at %lx\n", regs->nip);
2038 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2039 }
2040
2041 flush_altivec_to_thread(current);
2042
2043 PPC_WARN_EMULATED(altivec, regs);
2044 err = emulate_altivec(regs);
2045 if (err == 0) {
2046 regs->nip += 4; /* skip emulated instruction */
2047 emulate_single_step(regs);
2048 return;
2049 }
2050
2051 if (err == -EFAULT) {
2052 /* got an error reading the instruction */
2053 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2054 } else {
2055 /* didn't recognize the instruction */
2056 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2057 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2058 "in %s at %lx\n", current->comm, regs->nip);
2059 current->thread.vr_state.vscr.u[3] |= 0x10000;
2060 }
2061 }
2062 #endif /* CONFIG_ALTIVEC */
2063
2064 #ifdef CONFIG_FSL_BOOKE
2065 void CacheLockingException(struct pt_regs *regs, unsigned long address,
2066 unsigned long error_code)
2067 {
2068 /* We treat cache locking instructions from the user
2069 * as priv ops, in the future we could try to do
2070 * something smarter
2071 */
2072 if (error_code & (ESR_DLK|ESR_ILK))
2073 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2074 return;
2075 }
2076 #endif /* CONFIG_FSL_BOOKE */
2077
2078 #ifdef CONFIG_SPE
2079 void SPEFloatingPointException(struct pt_regs *regs)
2080 {
2081 extern int do_spe_mathemu(struct pt_regs *regs);
2082 unsigned long spefscr;
2083 int fpexc_mode;
2084 int code = FPE_FLTUNK;
2085 int err;
2086
2087 /* We restore the interrupt state now */
2088 if (!arch_irq_disabled_regs(regs))
2089 local_irq_enable();
2090
2091 flush_spe_to_thread(current);
2092
2093 spefscr = current->thread.spefscr;
2094 fpexc_mode = current->thread.fpexc_mode;
2095
2096 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2097 code = FPE_FLTOVF;
2098 }
2099 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2100 code = FPE_FLTUND;
2101 }
2102 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2103 code = FPE_FLTDIV;
2104 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2105 code = FPE_FLTINV;
2106 }
2107 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2108 code = FPE_FLTRES;
2109
2110 err = do_spe_mathemu(regs);
2111 if (err == 0) {
2112 regs->nip += 4; /* skip emulated instruction */
2113 emulate_single_step(regs);
2114 return;
2115 }
2116
2117 if (err == -EFAULT) {
2118 /* got an error reading the instruction */
2119 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2120 } else if (err == -EINVAL) {
2121 /* didn't recognize the instruction */
2122 printk(KERN_ERR "unrecognized spe instruction "
2123 "in %s at %lx\n", current->comm, regs->nip);
2124 } else {
2125 _exception(SIGFPE, regs, code, regs->nip);
2126 }
2127
2128 return;
2129 }
2130
2131 void SPEFloatingPointRoundException(struct pt_regs *regs)
2132 {
2133 extern int speround_handler(struct pt_regs *regs);
2134 int err;
2135
2136 /* We restore the interrupt state now */
2137 if (!arch_irq_disabled_regs(regs))
2138 local_irq_enable();
2139
2140 preempt_disable();
2141 if (regs->msr & MSR_SPE)
2142 giveup_spe(current);
2143 preempt_enable();
2144
2145 regs->nip -= 4;
2146 err = speround_handler(regs);
2147 if (err == 0) {
2148 regs->nip += 4; /* skip emulated instruction */
2149 emulate_single_step(regs);
2150 return;
2151 }
2152
2153 if (err == -EFAULT) {
2154 /* got an error reading the instruction */
2155 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2156 } else if (err == -EINVAL) {
2157 /* didn't recognize the instruction */
2158 printk(KERN_ERR "unrecognized spe instruction "
2159 "in %s at %lx\n", current->comm, regs->nip);
2160 } else {
2161 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2162 return;
2163 }
2164 }
2165 #endif
2166
2167 /*
2168 * We enter here if we get an unrecoverable exception, that is, one
2169 * that happened at a point where the RI (recoverable interrupt) bit
2170 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2171 * we therefore lost state by taking this exception.
2172 */
2173 void unrecoverable_exception(struct pt_regs *regs)
2174 {
2175 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2176 regs->trap, regs->nip, regs->msr);
2177 die("Unrecoverable exception", regs, SIGABRT);
2178 }
2179 NOKPROBE_SYMBOL(unrecoverable_exception);
2180
2181 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2182 /*
2183 * Default handler for a Watchdog exception,
2184 * spins until a reboot occurs
2185 */
2186 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2187 {
2188 /* Generic WatchdogHandler, implement your own */
2189 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2190 return;
2191 }
2192
2193 void WatchdogException(struct pt_regs *regs)
2194 {
2195 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2196 WatchdogHandler(regs);
2197 }
2198 #endif
2199
2200 /*
2201 * We enter here if we discover during exception entry that we are
2202 * running in supervisor mode with a userspace value in the stack pointer.
2203 */
2204 void kernel_bad_stack(struct pt_regs *regs)
2205 {
2206 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2207 regs->gpr[1], regs->nip);
2208 die("Bad kernel stack pointer", regs, SIGABRT);
2209 }
2210 NOKPROBE_SYMBOL(kernel_bad_stack);
2211
2212 void __init trap_init(void)
2213 {
2214 }
2215
2216
2217 #ifdef CONFIG_PPC_EMULATED_STATS
2218
2219 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2220
2221 struct ppc_emulated ppc_emulated = {
2222 #ifdef CONFIG_ALTIVEC
2223 WARN_EMULATED_SETUP(altivec),
2224 #endif
2225 WARN_EMULATED_SETUP(dcba),
2226 WARN_EMULATED_SETUP(dcbz),
2227 WARN_EMULATED_SETUP(fp_pair),
2228 WARN_EMULATED_SETUP(isel),
2229 WARN_EMULATED_SETUP(mcrxr),
2230 WARN_EMULATED_SETUP(mfpvr),
2231 WARN_EMULATED_SETUP(multiple),
2232 WARN_EMULATED_SETUP(popcntb),
2233 WARN_EMULATED_SETUP(spe),
2234 WARN_EMULATED_SETUP(string),
2235 WARN_EMULATED_SETUP(sync),
2236 WARN_EMULATED_SETUP(unaligned),
2237 #ifdef CONFIG_MATH_EMULATION
2238 WARN_EMULATED_SETUP(math),
2239 #endif
2240 #ifdef CONFIG_VSX
2241 WARN_EMULATED_SETUP(vsx),
2242 #endif
2243 #ifdef CONFIG_PPC64
2244 WARN_EMULATED_SETUP(mfdscr),
2245 WARN_EMULATED_SETUP(mtdscr),
2246 WARN_EMULATED_SETUP(lq_stq),
2247 WARN_EMULATED_SETUP(lxvw4x),
2248 WARN_EMULATED_SETUP(lxvh8x),
2249 WARN_EMULATED_SETUP(lxvd2x),
2250 WARN_EMULATED_SETUP(lxvb16x),
2251 #endif
2252 };
2253
2254 u32 ppc_warn_emulated;
2255
2256 void ppc_warn_emulated_print(const char *type)
2257 {
2258 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2259 type);
2260 }
2261
2262 static int __init ppc_warn_emulated_init(void)
2263 {
2264 struct dentry *dir, *d;
2265 unsigned int i;
2266 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2267
2268 if (!powerpc_debugfs_root)
2269 return -ENODEV;
2270
2271 dir = debugfs_create_dir("emulated_instructions",
2272 powerpc_debugfs_root);
2273 if (!dir)
2274 return -ENOMEM;
2275
2276 d = debugfs_create_u32("do_warn", 0644, dir,
2277 &ppc_warn_emulated);
2278 if (!d)
2279 goto fail;
2280
2281 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2282 d = debugfs_create_u32(entries[i].name, 0644, dir,
2283 (u32 *)&entries[i].val.counter);
2284 if (!d)
2285 goto fail;
2286 }
2287
2288 return 0;
2289
2290 fail:
2291 debugfs_remove_recursive(dir);
2292 return -ENOMEM;
2293 }
2294
2295 device_initcall(ppc_warn_emulated_init);
2296
2297 #endif /* CONFIG_PPC_EMULATED_STATS */