]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/traps.c
powerpc: Remove unused function trace_syscall()
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89
90 /*
91 * Trap & Exception support
92 */
93
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 mutex_lock(&pmac_backlight_mutex);
98 if (pmac_backlight) {
99 struct backlight_properties *props;
100
101 props = &pmac_backlight->props;
102 props->brightness = props->max_brightness;
103 props->power = FB_BLANK_UNBLANK;
104 backlight_update_status(pmac_backlight);
105 }
106 mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 int cpu;
120 unsigned long flags;
121
122 if (debugger(regs))
123 return 1;
124
125 oops_enter();
126
127 /* racy, but better than risking deadlock. */
128 raw_local_irq_save(flags);
129 cpu = smp_processor_id();
130 if (!arch_spin_trylock(&die_lock)) {
131 if (cpu == die_owner)
132 /* nested oops. should stop eventually */;
133 else
134 arch_spin_lock(&die_lock);
135 }
136 die_nest_count++;
137 die_owner = cpu;
138 console_verbose();
139 bust_spinlocks(1);
140 if (machine_is(powermac))
141 pmac_backlight_unblank();
142 return flags;
143 }
144
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 int signr)
147 {
148 bust_spinlocks(0);
149 die_owner = -1;
150 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 die_nest_count--;
152 oops_exit();
153 printk("\n");
154 if (!die_nest_count)
155 /* Nest count reaches zero, release the lock. */
156 arch_spin_unlock(&die_lock);
157 raw_local_irq_restore(flags);
158
159 crash_fadump(regs, "die oops");
160
161 /*
162 * A system reset (0x100) is a request to dump, so we always send
163 * it through the crashdump code.
164 */
165 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 crash_kexec(regs);
167
168 /*
169 * We aren't the primary crash CPU. We need to send it
170 * to a holding pattern to avoid it ending up in the panic
171 * code.
172 */
173 crash_kexec_secondary(regs);
174 }
175
176 if (!signr)
177 return;
178
179 /*
180 * While our oops output is serialised by a spinlock, output
181 * from panic() called below can race and corrupt it. If we
182 * know we are going to panic, delay for 1 second so we have a
183 * chance to get clean backtraces from all CPUs that are oopsing.
184 */
185 if (in_interrupt() || panic_on_oops || !current->pid ||
186 is_global_init(current)) {
187 mdelay(MSEC_PER_SEC);
188 }
189
190 if (in_interrupt())
191 panic("Fatal exception in interrupt");
192 if (panic_on_oops)
193 panic("Fatal exception");
194 do_exit(signr);
195 }
196
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 printk("NUMA ");
211 #endif
212 printk("%s\n", ppc_md.name ? ppc_md.name : "");
213
214 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 return 1;
216
217 print_modules();
218 show_regs(regs);
219
220 return 0;
221 }
222
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 unsigned long flags = oops_begin(regs);
226
227 if (__die(str, regs, err))
228 err = 0;
229 oops_end(flags, regs, err);
230 }
231
232 void user_single_step_siginfo(struct task_struct *tsk,
233 struct pt_regs *regs, siginfo_t *info)
234 {
235 memset(info, 0, sizeof(*info));
236 info->si_signo = SIGTRAP;
237 info->si_code = TRAP_TRACE;
238 info->si_addr = (void __user *)regs->nip;
239 }
240
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 siginfo_t info;
244 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 "at %08lx nip %08lx lr %08lx code %x\n";
246 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 "at %016lx nip %016lx lr %016lx code %x\n";
248
249 if (!user_mode(regs)) {
250 die("Exception in kernel mode", regs, signr);
251 return;
252 }
253
254 if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 current->comm, current->pid, signr,
257 addr, regs->nip, regs->link, code);
258 }
259
260 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 local_irq_enable();
262
263 current->thread.trap_nr = code;
264 memset(&info, 0, sizeof(info));
265 info.si_signo = signr;
266 info.si_code = code;
267 info.si_addr = (void __user *) addr;
268 force_sig_info(signr, &info, current);
269 }
270
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 /* See if any machine dependent calls */
275 if (ppc_md.system_reset_exception) {
276 if (ppc_md.system_reset_exception(regs))
277 return;
278 }
279
280 die("System Reset", regs, SIGABRT);
281
282 /* Must die if the interrupt is not recoverable */
283 if (!(regs->msr & MSR_RI))
284 panic("Unrecoverable System Reset");
285
286 /* What should we do here? We could issue a shutdown or hard reset. */
287 }
288
289 /*
290 * This function is called in real mode. Strictly no printk's please.
291 *
292 * regs->nip and regs->msr contains srr0 and ssr1.
293 */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 long handled = 0;
297
298 __this_cpu_inc(irq_stat.mce_exceptions);
299
300 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
301
302 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
303 handled = cur_cpu_spec->machine_check_early(regs);
304 return handled;
305 }
306
307 long hmi_exception_realmode(struct pt_regs *regs)
308 {
309 __this_cpu_inc(irq_stat.hmi_exceptions);
310
311 if (ppc_md.hmi_exception_early)
312 ppc_md.hmi_exception_early(regs);
313
314 return 0;
315 }
316
317 #endif
318
319 /*
320 * I/O accesses can cause machine checks on powermacs.
321 * Check if the NIP corresponds to the address of a sync
322 * instruction for which there is an entry in the exception
323 * table.
324 * Note that the 601 only takes a machine check on TEA
325 * (transfer error ack) signal assertion, and does not
326 * set any of the top 16 bits of SRR1.
327 * -- paulus.
328 */
329 static inline int check_io_access(struct pt_regs *regs)
330 {
331 #ifdef CONFIG_PPC32
332 unsigned long msr = regs->msr;
333 const struct exception_table_entry *entry;
334 unsigned int *nip = (unsigned int *)regs->nip;
335
336 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
337 && (entry = search_exception_tables(regs->nip)) != NULL) {
338 /*
339 * Check that it's a sync instruction, or somewhere
340 * in the twi; isync; nop sequence that inb/inw/inl uses.
341 * As the address is in the exception table
342 * we should be able to read the instr there.
343 * For the debug message, we look at the preceding
344 * load or store.
345 */
346 if (*nip == 0x60000000) /* nop */
347 nip -= 2;
348 else if (*nip == 0x4c00012c) /* isync */
349 --nip;
350 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
351 /* sync or twi */
352 unsigned int rb;
353
354 --nip;
355 rb = (*nip >> 11) & 0x1f;
356 printk(KERN_DEBUG "%s bad port %lx at %p\n",
357 (*nip & 0x100)? "OUT to": "IN from",
358 regs->gpr[rb] - _IO_BASE, nip);
359 regs->msr |= MSR_RI;
360 regs->nip = entry->fixup;
361 return 1;
362 }
363 }
364 #endif /* CONFIG_PPC32 */
365 return 0;
366 }
367
368 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
369 /* On 4xx, the reason for the machine check or program exception
370 is in the ESR. */
371 #define get_reason(regs) ((regs)->dsisr)
372 #ifndef CONFIG_FSL_BOOKE
373 #define get_mc_reason(regs) ((regs)->dsisr)
374 #else
375 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
376 #endif
377 #define REASON_FP ESR_FP
378 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
379 #define REASON_PRIVILEGED ESR_PPR
380 #define REASON_TRAP ESR_PTR
381
382 /* single-step stuff */
383 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
384 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
385
386 #else
387 /* On non-4xx, the reason for the machine check or program
388 exception is in the MSR. */
389 #define get_reason(regs) ((regs)->msr)
390 #define get_mc_reason(regs) ((regs)->msr)
391 #define REASON_TM 0x200000
392 #define REASON_FP 0x100000
393 #define REASON_ILLEGAL 0x80000
394 #define REASON_PRIVILEGED 0x40000
395 #define REASON_TRAP 0x20000
396
397 #define single_stepping(regs) ((regs)->msr & MSR_SE)
398 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
399 #endif
400
401 #if defined(CONFIG_4xx)
402 int machine_check_4xx(struct pt_regs *regs)
403 {
404 unsigned long reason = get_mc_reason(regs);
405
406 if (reason & ESR_IMCP) {
407 printk("Instruction");
408 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
409 } else
410 printk("Data");
411 printk(" machine check in kernel mode.\n");
412
413 return 0;
414 }
415
416 int machine_check_440A(struct pt_regs *regs)
417 {
418 unsigned long reason = get_mc_reason(regs);
419
420 printk("Machine check in kernel mode.\n");
421 if (reason & ESR_IMCP){
422 printk("Instruction Synchronous Machine Check exception\n");
423 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
424 }
425 else {
426 u32 mcsr = mfspr(SPRN_MCSR);
427 if (mcsr & MCSR_IB)
428 printk("Instruction Read PLB Error\n");
429 if (mcsr & MCSR_DRB)
430 printk("Data Read PLB Error\n");
431 if (mcsr & MCSR_DWB)
432 printk("Data Write PLB Error\n");
433 if (mcsr & MCSR_TLBP)
434 printk("TLB Parity Error\n");
435 if (mcsr & MCSR_ICP){
436 flush_instruction_cache();
437 printk("I-Cache Parity Error\n");
438 }
439 if (mcsr & MCSR_DCSP)
440 printk("D-Cache Search Parity Error\n");
441 if (mcsr & MCSR_DCFP)
442 printk("D-Cache Flush Parity Error\n");
443 if (mcsr & MCSR_IMPE)
444 printk("Machine Check exception is imprecise\n");
445
446 /* Clear MCSR */
447 mtspr(SPRN_MCSR, mcsr);
448 }
449 return 0;
450 }
451
452 int machine_check_47x(struct pt_regs *regs)
453 {
454 unsigned long reason = get_mc_reason(regs);
455 u32 mcsr;
456
457 printk(KERN_ERR "Machine check in kernel mode.\n");
458 if (reason & ESR_IMCP) {
459 printk(KERN_ERR
460 "Instruction Synchronous Machine Check exception\n");
461 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
462 return 0;
463 }
464 mcsr = mfspr(SPRN_MCSR);
465 if (mcsr & MCSR_IB)
466 printk(KERN_ERR "Instruction Read PLB Error\n");
467 if (mcsr & MCSR_DRB)
468 printk(KERN_ERR "Data Read PLB Error\n");
469 if (mcsr & MCSR_DWB)
470 printk(KERN_ERR "Data Write PLB Error\n");
471 if (mcsr & MCSR_TLBP)
472 printk(KERN_ERR "TLB Parity Error\n");
473 if (mcsr & MCSR_ICP) {
474 flush_instruction_cache();
475 printk(KERN_ERR "I-Cache Parity Error\n");
476 }
477 if (mcsr & MCSR_DCSP)
478 printk(KERN_ERR "D-Cache Search Parity Error\n");
479 if (mcsr & PPC47x_MCSR_GPR)
480 printk(KERN_ERR "GPR Parity Error\n");
481 if (mcsr & PPC47x_MCSR_FPR)
482 printk(KERN_ERR "FPR Parity Error\n");
483 if (mcsr & PPC47x_MCSR_IPR)
484 printk(KERN_ERR "Machine Check exception is imprecise\n");
485
486 /* Clear MCSR */
487 mtspr(SPRN_MCSR, mcsr);
488
489 return 0;
490 }
491 #elif defined(CONFIG_E500)
492 int machine_check_e500mc(struct pt_regs *regs)
493 {
494 unsigned long mcsr = mfspr(SPRN_MCSR);
495 unsigned long reason = mcsr;
496 int recoverable = 1;
497
498 if (reason & MCSR_LD) {
499 recoverable = fsl_rio_mcheck_exception(regs);
500 if (recoverable == 1)
501 goto silent_out;
502 }
503
504 printk("Machine check in kernel mode.\n");
505 printk("Caused by (from MCSR=%lx): ", reason);
506
507 if (reason & MCSR_MCP)
508 printk("Machine Check Signal\n");
509
510 if (reason & MCSR_ICPERR) {
511 printk("Instruction Cache Parity Error\n");
512
513 /*
514 * This is recoverable by invalidating the i-cache.
515 */
516 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
517 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
518 ;
519
520 /*
521 * This will generally be accompanied by an instruction
522 * fetch error report -- only treat MCSR_IF as fatal
523 * if it wasn't due to an L1 parity error.
524 */
525 reason &= ~MCSR_IF;
526 }
527
528 if (reason & MCSR_DCPERR_MC) {
529 printk("Data Cache Parity Error\n");
530
531 /*
532 * In write shadow mode we auto-recover from the error, but it
533 * may still get logged and cause a machine check. We should
534 * only treat the non-write shadow case as non-recoverable.
535 */
536 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
537 recoverable = 0;
538 }
539
540 if (reason & MCSR_L2MMU_MHIT) {
541 printk("Hit on multiple TLB entries\n");
542 recoverable = 0;
543 }
544
545 if (reason & MCSR_NMI)
546 printk("Non-maskable interrupt\n");
547
548 if (reason & MCSR_IF) {
549 printk("Instruction Fetch Error Report\n");
550 recoverable = 0;
551 }
552
553 if (reason & MCSR_LD) {
554 printk("Load Error Report\n");
555 recoverable = 0;
556 }
557
558 if (reason & MCSR_ST) {
559 printk("Store Error Report\n");
560 recoverable = 0;
561 }
562
563 if (reason & MCSR_LDG) {
564 printk("Guarded Load Error Report\n");
565 recoverable = 0;
566 }
567
568 if (reason & MCSR_TLBSYNC)
569 printk("Simultaneous tlbsync operations\n");
570
571 if (reason & MCSR_BSL2_ERR) {
572 printk("Level 2 Cache Error\n");
573 recoverable = 0;
574 }
575
576 if (reason & MCSR_MAV) {
577 u64 addr;
578
579 addr = mfspr(SPRN_MCAR);
580 addr |= (u64)mfspr(SPRN_MCARU) << 32;
581
582 printk("Machine Check %s Address: %#llx\n",
583 reason & MCSR_MEA ? "Effective" : "Physical", addr);
584 }
585
586 silent_out:
587 mtspr(SPRN_MCSR, mcsr);
588 return mfspr(SPRN_MCSR) == 0 && recoverable;
589 }
590
591 int machine_check_e500(struct pt_regs *regs)
592 {
593 unsigned long reason = get_mc_reason(regs);
594
595 if (reason & MCSR_BUS_RBERR) {
596 if (fsl_rio_mcheck_exception(regs))
597 return 1;
598 if (fsl_pci_mcheck_exception(regs))
599 return 1;
600 }
601
602 printk("Machine check in kernel mode.\n");
603 printk("Caused by (from MCSR=%lx): ", reason);
604
605 if (reason & MCSR_MCP)
606 printk("Machine Check Signal\n");
607 if (reason & MCSR_ICPERR)
608 printk("Instruction Cache Parity Error\n");
609 if (reason & MCSR_DCP_PERR)
610 printk("Data Cache Push Parity Error\n");
611 if (reason & MCSR_DCPERR)
612 printk("Data Cache Parity Error\n");
613 if (reason & MCSR_BUS_IAERR)
614 printk("Bus - Instruction Address Error\n");
615 if (reason & MCSR_BUS_RAERR)
616 printk("Bus - Read Address Error\n");
617 if (reason & MCSR_BUS_WAERR)
618 printk("Bus - Write Address Error\n");
619 if (reason & MCSR_BUS_IBERR)
620 printk("Bus - Instruction Data Error\n");
621 if (reason & MCSR_BUS_RBERR)
622 printk("Bus - Read Data Bus Error\n");
623 if (reason & MCSR_BUS_WBERR)
624 printk("Bus - Write Data Bus Error\n");
625 if (reason & MCSR_BUS_IPERR)
626 printk("Bus - Instruction Parity Error\n");
627 if (reason & MCSR_BUS_RPERR)
628 printk("Bus - Read Parity Error\n");
629
630 return 0;
631 }
632
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 return 0;
636 }
637 #elif defined(CONFIG_E200)
638 int machine_check_e200(struct pt_regs *regs)
639 {
640 unsigned long reason = get_mc_reason(regs);
641
642 printk("Machine check in kernel mode.\n");
643 printk("Caused by (from MCSR=%lx): ", reason);
644
645 if (reason & MCSR_MCP)
646 printk("Machine Check Signal\n");
647 if (reason & MCSR_CP_PERR)
648 printk("Cache Push Parity Error\n");
649 if (reason & MCSR_CPERR)
650 printk("Cache Parity Error\n");
651 if (reason & MCSR_EXCP_ERR)
652 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
653 if (reason & MCSR_BUS_IRERR)
654 printk("Bus - Read Bus Error on instruction fetch\n");
655 if (reason & MCSR_BUS_DRERR)
656 printk("Bus - Read Bus Error on data load\n");
657 if (reason & MCSR_BUS_WRERR)
658 printk("Bus - Write Bus Error on buffered store or cache line push\n");
659
660 return 0;
661 }
662 #else
663 int machine_check_generic(struct pt_regs *regs)
664 {
665 unsigned long reason = get_mc_reason(regs);
666
667 printk("Machine check in kernel mode.\n");
668 printk("Caused by (from SRR1=%lx): ", reason);
669 switch (reason & 0x601F0000) {
670 case 0x80000:
671 printk("Machine check signal\n");
672 break;
673 case 0: /* for 601 */
674 case 0x40000:
675 case 0x140000: /* 7450 MSS error and TEA */
676 printk("Transfer error ack signal\n");
677 break;
678 case 0x20000:
679 printk("Data parity error signal\n");
680 break;
681 case 0x10000:
682 printk("Address parity error signal\n");
683 break;
684 case 0x20000000:
685 printk("L1 Data Cache error\n");
686 break;
687 case 0x40000000:
688 printk("L1 Instruction Cache error\n");
689 break;
690 case 0x00100000:
691 printk("L2 data cache parity error\n");
692 break;
693 default:
694 printk("Unknown values in msr\n");
695 }
696 return 0;
697 }
698 #endif /* everything else */
699
700 void machine_check_exception(struct pt_regs *regs)
701 {
702 enum ctx_state prev_state = exception_enter();
703 int recover = 0;
704
705 __this_cpu_inc(irq_stat.mce_exceptions);
706
707 /* See if any machine dependent calls. In theory, we would want
708 * to call the CPU first, and call the ppc_md. one if the CPU
709 * one returns a positive number. However there is existing code
710 * that assumes the board gets a first chance, so let's keep it
711 * that way for now and fix things later. --BenH.
712 */
713 if (ppc_md.machine_check_exception)
714 recover = ppc_md.machine_check_exception(regs);
715 else if (cur_cpu_spec->machine_check)
716 recover = cur_cpu_spec->machine_check(regs);
717
718 if (recover > 0)
719 goto bail;
720
721 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
722 /* the qspan pci read routines can cause machine checks -- Cort
723 *
724 * yuck !!! that totally needs to go away ! There are better ways
725 * to deal with that than having a wart in the mcheck handler.
726 * -- BenH
727 */
728 bad_page_fault(regs, regs->dar, SIGBUS);
729 goto bail;
730 #endif
731
732 if (debugger_fault_handler(regs))
733 goto bail;
734
735 if (check_io_access(regs))
736 goto bail;
737
738 die("Machine check", regs, SIGBUS);
739
740 /* Must die if the interrupt is not recoverable */
741 if (!(regs->msr & MSR_RI))
742 panic("Unrecoverable Machine check");
743
744 bail:
745 exception_exit(prev_state);
746 }
747
748 void SMIException(struct pt_regs *regs)
749 {
750 die("System Management Interrupt", regs, SIGABRT);
751 }
752
753 void handle_hmi_exception(struct pt_regs *regs)
754 {
755 struct pt_regs *old_regs;
756
757 old_regs = set_irq_regs(regs);
758 irq_enter();
759
760 if (ppc_md.handle_hmi_exception)
761 ppc_md.handle_hmi_exception(regs);
762
763 irq_exit();
764 set_irq_regs(old_regs);
765 }
766
767 void unknown_exception(struct pt_regs *regs)
768 {
769 enum ctx_state prev_state = exception_enter();
770
771 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
772 regs->nip, regs->msr, regs->trap);
773
774 _exception(SIGTRAP, regs, 0, 0);
775
776 exception_exit(prev_state);
777 }
778
779 void instruction_breakpoint_exception(struct pt_regs *regs)
780 {
781 enum ctx_state prev_state = exception_enter();
782
783 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
784 5, SIGTRAP) == NOTIFY_STOP)
785 goto bail;
786 if (debugger_iabr_match(regs))
787 goto bail;
788 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
789
790 bail:
791 exception_exit(prev_state);
792 }
793
794 void RunModeException(struct pt_regs *regs)
795 {
796 _exception(SIGTRAP, regs, 0, 0);
797 }
798
799 void __kprobes single_step_exception(struct pt_regs *regs)
800 {
801 enum ctx_state prev_state = exception_enter();
802
803 clear_single_step(regs);
804
805 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
806 5, SIGTRAP) == NOTIFY_STOP)
807 goto bail;
808 if (debugger_sstep(regs))
809 goto bail;
810
811 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
812
813 bail:
814 exception_exit(prev_state);
815 }
816
817 /*
818 * After we have successfully emulated an instruction, we have to
819 * check if the instruction was being single-stepped, and if so,
820 * pretend we got a single-step exception. This was pointed out
821 * by Kumar Gala. -- paulus
822 */
823 static void emulate_single_step(struct pt_regs *regs)
824 {
825 if (single_stepping(regs))
826 single_step_exception(regs);
827 }
828
829 static inline int __parse_fpscr(unsigned long fpscr)
830 {
831 int ret = 0;
832
833 /* Invalid operation */
834 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
835 ret = FPE_FLTINV;
836
837 /* Overflow */
838 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
839 ret = FPE_FLTOVF;
840
841 /* Underflow */
842 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
843 ret = FPE_FLTUND;
844
845 /* Divide by zero */
846 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
847 ret = FPE_FLTDIV;
848
849 /* Inexact result */
850 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
851 ret = FPE_FLTRES;
852
853 return ret;
854 }
855
856 static void parse_fpe(struct pt_regs *regs)
857 {
858 int code = 0;
859
860 flush_fp_to_thread(current);
861
862 code = __parse_fpscr(current->thread.fp_state.fpscr);
863
864 _exception(SIGFPE, regs, code, regs->nip);
865 }
866
867 /*
868 * Illegal instruction emulation support. Originally written to
869 * provide the PVR to user applications using the mfspr rd, PVR.
870 * Return non-zero if we can't emulate, or -EFAULT if the associated
871 * memory access caused an access fault. Return zero on success.
872 *
873 * There are a couple of ways to do this, either "decode" the instruction
874 * or directly match lots of bits. In this case, matching lots of
875 * bits is faster and easier.
876 *
877 */
878 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
879 {
880 u8 rT = (instword >> 21) & 0x1f;
881 u8 rA = (instword >> 16) & 0x1f;
882 u8 NB_RB = (instword >> 11) & 0x1f;
883 u32 num_bytes;
884 unsigned long EA;
885 int pos = 0;
886
887 /* Early out if we are an invalid form of lswx */
888 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
889 if ((rT == rA) || (rT == NB_RB))
890 return -EINVAL;
891
892 EA = (rA == 0) ? 0 : regs->gpr[rA];
893
894 switch (instword & PPC_INST_STRING_MASK) {
895 case PPC_INST_LSWX:
896 case PPC_INST_STSWX:
897 EA += NB_RB;
898 num_bytes = regs->xer & 0x7f;
899 break;
900 case PPC_INST_LSWI:
901 case PPC_INST_STSWI:
902 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
903 break;
904 default:
905 return -EINVAL;
906 }
907
908 while (num_bytes != 0)
909 {
910 u8 val;
911 u32 shift = 8 * (3 - (pos & 0x3));
912
913 /* if process is 32-bit, clear upper 32 bits of EA */
914 if ((regs->msr & MSR_64BIT) == 0)
915 EA &= 0xFFFFFFFF;
916
917 switch ((instword & PPC_INST_STRING_MASK)) {
918 case PPC_INST_LSWX:
919 case PPC_INST_LSWI:
920 if (get_user(val, (u8 __user *)EA))
921 return -EFAULT;
922 /* first time updating this reg,
923 * zero it out */
924 if (pos == 0)
925 regs->gpr[rT] = 0;
926 regs->gpr[rT] |= val << shift;
927 break;
928 case PPC_INST_STSWI:
929 case PPC_INST_STSWX:
930 val = regs->gpr[rT] >> shift;
931 if (put_user(val, (u8 __user *)EA))
932 return -EFAULT;
933 break;
934 }
935 /* move EA to next address */
936 EA += 1;
937 num_bytes--;
938
939 /* manage our position within the register */
940 if (++pos == 4) {
941 pos = 0;
942 if (++rT == 32)
943 rT = 0;
944 }
945 }
946
947 return 0;
948 }
949
950 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
951 {
952 u32 ra,rs;
953 unsigned long tmp;
954
955 ra = (instword >> 16) & 0x1f;
956 rs = (instword >> 21) & 0x1f;
957
958 tmp = regs->gpr[rs];
959 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
960 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
961 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
962 regs->gpr[ra] = tmp;
963
964 return 0;
965 }
966
967 static int emulate_isel(struct pt_regs *regs, u32 instword)
968 {
969 u8 rT = (instword >> 21) & 0x1f;
970 u8 rA = (instword >> 16) & 0x1f;
971 u8 rB = (instword >> 11) & 0x1f;
972 u8 BC = (instword >> 6) & 0x1f;
973 u8 bit;
974 unsigned long tmp;
975
976 tmp = (rA == 0) ? 0 : regs->gpr[rA];
977 bit = (regs->ccr >> (31 - BC)) & 0x1;
978
979 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
980
981 return 0;
982 }
983
984 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
985 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
986 {
987 /* If we're emulating a load/store in an active transaction, we cannot
988 * emulate it as the kernel operates in transaction suspended context.
989 * We need to abort the transaction. This creates a persistent TM
990 * abort so tell the user what caused it with a new code.
991 */
992 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
993 tm_enable();
994 tm_abort(cause);
995 return true;
996 }
997 return false;
998 }
999 #else
1000 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1001 {
1002 return false;
1003 }
1004 #endif
1005
1006 static int emulate_instruction(struct pt_regs *regs)
1007 {
1008 u32 instword;
1009 u32 rd;
1010
1011 if (!user_mode(regs))
1012 return -EINVAL;
1013 CHECK_FULL_REGS(regs);
1014
1015 if (get_user(instword, (u32 __user *)(regs->nip)))
1016 return -EFAULT;
1017
1018 /* Emulate the mfspr rD, PVR. */
1019 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1020 PPC_WARN_EMULATED(mfpvr, regs);
1021 rd = (instword >> 21) & 0x1f;
1022 regs->gpr[rd] = mfspr(SPRN_PVR);
1023 return 0;
1024 }
1025
1026 /* Emulating the dcba insn is just a no-op. */
1027 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1028 PPC_WARN_EMULATED(dcba, regs);
1029 return 0;
1030 }
1031
1032 /* Emulate the mcrxr insn. */
1033 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1034 int shift = (instword >> 21) & 0x1c;
1035 unsigned long msk = 0xf0000000UL >> shift;
1036
1037 PPC_WARN_EMULATED(mcrxr, regs);
1038 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1039 regs->xer &= ~0xf0000000UL;
1040 return 0;
1041 }
1042
1043 /* Emulate load/store string insn. */
1044 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1045 if (tm_abort_check(regs,
1046 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1047 return -EINVAL;
1048 PPC_WARN_EMULATED(string, regs);
1049 return emulate_string_inst(regs, instword);
1050 }
1051
1052 /* Emulate the popcntb (Population Count Bytes) instruction. */
1053 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1054 PPC_WARN_EMULATED(popcntb, regs);
1055 return emulate_popcntb_inst(regs, instword);
1056 }
1057
1058 /* Emulate isel (Integer Select) instruction */
1059 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1060 PPC_WARN_EMULATED(isel, regs);
1061 return emulate_isel(regs, instword);
1062 }
1063
1064 /* Emulate sync instruction variants */
1065 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1066 PPC_WARN_EMULATED(sync, regs);
1067 asm volatile("sync");
1068 return 0;
1069 }
1070
1071 #ifdef CONFIG_PPC64
1072 /* Emulate the mfspr rD, DSCR. */
1073 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1074 PPC_INST_MFSPR_DSCR_USER) ||
1075 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1076 PPC_INST_MFSPR_DSCR)) &&
1077 cpu_has_feature(CPU_FTR_DSCR)) {
1078 PPC_WARN_EMULATED(mfdscr, regs);
1079 rd = (instword >> 21) & 0x1f;
1080 regs->gpr[rd] = mfspr(SPRN_DSCR);
1081 return 0;
1082 }
1083 /* Emulate the mtspr DSCR, rD. */
1084 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1085 PPC_INST_MTSPR_DSCR_USER) ||
1086 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1087 PPC_INST_MTSPR_DSCR)) &&
1088 cpu_has_feature(CPU_FTR_DSCR)) {
1089 PPC_WARN_EMULATED(mtdscr, regs);
1090 rd = (instword >> 21) & 0x1f;
1091 current->thread.dscr = regs->gpr[rd];
1092 current->thread.dscr_inherit = 1;
1093 mtspr(SPRN_DSCR, current->thread.dscr);
1094 return 0;
1095 }
1096 #endif
1097
1098 return -EINVAL;
1099 }
1100
1101 int is_valid_bugaddr(unsigned long addr)
1102 {
1103 return is_kernel_addr(addr);
1104 }
1105
1106 #ifdef CONFIG_MATH_EMULATION
1107 static int emulate_math(struct pt_regs *regs)
1108 {
1109 int ret;
1110 extern int do_mathemu(struct pt_regs *regs);
1111
1112 ret = do_mathemu(regs);
1113 if (ret >= 0)
1114 PPC_WARN_EMULATED(math, regs);
1115
1116 switch (ret) {
1117 case 0:
1118 emulate_single_step(regs);
1119 return 0;
1120 case 1: {
1121 int code = 0;
1122 code = __parse_fpscr(current->thread.fp_state.fpscr);
1123 _exception(SIGFPE, regs, code, regs->nip);
1124 return 0;
1125 }
1126 case -EFAULT:
1127 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1128 return 0;
1129 }
1130
1131 return -1;
1132 }
1133 #else
1134 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1135 #endif
1136
1137 void __kprobes program_check_exception(struct pt_regs *regs)
1138 {
1139 enum ctx_state prev_state = exception_enter();
1140 unsigned int reason = get_reason(regs);
1141
1142 /* We can now get here via a FP Unavailable exception if the core
1143 * has no FPU, in that case the reason flags will be 0 */
1144
1145 if (reason & REASON_FP) {
1146 /* IEEE FP exception */
1147 parse_fpe(regs);
1148 goto bail;
1149 }
1150 if (reason & REASON_TRAP) {
1151 /* Debugger is first in line to stop recursive faults in
1152 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1153 if (debugger_bpt(regs))
1154 goto bail;
1155
1156 /* trap exception */
1157 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1158 == NOTIFY_STOP)
1159 goto bail;
1160
1161 if (!(regs->msr & MSR_PR) && /* not user-mode */
1162 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1163 regs->nip += 4;
1164 goto bail;
1165 }
1166 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1167 goto bail;
1168 }
1169 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1170 if (reason & REASON_TM) {
1171 /* This is a TM "Bad Thing Exception" program check.
1172 * This occurs when:
1173 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1174 * transition in TM states.
1175 * - A trechkpt is attempted when transactional.
1176 * - A treclaim is attempted when non transactional.
1177 * - A tend is illegally attempted.
1178 * - writing a TM SPR when transactional.
1179 */
1180 if (!user_mode(regs) &&
1181 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1182 regs->nip += 4;
1183 goto bail;
1184 }
1185 /* If usermode caused this, it's done something illegal and
1186 * gets a SIGILL slap on the wrist. We call it an illegal
1187 * operand to distinguish from the instruction just being bad
1188 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1189 * illegal /placement/ of a valid instruction.
1190 */
1191 if (user_mode(regs)) {
1192 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1193 goto bail;
1194 } else {
1195 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1196 "at %lx (msr 0x%x)\n", regs->nip, reason);
1197 die("Unrecoverable exception", regs, SIGABRT);
1198 }
1199 }
1200 #endif
1201
1202 /*
1203 * If we took the program check in the kernel skip down to sending a
1204 * SIGILL. The subsequent cases all relate to emulating instructions
1205 * which we should only do for userspace. We also do not want to enable
1206 * interrupts for kernel faults because that might lead to further
1207 * faults, and loose the context of the original exception.
1208 */
1209 if (!user_mode(regs))
1210 goto sigill;
1211
1212 /* We restore the interrupt state now */
1213 if (!arch_irq_disabled_regs(regs))
1214 local_irq_enable();
1215
1216 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1217 * but there seems to be a hardware bug on the 405GP (RevD)
1218 * that means ESR is sometimes set incorrectly - either to
1219 * ESR_DST (!?) or 0. In the process of chasing this with the
1220 * hardware people - not sure if it can happen on any illegal
1221 * instruction or only on FP instructions, whether there is a
1222 * pattern to occurrences etc. -dgibson 31/Mar/2003
1223 */
1224 if (!emulate_math(regs))
1225 goto bail;
1226
1227 /* Try to emulate it if we should. */
1228 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1229 switch (emulate_instruction(regs)) {
1230 case 0:
1231 regs->nip += 4;
1232 emulate_single_step(regs);
1233 goto bail;
1234 case -EFAULT:
1235 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1236 goto bail;
1237 }
1238 }
1239
1240 sigill:
1241 if (reason & REASON_PRIVILEGED)
1242 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1243 else
1244 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1245
1246 bail:
1247 exception_exit(prev_state);
1248 }
1249
1250 /*
1251 * This occurs when running in hypervisor mode on POWER6 or later
1252 * and an illegal instruction is encountered.
1253 */
1254 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1255 {
1256 regs->msr |= REASON_ILLEGAL;
1257 program_check_exception(regs);
1258 }
1259
1260 void alignment_exception(struct pt_regs *regs)
1261 {
1262 enum ctx_state prev_state = exception_enter();
1263 int sig, code, fixed = 0;
1264
1265 /* We restore the interrupt state now */
1266 if (!arch_irq_disabled_regs(regs))
1267 local_irq_enable();
1268
1269 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1270 goto bail;
1271
1272 /* we don't implement logging of alignment exceptions */
1273 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1274 fixed = fix_alignment(regs);
1275
1276 if (fixed == 1) {
1277 regs->nip += 4; /* skip over emulated instruction */
1278 emulate_single_step(regs);
1279 goto bail;
1280 }
1281
1282 /* Operand address was bad */
1283 if (fixed == -EFAULT) {
1284 sig = SIGSEGV;
1285 code = SEGV_ACCERR;
1286 } else {
1287 sig = SIGBUS;
1288 code = BUS_ADRALN;
1289 }
1290 if (user_mode(regs))
1291 _exception(sig, regs, code, regs->dar);
1292 else
1293 bad_page_fault(regs, regs->dar, sig);
1294
1295 bail:
1296 exception_exit(prev_state);
1297 }
1298
1299 void StackOverflow(struct pt_regs *regs)
1300 {
1301 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1302 current, regs->gpr[1]);
1303 debugger(regs);
1304 show_regs(regs);
1305 panic("kernel stack overflow");
1306 }
1307
1308 void nonrecoverable_exception(struct pt_regs *regs)
1309 {
1310 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1311 regs->nip, regs->msr);
1312 debugger(regs);
1313 die("nonrecoverable exception", regs, SIGKILL);
1314 }
1315
1316 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1317 {
1318 enum ctx_state prev_state = exception_enter();
1319
1320 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1321 "%lx at %lx\n", regs->trap, regs->nip);
1322 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1323
1324 exception_exit(prev_state);
1325 }
1326
1327 void altivec_unavailable_exception(struct pt_regs *regs)
1328 {
1329 enum ctx_state prev_state = exception_enter();
1330
1331 if (user_mode(regs)) {
1332 /* A user program has executed an altivec instruction,
1333 but this kernel doesn't support altivec. */
1334 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1335 goto bail;
1336 }
1337
1338 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1339 "%lx at %lx\n", regs->trap, regs->nip);
1340 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1341
1342 bail:
1343 exception_exit(prev_state);
1344 }
1345
1346 void vsx_unavailable_exception(struct pt_regs *regs)
1347 {
1348 if (user_mode(regs)) {
1349 /* A user program has executed an vsx instruction,
1350 but this kernel doesn't support vsx. */
1351 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1352 return;
1353 }
1354
1355 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1356 "%lx at %lx\n", regs->trap, regs->nip);
1357 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1358 }
1359
1360 #ifdef CONFIG_PPC64
1361 void facility_unavailable_exception(struct pt_regs *regs)
1362 {
1363 static char *facility_strings[] = {
1364 [FSCR_FP_LG] = "FPU",
1365 [FSCR_VECVSX_LG] = "VMX/VSX",
1366 [FSCR_DSCR_LG] = "DSCR",
1367 [FSCR_PM_LG] = "PMU SPRs",
1368 [FSCR_BHRB_LG] = "BHRB",
1369 [FSCR_TM_LG] = "TM",
1370 [FSCR_EBB_LG] = "EBB",
1371 [FSCR_TAR_LG] = "TAR",
1372 };
1373 char *facility = "unknown";
1374 u64 value;
1375 u32 instword, rd;
1376 u8 status;
1377 bool hv;
1378
1379 hv = (regs->trap == 0xf80);
1380 if (hv)
1381 value = mfspr(SPRN_HFSCR);
1382 else
1383 value = mfspr(SPRN_FSCR);
1384
1385 status = value >> 56;
1386 if (status == FSCR_DSCR_LG) {
1387 /*
1388 * User is accessing the DSCR register using the problem
1389 * state only SPR number (0x03) either through a mfspr or
1390 * a mtspr instruction. If it is a write attempt through
1391 * a mtspr, then we set the inherit bit. This also allows
1392 * the user to write or read the register directly in the
1393 * future by setting via the FSCR DSCR bit. But in case it
1394 * is a read DSCR attempt through a mfspr instruction, we
1395 * just emulate the instruction instead. This code path will
1396 * always emulate all the mfspr instructions till the user
1397 * has attempted atleast one mtspr instruction. This way it
1398 * preserves the same behaviour when the user is accessing
1399 * the DSCR through privilege level only SPR number (0x11)
1400 * which is emulated through illegal instruction exception.
1401 * We always leave HFSCR DSCR set.
1402 */
1403 if (get_user(instword, (u32 __user *)(regs->nip))) {
1404 pr_err("Failed to fetch the user instruction\n");
1405 return;
1406 }
1407
1408 /* Write into DSCR (mtspr 0x03, RS) */
1409 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1410 == PPC_INST_MTSPR_DSCR_USER) {
1411 rd = (instword >> 21) & 0x1f;
1412 current->thread.dscr = regs->gpr[rd];
1413 current->thread.dscr_inherit = 1;
1414 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1415 }
1416
1417 /* Read from DSCR (mfspr RT, 0x03) */
1418 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1419 == PPC_INST_MFSPR_DSCR_USER) {
1420 if (emulate_instruction(regs)) {
1421 pr_err("DSCR based mfspr emulation failed\n");
1422 return;
1423 }
1424 regs->nip += 4;
1425 emulate_single_step(regs);
1426 }
1427 return;
1428 }
1429
1430 if ((status < ARRAY_SIZE(facility_strings)) &&
1431 facility_strings[status])
1432 facility = facility_strings[status];
1433
1434 /* We restore the interrupt state now */
1435 if (!arch_irq_disabled_regs(regs))
1436 local_irq_enable();
1437
1438 pr_err_ratelimited(
1439 "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1440 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1441
1442 if (user_mode(regs)) {
1443 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1444 return;
1445 }
1446
1447 die("Unexpected facility unavailable exception", regs, SIGABRT);
1448 }
1449 #endif
1450
1451 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1452
1453 void fp_unavailable_tm(struct pt_regs *regs)
1454 {
1455 /* Note: This does not handle any kind of FP laziness. */
1456
1457 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1458 regs->nip, regs->msr);
1459
1460 /* We can only have got here if the task started using FP after
1461 * beginning the transaction. So, the transactional regs are just a
1462 * copy of the checkpointed ones. But, we still need to recheckpoint
1463 * as we're enabling FP for the process; it will return, abort the
1464 * transaction, and probably retry but now with FP enabled. So the
1465 * checkpointed FP registers need to be loaded.
1466 */
1467 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1468 /* Reclaim didn't save out any FPRs to transact_fprs. */
1469
1470 /* Enable FP for the task: */
1471 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1472
1473 /* This loads and recheckpoints the FP registers from
1474 * thread.fpr[]. They will remain in registers after the
1475 * checkpoint so we don't need to reload them after.
1476 * If VMX is in use, the VRs now hold checkpointed values,
1477 * so we don't want to load the VRs from the thread_struct.
1478 */
1479 tm_recheckpoint(&current->thread, MSR_FP);
1480
1481 /* If VMX is in use, get the transactional values back */
1482 if (regs->msr & MSR_VEC) {
1483 do_load_up_transact_altivec(&current->thread);
1484 /* At this point all the VSX state is loaded, so enable it */
1485 regs->msr |= MSR_VSX;
1486 }
1487 }
1488
1489 void altivec_unavailable_tm(struct pt_regs *regs)
1490 {
1491 /* See the comments in fp_unavailable_tm(). This function operates
1492 * the same way.
1493 */
1494
1495 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1496 "MSR=%lx\n",
1497 regs->nip, regs->msr);
1498 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1499 regs->msr |= MSR_VEC;
1500 tm_recheckpoint(&current->thread, MSR_VEC);
1501 current->thread.used_vr = 1;
1502
1503 if (regs->msr & MSR_FP) {
1504 do_load_up_transact_fpu(&current->thread);
1505 regs->msr |= MSR_VSX;
1506 }
1507 }
1508
1509 void vsx_unavailable_tm(struct pt_regs *regs)
1510 {
1511 unsigned long orig_msr = regs->msr;
1512
1513 /* See the comments in fp_unavailable_tm(). This works similarly,
1514 * though we're loading both FP and VEC registers in here.
1515 *
1516 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1517 * regs. Either way, set MSR_VSX.
1518 */
1519
1520 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1521 "MSR=%lx\n",
1522 regs->nip, regs->msr);
1523
1524 current->thread.used_vsr = 1;
1525
1526 /* If FP and VMX are already loaded, we have all the state we need */
1527 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1528 regs->msr |= MSR_VSX;
1529 return;
1530 }
1531
1532 /* This reclaims FP and/or VR regs if they're already enabled */
1533 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1534
1535 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1536 MSR_VSX;
1537
1538 /* This loads & recheckpoints FP and VRs; but we have
1539 * to be sure not to overwrite previously-valid state.
1540 */
1541 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1542
1543 if (orig_msr & MSR_FP)
1544 do_load_up_transact_fpu(&current->thread);
1545 if (orig_msr & MSR_VEC)
1546 do_load_up_transact_altivec(&current->thread);
1547 }
1548 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1549
1550 void performance_monitor_exception(struct pt_regs *regs)
1551 {
1552 __this_cpu_inc(irq_stat.pmu_irqs);
1553
1554 perf_irq(regs);
1555 }
1556
1557 #ifdef CONFIG_8xx
1558 void SoftwareEmulation(struct pt_regs *regs)
1559 {
1560 CHECK_FULL_REGS(regs);
1561
1562 if (!user_mode(regs)) {
1563 debugger(regs);
1564 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1565 regs, SIGFPE);
1566 }
1567
1568 if (!emulate_math(regs))
1569 return;
1570
1571 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1572 }
1573 #endif /* CONFIG_8xx */
1574
1575 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1576 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1577 {
1578 int changed = 0;
1579 /*
1580 * Determine the cause of the debug event, clear the
1581 * event flags and send a trap to the handler. Torez
1582 */
1583 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1584 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1585 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1586 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1587 #endif
1588 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1589 5);
1590 changed |= 0x01;
1591 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1592 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1593 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1594 6);
1595 changed |= 0x01;
1596 } else if (debug_status & DBSR_IAC1) {
1597 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1598 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1599 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1600 1);
1601 changed |= 0x01;
1602 } else if (debug_status & DBSR_IAC2) {
1603 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1604 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1605 2);
1606 changed |= 0x01;
1607 } else if (debug_status & DBSR_IAC3) {
1608 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1609 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1610 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1611 3);
1612 changed |= 0x01;
1613 } else if (debug_status & DBSR_IAC4) {
1614 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1615 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1616 4);
1617 changed |= 0x01;
1618 }
1619 /*
1620 * At the point this routine was called, the MSR(DE) was turned off.
1621 * Check all other debug flags and see if that bit needs to be turned
1622 * back on or not.
1623 */
1624 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1625 current->thread.debug.dbcr1))
1626 regs->msr |= MSR_DE;
1627 else
1628 /* Make sure the IDM flag is off */
1629 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1630
1631 if (changed & 0x01)
1632 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1633 }
1634
1635 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1636 {
1637 current->thread.debug.dbsr = debug_status;
1638
1639 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1640 * on server, it stops on the target of the branch. In order to simulate
1641 * the server behaviour, we thus restart right away with a single step
1642 * instead of stopping here when hitting a BT
1643 */
1644 if (debug_status & DBSR_BT) {
1645 regs->msr &= ~MSR_DE;
1646
1647 /* Disable BT */
1648 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1649 /* Clear the BT event */
1650 mtspr(SPRN_DBSR, DBSR_BT);
1651
1652 /* Do the single step trick only when coming from userspace */
1653 if (user_mode(regs)) {
1654 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1655 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1656 regs->msr |= MSR_DE;
1657 return;
1658 }
1659
1660 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1661 5, SIGTRAP) == NOTIFY_STOP) {
1662 return;
1663 }
1664 if (debugger_sstep(regs))
1665 return;
1666 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1667 regs->msr &= ~MSR_DE;
1668
1669 /* Disable instruction completion */
1670 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1671 /* Clear the instruction completion event */
1672 mtspr(SPRN_DBSR, DBSR_IC);
1673
1674 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1675 5, SIGTRAP) == NOTIFY_STOP) {
1676 return;
1677 }
1678
1679 if (debugger_sstep(regs))
1680 return;
1681
1682 if (user_mode(regs)) {
1683 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1684 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1685 current->thread.debug.dbcr1))
1686 regs->msr |= MSR_DE;
1687 else
1688 /* Make sure the IDM bit is off */
1689 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1690 }
1691
1692 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1693 } else
1694 handle_debug(regs, debug_status);
1695 }
1696 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1697
1698 #if !defined(CONFIG_TAU_INT)
1699 void TAUException(struct pt_regs *regs)
1700 {
1701 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1702 regs->nip, regs->msr, regs->trap, print_tainted());
1703 }
1704 #endif /* CONFIG_INT_TAU */
1705
1706 #ifdef CONFIG_ALTIVEC
1707 void altivec_assist_exception(struct pt_regs *regs)
1708 {
1709 int err;
1710
1711 if (!user_mode(regs)) {
1712 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1713 " at %lx\n", regs->nip);
1714 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1715 }
1716
1717 flush_altivec_to_thread(current);
1718
1719 PPC_WARN_EMULATED(altivec, regs);
1720 err = emulate_altivec(regs);
1721 if (err == 0) {
1722 regs->nip += 4; /* skip emulated instruction */
1723 emulate_single_step(regs);
1724 return;
1725 }
1726
1727 if (err == -EFAULT) {
1728 /* got an error reading the instruction */
1729 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1730 } else {
1731 /* didn't recognize the instruction */
1732 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1733 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1734 "in %s at %lx\n", current->comm, regs->nip);
1735 current->thread.vr_state.vscr.u[3] |= 0x10000;
1736 }
1737 }
1738 #endif /* CONFIG_ALTIVEC */
1739
1740 #ifdef CONFIG_FSL_BOOKE
1741 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1742 unsigned long error_code)
1743 {
1744 /* We treat cache locking instructions from the user
1745 * as priv ops, in the future we could try to do
1746 * something smarter
1747 */
1748 if (error_code & (ESR_DLK|ESR_ILK))
1749 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1750 return;
1751 }
1752 #endif /* CONFIG_FSL_BOOKE */
1753
1754 #ifdef CONFIG_SPE
1755 void SPEFloatingPointException(struct pt_regs *regs)
1756 {
1757 extern int do_spe_mathemu(struct pt_regs *regs);
1758 unsigned long spefscr;
1759 int fpexc_mode;
1760 int code = 0;
1761 int err;
1762
1763 flush_spe_to_thread(current);
1764
1765 spefscr = current->thread.spefscr;
1766 fpexc_mode = current->thread.fpexc_mode;
1767
1768 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1769 code = FPE_FLTOVF;
1770 }
1771 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1772 code = FPE_FLTUND;
1773 }
1774 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1775 code = FPE_FLTDIV;
1776 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1777 code = FPE_FLTINV;
1778 }
1779 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1780 code = FPE_FLTRES;
1781
1782 err = do_spe_mathemu(regs);
1783 if (err == 0) {
1784 regs->nip += 4; /* skip emulated instruction */
1785 emulate_single_step(regs);
1786 return;
1787 }
1788
1789 if (err == -EFAULT) {
1790 /* got an error reading the instruction */
1791 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1792 } else if (err == -EINVAL) {
1793 /* didn't recognize the instruction */
1794 printk(KERN_ERR "unrecognized spe instruction "
1795 "in %s at %lx\n", current->comm, regs->nip);
1796 } else {
1797 _exception(SIGFPE, regs, code, regs->nip);
1798 }
1799
1800 return;
1801 }
1802
1803 void SPEFloatingPointRoundException(struct pt_regs *regs)
1804 {
1805 extern int speround_handler(struct pt_regs *regs);
1806 int err;
1807
1808 preempt_disable();
1809 if (regs->msr & MSR_SPE)
1810 giveup_spe(current);
1811 preempt_enable();
1812
1813 regs->nip -= 4;
1814 err = speround_handler(regs);
1815 if (err == 0) {
1816 regs->nip += 4; /* skip emulated instruction */
1817 emulate_single_step(regs);
1818 return;
1819 }
1820
1821 if (err == -EFAULT) {
1822 /* got an error reading the instruction */
1823 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1824 } else if (err == -EINVAL) {
1825 /* didn't recognize the instruction */
1826 printk(KERN_ERR "unrecognized spe instruction "
1827 "in %s at %lx\n", current->comm, regs->nip);
1828 } else {
1829 _exception(SIGFPE, regs, 0, regs->nip);
1830 return;
1831 }
1832 }
1833 #endif
1834
1835 /*
1836 * We enter here if we get an unrecoverable exception, that is, one
1837 * that happened at a point where the RI (recoverable interrupt) bit
1838 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1839 * we therefore lost state by taking this exception.
1840 */
1841 void unrecoverable_exception(struct pt_regs *regs)
1842 {
1843 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1844 regs->trap, regs->nip);
1845 die("Unrecoverable exception", regs, SIGABRT);
1846 }
1847
1848 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1849 /*
1850 * Default handler for a Watchdog exception,
1851 * spins until a reboot occurs
1852 */
1853 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1854 {
1855 /* Generic WatchdogHandler, implement your own */
1856 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1857 return;
1858 }
1859
1860 void WatchdogException(struct pt_regs *regs)
1861 {
1862 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1863 WatchdogHandler(regs);
1864 }
1865 #endif
1866
1867 /*
1868 * We enter here if we discover during exception entry that we are
1869 * running in supervisor mode with a userspace value in the stack pointer.
1870 */
1871 void kernel_bad_stack(struct pt_regs *regs)
1872 {
1873 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1874 regs->gpr[1], regs->nip);
1875 die("Bad kernel stack pointer", regs, SIGABRT);
1876 }
1877
1878 void __init trap_init(void)
1879 {
1880 }
1881
1882
1883 #ifdef CONFIG_PPC_EMULATED_STATS
1884
1885 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1886
1887 struct ppc_emulated ppc_emulated = {
1888 #ifdef CONFIG_ALTIVEC
1889 WARN_EMULATED_SETUP(altivec),
1890 #endif
1891 WARN_EMULATED_SETUP(dcba),
1892 WARN_EMULATED_SETUP(dcbz),
1893 WARN_EMULATED_SETUP(fp_pair),
1894 WARN_EMULATED_SETUP(isel),
1895 WARN_EMULATED_SETUP(mcrxr),
1896 WARN_EMULATED_SETUP(mfpvr),
1897 WARN_EMULATED_SETUP(multiple),
1898 WARN_EMULATED_SETUP(popcntb),
1899 WARN_EMULATED_SETUP(spe),
1900 WARN_EMULATED_SETUP(string),
1901 WARN_EMULATED_SETUP(sync),
1902 WARN_EMULATED_SETUP(unaligned),
1903 #ifdef CONFIG_MATH_EMULATION
1904 WARN_EMULATED_SETUP(math),
1905 #endif
1906 #ifdef CONFIG_VSX
1907 WARN_EMULATED_SETUP(vsx),
1908 #endif
1909 #ifdef CONFIG_PPC64
1910 WARN_EMULATED_SETUP(mfdscr),
1911 WARN_EMULATED_SETUP(mtdscr),
1912 WARN_EMULATED_SETUP(lq_stq),
1913 #endif
1914 };
1915
1916 u32 ppc_warn_emulated;
1917
1918 void ppc_warn_emulated_print(const char *type)
1919 {
1920 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1921 type);
1922 }
1923
1924 static int __init ppc_warn_emulated_init(void)
1925 {
1926 struct dentry *dir, *d;
1927 unsigned int i;
1928 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1929
1930 if (!powerpc_debugfs_root)
1931 return -ENODEV;
1932
1933 dir = debugfs_create_dir("emulated_instructions",
1934 powerpc_debugfs_root);
1935 if (!dir)
1936 return -ENOMEM;
1937
1938 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1939 &ppc_warn_emulated);
1940 if (!d)
1941 goto fail;
1942
1943 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1944 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1945 (u32 *)&entries[i].val.counter);
1946 if (!d)
1947 goto fail;
1948 }
1949
1950 return 0;
1951
1952 fail:
1953 debugfs_remove_recursive(dir);
1954 return -ENOMEM;
1955 }
1956
1957 device_initcall(ppc_warn_emulated_init);
1958
1959 #endif /* CONFIG_PPC_EMULATED_STATS */