]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/traps.c
reset: Restrict RESET_HSDK to ARC_SOC_HSDK or COMPILE_TEST
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94
95 /*
96 * Trap & Exception support
97 */
98
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 mutex_lock(&pmac_backlight_mutex);
103 if (pmac_backlight) {
104 struct backlight_properties *props;
105
106 props = &pmac_backlight->props;
107 props->brightness = props->max_brightness;
108 props->power = FB_BLANK_UNBLANK;
109 backlight_update_status(pmac_backlight);
110 }
111 mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116
117 /*
118 * If oops/die is expected to crash the machine, return true here.
119 *
120 * This should not be expected to be 100% accurate, there may be
121 * notifiers registered or other unexpected conditions that may bring
122 * down the kernel. Or if the current process in the kernel is holding
123 * locks or has other critical state, the kernel may become effectively
124 * unusable anyway.
125 */
126 bool die_will_crash(void)
127 {
128 if (should_fadump_crash())
129 return true;
130 if (kexec_should_crash(current))
131 return true;
132 if (in_interrupt() || panic_on_oops ||
133 !current->pid || is_global_init(current))
134 return true;
135
136 return false;
137 }
138
139 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
140 static int die_owner = -1;
141 static unsigned int die_nest_count;
142 static int die_counter;
143
144 static unsigned long oops_begin(struct pt_regs *regs)
145 {
146 int cpu;
147 unsigned long flags;
148
149 oops_enter();
150
151 /* racy, but better than risking deadlock. */
152 raw_local_irq_save(flags);
153 cpu = smp_processor_id();
154 if (!arch_spin_trylock(&die_lock)) {
155 if (cpu == die_owner)
156 /* nested oops. should stop eventually */;
157 else
158 arch_spin_lock(&die_lock);
159 }
160 die_nest_count++;
161 die_owner = cpu;
162 console_verbose();
163 bust_spinlocks(1);
164 if (machine_is(powermac))
165 pmac_backlight_unblank();
166 return flags;
167 }
168 NOKPROBE_SYMBOL(oops_begin);
169
170 static void oops_end(unsigned long flags, struct pt_regs *regs,
171 int signr)
172 {
173 bust_spinlocks(0);
174 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
175 die_nest_count--;
176 oops_exit();
177 printk("\n");
178 if (!die_nest_count) {
179 /* Nest count reaches zero, release the lock. */
180 die_owner = -1;
181 arch_spin_unlock(&die_lock);
182 }
183 raw_local_irq_restore(flags);
184
185 crash_fadump(regs, "die oops");
186
187 if (kexec_should_crash(current))
188 crash_kexec(regs);
189
190 if (!signr)
191 return;
192
193 /*
194 * While our oops output is serialised by a spinlock, output
195 * from panic() called below can race and corrupt it. If we
196 * know we are going to panic, delay for 1 second so we have a
197 * chance to get clean backtraces from all CPUs that are oopsing.
198 */
199 if (in_interrupt() || panic_on_oops || !current->pid ||
200 is_global_init(current)) {
201 mdelay(MSEC_PER_SEC);
202 }
203
204 if (in_interrupt())
205 panic("Fatal exception in interrupt");
206 if (panic_on_oops)
207 panic("Fatal exception");
208 do_exit(signr);
209 }
210 NOKPROBE_SYMBOL(oops_end);
211
212 static int __die(const char *str, struct pt_regs *regs, long err)
213 {
214 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
215
216 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
217 printk("LE ");
218 else
219 printk("BE ");
220
221 if (IS_ENABLED(CONFIG_PREEMPT))
222 pr_cont("PREEMPT ");
223
224 if (IS_ENABLED(CONFIG_SMP))
225 pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
226
227 if (debug_pagealloc_enabled())
228 pr_cont("DEBUG_PAGEALLOC ");
229
230 if (IS_ENABLED(CONFIG_NUMA))
231 pr_cont("NUMA ");
232
233 pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
234
235 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
236 return 1;
237
238 print_modules();
239 show_regs(regs);
240
241 return 0;
242 }
243 NOKPROBE_SYMBOL(__die);
244
245 void die(const char *str, struct pt_regs *regs, long err)
246 {
247 unsigned long flags;
248
249 if (debugger(regs))
250 return;
251
252 flags = oops_begin(regs);
253 if (__die(str, regs, err))
254 err = 0;
255 oops_end(flags, regs, err);
256 }
257 NOKPROBE_SYMBOL(die);
258
259 void user_single_step_siginfo(struct task_struct *tsk,
260 struct pt_regs *regs, siginfo_t *info)
261 {
262 memset(info, 0, sizeof(*info));
263 info->si_signo = SIGTRAP;
264 info->si_code = TRAP_TRACE;
265 info->si_addr = (void __user *)regs->nip;
266 }
267
268 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
269 {
270 siginfo_t info;
271 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
272 "at %08lx nip %08lx lr %08lx code %x\n";
273 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
274 "at %016lx nip %016lx lr %016lx code %x\n";
275
276 if (!user_mode(regs)) {
277 die("Exception in kernel mode", regs, signr);
278 return;
279 }
280
281 if (show_unhandled_signals && unhandled_signal(current, signr)) {
282 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
283 current->comm, current->pid, signr,
284 addr, regs->nip, regs->link, code);
285 }
286
287 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
288 local_irq_enable();
289
290 current->thread.trap_nr = code;
291 memset(&info, 0, sizeof(info));
292 info.si_signo = signr;
293 info.si_code = code;
294 info.si_addr = (void __user *) addr;
295 force_sig_info(signr, &info, current);
296 }
297
298 void system_reset_exception(struct pt_regs *regs)
299 {
300 /*
301 * Avoid crashes in case of nested NMI exceptions. Recoverability
302 * is determined by RI and in_nmi
303 */
304 bool nested = in_nmi();
305 if (!nested)
306 nmi_enter();
307
308 __this_cpu_inc(irq_stat.sreset_irqs);
309
310 /* See if any machine dependent calls */
311 if (ppc_md.system_reset_exception) {
312 if (ppc_md.system_reset_exception(regs))
313 goto out;
314 }
315
316 if (debugger(regs))
317 goto out;
318
319 /*
320 * A system reset is a request to dump, so we always send
321 * it through the crashdump code (if fadump or kdump are
322 * registered).
323 */
324 crash_fadump(regs, "System Reset");
325
326 crash_kexec(regs);
327
328 /*
329 * We aren't the primary crash CPU. We need to send it
330 * to a holding pattern to avoid it ending up in the panic
331 * code.
332 */
333 crash_kexec_secondary(regs);
334
335 /*
336 * No debugger or crash dump registered, print logs then
337 * panic.
338 */
339 __die("System Reset", regs, SIGABRT);
340
341 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
342 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
343 nmi_panic(regs, "System Reset");
344
345 out:
346 #ifdef CONFIG_PPC_BOOK3S_64
347 BUG_ON(get_paca()->in_nmi == 0);
348 if (get_paca()->in_nmi > 1)
349 nmi_panic(regs, "Unrecoverable nested System Reset");
350 #endif
351 /* Must die if the interrupt is not recoverable */
352 if (!(regs->msr & MSR_RI))
353 nmi_panic(regs, "Unrecoverable System Reset");
354
355 if (!nested)
356 nmi_exit();
357
358 /* What should we do here? We could issue a shutdown or hard reset. */
359 }
360
361 /*
362 * I/O accesses can cause machine checks on powermacs.
363 * Check if the NIP corresponds to the address of a sync
364 * instruction for which there is an entry in the exception
365 * table.
366 * Note that the 601 only takes a machine check on TEA
367 * (transfer error ack) signal assertion, and does not
368 * set any of the top 16 bits of SRR1.
369 * -- paulus.
370 */
371 static inline int check_io_access(struct pt_regs *regs)
372 {
373 #ifdef CONFIG_PPC32
374 unsigned long msr = regs->msr;
375 const struct exception_table_entry *entry;
376 unsigned int *nip = (unsigned int *)regs->nip;
377
378 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
379 && (entry = search_exception_tables(regs->nip)) != NULL) {
380 /*
381 * Check that it's a sync instruction, or somewhere
382 * in the twi; isync; nop sequence that inb/inw/inl uses.
383 * As the address is in the exception table
384 * we should be able to read the instr there.
385 * For the debug message, we look at the preceding
386 * load or store.
387 */
388 if (*nip == PPC_INST_NOP)
389 nip -= 2;
390 else if (*nip == PPC_INST_ISYNC)
391 --nip;
392 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
393 unsigned int rb;
394
395 --nip;
396 rb = (*nip >> 11) & 0x1f;
397 printk(KERN_DEBUG "%s bad port %lx at %p\n",
398 (*nip & 0x100)? "OUT to": "IN from",
399 regs->gpr[rb] - _IO_BASE, nip);
400 regs->msr |= MSR_RI;
401 regs->nip = extable_fixup(entry);
402 return 1;
403 }
404 }
405 #endif /* CONFIG_PPC32 */
406 return 0;
407 }
408
409 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
410 /* On 4xx, the reason for the machine check or program exception
411 is in the ESR. */
412 #define get_reason(regs) ((regs)->dsisr)
413 #define REASON_FP ESR_FP
414 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
415 #define REASON_PRIVILEGED ESR_PPR
416 #define REASON_TRAP ESR_PTR
417
418 /* single-step stuff */
419 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
420 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
421
422 #else
423 /* On non-4xx, the reason for the machine check or program
424 exception is in the MSR. */
425 #define get_reason(regs) ((regs)->msr)
426 #define REASON_TM SRR1_PROGTM
427 #define REASON_FP SRR1_PROGFPE
428 #define REASON_ILLEGAL SRR1_PROGILL
429 #define REASON_PRIVILEGED SRR1_PROGPRIV
430 #define REASON_TRAP SRR1_PROGTRAP
431
432 #define single_stepping(regs) ((regs)->msr & MSR_SE)
433 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
434 #endif
435
436 #if defined(CONFIG_E500)
437 int machine_check_e500mc(struct pt_regs *regs)
438 {
439 unsigned long mcsr = mfspr(SPRN_MCSR);
440 unsigned long reason = mcsr;
441 int recoverable = 1;
442
443 if (reason & MCSR_LD) {
444 recoverable = fsl_rio_mcheck_exception(regs);
445 if (recoverable == 1)
446 goto silent_out;
447 }
448
449 printk("Machine check in kernel mode.\n");
450 printk("Caused by (from MCSR=%lx): ", reason);
451
452 if (reason & MCSR_MCP)
453 printk("Machine Check Signal\n");
454
455 if (reason & MCSR_ICPERR) {
456 printk("Instruction Cache Parity Error\n");
457
458 /*
459 * This is recoverable by invalidating the i-cache.
460 */
461 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
462 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
463 ;
464
465 /*
466 * This will generally be accompanied by an instruction
467 * fetch error report -- only treat MCSR_IF as fatal
468 * if it wasn't due to an L1 parity error.
469 */
470 reason &= ~MCSR_IF;
471 }
472
473 if (reason & MCSR_DCPERR_MC) {
474 printk("Data Cache Parity Error\n");
475
476 /*
477 * In write shadow mode we auto-recover from the error, but it
478 * may still get logged and cause a machine check. We should
479 * only treat the non-write shadow case as non-recoverable.
480 */
481 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
482 recoverable = 0;
483 }
484
485 if (reason & MCSR_L2MMU_MHIT) {
486 printk("Hit on multiple TLB entries\n");
487 recoverable = 0;
488 }
489
490 if (reason & MCSR_NMI)
491 printk("Non-maskable interrupt\n");
492
493 if (reason & MCSR_IF) {
494 printk("Instruction Fetch Error Report\n");
495 recoverable = 0;
496 }
497
498 if (reason & MCSR_LD) {
499 printk("Load Error Report\n");
500 recoverable = 0;
501 }
502
503 if (reason & MCSR_ST) {
504 printk("Store Error Report\n");
505 recoverable = 0;
506 }
507
508 if (reason & MCSR_LDG) {
509 printk("Guarded Load Error Report\n");
510 recoverable = 0;
511 }
512
513 if (reason & MCSR_TLBSYNC)
514 printk("Simultaneous tlbsync operations\n");
515
516 if (reason & MCSR_BSL2_ERR) {
517 printk("Level 2 Cache Error\n");
518 recoverable = 0;
519 }
520
521 if (reason & MCSR_MAV) {
522 u64 addr;
523
524 addr = mfspr(SPRN_MCAR);
525 addr |= (u64)mfspr(SPRN_MCARU) << 32;
526
527 printk("Machine Check %s Address: %#llx\n",
528 reason & MCSR_MEA ? "Effective" : "Physical", addr);
529 }
530
531 silent_out:
532 mtspr(SPRN_MCSR, mcsr);
533 return mfspr(SPRN_MCSR) == 0 && recoverable;
534 }
535
536 int machine_check_e500(struct pt_regs *regs)
537 {
538 unsigned long reason = mfspr(SPRN_MCSR);
539
540 if (reason & MCSR_BUS_RBERR) {
541 if (fsl_rio_mcheck_exception(regs))
542 return 1;
543 if (fsl_pci_mcheck_exception(regs))
544 return 1;
545 }
546
547 printk("Machine check in kernel mode.\n");
548 printk("Caused by (from MCSR=%lx): ", reason);
549
550 if (reason & MCSR_MCP)
551 printk("Machine Check Signal\n");
552 if (reason & MCSR_ICPERR)
553 printk("Instruction Cache Parity Error\n");
554 if (reason & MCSR_DCP_PERR)
555 printk("Data Cache Push Parity Error\n");
556 if (reason & MCSR_DCPERR)
557 printk("Data Cache Parity Error\n");
558 if (reason & MCSR_BUS_IAERR)
559 printk("Bus - Instruction Address Error\n");
560 if (reason & MCSR_BUS_RAERR)
561 printk("Bus - Read Address Error\n");
562 if (reason & MCSR_BUS_WAERR)
563 printk("Bus - Write Address Error\n");
564 if (reason & MCSR_BUS_IBERR)
565 printk("Bus - Instruction Data Error\n");
566 if (reason & MCSR_BUS_RBERR)
567 printk("Bus - Read Data Bus Error\n");
568 if (reason & MCSR_BUS_WBERR)
569 printk("Bus - Write Data Bus Error\n");
570 if (reason & MCSR_BUS_IPERR)
571 printk("Bus - Instruction Parity Error\n");
572 if (reason & MCSR_BUS_RPERR)
573 printk("Bus - Read Parity Error\n");
574
575 return 0;
576 }
577
578 int machine_check_generic(struct pt_regs *regs)
579 {
580 return 0;
581 }
582 #elif defined(CONFIG_E200)
583 int machine_check_e200(struct pt_regs *regs)
584 {
585 unsigned long reason = mfspr(SPRN_MCSR);
586
587 printk("Machine check in kernel mode.\n");
588 printk("Caused by (from MCSR=%lx): ", reason);
589
590 if (reason & MCSR_MCP)
591 printk("Machine Check Signal\n");
592 if (reason & MCSR_CP_PERR)
593 printk("Cache Push Parity Error\n");
594 if (reason & MCSR_CPERR)
595 printk("Cache Parity Error\n");
596 if (reason & MCSR_EXCP_ERR)
597 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
598 if (reason & MCSR_BUS_IRERR)
599 printk("Bus - Read Bus Error on instruction fetch\n");
600 if (reason & MCSR_BUS_DRERR)
601 printk("Bus - Read Bus Error on data load\n");
602 if (reason & MCSR_BUS_WRERR)
603 printk("Bus - Write Bus Error on buffered store or cache line push\n");
604
605 return 0;
606 }
607 #elif defined(CONFIG_PPC32)
608 int machine_check_generic(struct pt_regs *regs)
609 {
610 unsigned long reason = regs->msr;
611
612 printk("Machine check in kernel mode.\n");
613 printk("Caused by (from SRR1=%lx): ", reason);
614 switch (reason & 0x601F0000) {
615 case 0x80000:
616 printk("Machine check signal\n");
617 break;
618 case 0: /* for 601 */
619 case 0x40000:
620 case 0x140000: /* 7450 MSS error and TEA */
621 printk("Transfer error ack signal\n");
622 break;
623 case 0x20000:
624 printk("Data parity error signal\n");
625 break;
626 case 0x10000:
627 printk("Address parity error signal\n");
628 break;
629 case 0x20000000:
630 printk("L1 Data Cache error\n");
631 break;
632 case 0x40000000:
633 printk("L1 Instruction Cache error\n");
634 break;
635 case 0x00100000:
636 printk("L2 data cache parity error\n");
637 break;
638 default:
639 printk("Unknown values in msr\n");
640 }
641 return 0;
642 }
643 #endif /* everything else */
644
645 void machine_check_exception(struct pt_regs *regs)
646 {
647 int recover = 0;
648 bool nested = in_nmi();
649 if (!nested)
650 nmi_enter();
651
652 /* 64s accounts the mce in machine_check_early when in HVMODE */
653 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
654 __this_cpu_inc(irq_stat.mce_exceptions);
655
656 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
657
658 /* See if any machine dependent calls. In theory, we would want
659 * to call the CPU first, and call the ppc_md. one if the CPU
660 * one returns a positive number. However there is existing code
661 * that assumes the board gets a first chance, so let's keep it
662 * that way for now and fix things later. --BenH.
663 */
664 if (ppc_md.machine_check_exception)
665 recover = ppc_md.machine_check_exception(regs);
666 else if (cur_cpu_spec->machine_check)
667 recover = cur_cpu_spec->machine_check(regs);
668
669 if (recover > 0)
670 goto bail;
671
672 if (debugger_fault_handler(regs))
673 goto bail;
674
675 if (check_io_access(regs))
676 goto bail;
677
678 die("Machine check", regs, SIGBUS);
679
680 /* Must die if the interrupt is not recoverable */
681 if (!(regs->msr & MSR_RI))
682 nmi_panic(regs, "Unrecoverable Machine check");
683
684 bail:
685 if (!nested)
686 nmi_exit();
687 }
688
689 void SMIException(struct pt_regs *regs)
690 {
691 die("System Management Interrupt", regs, SIGABRT);
692 }
693
694 void handle_hmi_exception(struct pt_regs *regs)
695 {
696 struct pt_regs *old_regs;
697
698 old_regs = set_irq_regs(regs);
699 irq_enter();
700
701 if (ppc_md.handle_hmi_exception)
702 ppc_md.handle_hmi_exception(regs);
703
704 irq_exit();
705 set_irq_regs(old_regs);
706 }
707
708 void unknown_exception(struct pt_regs *regs)
709 {
710 enum ctx_state prev_state = exception_enter();
711
712 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
713 regs->nip, regs->msr, regs->trap);
714
715 _exception(SIGTRAP, regs, 0, 0);
716
717 exception_exit(prev_state);
718 }
719
720 void instruction_breakpoint_exception(struct pt_regs *regs)
721 {
722 enum ctx_state prev_state = exception_enter();
723
724 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
725 5, SIGTRAP) == NOTIFY_STOP)
726 goto bail;
727 if (debugger_iabr_match(regs))
728 goto bail;
729 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
730
731 bail:
732 exception_exit(prev_state);
733 }
734
735 void RunModeException(struct pt_regs *regs)
736 {
737 _exception(SIGTRAP, regs, 0, 0);
738 }
739
740 void single_step_exception(struct pt_regs *regs)
741 {
742 enum ctx_state prev_state = exception_enter();
743
744 clear_single_step(regs);
745
746 if (kprobe_post_handler(regs))
747 return;
748
749 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
750 5, SIGTRAP) == NOTIFY_STOP)
751 goto bail;
752 if (debugger_sstep(regs))
753 goto bail;
754
755 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
756
757 bail:
758 exception_exit(prev_state);
759 }
760 NOKPROBE_SYMBOL(single_step_exception);
761
762 /*
763 * After we have successfully emulated an instruction, we have to
764 * check if the instruction was being single-stepped, and if so,
765 * pretend we got a single-step exception. This was pointed out
766 * by Kumar Gala. -- paulus
767 */
768 static void emulate_single_step(struct pt_regs *regs)
769 {
770 if (single_stepping(regs))
771 single_step_exception(regs);
772 }
773
774 static inline int __parse_fpscr(unsigned long fpscr)
775 {
776 int ret = 0;
777
778 /* Invalid operation */
779 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
780 ret = FPE_FLTINV;
781
782 /* Overflow */
783 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
784 ret = FPE_FLTOVF;
785
786 /* Underflow */
787 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
788 ret = FPE_FLTUND;
789
790 /* Divide by zero */
791 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
792 ret = FPE_FLTDIV;
793
794 /* Inexact result */
795 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
796 ret = FPE_FLTRES;
797
798 return ret;
799 }
800
801 static void parse_fpe(struct pt_regs *regs)
802 {
803 int code = 0;
804
805 flush_fp_to_thread(current);
806
807 code = __parse_fpscr(current->thread.fp_state.fpscr);
808
809 _exception(SIGFPE, regs, code, regs->nip);
810 }
811
812 /*
813 * Illegal instruction emulation support. Originally written to
814 * provide the PVR to user applications using the mfspr rd, PVR.
815 * Return non-zero if we can't emulate, or -EFAULT if the associated
816 * memory access caused an access fault. Return zero on success.
817 *
818 * There are a couple of ways to do this, either "decode" the instruction
819 * or directly match lots of bits. In this case, matching lots of
820 * bits is faster and easier.
821 *
822 */
823 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
824 {
825 u8 rT = (instword >> 21) & 0x1f;
826 u8 rA = (instword >> 16) & 0x1f;
827 u8 NB_RB = (instword >> 11) & 0x1f;
828 u32 num_bytes;
829 unsigned long EA;
830 int pos = 0;
831
832 /* Early out if we are an invalid form of lswx */
833 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
834 if ((rT == rA) || (rT == NB_RB))
835 return -EINVAL;
836
837 EA = (rA == 0) ? 0 : regs->gpr[rA];
838
839 switch (instword & PPC_INST_STRING_MASK) {
840 case PPC_INST_LSWX:
841 case PPC_INST_STSWX:
842 EA += NB_RB;
843 num_bytes = regs->xer & 0x7f;
844 break;
845 case PPC_INST_LSWI:
846 case PPC_INST_STSWI:
847 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
848 break;
849 default:
850 return -EINVAL;
851 }
852
853 while (num_bytes != 0)
854 {
855 u8 val;
856 u32 shift = 8 * (3 - (pos & 0x3));
857
858 /* if process is 32-bit, clear upper 32 bits of EA */
859 if ((regs->msr & MSR_64BIT) == 0)
860 EA &= 0xFFFFFFFF;
861
862 switch ((instword & PPC_INST_STRING_MASK)) {
863 case PPC_INST_LSWX:
864 case PPC_INST_LSWI:
865 if (get_user(val, (u8 __user *)EA))
866 return -EFAULT;
867 /* first time updating this reg,
868 * zero it out */
869 if (pos == 0)
870 regs->gpr[rT] = 0;
871 regs->gpr[rT] |= val << shift;
872 break;
873 case PPC_INST_STSWI:
874 case PPC_INST_STSWX:
875 val = regs->gpr[rT] >> shift;
876 if (put_user(val, (u8 __user *)EA))
877 return -EFAULT;
878 break;
879 }
880 /* move EA to next address */
881 EA += 1;
882 num_bytes--;
883
884 /* manage our position within the register */
885 if (++pos == 4) {
886 pos = 0;
887 if (++rT == 32)
888 rT = 0;
889 }
890 }
891
892 return 0;
893 }
894
895 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
896 {
897 u32 ra,rs;
898 unsigned long tmp;
899
900 ra = (instword >> 16) & 0x1f;
901 rs = (instword >> 21) & 0x1f;
902
903 tmp = regs->gpr[rs];
904 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
905 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
906 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
907 regs->gpr[ra] = tmp;
908
909 return 0;
910 }
911
912 static int emulate_isel(struct pt_regs *regs, u32 instword)
913 {
914 u8 rT = (instword >> 21) & 0x1f;
915 u8 rA = (instword >> 16) & 0x1f;
916 u8 rB = (instword >> 11) & 0x1f;
917 u8 BC = (instword >> 6) & 0x1f;
918 u8 bit;
919 unsigned long tmp;
920
921 tmp = (rA == 0) ? 0 : regs->gpr[rA];
922 bit = (regs->ccr >> (31 - BC)) & 0x1;
923
924 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
925
926 return 0;
927 }
928
929 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
930 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
931 {
932 /* If we're emulating a load/store in an active transaction, we cannot
933 * emulate it as the kernel operates in transaction suspended context.
934 * We need to abort the transaction. This creates a persistent TM
935 * abort so tell the user what caused it with a new code.
936 */
937 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
938 tm_enable();
939 tm_abort(cause);
940 return true;
941 }
942 return false;
943 }
944 #else
945 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
946 {
947 return false;
948 }
949 #endif
950
951 static int emulate_instruction(struct pt_regs *regs)
952 {
953 u32 instword;
954 u32 rd;
955
956 if (!user_mode(regs))
957 return -EINVAL;
958 CHECK_FULL_REGS(regs);
959
960 if (get_user(instword, (u32 __user *)(regs->nip)))
961 return -EFAULT;
962
963 /* Emulate the mfspr rD, PVR. */
964 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
965 PPC_WARN_EMULATED(mfpvr, regs);
966 rd = (instword >> 21) & 0x1f;
967 regs->gpr[rd] = mfspr(SPRN_PVR);
968 return 0;
969 }
970
971 /* Emulating the dcba insn is just a no-op. */
972 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
973 PPC_WARN_EMULATED(dcba, regs);
974 return 0;
975 }
976
977 /* Emulate the mcrxr insn. */
978 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
979 int shift = (instword >> 21) & 0x1c;
980 unsigned long msk = 0xf0000000UL >> shift;
981
982 PPC_WARN_EMULATED(mcrxr, regs);
983 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
984 regs->xer &= ~0xf0000000UL;
985 return 0;
986 }
987
988 /* Emulate load/store string insn. */
989 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
990 if (tm_abort_check(regs,
991 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
992 return -EINVAL;
993 PPC_WARN_EMULATED(string, regs);
994 return emulate_string_inst(regs, instword);
995 }
996
997 /* Emulate the popcntb (Population Count Bytes) instruction. */
998 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
999 PPC_WARN_EMULATED(popcntb, regs);
1000 return emulate_popcntb_inst(regs, instword);
1001 }
1002
1003 /* Emulate isel (Integer Select) instruction */
1004 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1005 PPC_WARN_EMULATED(isel, regs);
1006 return emulate_isel(regs, instword);
1007 }
1008
1009 /* Emulate sync instruction variants */
1010 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1011 PPC_WARN_EMULATED(sync, regs);
1012 asm volatile("sync");
1013 return 0;
1014 }
1015
1016 #ifdef CONFIG_PPC64
1017 /* Emulate the mfspr rD, DSCR. */
1018 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1019 PPC_INST_MFSPR_DSCR_USER) ||
1020 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1021 PPC_INST_MFSPR_DSCR)) &&
1022 cpu_has_feature(CPU_FTR_DSCR)) {
1023 PPC_WARN_EMULATED(mfdscr, regs);
1024 rd = (instword >> 21) & 0x1f;
1025 regs->gpr[rd] = mfspr(SPRN_DSCR);
1026 return 0;
1027 }
1028 /* Emulate the mtspr DSCR, rD. */
1029 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1030 PPC_INST_MTSPR_DSCR_USER) ||
1031 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1032 PPC_INST_MTSPR_DSCR)) &&
1033 cpu_has_feature(CPU_FTR_DSCR)) {
1034 PPC_WARN_EMULATED(mtdscr, regs);
1035 rd = (instword >> 21) & 0x1f;
1036 current->thread.dscr = regs->gpr[rd];
1037 current->thread.dscr_inherit = 1;
1038 mtspr(SPRN_DSCR, current->thread.dscr);
1039 return 0;
1040 }
1041 #endif
1042
1043 return -EINVAL;
1044 }
1045
1046 int is_valid_bugaddr(unsigned long addr)
1047 {
1048 return is_kernel_addr(addr);
1049 }
1050
1051 #ifdef CONFIG_MATH_EMULATION
1052 static int emulate_math(struct pt_regs *regs)
1053 {
1054 int ret;
1055 extern int do_mathemu(struct pt_regs *regs);
1056
1057 ret = do_mathemu(regs);
1058 if (ret >= 0)
1059 PPC_WARN_EMULATED(math, regs);
1060
1061 switch (ret) {
1062 case 0:
1063 emulate_single_step(regs);
1064 return 0;
1065 case 1: {
1066 int code = 0;
1067 code = __parse_fpscr(current->thread.fp_state.fpscr);
1068 _exception(SIGFPE, regs, code, regs->nip);
1069 return 0;
1070 }
1071 case -EFAULT:
1072 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1073 return 0;
1074 }
1075
1076 return -1;
1077 }
1078 #else
1079 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1080 #endif
1081
1082 void program_check_exception(struct pt_regs *regs)
1083 {
1084 enum ctx_state prev_state = exception_enter();
1085 unsigned int reason = get_reason(regs);
1086
1087 /* We can now get here via a FP Unavailable exception if the core
1088 * has no FPU, in that case the reason flags will be 0 */
1089
1090 if (reason & REASON_FP) {
1091 /* IEEE FP exception */
1092 parse_fpe(regs);
1093 goto bail;
1094 }
1095 if (reason & REASON_TRAP) {
1096 unsigned long bugaddr;
1097 /* Debugger is first in line to stop recursive faults in
1098 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1099 if (debugger_bpt(regs))
1100 goto bail;
1101
1102 if (kprobe_handler(regs))
1103 goto bail;
1104
1105 /* trap exception */
1106 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1107 == NOTIFY_STOP)
1108 goto bail;
1109
1110 bugaddr = regs->nip;
1111 /*
1112 * Fixup bugaddr for BUG_ON() in real mode
1113 */
1114 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1115 bugaddr += PAGE_OFFSET;
1116
1117 if (!(regs->msr & MSR_PR) && /* not user-mode */
1118 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1119 regs->nip += 4;
1120 goto bail;
1121 }
1122 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1123 goto bail;
1124 }
1125 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1126 if (reason & REASON_TM) {
1127 /* This is a TM "Bad Thing Exception" program check.
1128 * This occurs when:
1129 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1130 * transition in TM states.
1131 * - A trechkpt is attempted when transactional.
1132 * - A treclaim is attempted when non transactional.
1133 * - A tend is illegally attempted.
1134 * - writing a TM SPR when transactional.
1135 */
1136 if (!user_mode(regs) &&
1137 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1138 regs->nip += 4;
1139 goto bail;
1140 }
1141 /* If usermode caused this, it's done something illegal and
1142 * gets a SIGILL slap on the wrist. We call it an illegal
1143 * operand to distinguish from the instruction just being bad
1144 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1145 * illegal /placement/ of a valid instruction.
1146 */
1147 if (user_mode(regs)) {
1148 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1149 goto bail;
1150 } else {
1151 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1152 "at %lx (msr 0x%x)\n", regs->nip, reason);
1153 die("Unrecoverable exception", regs, SIGABRT);
1154 }
1155 }
1156 #endif
1157
1158 /*
1159 * If we took the program check in the kernel skip down to sending a
1160 * SIGILL. The subsequent cases all relate to emulating instructions
1161 * which we should only do for userspace. We also do not want to enable
1162 * interrupts for kernel faults because that might lead to further
1163 * faults, and loose the context of the original exception.
1164 */
1165 if (!user_mode(regs))
1166 goto sigill;
1167
1168 /* We restore the interrupt state now */
1169 if (!arch_irq_disabled_regs(regs))
1170 local_irq_enable();
1171
1172 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1173 * but there seems to be a hardware bug on the 405GP (RevD)
1174 * that means ESR is sometimes set incorrectly - either to
1175 * ESR_DST (!?) or 0. In the process of chasing this with the
1176 * hardware people - not sure if it can happen on any illegal
1177 * instruction or only on FP instructions, whether there is a
1178 * pattern to occurrences etc. -dgibson 31/Mar/2003
1179 */
1180 if (!emulate_math(regs))
1181 goto bail;
1182
1183 /* Try to emulate it if we should. */
1184 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1185 switch (emulate_instruction(regs)) {
1186 case 0:
1187 regs->nip += 4;
1188 emulate_single_step(regs);
1189 goto bail;
1190 case -EFAULT:
1191 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1192 goto bail;
1193 }
1194 }
1195
1196 sigill:
1197 if (reason & REASON_PRIVILEGED)
1198 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1199 else
1200 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1201
1202 bail:
1203 exception_exit(prev_state);
1204 }
1205 NOKPROBE_SYMBOL(program_check_exception);
1206
1207 /*
1208 * This occurs when running in hypervisor mode on POWER6 or later
1209 * and an illegal instruction is encountered.
1210 */
1211 void emulation_assist_interrupt(struct pt_regs *regs)
1212 {
1213 regs->msr |= REASON_ILLEGAL;
1214 program_check_exception(regs);
1215 }
1216 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1217
1218 void alignment_exception(struct pt_regs *regs)
1219 {
1220 enum ctx_state prev_state = exception_enter();
1221 int sig, code, fixed = 0;
1222
1223 /* We restore the interrupt state now */
1224 if (!arch_irq_disabled_regs(regs))
1225 local_irq_enable();
1226
1227 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1228 goto bail;
1229
1230 /* we don't implement logging of alignment exceptions */
1231 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1232 fixed = fix_alignment(regs);
1233
1234 if (fixed == 1) {
1235 regs->nip += 4; /* skip over emulated instruction */
1236 emulate_single_step(regs);
1237 goto bail;
1238 }
1239
1240 /* Operand address was bad */
1241 if (fixed == -EFAULT) {
1242 sig = SIGSEGV;
1243 code = SEGV_ACCERR;
1244 } else {
1245 sig = SIGBUS;
1246 code = BUS_ADRALN;
1247 }
1248 if (user_mode(regs))
1249 _exception(sig, regs, code, regs->dar);
1250 else
1251 bad_page_fault(regs, regs->dar, sig);
1252
1253 bail:
1254 exception_exit(prev_state);
1255 }
1256
1257 void slb_miss_bad_addr(struct pt_regs *regs)
1258 {
1259 enum ctx_state prev_state = exception_enter();
1260
1261 if (user_mode(regs))
1262 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1263 else
1264 bad_page_fault(regs, regs->dar, SIGSEGV);
1265
1266 exception_exit(prev_state);
1267 }
1268
1269 void StackOverflow(struct pt_regs *regs)
1270 {
1271 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1272 current, regs->gpr[1]);
1273 debugger(regs);
1274 show_regs(regs);
1275 panic("kernel stack overflow");
1276 }
1277
1278 void nonrecoverable_exception(struct pt_regs *regs)
1279 {
1280 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1281 regs->nip, regs->msr);
1282 debugger(regs);
1283 die("nonrecoverable exception", regs, SIGKILL);
1284 }
1285
1286 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1287 {
1288 enum ctx_state prev_state = exception_enter();
1289
1290 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1291 "%lx at %lx\n", regs->trap, regs->nip);
1292 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1293
1294 exception_exit(prev_state);
1295 }
1296
1297 void altivec_unavailable_exception(struct pt_regs *regs)
1298 {
1299 enum ctx_state prev_state = exception_enter();
1300
1301 if (user_mode(regs)) {
1302 /* A user program has executed an altivec instruction,
1303 but this kernel doesn't support altivec. */
1304 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1305 goto bail;
1306 }
1307
1308 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1309 "%lx at %lx\n", regs->trap, regs->nip);
1310 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1311
1312 bail:
1313 exception_exit(prev_state);
1314 }
1315
1316 void vsx_unavailable_exception(struct pt_regs *regs)
1317 {
1318 if (user_mode(regs)) {
1319 /* A user program has executed an vsx instruction,
1320 but this kernel doesn't support vsx. */
1321 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1322 return;
1323 }
1324
1325 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1326 "%lx at %lx\n", regs->trap, regs->nip);
1327 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1328 }
1329
1330 #ifdef CONFIG_PPC64
1331 static void tm_unavailable(struct pt_regs *regs)
1332 {
1333 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1334 if (user_mode(regs)) {
1335 current->thread.load_tm++;
1336 regs->msr |= MSR_TM;
1337 tm_enable();
1338 tm_restore_sprs(&current->thread);
1339 return;
1340 }
1341 #endif
1342 pr_emerg("Unrecoverable TM Unavailable Exception "
1343 "%lx at %lx\n", regs->trap, regs->nip);
1344 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1345 }
1346
1347 void facility_unavailable_exception(struct pt_regs *regs)
1348 {
1349 static char *facility_strings[] = {
1350 [FSCR_FP_LG] = "FPU",
1351 [FSCR_VECVSX_LG] = "VMX/VSX",
1352 [FSCR_DSCR_LG] = "DSCR",
1353 [FSCR_PM_LG] = "PMU SPRs",
1354 [FSCR_BHRB_LG] = "BHRB",
1355 [FSCR_TM_LG] = "TM",
1356 [FSCR_EBB_LG] = "EBB",
1357 [FSCR_TAR_LG] = "TAR",
1358 [FSCR_MSGP_LG] = "MSGP",
1359 [FSCR_SCV_LG] = "SCV",
1360 };
1361 char *facility = "unknown";
1362 u64 value;
1363 u32 instword, rd;
1364 u8 status;
1365 bool hv;
1366
1367 hv = (regs->trap == 0xf80);
1368 if (hv)
1369 value = mfspr(SPRN_HFSCR);
1370 else
1371 value = mfspr(SPRN_FSCR);
1372
1373 status = value >> 56;
1374 if (status == FSCR_DSCR_LG) {
1375 /*
1376 * User is accessing the DSCR register using the problem
1377 * state only SPR number (0x03) either through a mfspr or
1378 * a mtspr instruction. If it is a write attempt through
1379 * a mtspr, then we set the inherit bit. This also allows
1380 * the user to write or read the register directly in the
1381 * future by setting via the FSCR DSCR bit. But in case it
1382 * is a read DSCR attempt through a mfspr instruction, we
1383 * just emulate the instruction instead. This code path will
1384 * always emulate all the mfspr instructions till the user
1385 * has attempted at least one mtspr instruction. This way it
1386 * preserves the same behaviour when the user is accessing
1387 * the DSCR through privilege level only SPR number (0x11)
1388 * which is emulated through illegal instruction exception.
1389 * We always leave HFSCR DSCR set.
1390 */
1391 if (get_user(instword, (u32 __user *)(regs->nip))) {
1392 pr_err("Failed to fetch the user instruction\n");
1393 return;
1394 }
1395
1396 /* Write into DSCR (mtspr 0x03, RS) */
1397 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1398 == PPC_INST_MTSPR_DSCR_USER) {
1399 rd = (instword >> 21) & 0x1f;
1400 current->thread.dscr = regs->gpr[rd];
1401 current->thread.dscr_inherit = 1;
1402 current->thread.fscr |= FSCR_DSCR;
1403 mtspr(SPRN_FSCR, current->thread.fscr);
1404 }
1405
1406 /* Read from DSCR (mfspr RT, 0x03) */
1407 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1408 == PPC_INST_MFSPR_DSCR_USER) {
1409 if (emulate_instruction(regs)) {
1410 pr_err("DSCR based mfspr emulation failed\n");
1411 return;
1412 }
1413 regs->nip += 4;
1414 emulate_single_step(regs);
1415 }
1416 return;
1417 }
1418
1419 if (status == FSCR_TM_LG) {
1420 /*
1421 * If we're here then the hardware is TM aware because it
1422 * generated an exception with FSRM_TM set.
1423 *
1424 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1425 * told us not to do TM, or the kernel is not built with TM
1426 * support.
1427 *
1428 * If both of those things are true, then userspace can spam the
1429 * console by triggering the printk() below just by continually
1430 * doing tbegin (or any TM instruction). So in that case just
1431 * send the process a SIGILL immediately.
1432 */
1433 if (!cpu_has_feature(CPU_FTR_TM))
1434 goto out;
1435
1436 tm_unavailable(regs);
1437 return;
1438 }
1439
1440 if ((hv || status >= 2) &&
1441 (status < ARRAY_SIZE(facility_strings)) &&
1442 facility_strings[status])
1443 facility = facility_strings[status];
1444
1445 /* We restore the interrupt state now */
1446 if (!arch_irq_disabled_regs(regs))
1447 local_irq_enable();
1448
1449 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1450 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1451
1452 out:
1453 if (user_mode(regs)) {
1454 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1455 return;
1456 }
1457
1458 die("Unexpected facility unavailable exception", regs, SIGABRT);
1459 }
1460 #endif
1461
1462 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1463
1464 void fp_unavailable_tm(struct pt_regs *regs)
1465 {
1466 /* Note: This does not handle any kind of FP laziness. */
1467
1468 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1469 regs->nip, regs->msr);
1470
1471 /* We can only have got here if the task started using FP after
1472 * beginning the transaction. So, the transactional regs are just a
1473 * copy of the checkpointed ones. But, we still need to recheckpoint
1474 * as we're enabling FP for the process; it will return, abort the
1475 * transaction, and probably retry but now with FP enabled. So the
1476 * checkpointed FP registers need to be loaded.
1477 */
1478 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1479 /* Reclaim didn't save out any FPRs to transact_fprs. */
1480
1481 /* Enable FP for the task: */
1482 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1483
1484 /* This loads and recheckpoints the FP registers from
1485 * thread.fpr[]. They will remain in registers after the
1486 * checkpoint so we don't need to reload them after.
1487 * If VMX is in use, the VRs now hold checkpointed values,
1488 * so we don't want to load the VRs from the thread_struct.
1489 */
1490 tm_recheckpoint(&current->thread, MSR_FP);
1491
1492 /* If VMX is in use, get the transactional values back */
1493 if (regs->msr & MSR_VEC) {
1494 msr_check_and_set(MSR_VEC);
1495 load_vr_state(&current->thread.vr_state);
1496 /* At this point all the VSX state is loaded, so enable it */
1497 regs->msr |= MSR_VSX;
1498 }
1499 }
1500
1501 void altivec_unavailable_tm(struct pt_regs *regs)
1502 {
1503 /* See the comments in fp_unavailable_tm(). This function operates
1504 * the same way.
1505 */
1506
1507 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1508 "MSR=%lx\n",
1509 regs->nip, regs->msr);
1510 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1511 regs->msr |= MSR_VEC;
1512 tm_recheckpoint(&current->thread, MSR_VEC);
1513 current->thread.used_vr = 1;
1514
1515 if (regs->msr & MSR_FP) {
1516 msr_check_and_set(MSR_FP);
1517 load_fp_state(&current->thread.fp_state);
1518 regs->msr |= MSR_VSX;
1519 }
1520 }
1521
1522 void vsx_unavailable_tm(struct pt_regs *regs)
1523 {
1524 unsigned long orig_msr = regs->msr;
1525
1526 /* See the comments in fp_unavailable_tm(). This works similarly,
1527 * though we're loading both FP and VEC registers in here.
1528 *
1529 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1530 * regs. Either way, set MSR_VSX.
1531 */
1532
1533 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1534 "MSR=%lx\n",
1535 regs->nip, regs->msr);
1536
1537 current->thread.used_vsr = 1;
1538
1539 /* If FP and VMX are already loaded, we have all the state we need */
1540 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1541 regs->msr |= MSR_VSX;
1542 return;
1543 }
1544
1545 /* This reclaims FP and/or VR regs if they're already enabled */
1546 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1547
1548 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1549 MSR_VSX;
1550
1551 /* This loads & recheckpoints FP and VRs; but we have
1552 * to be sure not to overwrite previously-valid state.
1553 */
1554 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1555
1556 msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1557
1558 if (orig_msr & MSR_FP)
1559 load_fp_state(&current->thread.fp_state);
1560 if (orig_msr & MSR_VEC)
1561 load_vr_state(&current->thread.vr_state);
1562 }
1563 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1564
1565 void performance_monitor_exception(struct pt_regs *regs)
1566 {
1567 __this_cpu_inc(irq_stat.pmu_irqs);
1568
1569 perf_irq(regs);
1570 }
1571
1572 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1573 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1574 {
1575 int changed = 0;
1576 /*
1577 * Determine the cause of the debug event, clear the
1578 * event flags and send a trap to the handler. Torez
1579 */
1580 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1581 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1582 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1583 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1584 #endif
1585 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1586 5);
1587 changed |= 0x01;
1588 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1589 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1590 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1591 6);
1592 changed |= 0x01;
1593 } else if (debug_status & DBSR_IAC1) {
1594 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1595 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1596 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1597 1);
1598 changed |= 0x01;
1599 } else if (debug_status & DBSR_IAC2) {
1600 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1601 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1602 2);
1603 changed |= 0x01;
1604 } else if (debug_status & DBSR_IAC3) {
1605 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1606 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1607 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1608 3);
1609 changed |= 0x01;
1610 } else if (debug_status & DBSR_IAC4) {
1611 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1612 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1613 4);
1614 changed |= 0x01;
1615 }
1616 /*
1617 * At the point this routine was called, the MSR(DE) was turned off.
1618 * Check all other debug flags and see if that bit needs to be turned
1619 * back on or not.
1620 */
1621 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1622 current->thread.debug.dbcr1))
1623 regs->msr |= MSR_DE;
1624 else
1625 /* Make sure the IDM flag is off */
1626 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1627
1628 if (changed & 0x01)
1629 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1630 }
1631
1632 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1633 {
1634 current->thread.debug.dbsr = debug_status;
1635
1636 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1637 * on server, it stops on the target of the branch. In order to simulate
1638 * the server behaviour, we thus restart right away with a single step
1639 * instead of stopping here when hitting a BT
1640 */
1641 if (debug_status & DBSR_BT) {
1642 regs->msr &= ~MSR_DE;
1643
1644 /* Disable BT */
1645 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1646 /* Clear the BT event */
1647 mtspr(SPRN_DBSR, DBSR_BT);
1648
1649 /* Do the single step trick only when coming from userspace */
1650 if (user_mode(regs)) {
1651 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1652 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1653 regs->msr |= MSR_DE;
1654 return;
1655 }
1656
1657 if (kprobe_post_handler(regs))
1658 return;
1659
1660 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1661 5, SIGTRAP) == NOTIFY_STOP) {
1662 return;
1663 }
1664 if (debugger_sstep(regs))
1665 return;
1666 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1667 regs->msr &= ~MSR_DE;
1668
1669 /* Disable instruction completion */
1670 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1671 /* Clear the instruction completion event */
1672 mtspr(SPRN_DBSR, DBSR_IC);
1673
1674 if (kprobe_post_handler(regs))
1675 return;
1676
1677 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1678 5, SIGTRAP) == NOTIFY_STOP) {
1679 return;
1680 }
1681
1682 if (debugger_sstep(regs))
1683 return;
1684
1685 if (user_mode(regs)) {
1686 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1687 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1688 current->thread.debug.dbcr1))
1689 regs->msr |= MSR_DE;
1690 else
1691 /* Make sure the IDM bit is off */
1692 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1693 }
1694
1695 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1696 } else
1697 handle_debug(regs, debug_status);
1698 }
1699 NOKPROBE_SYMBOL(DebugException);
1700 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1701
1702 #if !defined(CONFIG_TAU_INT)
1703 void TAUException(struct pt_regs *regs)
1704 {
1705 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1706 regs->nip, regs->msr, regs->trap, print_tainted());
1707 }
1708 #endif /* CONFIG_INT_TAU */
1709
1710 #ifdef CONFIG_ALTIVEC
1711 void altivec_assist_exception(struct pt_regs *regs)
1712 {
1713 int err;
1714
1715 if (!user_mode(regs)) {
1716 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1717 " at %lx\n", regs->nip);
1718 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1719 }
1720
1721 flush_altivec_to_thread(current);
1722
1723 PPC_WARN_EMULATED(altivec, regs);
1724 err = emulate_altivec(regs);
1725 if (err == 0) {
1726 regs->nip += 4; /* skip emulated instruction */
1727 emulate_single_step(regs);
1728 return;
1729 }
1730
1731 if (err == -EFAULT) {
1732 /* got an error reading the instruction */
1733 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1734 } else {
1735 /* didn't recognize the instruction */
1736 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1737 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1738 "in %s at %lx\n", current->comm, regs->nip);
1739 current->thread.vr_state.vscr.u[3] |= 0x10000;
1740 }
1741 }
1742 #endif /* CONFIG_ALTIVEC */
1743
1744 #ifdef CONFIG_FSL_BOOKE
1745 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1746 unsigned long error_code)
1747 {
1748 /* We treat cache locking instructions from the user
1749 * as priv ops, in the future we could try to do
1750 * something smarter
1751 */
1752 if (error_code & (ESR_DLK|ESR_ILK))
1753 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1754 return;
1755 }
1756 #endif /* CONFIG_FSL_BOOKE */
1757
1758 #ifdef CONFIG_SPE
1759 void SPEFloatingPointException(struct pt_regs *regs)
1760 {
1761 extern int do_spe_mathemu(struct pt_regs *regs);
1762 unsigned long spefscr;
1763 int fpexc_mode;
1764 int code = 0;
1765 int err;
1766
1767 flush_spe_to_thread(current);
1768
1769 spefscr = current->thread.spefscr;
1770 fpexc_mode = current->thread.fpexc_mode;
1771
1772 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1773 code = FPE_FLTOVF;
1774 }
1775 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1776 code = FPE_FLTUND;
1777 }
1778 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1779 code = FPE_FLTDIV;
1780 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1781 code = FPE_FLTINV;
1782 }
1783 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1784 code = FPE_FLTRES;
1785
1786 err = do_spe_mathemu(regs);
1787 if (err == 0) {
1788 regs->nip += 4; /* skip emulated instruction */
1789 emulate_single_step(regs);
1790 return;
1791 }
1792
1793 if (err == -EFAULT) {
1794 /* got an error reading the instruction */
1795 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1796 } else if (err == -EINVAL) {
1797 /* didn't recognize the instruction */
1798 printk(KERN_ERR "unrecognized spe instruction "
1799 "in %s at %lx\n", current->comm, regs->nip);
1800 } else {
1801 _exception(SIGFPE, regs, code, regs->nip);
1802 }
1803
1804 return;
1805 }
1806
1807 void SPEFloatingPointRoundException(struct pt_regs *regs)
1808 {
1809 extern int speround_handler(struct pt_regs *regs);
1810 int err;
1811
1812 preempt_disable();
1813 if (regs->msr & MSR_SPE)
1814 giveup_spe(current);
1815 preempt_enable();
1816
1817 regs->nip -= 4;
1818 err = speround_handler(regs);
1819 if (err == 0) {
1820 regs->nip += 4; /* skip emulated instruction */
1821 emulate_single_step(regs);
1822 return;
1823 }
1824
1825 if (err == -EFAULT) {
1826 /* got an error reading the instruction */
1827 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1828 } else if (err == -EINVAL) {
1829 /* didn't recognize the instruction */
1830 printk(KERN_ERR "unrecognized spe instruction "
1831 "in %s at %lx\n", current->comm, regs->nip);
1832 } else {
1833 _exception(SIGFPE, regs, 0, regs->nip);
1834 return;
1835 }
1836 }
1837 #endif
1838
1839 /*
1840 * We enter here if we get an unrecoverable exception, that is, one
1841 * that happened at a point where the RI (recoverable interrupt) bit
1842 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1843 * we therefore lost state by taking this exception.
1844 */
1845 void unrecoverable_exception(struct pt_regs *regs)
1846 {
1847 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1848 regs->trap, regs->nip);
1849 die("Unrecoverable exception", regs, SIGABRT);
1850 }
1851 NOKPROBE_SYMBOL(unrecoverable_exception);
1852
1853 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1854 /*
1855 * Default handler for a Watchdog exception,
1856 * spins until a reboot occurs
1857 */
1858 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1859 {
1860 /* Generic WatchdogHandler, implement your own */
1861 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1862 return;
1863 }
1864
1865 void WatchdogException(struct pt_regs *regs)
1866 {
1867 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1868 WatchdogHandler(regs);
1869 }
1870 #endif
1871
1872 /*
1873 * We enter here if we discover during exception entry that we are
1874 * running in supervisor mode with a userspace value in the stack pointer.
1875 */
1876 void kernel_bad_stack(struct pt_regs *regs)
1877 {
1878 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1879 regs->gpr[1], regs->nip);
1880 die("Bad kernel stack pointer", regs, SIGABRT);
1881 }
1882 NOKPROBE_SYMBOL(kernel_bad_stack);
1883
1884 void __init trap_init(void)
1885 {
1886 }
1887
1888
1889 #ifdef CONFIG_PPC_EMULATED_STATS
1890
1891 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1892
1893 struct ppc_emulated ppc_emulated = {
1894 #ifdef CONFIG_ALTIVEC
1895 WARN_EMULATED_SETUP(altivec),
1896 #endif
1897 WARN_EMULATED_SETUP(dcba),
1898 WARN_EMULATED_SETUP(dcbz),
1899 WARN_EMULATED_SETUP(fp_pair),
1900 WARN_EMULATED_SETUP(isel),
1901 WARN_EMULATED_SETUP(mcrxr),
1902 WARN_EMULATED_SETUP(mfpvr),
1903 WARN_EMULATED_SETUP(multiple),
1904 WARN_EMULATED_SETUP(popcntb),
1905 WARN_EMULATED_SETUP(spe),
1906 WARN_EMULATED_SETUP(string),
1907 WARN_EMULATED_SETUP(sync),
1908 WARN_EMULATED_SETUP(unaligned),
1909 #ifdef CONFIG_MATH_EMULATION
1910 WARN_EMULATED_SETUP(math),
1911 #endif
1912 #ifdef CONFIG_VSX
1913 WARN_EMULATED_SETUP(vsx),
1914 #endif
1915 #ifdef CONFIG_PPC64
1916 WARN_EMULATED_SETUP(mfdscr),
1917 WARN_EMULATED_SETUP(mtdscr),
1918 WARN_EMULATED_SETUP(lq_stq),
1919 #endif
1920 };
1921
1922 u32 ppc_warn_emulated;
1923
1924 void ppc_warn_emulated_print(const char *type)
1925 {
1926 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1927 type);
1928 }
1929
1930 static int __init ppc_warn_emulated_init(void)
1931 {
1932 struct dentry *dir, *d;
1933 unsigned int i;
1934 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1935
1936 if (!powerpc_debugfs_root)
1937 return -ENODEV;
1938
1939 dir = debugfs_create_dir("emulated_instructions",
1940 powerpc_debugfs_root);
1941 if (!dir)
1942 return -ENOMEM;
1943
1944 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1945 &ppc_warn_emulated);
1946 if (!d)
1947 goto fail;
1948
1949 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1950 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1951 (u32 *)&entries[i].val.counter);
1952 if (!d)
1953 goto fail;
1954 }
1955
1956 return 0;
1957
1958 fail:
1959 debugfs_remove_recursive(dir);
1960 return -ENOMEM;
1961 }
1962
1963 device_initcall(ppc_warn_emulated_init);
1964
1965 #endif /* CONFIG_PPC_EMULATED_STATS */