]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/traps.c
Merge branches 'for-4.13/ish' and 'for-4.13/ite' into for-linus
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94
95 /*
96 * Trap & Exception support
97 */
98
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 mutex_lock(&pmac_backlight_mutex);
103 if (pmac_backlight) {
104 struct backlight_properties *props;
105
106 props = &pmac_backlight->props;
107 props->brightness = props->max_brightness;
108 props->power = FB_BLANK_UNBLANK;
109 backlight_update_status(pmac_backlight);
110 }
111 mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116
117 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
118 static int die_owner = -1;
119 static unsigned int die_nest_count;
120 static int die_counter;
121
122 static unsigned long oops_begin(struct pt_regs *regs)
123 {
124 int cpu;
125 unsigned long flags;
126
127 oops_enter();
128
129 /* racy, but better than risking deadlock. */
130 raw_local_irq_save(flags);
131 cpu = smp_processor_id();
132 if (!arch_spin_trylock(&die_lock)) {
133 if (cpu == die_owner)
134 /* nested oops. should stop eventually */;
135 else
136 arch_spin_lock(&die_lock);
137 }
138 die_nest_count++;
139 die_owner = cpu;
140 console_verbose();
141 bust_spinlocks(1);
142 if (machine_is(powermac))
143 pmac_backlight_unblank();
144 return flags;
145 }
146 NOKPROBE_SYMBOL(oops_begin);
147
148 static void oops_end(unsigned long flags, struct pt_regs *regs,
149 int signr)
150 {
151 bust_spinlocks(0);
152 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 die_nest_count--;
154 oops_exit();
155 printk("\n");
156 if (!die_nest_count) {
157 /* Nest count reaches zero, release the lock. */
158 die_owner = -1;
159 arch_spin_unlock(&die_lock);
160 }
161 raw_local_irq_restore(flags);
162
163 crash_fadump(regs, "die oops");
164
165 /*
166 * A system reset (0x100) is a request to dump, so we always send
167 * it through the crashdump code.
168 */
169 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
170 crash_kexec(regs);
171
172 /*
173 * We aren't the primary crash CPU. We need to send it
174 * to a holding pattern to avoid it ending up in the panic
175 * code.
176 */
177 crash_kexec_secondary(regs);
178 }
179
180 if (!signr)
181 return;
182
183 /*
184 * While our oops output is serialised by a spinlock, output
185 * from panic() called below can race and corrupt it. If we
186 * know we are going to panic, delay for 1 second so we have a
187 * chance to get clean backtraces from all CPUs that are oopsing.
188 */
189 if (in_interrupt() || panic_on_oops || !current->pid ||
190 is_global_init(current)) {
191 mdelay(MSEC_PER_SEC);
192 }
193
194 if (in_interrupt())
195 panic("Fatal exception in interrupt");
196 if (panic_on_oops)
197 panic("Fatal exception");
198 do_exit(signr);
199 }
200 NOKPROBE_SYMBOL(oops_end);
201
202 static int __die(const char *str, struct pt_regs *regs, long err)
203 {
204 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
205 #ifdef CONFIG_PREEMPT
206 printk("PREEMPT ");
207 #endif
208 #ifdef CONFIG_SMP
209 printk("SMP NR_CPUS=%d ", NR_CPUS);
210 #endif
211 if (debug_pagealloc_enabled())
212 printk("DEBUG_PAGEALLOC ");
213 #ifdef CONFIG_NUMA
214 printk("NUMA ");
215 #endif
216 printk("%s\n", ppc_md.name ? ppc_md.name : "");
217
218 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
219 return 1;
220
221 print_modules();
222 show_regs(regs);
223
224 return 0;
225 }
226 NOKPROBE_SYMBOL(__die);
227
228 void die(const char *str, struct pt_regs *regs, long err)
229 {
230 unsigned long flags;
231
232 if (debugger(regs))
233 return;
234
235 flags = oops_begin(regs);
236 if (__die(str, regs, err))
237 err = 0;
238 oops_end(flags, regs, err);
239 }
240
241 void user_single_step_siginfo(struct task_struct *tsk,
242 struct pt_regs *regs, siginfo_t *info)
243 {
244 memset(info, 0, sizeof(*info));
245 info->si_signo = SIGTRAP;
246 info->si_code = TRAP_TRACE;
247 info->si_addr = (void __user *)regs->nip;
248 }
249
250 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
251 {
252 siginfo_t info;
253 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
254 "at %08lx nip %08lx lr %08lx code %x\n";
255 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
256 "at %016lx nip %016lx lr %016lx code %x\n";
257
258 if (!user_mode(regs)) {
259 die("Exception in kernel mode", regs, signr);
260 return;
261 }
262
263 if (show_unhandled_signals && unhandled_signal(current, signr)) {
264 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
265 current->comm, current->pid, signr,
266 addr, regs->nip, regs->link, code);
267 }
268
269 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
270 local_irq_enable();
271
272 current->thread.trap_nr = code;
273 memset(&info, 0, sizeof(info));
274 info.si_signo = signr;
275 info.si_code = code;
276 info.si_addr = (void __user *) addr;
277 force_sig_info(signr, &info, current);
278 }
279
280 void system_reset_exception(struct pt_regs *regs)
281 {
282 /*
283 * Avoid crashes in case of nested NMI exceptions. Recoverability
284 * is determined by RI and in_nmi
285 */
286 bool nested = in_nmi();
287 if (!nested)
288 nmi_enter();
289
290 /* See if any machine dependent calls */
291 if (ppc_md.system_reset_exception) {
292 if (ppc_md.system_reset_exception(regs))
293 goto out;
294 }
295
296 die("System Reset", regs, SIGABRT);
297
298 out:
299 #ifdef CONFIG_PPC_BOOK3S_64
300 BUG_ON(get_paca()->in_nmi == 0);
301 if (get_paca()->in_nmi > 1)
302 panic("Unrecoverable nested System Reset");
303 #endif
304 /* Must die if the interrupt is not recoverable */
305 if (!(regs->msr & MSR_RI))
306 panic("Unrecoverable System Reset");
307
308 if (!nested)
309 nmi_exit();
310
311 /* What should we do here? We could issue a shutdown or hard reset. */
312 }
313
314 #ifdef CONFIG_PPC64
315 /*
316 * This function is called in real mode. Strictly no printk's please.
317 *
318 * regs->nip and regs->msr contains srr0 and ssr1.
319 */
320 long machine_check_early(struct pt_regs *regs)
321 {
322 long handled = 0;
323
324 __this_cpu_inc(irq_stat.mce_exceptions);
325
326 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
327 handled = cur_cpu_spec->machine_check_early(regs);
328 return handled;
329 }
330
331 long hmi_exception_realmode(struct pt_regs *regs)
332 {
333 __this_cpu_inc(irq_stat.hmi_exceptions);
334
335 wait_for_subcore_guest_exit();
336
337 if (ppc_md.hmi_exception_early)
338 ppc_md.hmi_exception_early(regs);
339
340 wait_for_tb_resync();
341
342 return 0;
343 }
344
345 #endif
346
347 /*
348 * I/O accesses can cause machine checks on powermacs.
349 * Check if the NIP corresponds to the address of a sync
350 * instruction for which there is an entry in the exception
351 * table.
352 * Note that the 601 only takes a machine check on TEA
353 * (transfer error ack) signal assertion, and does not
354 * set any of the top 16 bits of SRR1.
355 * -- paulus.
356 */
357 static inline int check_io_access(struct pt_regs *regs)
358 {
359 #ifdef CONFIG_PPC32
360 unsigned long msr = regs->msr;
361 const struct exception_table_entry *entry;
362 unsigned int *nip = (unsigned int *)regs->nip;
363
364 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
365 && (entry = search_exception_tables(regs->nip)) != NULL) {
366 /*
367 * Check that it's a sync instruction, or somewhere
368 * in the twi; isync; nop sequence that inb/inw/inl uses.
369 * As the address is in the exception table
370 * we should be able to read the instr there.
371 * For the debug message, we look at the preceding
372 * load or store.
373 */
374 if (*nip == PPC_INST_NOP)
375 nip -= 2;
376 else if (*nip == PPC_INST_ISYNC)
377 --nip;
378 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
379 unsigned int rb;
380
381 --nip;
382 rb = (*nip >> 11) & 0x1f;
383 printk(KERN_DEBUG "%s bad port %lx at %p\n",
384 (*nip & 0x100)? "OUT to": "IN from",
385 regs->gpr[rb] - _IO_BASE, nip);
386 regs->msr |= MSR_RI;
387 regs->nip = extable_fixup(entry);
388 return 1;
389 }
390 }
391 #endif /* CONFIG_PPC32 */
392 return 0;
393 }
394
395 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
396 /* On 4xx, the reason for the machine check or program exception
397 is in the ESR. */
398 #define get_reason(regs) ((regs)->dsisr)
399 #ifndef CONFIG_FSL_BOOKE
400 #define get_mc_reason(regs) ((regs)->dsisr)
401 #else
402 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
403 #endif
404 #define REASON_FP ESR_FP
405 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
406 #define REASON_PRIVILEGED ESR_PPR
407 #define REASON_TRAP ESR_PTR
408
409 /* single-step stuff */
410 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
411 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
412
413 #else
414 /* On non-4xx, the reason for the machine check or program
415 exception is in the MSR. */
416 #define get_reason(regs) ((regs)->msr)
417 #define get_mc_reason(regs) ((regs)->msr)
418 #define REASON_TM 0x200000
419 #define REASON_FP 0x100000
420 #define REASON_ILLEGAL 0x80000
421 #define REASON_PRIVILEGED 0x40000
422 #define REASON_TRAP 0x20000
423
424 #define single_stepping(regs) ((regs)->msr & MSR_SE)
425 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
426 #endif
427
428 #if defined(CONFIG_4xx)
429 int machine_check_4xx(struct pt_regs *regs)
430 {
431 unsigned long reason = get_mc_reason(regs);
432
433 if (reason & ESR_IMCP) {
434 printk("Instruction");
435 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
436 } else
437 printk("Data");
438 printk(" machine check in kernel mode.\n");
439
440 return 0;
441 }
442
443 int machine_check_440A(struct pt_regs *regs)
444 {
445 unsigned long reason = get_mc_reason(regs);
446
447 printk("Machine check in kernel mode.\n");
448 if (reason & ESR_IMCP){
449 printk("Instruction Synchronous Machine Check exception\n");
450 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
451 }
452 else {
453 u32 mcsr = mfspr(SPRN_MCSR);
454 if (mcsr & MCSR_IB)
455 printk("Instruction Read PLB Error\n");
456 if (mcsr & MCSR_DRB)
457 printk("Data Read PLB Error\n");
458 if (mcsr & MCSR_DWB)
459 printk("Data Write PLB Error\n");
460 if (mcsr & MCSR_TLBP)
461 printk("TLB Parity Error\n");
462 if (mcsr & MCSR_ICP){
463 flush_instruction_cache();
464 printk("I-Cache Parity Error\n");
465 }
466 if (mcsr & MCSR_DCSP)
467 printk("D-Cache Search Parity Error\n");
468 if (mcsr & MCSR_DCFP)
469 printk("D-Cache Flush Parity Error\n");
470 if (mcsr & MCSR_IMPE)
471 printk("Machine Check exception is imprecise\n");
472
473 /* Clear MCSR */
474 mtspr(SPRN_MCSR, mcsr);
475 }
476 return 0;
477 }
478
479 int machine_check_47x(struct pt_regs *regs)
480 {
481 unsigned long reason = get_mc_reason(regs);
482 u32 mcsr;
483
484 printk(KERN_ERR "Machine check in kernel mode.\n");
485 if (reason & ESR_IMCP) {
486 printk(KERN_ERR
487 "Instruction Synchronous Machine Check exception\n");
488 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
489 return 0;
490 }
491 mcsr = mfspr(SPRN_MCSR);
492 if (mcsr & MCSR_IB)
493 printk(KERN_ERR "Instruction Read PLB Error\n");
494 if (mcsr & MCSR_DRB)
495 printk(KERN_ERR "Data Read PLB Error\n");
496 if (mcsr & MCSR_DWB)
497 printk(KERN_ERR "Data Write PLB Error\n");
498 if (mcsr & MCSR_TLBP)
499 printk(KERN_ERR "TLB Parity Error\n");
500 if (mcsr & MCSR_ICP) {
501 flush_instruction_cache();
502 printk(KERN_ERR "I-Cache Parity Error\n");
503 }
504 if (mcsr & MCSR_DCSP)
505 printk(KERN_ERR "D-Cache Search Parity Error\n");
506 if (mcsr & PPC47x_MCSR_GPR)
507 printk(KERN_ERR "GPR Parity Error\n");
508 if (mcsr & PPC47x_MCSR_FPR)
509 printk(KERN_ERR "FPR Parity Error\n");
510 if (mcsr & PPC47x_MCSR_IPR)
511 printk(KERN_ERR "Machine Check exception is imprecise\n");
512
513 /* Clear MCSR */
514 mtspr(SPRN_MCSR, mcsr);
515
516 return 0;
517 }
518 #elif defined(CONFIG_E500)
519 int machine_check_e500mc(struct pt_regs *regs)
520 {
521 unsigned long mcsr = mfspr(SPRN_MCSR);
522 unsigned long reason = mcsr;
523 int recoverable = 1;
524
525 if (reason & MCSR_LD) {
526 recoverable = fsl_rio_mcheck_exception(regs);
527 if (recoverable == 1)
528 goto silent_out;
529 }
530
531 printk("Machine check in kernel mode.\n");
532 printk("Caused by (from MCSR=%lx): ", reason);
533
534 if (reason & MCSR_MCP)
535 printk("Machine Check Signal\n");
536
537 if (reason & MCSR_ICPERR) {
538 printk("Instruction Cache Parity Error\n");
539
540 /*
541 * This is recoverable by invalidating the i-cache.
542 */
543 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
544 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
545 ;
546
547 /*
548 * This will generally be accompanied by an instruction
549 * fetch error report -- only treat MCSR_IF as fatal
550 * if it wasn't due to an L1 parity error.
551 */
552 reason &= ~MCSR_IF;
553 }
554
555 if (reason & MCSR_DCPERR_MC) {
556 printk("Data Cache Parity Error\n");
557
558 /*
559 * In write shadow mode we auto-recover from the error, but it
560 * may still get logged and cause a machine check. We should
561 * only treat the non-write shadow case as non-recoverable.
562 */
563 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
564 recoverable = 0;
565 }
566
567 if (reason & MCSR_L2MMU_MHIT) {
568 printk("Hit on multiple TLB entries\n");
569 recoverable = 0;
570 }
571
572 if (reason & MCSR_NMI)
573 printk("Non-maskable interrupt\n");
574
575 if (reason & MCSR_IF) {
576 printk("Instruction Fetch Error Report\n");
577 recoverable = 0;
578 }
579
580 if (reason & MCSR_LD) {
581 printk("Load Error Report\n");
582 recoverable = 0;
583 }
584
585 if (reason & MCSR_ST) {
586 printk("Store Error Report\n");
587 recoverable = 0;
588 }
589
590 if (reason & MCSR_LDG) {
591 printk("Guarded Load Error Report\n");
592 recoverable = 0;
593 }
594
595 if (reason & MCSR_TLBSYNC)
596 printk("Simultaneous tlbsync operations\n");
597
598 if (reason & MCSR_BSL2_ERR) {
599 printk("Level 2 Cache Error\n");
600 recoverable = 0;
601 }
602
603 if (reason & MCSR_MAV) {
604 u64 addr;
605
606 addr = mfspr(SPRN_MCAR);
607 addr |= (u64)mfspr(SPRN_MCARU) << 32;
608
609 printk("Machine Check %s Address: %#llx\n",
610 reason & MCSR_MEA ? "Effective" : "Physical", addr);
611 }
612
613 silent_out:
614 mtspr(SPRN_MCSR, mcsr);
615 return mfspr(SPRN_MCSR) == 0 && recoverable;
616 }
617
618 int machine_check_e500(struct pt_regs *regs)
619 {
620 unsigned long reason = get_mc_reason(regs);
621
622 if (reason & MCSR_BUS_RBERR) {
623 if (fsl_rio_mcheck_exception(regs))
624 return 1;
625 if (fsl_pci_mcheck_exception(regs))
626 return 1;
627 }
628
629 printk("Machine check in kernel mode.\n");
630 printk("Caused by (from MCSR=%lx): ", reason);
631
632 if (reason & MCSR_MCP)
633 printk("Machine Check Signal\n");
634 if (reason & MCSR_ICPERR)
635 printk("Instruction Cache Parity Error\n");
636 if (reason & MCSR_DCP_PERR)
637 printk("Data Cache Push Parity Error\n");
638 if (reason & MCSR_DCPERR)
639 printk("Data Cache Parity Error\n");
640 if (reason & MCSR_BUS_IAERR)
641 printk("Bus - Instruction Address Error\n");
642 if (reason & MCSR_BUS_RAERR)
643 printk("Bus - Read Address Error\n");
644 if (reason & MCSR_BUS_WAERR)
645 printk("Bus - Write Address Error\n");
646 if (reason & MCSR_BUS_IBERR)
647 printk("Bus - Instruction Data Error\n");
648 if (reason & MCSR_BUS_RBERR)
649 printk("Bus - Read Data Bus Error\n");
650 if (reason & MCSR_BUS_WBERR)
651 printk("Bus - Write Data Bus Error\n");
652 if (reason & MCSR_BUS_IPERR)
653 printk("Bus - Instruction Parity Error\n");
654 if (reason & MCSR_BUS_RPERR)
655 printk("Bus - Read Parity Error\n");
656
657 return 0;
658 }
659
660 int machine_check_generic(struct pt_regs *regs)
661 {
662 return 0;
663 }
664 #elif defined(CONFIG_E200)
665 int machine_check_e200(struct pt_regs *regs)
666 {
667 unsigned long reason = get_mc_reason(regs);
668
669 printk("Machine check in kernel mode.\n");
670 printk("Caused by (from MCSR=%lx): ", reason);
671
672 if (reason & MCSR_MCP)
673 printk("Machine Check Signal\n");
674 if (reason & MCSR_CP_PERR)
675 printk("Cache Push Parity Error\n");
676 if (reason & MCSR_CPERR)
677 printk("Cache Parity Error\n");
678 if (reason & MCSR_EXCP_ERR)
679 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
680 if (reason & MCSR_BUS_IRERR)
681 printk("Bus - Read Bus Error on instruction fetch\n");
682 if (reason & MCSR_BUS_DRERR)
683 printk("Bus - Read Bus Error on data load\n");
684 if (reason & MCSR_BUS_WRERR)
685 printk("Bus - Write Bus Error on buffered store or cache line push\n");
686
687 return 0;
688 }
689 #elif defined(CONFIG_PPC_8xx)
690 int machine_check_8xx(struct pt_regs *regs)
691 {
692 unsigned long reason = get_mc_reason(regs);
693
694 pr_err("Machine check in kernel mode.\n");
695 pr_err("Caused by (from SRR1=%lx): ", reason);
696 if (reason & 0x40000000)
697 pr_err("Fetch error at address %lx\n", regs->nip);
698 else
699 pr_err("Data access error at address %lx\n", regs->dar);
700
701 #ifdef CONFIG_PCI
702 /* the qspan pci read routines can cause machine checks -- Cort
703 *
704 * yuck !!! that totally needs to go away ! There are better ways
705 * to deal with that than having a wart in the mcheck handler.
706 * -- BenH
707 */
708 bad_page_fault(regs, regs->dar, SIGBUS);
709 return 1;
710 #else
711 return 0;
712 #endif
713 }
714 #else
715 int machine_check_generic(struct pt_regs *regs)
716 {
717 unsigned long reason = get_mc_reason(regs);
718
719 printk("Machine check in kernel mode.\n");
720 printk("Caused by (from SRR1=%lx): ", reason);
721 switch (reason & 0x601F0000) {
722 case 0x80000:
723 printk("Machine check signal\n");
724 break;
725 case 0: /* for 601 */
726 case 0x40000:
727 case 0x140000: /* 7450 MSS error and TEA */
728 printk("Transfer error ack signal\n");
729 break;
730 case 0x20000:
731 printk("Data parity error signal\n");
732 break;
733 case 0x10000:
734 printk("Address parity error signal\n");
735 break;
736 case 0x20000000:
737 printk("L1 Data Cache error\n");
738 break;
739 case 0x40000000:
740 printk("L1 Instruction Cache error\n");
741 break;
742 case 0x00100000:
743 printk("L2 data cache parity error\n");
744 break;
745 default:
746 printk("Unknown values in msr\n");
747 }
748 return 0;
749 }
750 #endif /* everything else */
751
752 void machine_check_exception(struct pt_regs *regs)
753 {
754 enum ctx_state prev_state = exception_enter();
755 int recover = 0;
756
757 __this_cpu_inc(irq_stat.mce_exceptions);
758
759 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
760
761 /* See if any machine dependent calls. In theory, we would want
762 * to call the CPU first, and call the ppc_md. one if the CPU
763 * one returns a positive number. However there is existing code
764 * that assumes the board gets a first chance, so let's keep it
765 * that way for now and fix things later. --BenH.
766 */
767 if (ppc_md.machine_check_exception)
768 recover = ppc_md.machine_check_exception(regs);
769 else if (cur_cpu_spec->machine_check)
770 recover = cur_cpu_spec->machine_check(regs);
771
772 if (recover > 0)
773 goto bail;
774
775 if (debugger_fault_handler(regs))
776 goto bail;
777
778 if (check_io_access(regs))
779 goto bail;
780
781 die("Machine check", regs, SIGBUS);
782
783 /* Must die if the interrupt is not recoverable */
784 if (!(regs->msr & MSR_RI))
785 panic("Unrecoverable Machine check");
786
787 bail:
788 exception_exit(prev_state);
789 }
790
791 void SMIException(struct pt_regs *regs)
792 {
793 die("System Management Interrupt", regs, SIGABRT);
794 }
795
796 void handle_hmi_exception(struct pt_regs *regs)
797 {
798 struct pt_regs *old_regs;
799
800 old_regs = set_irq_regs(regs);
801 irq_enter();
802
803 if (ppc_md.handle_hmi_exception)
804 ppc_md.handle_hmi_exception(regs);
805
806 irq_exit();
807 set_irq_regs(old_regs);
808 }
809
810 void unknown_exception(struct pt_regs *regs)
811 {
812 enum ctx_state prev_state = exception_enter();
813
814 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
815 regs->nip, regs->msr, regs->trap);
816
817 _exception(SIGTRAP, regs, 0, 0);
818
819 exception_exit(prev_state);
820 }
821
822 void instruction_breakpoint_exception(struct pt_regs *regs)
823 {
824 enum ctx_state prev_state = exception_enter();
825
826 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
827 5, SIGTRAP) == NOTIFY_STOP)
828 goto bail;
829 if (debugger_iabr_match(regs))
830 goto bail;
831 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
832
833 bail:
834 exception_exit(prev_state);
835 }
836
837 void RunModeException(struct pt_regs *regs)
838 {
839 _exception(SIGTRAP, regs, 0, 0);
840 }
841
842 void single_step_exception(struct pt_regs *regs)
843 {
844 enum ctx_state prev_state = exception_enter();
845
846 clear_single_step(regs);
847
848 if (kprobe_post_handler(regs))
849 return;
850
851 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
852 5, SIGTRAP) == NOTIFY_STOP)
853 goto bail;
854 if (debugger_sstep(regs))
855 goto bail;
856
857 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
858
859 bail:
860 exception_exit(prev_state);
861 }
862 NOKPROBE_SYMBOL(single_step_exception);
863
864 /*
865 * After we have successfully emulated an instruction, we have to
866 * check if the instruction was being single-stepped, and if so,
867 * pretend we got a single-step exception. This was pointed out
868 * by Kumar Gala. -- paulus
869 */
870 static void emulate_single_step(struct pt_regs *regs)
871 {
872 if (single_stepping(regs))
873 single_step_exception(regs);
874 }
875
876 static inline int __parse_fpscr(unsigned long fpscr)
877 {
878 int ret = 0;
879
880 /* Invalid operation */
881 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
882 ret = FPE_FLTINV;
883
884 /* Overflow */
885 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
886 ret = FPE_FLTOVF;
887
888 /* Underflow */
889 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
890 ret = FPE_FLTUND;
891
892 /* Divide by zero */
893 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
894 ret = FPE_FLTDIV;
895
896 /* Inexact result */
897 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
898 ret = FPE_FLTRES;
899
900 return ret;
901 }
902
903 static void parse_fpe(struct pt_regs *regs)
904 {
905 int code = 0;
906
907 flush_fp_to_thread(current);
908
909 code = __parse_fpscr(current->thread.fp_state.fpscr);
910
911 _exception(SIGFPE, regs, code, regs->nip);
912 }
913
914 /*
915 * Illegal instruction emulation support. Originally written to
916 * provide the PVR to user applications using the mfspr rd, PVR.
917 * Return non-zero if we can't emulate, or -EFAULT if the associated
918 * memory access caused an access fault. Return zero on success.
919 *
920 * There are a couple of ways to do this, either "decode" the instruction
921 * or directly match lots of bits. In this case, matching lots of
922 * bits is faster and easier.
923 *
924 */
925 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
926 {
927 u8 rT = (instword >> 21) & 0x1f;
928 u8 rA = (instword >> 16) & 0x1f;
929 u8 NB_RB = (instword >> 11) & 0x1f;
930 u32 num_bytes;
931 unsigned long EA;
932 int pos = 0;
933
934 /* Early out if we are an invalid form of lswx */
935 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
936 if ((rT == rA) || (rT == NB_RB))
937 return -EINVAL;
938
939 EA = (rA == 0) ? 0 : regs->gpr[rA];
940
941 switch (instword & PPC_INST_STRING_MASK) {
942 case PPC_INST_LSWX:
943 case PPC_INST_STSWX:
944 EA += NB_RB;
945 num_bytes = regs->xer & 0x7f;
946 break;
947 case PPC_INST_LSWI:
948 case PPC_INST_STSWI:
949 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
950 break;
951 default:
952 return -EINVAL;
953 }
954
955 while (num_bytes != 0)
956 {
957 u8 val;
958 u32 shift = 8 * (3 - (pos & 0x3));
959
960 /* if process is 32-bit, clear upper 32 bits of EA */
961 if ((regs->msr & MSR_64BIT) == 0)
962 EA &= 0xFFFFFFFF;
963
964 switch ((instword & PPC_INST_STRING_MASK)) {
965 case PPC_INST_LSWX:
966 case PPC_INST_LSWI:
967 if (get_user(val, (u8 __user *)EA))
968 return -EFAULT;
969 /* first time updating this reg,
970 * zero it out */
971 if (pos == 0)
972 regs->gpr[rT] = 0;
973 regs->gpr[rT] |= val << shift;
974 break;
975 case PPC_INST_STSWI:
976 case PPC_INST_STSWX:
977 val = regs->gpr[rT] >> shift;
978 if (put_user(val, (u8 __user *)EA))
979 return -EFAULT;
980 break;
981 }
982 /* move EA to next address */
983 EA += 1;
984 num_bytes--;
985
986 /* manage our position within the register */
987 if (++pos == 4) {
988 pos = 0;
989 if (++rT == 32)
990 rT = 0;
991 }
992 }
993
994 return 0;
995 }
996
997 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
998 {
999 u32 ra,rs;
1000 unsigned long tmp;
1001
1002 ra = (instword >> 16) & 0x1f;
1003 rs = (instword >> 21) & 0x1f;
1004
1005 tmp = regs->gpr[rs];
1006 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1007 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1008 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1009 regs->gpr[ra] = tmp;
1010
1011 return 0;
1012 }
1013
1014 static int emulate_isel(struct pt_regs *regs, u32 instword)
1015 {
1016 u8 rT = (instword >> 21) & 0x1f;
1017 u8 rA = (instword >> 16) & 0x1f;
1018 u8 rB = (instword >> 11) & 0x1f;
1019 u8 BC = (instword >> 6) & 0x1f;
1020 u8 bit;
1021 unsigned long tmp;
1022
1023 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1024 bit = (regs->ccr >> (31 - BC)) & 0x1;
1025
1026 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1027
1028 return 0;
1029 }
1030
1031 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1032 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1033 {
1034 /* If we're emulating a load/store in an active transaction, we cannot
1035 * emulate it as the kernel operates in transaction suspended context.
1036 * We need to abort the transaction. This creates a persistent TM
1037 * abort so tell the user what caused it with a new code.
1038 */
1039 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1040 tm_enable();
1041 tm_abort(cause);
1042 return true;
1043 }
1044 return false;
1045 }
1046 #else
1047 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1048 {
1049 return false;
1050 }
1051 #endif
1052
1053 static int emulate_instruction(struct pt_regs *regs)
1054 {
1055 u32 instword;
1056 u32 rd;
1057
1058 if (!user_mode(regs))
1059 return -EINVAL;
1060 CHECK_FULL_REGS(regs);
1061
1062 if (get_user(instword, (u32 __user *)(regs->nip)))
1063 return -EFAULT;
1064
1065 /* Emulate the mfspr rD, PVR. */
1066 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1067 PPC_WARN_EMULATED(mfpvr, regs);
1068 rd = (instword >> 21) & 0x1f;
1069 regs->gpr[rd] = mfspr(SPRN_PVR);
1070 return 0;
1071 }
1072
1073 /* Emulating the dcba insn is just a no-op. */
1074 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1075 PPC_WARN_EMULATED(dcba, regs);
1076 return 0;
1077 }
1078
1079 /* Emulate the mcrxr insn. */
1080 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1081 int shift = (instword >> 21) & 0x1c;
1082 unsigned long msk = 0xf0000000UL >> shift;
1083
1084 PPC_WARN_EMULATED(mcrxr, regs);
1085 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1086 regs->xer &= ~0xf0000000UL;
1087 return 0;
1088 }
1089
1090 /* Emulate load/store string insn. */
1091 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1092 if (tm_abort_check(regs,
1093 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1094 return -EINVAL;
1095 PPC_WARN_EMULATED(string, regs);
1096 return emulate_string_inst(regs, instword);
1097 }
1098
1099 /* Emulate the popcntb (Population Count Bytes) instruction. */
1100 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1101 PPC_WARN_EMULATED(popcntb, regs);
1102 return emulate_popcntb_inst(regs, instword);
1103 }
1104
1105 /* Emulate isel (Integer Select) instruction */
1106 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1107 PPC_WARN_EMULATED(isel, regs);
1108 return emulate_isel(regs, instword);
1109 }
1110
1111 /* Emulate sync instruction variants */
1112 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1113 PPC_WARN_EMULATED(sync, regs);
1114 asm volatile("sync");
1115 return 0;
1116 }
1117
1118 #ifdef CONFIG_PPC64
1119 /* Emulate the mfspr rD, DSCR. */
1120 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1121 PPC_INST_MFSPR_DSCR_USER) ||
1122 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1123 PPC_INST_MFSPR_DSCR)) &&
1124 cpu_has_feature(CPU_FTR_DSCR)) {
1125 PPC_WARN_EMULATED(mfdscr, regs);
1126 rd = (instword >> 21) & 0x1f;
1127 regs->gpr[rd] = mfspr(SPRN_DSCR);
1128 return 0;
1129 }
1130 /* Emulate the mtspr DSCR, rD. */
1131 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1132 PPC_INST_MTSPR_DSCR_USER) ||
1133 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1134 PPC_INST_MTSPR_DSCR)) &&
1135 cpu_has_feature(CPU_FTR_DSCR)) {
1136 PPC_WARN_EMULATED(mtdscr, regs);
1137 rd = (instword >> 21) & 0x1f;
1138 current->thread.dscr = regs->gpr[rd];
1139 current->thread.dscr_inherit = 1;
1140 mtspr(SPRN_DSCR, current->thread.dscr);
1141 return 0;
1142 }
1143 #endif
1144
1145 return -EINVAL;
1146 }
1147
1148 int is_valid_bugaddr(unsigned long addr)
1149 {
1150 return is_kernel_addr(addr);
1151 }
1152
1153 #ifdef CONFIG_MATH_EMULATION
1154 static int emulate_math(struct pt_regs *regs)
1155 {
1156 int ret;
1157 extern int do_mathemu(struct pt_regs *regs);
1158
1159 ret = do_mathemu(regs);
1160 if (ret >= 0)
1161 PPC_WARN_EMULATED(math, regs);
1162
1163 switch (ret) {
1164 case 0:
1165 emulate_single_step(regs);
1166 return 0;
1167 case 1: {
1168 int code = 0;
1169 code = __parse_fpscr(current->thread.fp_state.fpscr);
1170 _exception(SIGFPE, regs, code, regs->nip);
1171 return 0;
1172 }
1173 case -EFAULT:
1174 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1175 return 0;
1176 }
1177
1178 return -1;
1179 }
1180 #else
1181 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1182 #endif
1183
1184 void program_check_exception(struct pt_regs *regs)
1185 {
1186 enum ctx_state prev_state = exception_enter();
1187 unsigned int reason = get_reason(regs);
1188
1189 /* We can now get here via a FP Unavailable exception if the core
1190 * has no FPU, in that case the reason flags will be 0 */
1191
1192 if (reason & REASON_FP) {
1193 /* IEEE FP exception */
1194 parse_fpe(regs);
1195 goto bail;
1196 }
1197 if (reason & REASON_TRAP) {
1198 unsigned long bugaddr;
1199 /* Debugger is first in line to stop recursive faults in
1200 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1201 if (debugger_bpt(regs))
1202 goto bail;
1203
1204 if (kprobe_handler(regs))
1205 goto bail;
1206
1207 /* trap exception */
1208 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1209 == NOTIFY_STOP)
1210 goto bail;
1211
1212 bugaddr = regs->nip;
1213 /*
1214 * Fixup bugaddr for BUG_ON() in real mode
1215 */
1216 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1217 bugaddr += PAGE_OFFSET;
1218
1219 if (!(regs->msr & MSR_PR) && /* not user-mode */
1220 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1221 regs->nip += 4;
1222 goto bail;
1223 }
1224 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1225 goto bail;
1226 }
1227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1228 if (reason & REASON_TM) {
1229 /* This is a TM "Bad Thing Exception" program check.
1230 * This occurs when:
1231 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1232 * transition in TM states.
1233 * - A trechkpt is attempted when transactional.
1234 * - A treclaim is attempted when non transactional.
1235 * - A tend is illegally attempted.
1236 * - writing a TM SPR when transactional.
1237 */
1238 if (!user_mode(regs) &&
1239 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1240 regs->nip += 4;
1241 goto bail;
1242 }
1243 /* If usermode caused this, it's done something illegal and
1244 * gets a SIGILL slap on the wrist. We call it an illegal
1245 * operand to distinguish from the instruction just being bad
1246 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1247 * illegal /placement/ of a valid instruction.
1248 */
1249 if (user_mode(regs)) {
1250 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1251 goto bail;
1252 } else {
1253 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1254 "at %lx (msr 0x%x)\n", regs->nip, reason);
1255 die("Unrecoverable exception", regs, SIGABRT);
1256 }
1257 }
1258 #endif
1259
1260 /*
1261 * If we took the program check in the kernel skip down to sending a
1262 * SIGILL. The subsequent cases all relate to emulating instructions
1263 * which we should only do for userspace. We also do not want to enable
1264 * interrupts for kernel faults because that might lead to further
1265 * faults, and loose the context of the original exception.
1266 */
1267 if (!user_mode(regs))
1268 goto sigill;
1269
1270 /* We restore the interrupt state now */
1271 if (!arch_irq_disabled_regs(regs))
1272 local_irq_enable();
1273
1274 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1275 * but there seems to be a hardware bug on the 405GP (RevD)
1276 * that means ESR is sometimes set incorrectly - either to
1277 * ESR_DST (!?) or 0. In the process of chasing this with the
1278 * hardware people - not sure if it can happen on any illegal
1279 * instruction or only on FP instructions, whether there is a
1280 * pattern to occurrences etc. -dgibson 31/Mar/2003
1281 */
1282 if (!emulate_math(regs))
1283 goto bail;
1284
1285 /* Try to emulate it if we should. */
1286 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1287 switch (emulate_instruction(regs)) {
1288 case 0:
1289 regs->nip += 4;
1290 emulate_single_step(regs);
1291 goto bail;
1292 case -EFAULT:
1293 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1294 goto bail;
1295 }
1296 }
1297
1298 sigill:
1299 if (reason & REASON_PRIVILEGED)
1300 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1301 else
1302 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1303
1304 bail:
1305 exception_exit(prev_state);
1306 }
1307 NOKPROBE_SYMBOL(program_check_exception);
1308
1309 /*
1310 * This occurs when running in hypervisor mode on POWER6 or later
1311 * and an illegal instruction is encountered.
1312 */
1313 void emulation_assist_interrupt(struct pt_regs *regs)
1314 {
1315 regs->msr |= REASON_ILLEGAL;
1316 program_check_exception(regs);
1317 }
1318 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1319
1320 void alignment_exception(struct pt_regs *regs)
1321 {
1322 enum ctx_state prev_state = exception_enter();
1323 int sig, code, fixed = 0;
1324
1325 /* We restore the interrupt state now */
1326 if (!arch_irq_disabled_regs(regs))
1327 local_irq_enable();
1328
1329 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1330 goto bail;
1331
1332 /* we don't implement logging of alignment exceptions */
1333 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1334 fixed = fix_alignment(regs);
1335
1336 if (fixed == 1) {
1337 regs->nip += 4; /* skip over emulated instruction */
1338 emulate_single_step(regs);
1339 goto bail;
1340 }
1341
1342 /* Operand address was bad */
1343 if (fixed == -EFAULT) {
1344 sig = SIGSEGV;
1345 code = SEGV_ACCERR;
1346 } else {
1347 sig = SIGBUS;
1348 code = BUS_ADRALN;
1349 }
1350 if (user_mode(regs))
1351 _exception(sig, regs, code, regs->dar);
1352 else
1353 bad_page_fault(regs, regs->dar, sig);
1354
1355 bail:
1356 exception_exit(prev_state);
1357 }
1358
1359 void slb_miss_bad_addr(struct pt_regs *regs)
1360 {
1361 enum ctx_state prev_state = exception_enter();
1362
1363 if (user_mode(regs))
1364 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1365 else
1366 bad_page_fault(regs, regs->dar, SIGSEGV);
1367
1368 exception_exit(prev_state);
1369 }
1370
1371 void StackOverflow(struct pt_regs *regs)
1372 {
1373 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1374 current, regs->gpr[1]);
1375 debugger(regs);
1376 show_regs(regs);
1377 panic("kernel stack overflow");
1378 }
1379
1380 void nonrecoverable_exception(struct pt_regs *regs)
1381 {
1382 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1383 regs->nip, regs->msr);
1384 debugger(regs);
1385 die("nonrecoverable exception", regs, SIGKILL);
1386 }
1387
1388 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1389 {
1390 enum ctx_state prev_state = exception_enter();
1391
1392 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1393 "%lx at %lx\n", regs->trap, regs->nip);
1394 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1395
1396 exception_exit(prev_state);
1397 }
1398
1399 void altivec_unavailable_exception(struct pt_regs *regs)
1400 {
1401 enum ctx_state prev_state = exception_enter();
1402
1403 if (user_mode(regs)) {
1404 /* A user program has executed an altivec instruction,
1405 but this kernel doesn't support altivec. */
1406 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1407 goto bail;
1408 }
1409
1410 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1411 "%lx at %lx\n", regs->trap, regs->nip);
1412 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1413
1414 bail:
1415 exception_exit(prev_state);
1416 }
1417
1418 void vsx_unavailable_exception(struct pt_regs *regs)
1419 {
1420 if (user_mode(regs)) {
1421 /* A user program has executed an vsx instruction,
1422 but this kernel doesn't support vsx. */
1423 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1424 return;
1425 }
1426
1427 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1428 "%lx at %lx\n", regs->trap, regs->nip);
1429 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1430 }
1431
1432 #ifdef CONFIG_PPC64
1433 static void tm_unavailable(struct pt_regs *regs)
1434 {
1435 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1436 if (user_mode(regs)) {
1437 current->thread.load_tm++;
1438 regs->msr |= MSR_TM;
1439 tm_enable();
1440 tm_restore_sprs(&current->thread);
1441 return;
1442 }
1443 #endif
1444 pr_emerg("Unrecoverable TM Unavailable Exception "
1445 "%lx at %lx\n", regs->trap, regs->nip);
1446 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1447 }
1448
1449 void facility_unavailable_exception(struct pt_regs *regs)
1450 {
1451 static char *facility_strings[] = {
1452 [FSCR_FP_LG] = "FPU",
1453 [FSCR_VECVSX_LG] = "VMX/VSX",
1454 [FSCR_DSCR_LG] = "DSCR",
1455 [FSCR_PM_LG] = "PMU SPRs",
1456 [FSCR_BHRB_LG] = "BHRB",
1457 [FSCR_TM_LG] = "TM",
1458 [FSCR_EBB_LG] = "EBB",
1459 [FSCR_TAR_LG] = "TAR",
1460 [FSCR_MSGP_LG] = "MSGP",
1461 [FSCR_SCV_LG] = "SCV",
1462 };
1463 char *facility = "unknown";
1464 u64 value;
1465 u32 instword, rd;
1466 u8 status;
1467 bool hv;
1468
1469 hv = (regs->trap == 0xf80);
1470 if (hv)
1471 value = mfspr(SPRN_HFSCR);
1472 else
1473 value = mfspr(SPRN_FSCR);
1474
1475 status = value >> 56;
1476 if (status == FSCR_DSCR_LG) {
1477 /*
1478 * User is accessing the DSCR register using the problem
1479 * state only SPR number (0x03) either through a mfspr or
1480 * a mtspr instruction. If it is a write attempt through
1481 * a mtspr, then we set the inherit bit. This also allows
1482 * the user to write or read the register directly in the
1483 * future by setting via the FSCR DSCR bit. But in case it
1484 * is a read DSCR attempt through a mfspr instruction, we
1485 * just emulate the instruction instead. This code path will
1486 * always emulate all the mfspr instructions till the user
1487 * has attempted at least one mtspr instruction. This way it
1488 * preserves the same behaviour when the user is accessing
1489 * the DSCR through privilege level only SPR number (0x11)
1490 * which is emulated through illegal instruction exception.
1491 * We always leave HFSCR DSCR set.
1492 */
1493 if (get_user(instword, (u32 __user *)(regs->nip))) {
1494 pr_err("Failed to fetch the user instruction\n");
1495 return;
1496 }
1497
1498 /* Write into DSCR (mtspr 0x03, RS) */
1499 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1500 == PPC_INST_MTSPR_DSCR_USER) {
1501 rd = (instword >> 21) & 0x1f;
1502 current->thread.dscr = regs->gpr[rd];
1503 current->thread.dscr_inherit = 1;
1504 current->thread.fscr |= FSCR_DSCR;
1505 mtspr(SPRN_FSCR, current->thread.fscr);
1506 }
1507
1508 /* Read from DSCR (mfspr RT, 0x03) */
1509 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1510 == PPC_INST_MFSPR_DSCR_USER) {
1511 if (emulate_instruction(regs)) {
1512 pr_err("DSCR based mfspr emulation failed\n");
1513 return;
1514 }
1515 regs->nip += 4;
1516 emulate_single_step(regs);
1517 }
1518 return;
1519 }
1520
1521 if (status == FSCR_TM_LG) {
1522 /*
1523 * If we're here then the hardware is TM aware because it
1524 * generated an exception with FSRM_TM set.
1525 *
1526 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1527 * told us not to do TM, or the kernel is not built with TM
1528 * support.
1529 *
1530 * If both of those things are true, then userspace can spam the
1531 * console by triggering the printk() below just by continually
1532 * doing tbegin (or any TM instruction). So in that case just
1533 * send the process a SIGILL immediately.
1534 */
1535 if (!cpu_has_feature(CPU_FTR_TM))
1536 goto out;
1537
1538 tm_unavailable(regs);
1539 return;
1540 }
1541
1542 if ((hv || status >= 2) &&
1543 (status < ARRAY_SIZE(facility_strings)) &&
1544 facility_strings[status])
1545 facility = facility_strings[status];
1546
1547 /* We restore the interrupt state now */
1548 if (!arch_irq_disabled_regs(regs))
1549 local_irq_enable();
1550
1551 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1552 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1553
1554 out:
1555 if (user_mode(regs)) {
1556 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1557 return;
1558 }
1559
1560 die("Unexpected facility unavailable exception", regs, SIGABRT);
1561 }
1562 #endif
1563
1564 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1565
1566 void fp_unavailable_tm(struct pt_regs *regs)
1567 {
1568 /* Note: This does not handle any kind of FP laziness. */
1569
1570 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1571 regs->nip, regs->msr);
1572
1573 /* We can only have got here if the task started using FP after
1574 * beginning the transaction. So, the transactional regs are just a
1575 * copy of the checkpointed ones. But, we still need to recheckpoint
1576 * as we're enabling FP for the process; it will return, abort the
1577 * transaction, and probably retry but now with FP enabled. So the
1578 * checkpointed FP registers need to be loaded.
1579 */
1580 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1581 /* Reclaim didn't save out any FPRs to transact_fprs. */
1582
1583 /* Enable FP for the task: */
1584 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1585
1586 /* This loads and recheckpoints the FP registers from
1587 * thread.fpr[]. They will remain in registers after the
1588 * checkpoint so we don't need to reload them after.
1589 * If VMX is in use, the VRs now hold checkpointed values,
1590 * so we don't want to load the VRs from the thread_struct.
1591 */
1592 tm_recheckpoint(&current->thread, MSR_FP);
1593
1594 /* If VMX is in use, get the transactional values back */
1595 if (regs->msr & MSR_VEC) {
1596 msr_check_and_set(MSR_VEC);
1597 load_vr_state(&current->thread.vr_state);
1598 /* At this point all the VSX state is loaded, so enable it */
1599 regs->msr |= MSR_VSX;
1600 }
1601 }
1602
1603 void altivec_unavailable_tm(struct pt_regs *regs)
1604 {
1605 /* See the comments in fp_unavailable_tm(). This function operates
1606 * the same way.
1607 */
1608
1609 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1610 "MSR=%lx\n",
1611 regs->nip, regs->msr);
1612 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1613 regs->msr |= MSR_VEC;
1614 tm_recheckpoint(&current->thread, MSR_VEC);
1615 current->thread.used_vr = 1;
1616
1617 if (regs->msr & MSR_FP) {
1618 msr_check_and_set(MSR_FP);
1619 load_fp_state(&current->thread.fp_state);
1620 regs->msr |= MSR_VSX;
1621 }
1622 }
1623
1624 void vsx_unavailable_tm(struct pt_regs *regs)
1625 {
1626 unsigned long orig_msr = regs->msr;
1627
1628 /* See the comments in fp_unavailable_tm(). This works similarly,
1629 * though we're loading both FP and VEC registers in here.
1630 *
1631 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1632 * regs. Either way, set MSR_VSX.
1633 */
1634
1635 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1636 "MSR=%lx\n",
1637 regs->nip, regs->msr);
1638
1639 current->thread.used_vsr = 1;
1640
1641 /* If FP and VMX are already loaded, we have all the state we need */
1642 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1643 regs->msr |= MSR_VSX;
1644 return;
1645 }
1646
1647 /* This reclaims FP and/or VR regs if they're already enabled */
1648 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1649
1650 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1651 MSR_VSX;
1652
1653 /* This loads & recheckpoints FP and VRs; but we have
1654 * to be sure not to overwrite previously-valid state.
1655 */
1656 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1657
1658 msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1659
1660 if (orig_msr & MSR_FP)
1661 load_fp_state(&current->thread.fp_state);
1662 if (orig_msr & MSR_VEC)
1663 load_vr_state(&current->thread.vr_state);
1664 }
1665 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1666
1667 void performance_monitor_exception(struct pt_regs *regs)
1668 {
1669 __this_cpu_inc(irq_stat.pmu_irqs);
1670
1671 perf_irq(regs);
1672 }
1673
1674 #ifdef CONFIG_8xx
1675 void SoftwareEmulation(struct pt_regs *regs)
1676 {
1677 CHECK_FULL_REGS(regs);
1678
1679 if (!user_mode(regs)) {
1680 debugger(regs);
1681 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1682 regs, SIGFPE);
1683 }
1684
1685 if (!emulate_math(regs))
1686 return;
1687
1688 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1689 }
1690 #endif /* CONFIG_8xx */
1691
1692 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1693 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1694 {
1695 int changed = 0;
1696 /*
1697 * Determine the cause of the debug event, clear the
1698 * event flags and send a trap to the handler. Torez
1699 */
1700 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1701 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1702 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1703 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1704 #endif
1705 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1706 5);
1707 changed |= 0x01;
1708 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1709 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1710 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1711 6);
1712 changed |= 0x01;
1713 } else if (debug_status & DBSR_IAC1) {
1714 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1715 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1716 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1717 1);
1718 changed |= 0x01;
1719 } else if (debug_status & DBSR_IAC2) {
1720 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1721 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1722 2);
1723 changed |= 0x01;
1724 } else if (debug_status & DBSR_IAC3) {
1725 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1726 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1727 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1728 3);
1729 changed |= 0x01;
1730 } else if (debug_status & DBSR_IAC4) {
1731 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1732 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1733 4);
1734 changed |= 0x01;
1735 }
1736 /*
1737 * At the point this routine was called, the MSR(DE) was turned off.
1738 * Check all other debug flags and see if that bit needs to be turned
1739 * back on or not.
1740 */
1741 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1742 current->thread.debug.dbcr1))
1743 regs->msr |= MSR_DE;
1744 else
1745 /* Make sure the IDM flag is off */
1746 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1747
1748 if (changed & 0x01)
1749 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1750 }
1751
1752 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1753 {
1754 current->thread.debug.dbsr = debug_status;
1755
1756 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1757 * on server, it stops on the target of the branch. In order to simulate
1758 * the server behaviour, we thus restart right away with a single step
1759 * instead of stopping here when hitting a BT
1760 */
1761 if (debug_status & DBSR_BT) {
1762 regs->msr &= ~MSR_DE;
1763
1764 /* Disable BT */
1765 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1766 /* Clear the BT event */
1767 mtspr(SPRN_DBSR, DBSR_BT);
1768
1769 /* Do the single step trick only when coming from userspace */
1770 if (user_mode(regs)) {
1771 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1772 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1773 regs->msr |= MSR_DE;
1774 return;
1775 }
1776
1777 if (kprobe_post_handler(regs))
1778 return;
1779
1780 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1781 5, SIGTRAP) == NOTIFY_STOP) {
1782 return;
1783 }
1784 if (debugger_sstep(regs))
1785 return;
1786 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1787 regs->msr &= ~MSR_DE;
1788
1789 /* Disable instruction completion */
1790 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1791 /* Clear the instruction completion event */
1792 mtspr(SPRN_DBSR, DBSR_IC);
1793
1794 if (kprobe_post_handler(regs))
1795 return;
1796
1797 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1798 5, SIGTRAP) == NOTIFY_STOP) {
1799 return;
1800 }
1801
1802 if (debugger_sstep(regs))
1803 return;
1804
1805 if (user_mode(regs)) {
1806 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1807 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1808 current->thread.debug.dbcr1))
1809 regs->msr |= MSR_DE;
1810 else
1811 /* Make sure the IDM bit is off */
1812 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1813 }
1814
1815 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1816 } else
1817 handle_debug(regs, debug_status);
1818 }
1819 NOKPROBE_SYMBOL(DebugException);
1820 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1821
1822 #if !defined(CONFIG_TAU_INT)
1823 void TAUException(struct pt_regs *regs)
1824 {
1825 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1826 regs->nip, regs->msr, regs->trap, print_tainted());
1827 }
1828 #endif /* CONFIG_INT_TAU */
1829
1830 #ifdef CONFIG_ALTIVEC
1831 void altivec_assist_exception(struct pt_regs *regs)
1832 {
1833 int err;
1834
1835 if (!user_mode(regs)) {
1836 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1837 " at %lx\n", regs->nip);
1838 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1839 }
1840
1841 flush_altivec_to_thread(current);
1842
1843 PPC_WARN_EMULATED(altivec, regs);
1844 err = emulate_altivec(regs);
1845 if (err == 0) {
1846 regs->nip += 4; /* skip emulated instruction */
1847 emulate_single_step(regs);
1848 return;
1849 }
1850
1851 if (err == -EFAULT) {
1852 /* got an error reading the instruction */
1853 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1854 } else {
1855 /* didn't recognize the instruction */
1856 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1857 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1858 "in %s at %lx\n", current->comm, regs->nip);
1859 current->thread.vr_state.vscr.u[3] |= 0x10000;
1860 }
1861 }
1862 #endif /* CONFIG_ALTIVEC */
1863
1864 #ifdef CONFIG_FSL_BOOKE
1865 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1866 unsigned long error_code)
1867 {
1868 /* We treat cache locking instructions from the user
1869 * as priv ops, in the future we could try to do
1870 * something smarter
1871 */
1872 if (error_code & (ESR_DLK|ESR_ILK))
1873 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1874 return;
1875 }
1876 #endif /* CONFIG_FSL_BOOKE */
1877
1878 #ifdef CONFIG_SPE
1879 void SPEFloatingPointException(struct pt_regs *regs)
1880 {
1881 extern int do_spe_mathemu(struct pt_regs *regs);
1882 unsigned long spefscr;
1883 int fpexc_mode;
1884 int code = 0;
1885 int err;
1886
1887 flush_spe_to_thread(current);
1888
1889 spefscr = current->thread.spefscr;
1890 fpexc_mode = current->thread.fpexc_mode;
1891
1892 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1893 code = FPE_FLTOVF;
1894 }
1895 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1896 code = FPE_FLTUND;
1897 }
1898 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1899 code = FPE_FLTDIV;
1900 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1901 code = FPE_FLTINV;
1902 }
1903 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1904 code = FPE_FLTRES;
1905
1906 err = do_spe_mathemu(regs);
1907 if (err == 0) {
1908 regs->nip += 4; /* skip emulated instruction */
1909 emulate_single_step(regs);
1910 return;
1911 }
1912
1913 if (err == -EFAULT) {
1914 /* got an error reading the instruction */
1915 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1916 } else if (err == -EINVAL) {
1917 /* didn't recognize the instruction */
1918 printk(KERN_ERR "unrecognized spe instruction "
1919 "in %s at %lx\n", current->comm, regs->nip);
1920 } else {
1921 _exception(SIGFPE, regs, code, regs->nip);
1922 }
1923
1924 return;
1925 }
1926
1927 void SPEFloatingPointRoundException(struct pt_regs *regs)
1928 {
1929 extern int speround_handler(struct pt_regs *regs);
1930 int err;
1931
1932 preempt_disable();
1933 if (regs->msr & MSR_SPE)
1934 giveup_spe(current);
1935 preempt_enable();
1936
1937 regs->nip -= 4;
1938 err = speround_handler(regs);
1939 if (err == 0) {
1940 regs->nip += 4; /* skip emulated instruction */
1941 emulate_single_step(regs);
1942 return;
1943 }
1944
1945 if (err == -EFAULT) {
1946 /* got an error reading the instruction */
1947 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1948 } else if (err == -EINVAL) {
1949 /* didn't recognize the instruction */
1950 printk(KERN_ERR "unrecognized spe instruction "
1951 "in %s at %lx\n", current->comm, regs->nip);
1952 } else {
1953 _exception(SIGFPE, regs, 0, regs->nip);
1954 return;
1955 }
1956 }
1957 #endif
1958
1959 /*
1960 * We enter here if we get an unrecoverable exception, that is, one
1961 * that happened at a point where the RI (recoverable interrupt) bit
1962 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1963 * we therefore lost state by taking this exception.
1964 */
1965 void unrecoverable_exception(struct pt_regs *regs)
1966 {
1967 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1968 regs->trap, regs->nip);
1969 die("Unrecoverable exception", regs, SIGABRT);
1970 }
1971
1972 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1973 /*
1974 * Default handler for a Watchdog exception,
1975 * spins until a reboot occurs
1976 */
1977 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1978 {
1979 /* Generic WatchdogHandler, implement your own */
1980 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1981 return;
1982 }
1983
1984 void WatchdogException(struct pt_regs *regs)
1985 {
1986 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1987 WatchdogHandler(regs);
1988 }
1989 #endif
1990
1991 /*
1992 * We enter here if we discover during exception entry that we are
1993 * running in supervisor mode with a userspace value in the stack pointer.
1994 */
1995 void kernel_bad_stack(struct pt_regs *regs)
1996 {
1997 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1998 regs->gpr[1], regs->nip);
1999 die("Bad kernel stack pointer", regs, SIGABRT);
2000 }
2001
2002 void __init trap_init(void)
2003 {
2004 }
2005
2006
2007 #ifdef CONFIG_PPC_EMULATED_STATS
2008
2009 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2010
2011 struct ppc_emulated ppc_emulated = {
2012 #ifdef CONFIG_ALTIVEC
2013 WARN_EMULATED_SETUP(altivec),
2014 #endif
2015 WARN_EMULATED_SETUP(dcba),
2016 WARN_EMULATED_SETUP(dcbz),
2017 WARN_EMULATED_SETUP(fp_pair),
2018 WARN_EMULATED_SETUP(isel),
2019 WARN_EMULATED_SETUP(mcrxr),
2020 WARN_EMULATED_SETUP(mfpvr),
2021 WARN_EMULATED_SETUP(multiple),
2022 WARN_EMULATED_SETUP(popcntb),
2023 WARN_EMULATED_SETUP(spe),
2024 WARN_EMULATED_SETUP(string),
2025 WARN_EMULATED_SETUP(sync),
2026 WARN_EMULATED_SETUP(unaligned),
2027 #ifdef CONFIG_MATH_EMULATION
2028 WARN_EMULATED_SETUP(math),
2029 #endif
2030 #ifdef CONFIG_VSX
2031 WARN_EMULATED_SETUP(vsx),
2032 #endif
2033 #ifdef CONFIG_PPC64
2034 WARN_EMULATED_SETUP(mfdscr),
2035 WARN_EMULATED_SETUP(mtdscr),
2036 WARN_EMULATED_SETUP(lq_stq),
2037 #endif
2038 };
2039
2040 u32 ppc_warn_emulated;
2041
2042 void ppc_warn_emulated_print(const char *type)
2043 {
2044 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2045 type);
2046 }
2047
2048 static int __init ppc_warn_emulated_init(void)
2049 {
2050 struct dentry *dir, *d;
2051 unsigned int i;
2052 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2053
2054 if (!powerpc_debugfs_root)
2055 return -ENODEV;
2056
2057 dir = debugfs_create_dir("emulated_instructions",
2058 powerpc_debugfs_root);
2059 if (!dir)
2060 return -ENOMEM;
2061
2062 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2063 &ppc_warn_emulated);
2064 if (!d)
2065 goto fail;
2066
2067 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2068 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2069 (u32 *)&entries[i].val.counter);
2070 if (!d)
2071 goto fail;
2072 }
2073
2074 return 0;
2075
2076 fail:
2077 debugfs_remove_recursive(dir);
2078 return -ENOMEM;
2079 }
2080
2081 device_initcall(ppc_warn_emulated_init);
2082
2083 #endif /* CONFIG_PPC_EMULATED_STATS */