]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/traps.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/pkeys.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/extable.h>
31 #include <linux/module.h> /* print_modules */
32 #include <linux/prctl.h>
33 #include <linux/delay.h>
34 #include <linux/kprobes.h>
35 #include <linux/kexec.h>
36 #include <linux/backlight.h>
37 #include <linux/bug.h>
38 #include <linux/kdebug.h>
39 #include <linux/ratelimit.h>
40 #include <linux/context_tracking.h>
41 #include <linux/smp.h>
42 #include <linux/console.h>
43 #include <linux/kmsg_dump.h>
44
45 #include <asm/emulated_ops.h>
46 #include <asm/pgtable.h>
47 #include <linux/uaccess.h>
48 #include <asm/debugfs.h>
49 #include <asm/io.h>
50 #include <asm/machdep.h>
51 #include <asm/rtas.h>
52 #include <asm/pmc.h>
53 #include <asm/reg.h>
54 #ifdef CONFIG_PMAC_BACKLIGHT
55 #include <asm/backlight.h>
56 #endif
57 #ifdef CONFIG_PPC64
58 #include <asm/firmware.h>
59 #include <asm/processor.h>
60 #include <asm/tm.h>
61 #endif
62 #include <asm/kexec.h>
63 #include <asm/ppc-opcode.h>
64 #include <asm/rio.h>
65 #include <asm/fadump.h>
66 #include <asm/switch_to.h>
67 #include <asm/tm.h>
68 #include <asm/debug.h>
69 #include <asm/asm-prototypes.h>
70 #include <asm/hmi.h>
71 #include <sysdev/fsl_pci.h>
72 #include <asm/kprobes.h>
73 #include <asm/stacktrace.h>
74 #include <asm/nmi.h>
75
76 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
77 int (*__debugger)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
81 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
82 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
83 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
84
85 EXPORT_SYMBOL(__debugger);
86 EXPORT_SYMBOL(__debugger_ipi);
87 EXPORT_SYMBOL(__debugger_bpt);
88 EXPORT_SYMBOL(__debugger_sstep);
89 EXPORT_SYMBOL(__debugger_iabr_match);
90 EXPORT_SYMBOL(__debugger_break_match);
91 EXPORT_SYMBOL(__debugger_fault_handler);
92 #endif
93
94 /* Transactional Memory trap debug */
95 #ifdef TM_DEBUG_SW
96 #define TM_DEBUG(x...) printk(KERN_INFO x)
97 #else
98 #define TM_DEBUG(x...) do { } while(0)
99 #endif
100
101 static const char *signame(int signr)
102 {
103 switch (signr) {
104 case SIGBUS: return "bus error";
105 case SIGFPE: return "floating point exception";
106 case SIGILL: return "illegal instruction";
107 case SIGSEGV: return "segfault";
108 case SIGTRAP: return "unhandled trap";
109 }
110
111 return "unknown signal";
112 }
113
114 /*
115 * Trap & Exception support
116 */
117
118 #ifdef CONFIG_PMAC_BACKLIGHT
119 static void pmac_backlight_unblank(void)
120 {
121 mutex_lock(&pmac_backlight_mutex);
122 if (pmac_backlight) {
123 struct backlight_properties *props;
124
125 props = &pmac_backlight->props;
126 props->brightness = props->max_brightness;
127 props->power = FB_BLANK_UNBLANK;
128 backlight_update_status(pmac_backlight);
129 }
130 mutex_unlock(&pmac_backlight_mutex);
131 }
132 #else
133 static inline void pmac_backlight_unblank(void) { }
134 #endif
135
136 /*
137 * If oops/die is expected to crash the machine, return true here.
138 *
139 * This should not be expected to be 100% accurate, there may be
140 * notifiers registered or other unexpected conditions that may bring
141 * down the kernel. Or if the current process in the kernel is holding
142 * locks or has other critical state, the kernel may become effectively
143 * unusable anyway.
144 */
145 bool die_will_crash(void)
146 {
147 if (should_fadump_crash())
148 return true;
149 if (kexec_should_crash(current))
150 return true;
151 if (in_interrupt() || panic_on_oops ||
152 !current->pid || is_global_init(current))
153 return true;
154
155 return false;
156 }
157
158 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
159 static int die_owner = -1;
160 static unsigned int die_nest_count;
161 static int die_counter;
162
163 extern void panic_flush_kmsg_start(void)
164 {
165 /*
166 * These are mostly taken from kernel/panic.c, but tries to do
167 * relatively minimal work. Don't use delay functions (TB may
168 * be broken), don't crash dump (need to set a firmware log),
169 * don't run notifiers. We do want to get some information to
170 * Linux console.
171 */
172 console_verbose();
173 bust_spinlocks(1);
174 }
175
176 extern void panic_flush_kmsg_end(void)
177 {
178 printk_safe_flush_on_panic();
179 kmsg_dump(KMSG_DUMP_PANIC);
180 bust_spinlocks(0);
181 debug_locks_off();
182 console_flush_on_panic();
183 }
184
185 static unsigned long oops_begin(struct pt_regs *regs)
186 {
187 int cpu;
188 unsigned long flags;
189
190 oops_enter();
191
192 /* racy, but better than risking deadlock. */
193 raw_local_irq_save(flags);
194 cpu = smp_processor_id();
195 if (!arch_spin_trylock(&die_lock)) {
196 if (cpu == die_owner)
197 /* nested oops. should stop eventually */;
198 else
199 arch_spin_lock(&die_lock);
200 }
201 die_nest_count++;
202 die_owner = cpu;
203 console_verbose();
204 bust_spinlocks(1);
205 if (machine_is(powermac))
206 pmac_backlight_unblank();
207 return flags;
208 }
209 NOKPROBE_SYMBOL(oops_begin);
210
211 static void oops_end(unsigned long flags, struct pt_regs *regs,
212 int signr)
213 {
214 bust_spinlocks(0);
215 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
216 die_nest_count--;
217 oops_exit();
218 printk("\n");
219 if (!die_nest_count) {
220 /* Nest count reaches zero, release the lock. */
221 die_owner = -1;
222 arch_spin_unlock(&die_lock);
223 }
224 raw_local_irq_restore(flags);
225
226 /*
227 * system_reset_excption handles debugger, crash dump, panic, for 0x100
228 */
229 if (TRAP(regs) == 0x100)
230 return;
231
232 crash_fadump(regs, "die oops");
233
234 if (kexec_should_crash(current))
235 crash_kexec(regs);
236
237 if (!signr)
238 return;
239
240 /*
241 * While our oops output is serialised by a spinlock, output
242 * from panic() called below can race and corrupt it. If we
243 * know we are going to panic, delay for 1 second so we have a
244 * chance to get clean backtraces from all CPUs that are oopsing.
245 */
246 if (in_interrupt() || panic_on_oops || !current->pid ||
247 is_global_init(current)) {
248 mdelay(MSEC_PER_SEC);
249 }
250
251 if (panic_on_oops)
252 panic("Fatal exception");
253 do_exit(signr);
254 }
255 NOKPROBE_SYMBOL(oops_end);
256
257 static int __die(const char *str, struct pt_regs *regs, long err)
258 {
259 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
260
261 printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s%s %s\n",
262 IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
263 PAGE_SIZE / 1024,
264 early_radix_enabled() ? " MMU=Radix" : "",
265 early_mmu_has_feature(MMU_FTR_HPTE_TABLE) ? " MMU=Hash" : "",
266 IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
267 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
268 IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
269 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
270 IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
271 ppc_md.name ? ppc_md.name : "");
272
273 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
274 return 1;
275
276 print_modules();
277 show_regs(regs);
278
279 return 0;
280 }
281 NOKPROBE_SYMBOL(__die);
282
283 void die(const char *str, struct pt_regs *regs, long err)
284 {
285 unsigned long flags;
286
287 /*
288 * system_reset_excption handles debugger, crash dump, panic, for 0x100
289 */
290 if (TRAP(regs) != 0x100) {
291 if (debugger(regs))
292 return;
293 }
294
295 flags = oops_begin(regs);
296 if (__die(str, regs, err))
297 err = 0;
298 oops_end(flags, regs, err);
299 }
300 NOKPROBE_SYMBOL(die);
301
302 void user_single_step_report(struct pt_regs *regs)
303 {
304 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip, current);
305 }
306
307 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
308 unsigned long addr)
309 {
310 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
311 DEFAULT_RATELIMIT_BURST);
312
313 if (!show_unhandled_signals)
314 return;
315
316 if (!unhandled_signal(current, signr))
317 return;
318
319 if (!__ratelimit(&rs))
320 return;
321
322 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
323 current->comm, current->pid, signame(signr), signr,
324 addr, regs->nip, regs->link, code);
325
326 print_vma_addr(KERN_CONT " in ", regs->nip);
327
328 pr_cont("\n");
329
330 show_user_instructions(regs);
331 }
332
333 static bool exception_common(int signr, struct pt_regs *regs, int code,
334 unsigned long addr)
335 {
336 if (!user_mode(regs)) {
337 die("Exception in kernel mode", regs, signr);
338 return false;
339 }
340
341 show_signal_msg(signr, regs, code, addr);
342
343 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
344 local_irq_enable();
345
346 current->thread.trap_nr = code;
347
348 /*
349 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
350 * to capture the content, if the task gets killed.
351 */
352 thread_pkey_regs_save(&current->thread);
353
354 return true;
355 }
356
357 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
358 {
359 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
360 return;
361
362 force_sig_pkuerr((void __user *) addr, key);
363 }
364
365 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
366 {
367 if (!exception_common(signr, regs, code, addr))
368 return;
369
370 force_sig_fault(signr, code, (void __user *)addr, current);
371 }
372
373 /*
374 * The interrupt architecture has a quirk in that the HV interrupts excluding
375 * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
376 * that an interrupt handler must do is save off a GPR into a scratch register,
377 * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
378 * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
379 * that it is non-reentrant, which leads to random data corruption.
380 *
381 * The solution is for NMI interrupts in HV mode to check if they originated
382 * from these critical HV interrupt regions. If so, then mark them not
383 * recoverable.
384 *
385 * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
386 * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
387 * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
388 * that would work. However any other guest OS that may have the SPRG live
389 * and MSR[RI]=1 could encounter silent corruption.
390 *
391 * Builds that do not support KVM could take this second option to increase
392 * the recoverability of NMIs.
393 */
394 void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
395 {
396 #ifdef CONFIG_PPC_POWERNV
397 unsigned long kbase = (unsigned long)_stext;
398 unsigned long nip = regs->nip;
399
400 if (!(regs->msr & MSR_RI))
401 return;
402 if (!(regs->msr & MSR_HV))
403 return;
404 if (regs->msr & MSR_PR)
405 return;
406
407 /*
408 * Now test if the interrupt has hit a range that may be using
409 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
410 * problem ranges all run un-relocated. Test real and virt modes
411 * at the same time by droping the high bit of the nip (virt mode
412 * entry points still have the +0x4000 offset).
413 */
414 nip &= ~0xc000000000000000ULL;
415 if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
416 goto nonrecoverable;
417 if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
418 goto nonrecoverable;
419 if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
420 goto nonrecoverable;
421 if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
422 goto nonrecoverable;
423
424 /* Trampoline code runs un-relocated so subtract kbase. */
425 if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
426 nip < (unsigned long)(end_real_trampolines - kbase))
427 goto nonrecoverable;
428 if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
429 nip < (unsigned long)(end_virt_trampolines - kbase))
430 goto nonrecoverable;
431 return;
432
433 nonrecoverable:
434 regs->msr &= ~MSR_RI;
435 #endif
436 }
437
438 void system_reset_exception(struct pt_regs *regs)
439 {
440 unsigned long hsrr0, hsrr1;
441 bool nested = in_nmi();
442 bool saved_hsrrs = false;
443
444 /*
445 * Avoid crashes in case of nested NMI exceptions. Recoverability
446 * is determined by RI and in_nmi
447 */
448 if (!nested)
449 nmi_enter();
450
451 /*
452 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
453 * The system reset interrupt itself may clobber HSRRs (e.g., to call
454 * OPAL), so save them here and restore them before returning.
455 *
456 * Machine checks don't need to save HSRRs, as the real mode handler
457 * is careful to avoid them, and the regular handler is not delivered
458 * as an NMI.
459 */
460 if (cpu_has_feature(CPU_FTR_HVMODE)) {
461 hsrr0 = mfspr(SPRN_HSRR0);
462 hsrr1 = mfspr(SPRN_HSRR1);
463 saved_hsrrs = true;
464 }
465
466 hv_nmi_check_nonrecoverable(regs);
467
468 __this_cpu_inc(irq_stat.sreset_irqs);
469
470 /* See if any machine dependent calls */
471 if (ppc_md.system_reset_exception) {
472 if (ppc_md.system_reset_exception(regs))
473 goto out;
474 }
475
476 if (debugger(regs))
477 goto out;
478
479 /*
480 * A system reset is a request to dump, so we always send
481 * it through the crashdump code (if fadump or kdump are
482 * registered).
483 */
484 crash_fadump(regs, "System Reset");
485
486 crash_kexec(regs);
487
488 /*
489 * We aren't the primary crash CPU. We need to send it
490 * to a holding pattern to avoid it ending up in the panic
491 * code.
492 */
493 crash_kexec_secondary(regs);
494
495 /*
496 * No debugger or crash dump registered, print logs then
497 * panic.
498 */
499 die("System Reset", regs, SIGABRT);
500
501 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
502 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
503 nmi_panic(regs, "System Reset");
504
505 out:
506 #ifdef CONFIG_PPC_BOOK3S_64
507 BUG_ON(get_paca()->in_nmi == 0);
508 if (get_paca()->in_nmi > 1)
509 nmi_panic(regs, "Unrecoverable nested System Reset");
510 #endif
511 /* Must die if the interrupt is not recoverable */
512 if (!(regs->msr & MSR_RI))
513 nmi_panic(regs, "Unrecoverable System Reset");
514
515 if (saved_hsrrs) {
516 mtspr(SPRN_HSRR0, hsrr0);
517 mtspr(SPRN_HSRR1, hsrr1);
518 }
519
520 if (!nested)
521 nmi_exit();
522
523 /* What should we do here? We could issue a shutdown or hard reset. */
524 }
525
526 /*
527 * I/O accesses can cause machine checks on powermacs.
528 * Check if the NIP corresponds to the address of a sync
529 * instruction for which there is an entry in the exception
530 * table.
531 * Note that the 601 only takes a machine check on TEA
532 * (transfer error ack) signal assertion, and does not
533 * set any of the top 16 bits of SRR1.
534 * -- paulus.
535 */
536 static inline int check_io_access(struct pt_regs *regs)
537 {
538 #ifdef CONFIG_PPC32
539 unsigned long msr = regs->msr;
540 const struct exception_table_entry *entry;
541 unsigned int *nip = (unsigned int *)regs->nip;
542
543 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
544 && (entry = search_exception_tables(regs->nip)) != NULL) {
545 /*
546 * Check that it's a sync instruction, or somewhere
547 * in the twi; isync; nop sequence that inb/inw/inl uses.
548 * As the address is in the exception table
549 * we should be able to read the instr there.
550 * For the debug message, we look at the preceding
551 * load or store.
552 */
553 if (*nip == PPC_INST_NOP)
554 nip -= 2;
555 else if (*nip == PPC_INST_ISYNC)
556 --nip;
557 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
558 unsigned int rb;
559
560 --nip;
561 rb = (*nip >> 11) & 0x1f;
562 printk(KERN_DEBUG "%s bad port %lx at %p\n",
563 (*nip & 0x100)? "OUT to": "IN from",
564 regs->gpr[rb] - _IO_BASE, nip);
565 regs->msr |= MSR_RI;
566 regs->nip = extable_fixup(entry);
567 return 1;
568 }
569 }
570 #endif /* CONFIG_PPC32 */
571 return 0;
572 }
573
574 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
575 /* On 4xx, the reason for the machine check or program exception
576 is in the ESR. */
577 #define get_reason(regs) ((regs)->dsisr)
578 #define REASON_FP ESR_FP
579 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
580 #define REASON_PRIVILEGED ESR_PPR
581 #define REASON_TRAP ESR_PTR
582
583 /* single-step stuff */
584 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
585 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
586 #define clear_br_trace(regs) do {} while(0)
587 #else
588 /* On non-4xx, the reason for the machine check or program
589 exception is in the MSR. */
590 #define get_reason(regs) ((regs)->msr)
591 #define REASON_TM SRR1_PROGTM
592 #define REASON_FP SRR1_PROGFPE
593 #define REASON_ILLEGAL SRR1_PROGILL
594 #define REASON_PRIVILEGED SRR1_PROGPRIV
595 #define REASON_TRAP SRR1_PROGTRAP
596
597 #define single_stepping(regs) ((regs)->msr & MSR_SE)
598 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
599 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
600 #endif
601
602 #if defined(CONFIG_E500)
603 int machine_check_e500mc(struct pt_regs *regs)
604 {
605 unsigned long mcsr = mfspr(SPRN_MCSR);
606 unsigned long pvr = mfspr(SPRN_PVR);
607 unsigned long reason = mcsr;
608 int recoverable = 1;
609
610 if (reason & MCSR_LD) {
611 recoverable = fsl_rio_mcheck_exception(regs);
612 if (recoverable == 1)
613 goto silent_out;
614 }
615
616 printk("Machine check in kernel mode.\n");
617 printk("Caused by (from MCSR=%lx): ", reason);
618
619 if (reason & MCSR_MCP)
620 pr_cont("Machine Check Signal\n");
621
622 if (reason & MCSR_ICPERR) {
623 pr_cont("Instruction Cache Parity Error\n");
624
625 /*
626 * This is recoverable by invalidating the i-cache.
627 */
628 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
629 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
630 ;
631
632 /*
633 * This will generally be accompanied by an instruction
634 * fetch error report -- only treat MCSR_IF as fatal
635 * if it wasn't due to an L1 parity error.
636 */
637 reason &= ~MCSR_IF;
638 }
639
640 if (reason & MCSR_DCPERR_MC) {
641 pr_cont("Data Cache Parity Error\n");
642
643 /*
644 * In write shadow mode we auto-recover from the error, but it
645 * may still get logged and cause a machine check. We should
646 * only treat the non-write shadow case as non-recoverable.
647 */
648 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
649 * is not implemented but L1 data cache always runs in write
650 * shadow mode. Hence on data cache parity errors HW will
651 * automatically invalidate the L1 Data Cache.
652 */
653 if (PVR_VER(pvr) != PVR_VER_E6500) {
654 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
655 recoverable = 0;
656 }
657 }
658
659 if (reason & MCSR_L2MMU_MHIT) {
660 pr_cont("Hit on multiple TLB entries\n");
661 recoverable = 0;
662 }
663
664 if (reason & MCSR_NMI)
665 pr_cont("Non-maskable interrupt\n");
666
667 if (reason & MCSR_IF) {
668 pr_cont("Instruction Fetch Error Report\n");
669 recoverable = 0;
670 }
671
672 if (reason & MCSR_LD) {
673 pr_cont("Load Error Report\n");
674 recoverable = 0;
675 }
676
677 if (reason & MCSR_ST) {
678 pr_cont("Store Error Report\n");
679 recoverable = 0;
680 }
681
682 if (reason & MCSR_LDG) {
683 pr_cont("Guarded Load Error Report\n");
684 recoverable = 0;
685 }
686
687 if (reason & MCSR_TLBSYNC)
688 pr_cont("Simultaneous tlbsync operations\n");
689
690 if (reason & MCSR_BSL2_ERR) {
691 pr_cont("Level 2 Cache Error\n");
692 recoverable = 0;
693 }
694
695 if (reason & MCSR_MAV) {
696 u64 addr;
697
698 addr = mfspr(SPRN_MCAR);
699 addr |= (u64)mfspr(SPRN_MCARU) << 32;
700
701 pr_cont("Machine Check %s Address: %#llx\n",
702 reason & MCSR_MEA ? "Effective" : "Physical", addr);
703 }
704
705 silent_out:
706 mtspr(SPRN_MCSR, mcsr);
707 return mfspr(SPRN_MCSR) == 0 && recoverable;
708 }
709
710 int machine_check_e500(struct pt_regs *regs)
711 {
712 unsigned long reason = mfspr(SPRN_MCSR);
713
714 if (reason & MCSR_BUS_RBERR) {
715 if (fsl_rio_mcheck_exception(regs))
716 return 1;
717 if (fsl_pci_mcheck_exception(regs))
718 return 1;
719 }
720
721 printk("Machine check in kernel mode.\n");
722 printk("Caused by (from MCSR=%lx): ", reason);
723
724 if (reason & MCSR_MCP)
725 pr_cont("Machine Check Signal\n");
726 if (reason & MCSR_ICPERR)
727 pr_cont("Instruction Cache Parity Error\n");
728 if (reason & MCSR_DCP_PERR)
729 pr_cont("Data Cache Push Parity Error\n");
730 if (reason & MCSR_DCPERR)
731 pr_cont("Data Cache Parity Error\n");
732 if (reason & MCSR_BUS_IAERR)
733 pr_cont("Bus - Instruction Address Error\n");
734 if (reason & MCSR_BUS_RAERR)
735 pr_cont("Bus - Read Address Error\n");
736 if (reason & MCSR_BUS_WAERR)
737 pr_cont("Bus - Write Address Error\n");
738 if (reason & MCSR_BUS_IBERR)
739 pr_cont("Bus - Instruction Data Error\n");
740 if (reason & MCSR_BUS_RBERR)
741 pr_cont("Bus - Read Data Bus Error\n");
742 if (reason & MCSR_BUS_WBERR)
743 pr_cont("Bus - Write Data Bus Error\n");
744 if (reason & MCSR_BUS_IPERR)
745 pr_cont("Bus - Instruction Parity Error\n");
746 if (reason & MCSR_BUS_RPERR)
747 pr_cont("Bus - Read Parity Error\n");
748
749 return 0;
750 }
751
752 int machine_check_generic(struct pt_regs *regs)
753 {
754 return 0;
755 }
756 #elif defined(CONFIG_E200)
757 int machine_check_e200(struct pt_regs *regs)
758 {
759 unsigned long reason = mfspr(SPRN_MCSR);
760
761 printk("Machine check in kernel mode.\n");
762 printk("Caused by (from MCSR=%lx): ", reason);
763
764 if (reason & MCSR_MCP)
765 pr_cont("Machine Check Signal\n");
766 if (reason & MCSR_CP_PERR)
767 pr_cont("Cache Push Parity Error\n");
768 if (reason & MCSR_CPERR)
769 pr_cont("Cache Parity Error\n");
770 if (reason & MCSR_EXCP_ERR)
771 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
772 if (reason & MCSR_BUS_IRERR)
773 pr_cont("Bus - Read Bus Error on instruction fetch\n");
774 if (reason & MCSR_BUS_DRERR)
775 pr_cont("Bus - Read Bus Error on data load\n");
776 if (reason & MCSR_BUS_WRERR)
777 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
778
779 return 0;
780 }
781 #elif defined(CONFIG_PPC32)
782 int machine_check_generic(struct pt_regs *regs)
783 {
784 unsigned long reason = regs->msr;
785
786 printk("Machine check in kernel mode.\n");
787 printk("Caused by (from SRR1=%lx): ", reason);
788 switch (reason & 0x601F0000) {
789 case 0x80000:
790 pr_cont("Machine check signal\n");
791 break;
792 case 0: /* for 601 */
793 case 0x40000:
794 case 0x140000: /* 7450 MSS error and TEA */
795 pr_cont("Transfer error ack signal\n");
796 break;
797 case 0x20000:
798 pr_cont("Data parity error signal\n");
799 break;
800 case 0x10000:
801 pr_cont("Address parity error signal\n");
802 break;
803 case 0x20000000:
804 pr_cont("L1 Data Cache error\n");
805 break;
806 case 0x40000000:
807 pr_cont("L1 Instruction Cache error\n");
808 break;
809 case 0x00100000:
810 pr_cont("L2 data cache parity error\n");
811 break;
812 default:
813 pr_cont("Unknown values in msr\n");
814 }
815 return 0;
816 }
817 #endif /* everything else */
818
819 void machine_check_exception(struct pt_regs *regs)
820 {
821 int recover = 0;
822 bool nested = in_nmi();
823 if (!nested)
824 nmi_enter();
825
826 __this_cpu_inc(irq_stat.mce_exceptions);
827
828 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
829
830 /* See if any machine dependent calls. In theory, we would want
831 * to call the CPU first, and call the ppc_md. one if the CPU
832 * one returns a positive number. However there is existing code
833 * that assumes the board gets a first chance, so let's keep it
834 * that way for now and fix things later. --BenH.
835 */
836 if (ppc_md.machine_check_exception)
837 recover = ppc_md.machine_check_exception(regs);
838 else if (cur_cpu_spec->machine_check)
839 recover = cur_cpu_spec->machine_check(regs);
840
841 if (recover > 0)
842 goto bail;
843
844 if (debugger_fault_handler(regs))
845 goto bail;
846
847 if (check_io_access(regs))
848 goto bail;
849
850 if (!nested)
851 nmi_exit();
852
853 die("Machine check", regs, SIGBUS);
854
855 /* Must die if the interrupt is not recoverable */
856 if (!(regs->msr & MSR_RI))
857 nmi_panic(regs, "Unrecoverable Machine check");
858
859 return;
860
861 bail:
862 if (!nested)
863 nmi_exit();
864 }
865
866 void SMIException(struct pt_regs *regs)
867 {
868 die("System Management Interrupt", regs, SIGABRT);
869 }
870
871 #ifdef CONFIG_VSX
872 static void p9_hmi_special_emu(struct pt_regs *regs)
873 {
874 unsigned int ra, rb, t, i, sel, instr, rc;
875 const void __user *addr;
876 u8 vbuf[16], *vdst;
877 unsigned long ea, msr, msr_mask;
878 bool swap;
879
880 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
881 return;
882
883 /*
884 * lxvb16x opcode: 0x7c0006d8
885 * lxvd2x opcode: 0x7c000698
886 * lxvh8x opcode: 0x7c000658
887 * lxvw4x opcode: 0x7c000618
888 */
889 if ((instr & 0xfc00073e) != 0x7c000618) {
890 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
891 " instr=%08x\n",
892 smp_processor_id(), current->comm, current->pid,
893 regs->nip, instr);
894 return;
895 }
896
897 /* Grab vector registers into the task struct */
898 msr = regs->msr; /* Grab msr before we flush the bits */
899 flush_vsx_to_thread(current);
900 enable_kernel_altivec();
901
902 /*
903 * Is userspace running with a different endian (this is rare but
904 * not impossible)
905 */
906 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
907
908 /* Decode the instruction */
909 ra = (instr >> 16) & 0x1f;
910 rb = (instr >> 11) & 0x1f;
911 t = (instr >> 21) & 0x1f;
912 if (instr & 1)
913 vdst = (u8 *)&current->thread.vr_state.vr[t];
914 else
915 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
916
917 /* Grab the vector address */
918 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
919 if (is_32bit_task())
920 ea &= 0xfffffffful;
921 addr = (__force const void __user *)ea;
922
923 /* Check it */
924 if (!access_ok(addr, 16)) {
925 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
926 " instr=%08x addr=%016lx\n",
927 smp_processor_id(), current->comm, current->pid,
928 regs->nip, instr, (unsigned long)addr);
929 return;
930 }
931
932 /* Read the vector */
933 rc = 0;
934 if ((unsigned long)addr & 0xfUL)
935 /* unaligned case */
936 rc = __copy_from_user_inatomic(vbuf, addr, 16);
937 else
938 __get_user_atomic_128_aligned(vbuf, addr, rc);
939 if (rc) {
940 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
941 " instr=%08x addr=%016lx\n",
942 smp_processor_id(), current->comm, current->pid,
943 regs->nip, instr, (unsigned long)addr);
944 return;
945 }
946
947 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
948 " instr=%08x addr=%016lx\n",
949 smp_processor_id(), current->comm, current->pid, regs->nip,
950 instr, (unsigned long) addr);
951
952 /* Grab instruction "selector" */
953 sel = (instr >> 6) & 3;
954
955 /*
956 * Check to make sure the facility is actually enabled. This
957 * could happen if we get a false positive hit.
958 *
959 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
960 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
961 */
962 msr_mask = MSR_VSX;
963 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
964 msr_mask = MSR_VEC;
965 if (!(msr & msr_mask)) {
966 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
967 " instr=%08x msr:%016lx\n",
968 smp_processor_id(), current->comm, current->pid,
969 regs->nip, instr, msr);
970 return;
971 }
972
973 /* Do logging here before we modify sel based on endian */
974 switch (sel) {
975 case 0: /* lxvw4x */
976 PPC_WARN_EMULATED(lxvw4x, regs);
977 break;
978 case 1: /* lxvh8x */
979 PPC_WARN_EMULATED(lxvh8x, regs);
980 break;
981 case 2: /* lxvd2x */
982 PPC_WARN_EMULATED(lxvd2x, regs);
983 break;
984 case 3: /* lxvb16x */
985 PPC_WARN_EMULATED(lxvb16x, regs);
986 break;
987 }
988
989 #ifdef __LITTLE_ENDIAN__
990 /*
991 * An LE kernel stores the vector in the task struct as an LE
992 * byte array (effectively swapping both the components and
993 * the content of the components). Those instructions expect
994 * the components to remain in ascending address order, so we
995 * swap them back.
996 *
997 * If we are running a BE user space, the expectation is that
998 * of a simple memcpy, so forcing the emulation to look like
999 * a lxvb16x should do the trick.
1000 */
1001 if (swap)
1002 sel = 3;
1003
1004 switch (sel) {
1005 case 0: /* lxvw4x */
1006 for (i = 0; i < 4; i++)
1007 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1008 break;
1009 case 1: /* lxvh8x */
1010 for (i = 0; i < 8; i++)
1011 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1012 break;
1013 case 2: /* lxvd2x */
1014 for (i = 0; i < 2; i++)
1015 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1016 break;
1017 case 3: /* lxvb16x */
1018 for (i = 0; i < 16; i++)
1019 vdst[i] = vbuf[15-i];
1020 break;
1021 }
1022 #else /* __LITTLE_ENDIAN__ */
1023 /* On a big endian kernel, a BE userspace only needs a memcpy */
1024 if (!swap)
1025 sel = 3;
1026
1027 /* Otherwise, we need to swap the content of the components */
1028 switch (sel) {
1029 case 0: /* lxvw4x */
1030 for (i = 0; i < 4; i++)
1031 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1032 break;
1033 case 1: /* lxvh8x */
1034 for (i = 0; i < 8; i++)
1035 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1036 break;
1037 case 2: /* lxvd2x */
1038 for (i = 0; i < 2; i++)
1039 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1040 break;
1041 case 3: /* lxvb16x */
1042 memcpy(vdst, vbuf, 16);
1043 break;
1044 }
1045 #endif /* !__LITTLE_ENDIAN__ */
1046
1047 /* Go to next instruction */
1048 regs->nip += 4;
1049 }
1050 #endif /* CONFIG_VSX */
1051
1052 void handle_hmi_exception(struct pt_regs *regs)
1053 {
1054 struct pt_regs *old_regs;
1055
1056 old_regs = set_irq_regs(regs);
1057 irq_enter();
1058
1059 #ifdef CONFIG_VSX
1060 /* Real mode flagged P9 special emu is needed */
1061 if (local_paca->hmi_p9_special_emu) {
1062 local_paca->hmi_p9_special_emu = 0;
1063
1064 /*
1065 * We don't want to take page faults while doing the
1066 * emulation, we just replay the instruction if necessary.
1067 */
1068 pagefault_disable();
1069 p9_hmi_special_emu(regs);
1070 pagefault_enable();
1071 }
1072 #endif /* CONFIG_VSX */
1073
1074 if (ppc_md.handle_hmi_exception)
1075 ppc_md.handle_hmi_exception(regs);
1076
1077 irq_exit();
1078 set_irq_regs(old_regs);
1079 }
1080
1081 void unknown_exception(struct pt_regs *regs)
1082 {
1083 enum ctx_state prev_state = exception_enter();
1084
1085 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1086 regs->nip, regs->msr, regs->trap);
1087
1088 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1089
1090 exception_exit(prev_state);
1091 }
1092
1093 void instruction_breakpoint_exception(struct pt_regs *regs)
1094 {
1095 enum ctx_state prev_state = exception_enter();
1096
1097 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1098 5, SIGTRAP) == NOTIFY_STOP)
1099 goto bail;
1100 if (debugger_iabr_match(regs))
1101 goto bail;
1102 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1103
1104 bail:
1105 exception_exit(prev_state);
1106 }
1107
1108 void RunModeException(struct pt_regs *regs)
1109 {
1110 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1111 }
1112
1113 void single_step_exception(struct pt_regs *regs)
1114 {
1115 enum ctx_state prev_state = exception_enter();
1116
1117 clear_single_step(regs);
1118 clear_br_trace(regs);
1119
1120 if (kprobe_post_handler(regs))
1121 return;
1122
1123 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1124 5, SIGTRAP) == NOTIFY_STOP)
1125 goto bail;
1126 if (debugger_sstep(regs))
1127 goto bail;
1128
1129 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1130
1131 bail:
1132 exception_exit(prev_state);
1133 }
1134 NOKPROBE_SYMBOL(single_step_exception);
1135
1136 /*
1137 * After we have successfully emulated an instruction, we have to
1138 * check if the instruction was being single-stepped, and if so,
1139 * pretend we got a single-step exception. This was pointed out
1140 * by Kumar Gala. -- paulus
1141 */
1142 static void emulate_single_step(struct pt_regs *regs)
1143 {
1144 if (single_stepping(regs))
1145 single_step_exception(regs);
1146 }
1147
1148 static inline int __parse_fpscr(unsigned long fpscr)
1149 {
1150 int ret = FPE_FLTUNK;
1151
1152 /* Invalid operation */
1153 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1154 ret = FPE_FLTINV;
1155
1156 /* Overflow */
1157 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1158 ret = FPE_FLTOVF;
1159
1160 /* Underflow */
1161 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1162 ret = FPE_FLTUND;
1163
1164 /* Divide by zero */
1165 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1166 ret = FPE_FLTDIV;
1167
1168 /* Inexact result */
1169 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1170 ret = FPE_FLTRES;
1171
1172 return ret;
1173 }
1174
1175 static void parse_fpe(struct pt_regs *regs)
1176 {
1177 int code = 0;
1178
1179 flush_fp_to_thread(current);
1180
1181 code = __parse_fpscr(current->thread.fp_state.fpscr);
1182
1183 _exception(SIGFPE, regs, code, regs->nip);
1184 }
1185
1186 /*
1187 * Illegal instruction emulation support. Originally written to
1188 * provide the PVR to user applications using the mfspr rd, PVR.
1189 * Return non-zero if we can't emulate, or -EFAULT if the associated
1190 * memory access caused an access fault. Return zero on success.
1191 *
1192 * There are a couple of ways to do this, either "decode" the instruction
1193 * or directly match lots of bits. In this case, matching lots of
1194 * bits is faster and easier.
1195 *
1196 */
1197 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1198 {
1199 u8 rT = (instword >> 21) & 0x1f;
1200 u8 rA = (instword >> 16) & 0x1f;
1201 u8 NB_RB = (instword >> 11) & 0x1f;
1202 u32 num_bytes;
1203 unsigned long EA;
1204 int pos = 0;
1205
1206 /* Early out if we are an invalid form of lswx */
1207 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1208 if ((rT == rA) || (rT == NB_RB))
1209 return -EINVAL;
1210
1211 EA = (rA == 0) ? 0 : regs->gpr[rA];
1212
1213 switch (instword & PPC_INST_STRING_MASK) {
1214 case PPC_INST_LSWX:
1215 case PPC_INST_STSWX:
1216 EA += NB_RB;
1217 num_bytes = regs->xer & 0x7f;
1218 break;
1219 case PPC_INST_LSWI:
1220 case PPC_INST_STSWI:
1221 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1222 break;
1223 default:
1224 return -EINVAL;
1225 }
1226
1227 while (num_bytes != 0)
1228 {
1229 u8 val;
1230 u32 shift = 8 * (3 - (pos & 0x3));
1231
1232 /* if process is 32-bit, clear upper 32 bits of EA */
1233 if ((regs->msr & MSR_64BIT) == 0)
1234 EA &= 0xFFFFFFFF;
1235
1236 switch ((instword & PPC_INST_STRING_MASK)) {
1237 case PPC_INST_LSWX:
1238 case PPC_INST_LSWI:
1239 if (get_user(val, (u8 __user *)EA))
1240 return -EFAULT;
1241 /* first time updating this reg,
1242 * zero it out */
1243 if (pos == 0)
1244 regs->gpr[rT] = 0;
1245 regs->gpr[rT] |= val << shift;
1246 break;
1247 case PPC_INST_STSWI:
1248 case PPC_INST_STSWX:
1249 val = regs->gpr[rT] >> shift;
1250 if (put_user(val, (u8 __user *)EA))
1251 return -EFAULT;
1252 break;
1253 }
1254 /* move EA to next address */
1255 EA += 1;
1256 num_bytes--;
1257
1258 /* manage our position within the register */
1259 if (++pos == 4) {
1260 pos = 0;
1261 if (++rT == 32)
1262 rT = 0;
1263 }
1264 }
1265
1266 return 0;
1267 }
1268
1269 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1270 {
1271 u32 ra,rs;
1272 unsigned long tmp;
1273
1274 ra = (instword >> 16) & 0x1f;
1275 rs = (instword >> 21) & 0x1f;
1276
1277 tmp = regs->gpr[rs];
1278 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1279 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1280 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1281 regs->gpr[ra] = tmp;
1282
1283 return 0;
1284 }
1285
1286 static int emulate_isel(struct pt_regs *regs, u32 instword)
1287 {
1288 u8 rT = (instword >> 21) & 0x1f;
1289 u8 rA = (instword >> 16) & 0x1f;
1290 u8 rB = (instword >> 11) & 0x1f;
1291 u8 BC = (instword >> 6) & 0x1f;
1292 u8 bit;
1293 unsigned long tmp;
1294
1295 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1296 bit = (regs->ccr >> (31 - BC)) & 0x1;
1297
1298 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1299
1300 return 0;
1301 }
1302
1303 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1305 {
1306 /* If we're emulating a load/store in an active transaction, we cannot
1307 * emulate it as the kernel operates in transaction suspended context.
1308 * We need to abort the transaction. This creates a persistent TM
1309 * abort so tell the user what caused it with a new code.
1310 */
1311 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1312 tm_enable();
1313 tm_abort(cause);
1314 return true;
1315 }
1316 return false;
1317 }
1318 #else
1319 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1320 {
1321 return false;
1322 }
1323 #endif
1324
1325 static int emulate_instruction(struct pt_regs *regs)
1326 {
1327 u32 instword;
1328 u32 rd;
1329
1330 if (!user_mode(regs))
1331 return -EINVAL;
1332 CHECK_FULL_REGS(regs);
1333
1334 if (get_user(instword, (u32 __user *)(regs->nip)))
1335 return -EFAULT;
1336
1337 /* Emulate the mfspr rD, PVR. */
1338 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1339 PPC_WARN_EMULATED(mfpvr, regs);
1340 rd = (instword >> 21) & 0x1f;
1341 regs->gpr[rd] = mfspr(SPRN_PVR);
1342 return 0;
1343 }
1344
1345 /* Emulating the dcba insn is just a no-op. */
1346 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1347 PPC_WARN_EMULATED(dcba, regs);
1348 return 0;
1349 }
1350
1351 /* Emulate the mcrxr insn. */
1352 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1353 int shift = (instword >> 21) & 0x1c;
1354 unsigned long msk = 0xf0000000UL >> shift;
1355
1356 PPC_WARN_EMULATED(mcrxr, regs);
1357 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1358 regs->xer &= ~0xf0000000UL;
1359 return 0;
1360 }
1361
1362 /* Emulate load/store string insn. */
1363 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1364 if (tm_abort_check(regs,
1365 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1366 return -EINVAL;
1367 PPC_WARN_EMULATED(string, regs);
1368 return emulate_string_inst(regs, instword);
1369 }
1370
1371 /* Emulate the popcntb (Population Count Bytes) instruction. */
1372 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1373 PPC_WARN_EMULATED(popcntb, regs);
1374 return emulate_popcntb_inst(regs, instword);
1375 }
1376
1377 /* Emulate isel (Integer Select) instruction */
1378 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1379 PPC_WARN_EMULATED(isel, regs);
1380 return emulate_isel(regs, instword);
1381 }
1382
1383 /* Emulate sync instruction variants */
1384 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1385 PPC_WARN_EMULATED(sync, regs);
1386 asm volatile("sync");
1387 return 0;
1388 }
1389
1390 #ifdef CONFIG_PPC64
1391 /* Emulate the mfspr rD, DSCR. */
1392 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1393 PPC_INST_MFSPR_DSCR_USER) ||
1394 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1395 PPC_INST_MFSPR_DSCR)) &&
1396 cpu_has_feature(CPU_FTR_DSCR)) {
1397 PPC_WARN_EMULATED(mfdscr, regs);
1398 rd = (instword >> 21) & 0x1f;
1399 regs->gpr[rd] = mfspr(SPRN_DSCR);
1400 return 0;
1401 }
1402 /* Emulate the mtspr DSCR, rD. */
1403 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1404 PPC_INST_MTSPR_DSCR_USER) ||
1405 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1406 PPC_INST_MTSPR_DSCR)) &&
1407 cpu_has_feature(CPU_FTR_DSCR)) {
1408 PPC_WARN_EMULATED(mtdscr, regs);
1409 rd = (instword >> 21) & 0x1f;
1410 current->thread.dscr = regs->gpr[rd];
1411 current->thread.dscr_inherit = 1;
1412 mtspr(SPRN_DSCR, current->thread.dscr);
1413 return 0;
1414 }
1415 #endif
1416
1417 return -EINVAL;
1418 }
1419
1420 int is_valid_bugaddr(unsigned long addr)
1421 {
1422 return is_kernel_addr(addr);
1423 }
1424
1425 #ifdef CONFIG_MATH_EMULATION
1426 static int emulate_math(struct pt_regs *regs)
1427 {
1428 int ret;
1429 extern int do_mathemu(struct pt_regs *regs);
1430
1431 ret = do_mathemu(regs);
1432 if (ret >= 0)
1433 PPC_WARN_EMULATED(math, regs);
1434
1435 switch (ret) {
1436 case 0:
1437 emulate_single_step(regs);
1438 return 0;
1439 case 1: {
1440 int code = 0;
1441 code = __parse_fpscr(current->thread.fp_state.fpscr);
1442 _exception(SIGFPE, regs, code, regs->nip);
1443 return 0;
1444 }
1445 case -EFAULT:
1446 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1447 return 0;
1448 }
1449
1450 return -1;
1451 }
1452 #else
1453 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1454 #endif
1455
1456 void program_check_exception(struct pt_regs *regs)
1457 {
1458 enum ctx_state prev_state = exception_enter();
1459 unsigned int reason = get_reason(regs);
1460
1461 /* We can now get here via a FP Unavailable exception if the core
1462 * has no FPU, in that case the reason flags will be 0 */
1463
1464 if (reason & REASON_FP) {
1465 /* IEEE FP exception */
1466 parse_fpe(regs);
1467 goto bail;
1468 }
1469 if (reason & REASON_TRAP) {
1470 unsigned long bugaddr;
1471 /* Debugger is first in line to stop recursive faults in
1472 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1473 if (debugger_bpt(regs))
1474 goto bail;
1475
1476 if (kprobe_handler(regs))
1477 goto bail;
1478
1479 /* trap exception */
1480 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1481 == NOTIFY_STOP)
1482 goto bail;
1483
1484 bugaddr = regs->nip;
1485 /*
1486 * Fixup bugaddr for BUG_ON() in real mode
1487 */
1488 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1489 bugaddr += PAGE_OFFSET;
1490
1491 if (!(regs->msr & MSR_PR) && /* not user-mode */
1492 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1493 regs->nip += 4;
1494 goto bail;
1495 }
1496 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1497 goto bail;
1498 }
1499 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1500 if (reason & REASON_TM) {
1501 /* This is a TM "Bad Thing Exception" program check.
1502 * This occurs when:
1503 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1504 * transition in TM states.
1505 * - A trechkpt is attempted when transactional.
1506 * - A treclaim is attempted when non transactional.
1507 * - A tend is illegally attempted.
1508 * - writing a TM SPR when transactional.
1509 *
1510 * If usermode caused this, it's done something illegal and
1511 * gets a SIGILL slap on the wrist. We call it an illegal
1512 * operand to distinguish from the instruction just being bad
1513 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1514 * illegal /placement/ of a valid instruction.
1515 */
1516 if (user_mode(regs)) {
1517 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1518 goto bail;
1519 } else {
1520 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1521 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1522 regs->nip, regs->msr, get_paca()->tm_scratch);
1523 die("Unrecoverable exception", regs, SIGABRT);
1524 }
1525 }
1526 #endif
1527
1528 /*
1529 * If we took the program check in the kernel skip down to sending a
1530 * SIGILL. The subsequent cases all relate to emulating instructions
1531 * which we should only do for userspace. We also do not want to enable
1532 * interrupts for kernel faults because that might lead to further
1533 * faults, and loose the context of the original exception.
1534 */
1535 if (!user_mode(regs))
1536 goto sigill;
1537
1538 /* We restore the interrupt state now */
1539 if (!arch_irq_disabled_regs(regs))
1540 local_irq_enable();
1541
1542 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1543 * but there seems to be a hardware bug on the 405GP (RevD)
1544 * that means ESR is sometimes set incorrectly - either to
1545 * ESR_DST (!?) or 0. In the process of chasing this with the
1546 * hardware people - not sure if it can happen on any illegal
1547 * instruction or only on FP instructions, whether there is a
1548 * pattern to occurrences etc. -dgibson 31/Mar/2003
1549 */
1550 if (!emulate_math(regs))
1551 goto bail;
1552
1553 /* Try to emulate it if we should. */
1554 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1555 switch (emulate_instruction(regs)) {
1556 case 0:
1557 regs->nip += 4;
1558 emulate_single_step(regs);
1559 goto bail;
1560 case -EFAULT:
1561 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1562 goto bail;
1563 }
1564 }
1565
1566 sigill:
1567 if (reason & REASON_PRIVILEGED)
1568 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1569 else
1570 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1571
1572 bail:
1573 exception_exit(prev_state);
1574 }
1575 NOKPROBE_SYMBOL(program_check_exception);
1576
1577 /*
1578 * This occurs when running in hypervisor mode on POWER6 or later
1579 * and an illegal instruction is encountered.
1580 */
1581 void emulation_assist_interrupt(struct pt_regs *regs)
1582 {
1583 regs->msr |= REASON_ILLEGAL;
1584 program_check_exception(regs);
1585 }
1586 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1587
1588 void alignment_exception(struct pt_regs *regs)
1589 {
1590 enum ctx_state prev_state = exception_enter();
1591 int sig, code, fixed = 0;
1592
1593 /* We restore the interrupt state now */
1594 if (!arch_irq_disabled_regs(regs))
1595 local_irq_enable();
1596
1597 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1598 goto bail;
1599
1600 /* we don't implement logging of alignment exceptions */
1601 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1602 fixed = fix_alignment(regs);
1603
1604 if (fixed == 1) {
1605 regs->nip += 4; /* skip over emulated instruction */
1606 emulate_single_step(regs);
1607 goto bail;
1608 }
1609
1610 /* Operand address was bad */
1611 if (fixed == -EFAULT) {
1612 sig = SIGSEGV;
1613 code = SEGV_ACCERR;
1614 } else {
1615 sig = SIGBUS;
1616 code = BUS_ADRALN;
1617 }
1618 if (user_mode(regs))
1619 _exception(sig, regs, code, regs->dar);
1620 else
1621 bad_page_fault(regs, regs->dar, sig);
1622
1623 bail:
1624 exception_exit(prev_state);
1625 }
1626
1627 void StackOverflow(struct pt_regs *regs)
1628 {
1629 pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1630 current->comm, task_pid_nr(current), regs->gpr[1]);
1631 debugger(regs);
1632 show_regs(regs);
1633 panic("kernel stack overflow");
1634 }
1635
1636 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1637 {
1638 enum ctx_state prev_state = exception_enter();
1639
1640 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1641 "%lx at %lx\n", regs->trap, regs->nip);
1642 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1643
1644 exception_exit(prev_state);
1645 }
1646
1647 void altivec_unavailable_exception(struct pt_regs *regs)
1648 {
1649 enum ctx_state prev_state = exception_enter();
1650
1651 if (user_mode(regs)) {
1652 /* A user program has executed an altivec instruction,
1653 but this kernel doesn't support altivec. */
1654 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1655 goto bail;
1656 }
1657
1658 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1659 "%lx at %lx\n", regs->trap, regs->nip);
1660 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1661
1662 bail:
1663 exception_exit(prev_state);
1664 }
1665
1666 void vsx_unavailable_exception(struct pt_regs *regs)
1667 {
1668 if (user_mode(regs)) {
1669 /* A user program has executed an vsx instruction,
1670 but this kernel doesn't support vsx. */
1671 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1672 return;
1673 }
1674
1675 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1676 "%lx at %lx\n", regs->trap, regs->nip);
1677 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1678 }
1679
1680 #ifdef CONFIG_PPC64
1681 static void tm_unavailable(struct pt_regs *regs)
1682 {
1683 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1684 if (user_mode(regs)) {
1685 current->thread.load_tm++;
1686 regs->msr |= MSR_TM;
1687 tm_enable();
1688 tm_restore_sprs(&current->thread);
1689 return;
1690 }
1691 #endif
1692 pr_emerg("Unrecoverable TM Unavailable Exception "
1693 "%lx at %lx\n", regs->trap, regs->nip);
1694 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1695 }
1696
1697 void facility_unavailable_exception(struct pt_regs *regs)
1698 {
1699 static char *facility_strings[] = {
1700 [FSCR_FP_LG] = "FPU",
1701 [FSCR_VECVSX_LG] = "VMX/VSX",
1702 [FSCR_DSCR_LG] = "DSCR",
1703 [FSCR_PM_LG] = "PMU SPRs",
1704 [FSCR_BHRB_LG] = "BHRB",
1705 [FSCR_TM_LG] = "TM",
1706 [FSCR_EBB_LG] = "EBB",
1707 [FSCR_TAR_LG] = "TAR",
1708 [FSCR_MSGP_LG] = "MSGP",
1709 [FSCR_SCV_LG] = "SCV",
1710 };
1711 char *facility = "unknown";
1712 u64 value;
1713 u32 instword, rd;
1714 u8 status;
1715 bool hv;
1716
1717 hv = (TRAP(regs) == 0xf80);
1718 if (hv)
1719 value = mfspr(SPRN_HFSCR);
1720 else
1721 value = mfspr(SPRN_FSCR);
1722
1723 status = value >> 56;
1724 if ((hv || status >= 2) &&
1725 (status < ARRAY_SIZE(facility_strings)) &&
1726 facility_strings[status])
1727 facility = facility_strings[status];
1728
1729 /* We should not have taken this interrupt in kernel */
1730 if (!user_mode(regs)) {
1731 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1732 facility, status, regs->nip);
1733 die("Unexpected facility unavailable exception", regs, SIGABRT);
1734 }
1735
1736 /* We restore the interrupt state now */
1737 if (!arch_irq_disabled_regs(regs))
1738 local_irq_enable();
1739
1740 if (status == FSCR_DSCR_LG) {
1741 /*
1742 * User is accessing the DSCR register using the problem
1743 * state only SPR number (0x03) either through a mfspr or
1744 * a mtspr instruction. If it is a write attempt through
1745 * a mtspr, then we set the inherit bit. This also allows
1746 * the user to write or read the register directly in the
1747 * future by setting via the FSCR DSCR bit. But in case it
1748 * is a read DSCR attempt through a mfspr instruction, we
1749 * just emulate the instruction instead. This code path will
1750 * always emulate all the mfspr instructions till the user
1751 * has attempted at least one mtspr instruction. This way it
1752 * preserves the same behaviour when the user is accessing
1753 * the DSCR through privilege level only SPR number (0x11)
1754 * which is emulated through illegal instruction exception.
1755 * We always leave HFSCR DSCR set.
1756 */
1757 if (get_user(instword, (u32 __user *)(regs->nip))) {
1758 pr_err("Failed to fetch the user instruction\n");
1759 return;
1760 }
1761
1762 /* Write into DSCR (mtspr 0x03, RS) */
1763 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1764 == PPC_INST_MTSPR_DSCR_USER) {
1765 rd = (instword >> 21) & 0x1f;
1766 current->thread.dscr = regs->gpr[rd];
1767 current->thread.dscr_inherit = 1;
1768 current->thread.fscr |= FSCR_DSCR;
1769 mtspr(SPRN_FSCR, current->thread.fscr);
1770 }
1771
1772 /* Read from DSCR (mfspr RT, 0x03) */
1773 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1774 == PPC_INST_MFSPR_DSCR_USER) {
1775 if (emulate_instruction(regs)) {
1776 pr_err("DSCR based mfspr emulation failed\n");
1777 return;
1778 }
1779 regs->nip += 4;
1780 emulate_single_step(regs);
1781 }
1782 return;
1783 }
1784
1785 if (status == FSCR_TM_LG) {
1786 /*
1787 * If we're here then the hardware is TM aware because it
1788 * generated an exception with FSRM_TM set.
1789 *
1790 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1791 * told us not to do TM, or the kernel is not built with TM
1792 * support.
1793 *
1794 * If both of those things are true, then userspace can spam the
1795 * console by triggering the printk() below just by continually
1796 * doing tbegin (or any TM instruction). So in that case just
1797 * send the process a SIGILL immediately.
1798 */
1799 if (!cpu_has_feature(CPU_FTR_TM))
1800 goto out;
1801
1802 tm_unavailable(regs);
1803 return;
1804 }
1805
1806 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1807 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1808
1809 out:
1810 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1811 }
1812 #endif
1813
1814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1815
1816 void fp_unavailable_tm(struct pt_regs *regs)
1817 {
1818 /* Note: This does not handle any kind of FP laziness. */
1819
1820 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1821 regs->nip, regs->msr);
1822
1823 /* We can only have got here if the task started using FP after
1824 * beginning the transaction. So, the transactional regs are just a
1825 * copy of the checkpointed ones. But, we still need to recheckpoint
1826 * as we're enabling FP for the process; it will return, abort the
1827 * transaction, and probably retry but now with FP enabled. So the
1828 * checkpointed FP registers need to be loaded.
1829 */
1830 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1831
1832 /*
1833 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1834 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1835 *
1836 * At this point, ck{fp,vr}_state contains the exact values we want to
1837 * recheckpoint.
1838 */
1839
1840 /* Enable FP for the task: */
1841 current->thread.load_fp = 1;
1842
1843 /*
1844 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1845 */
1846 tm_recheckpoint(&current->thread);
1847 }
1848
1849 void altivec_unavailable_tm(struct pt_regs *regs)
1850 {
1851 /* See the comments in fp_unavailable_tm(). This function operates
1852 * the same way.
1853 */
1854
1855 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1856 "MSR=%lx\n",
1857 regs->nip, regs->msr);
1858 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1859 current->thread.load_vec = 1;
1860 tm_recheckpoint(&current->thread);
1861 current->thread.used_vr = 1;
1862 }
1863
1864 void vsx_unavailable_tm(struct pt_regs *regs)
1865 {
1866 /* See the comments in fp_unavailable_tm(). This works similarly,
1867 * though we're loading both FP and VEC registers in here.
1868 *
1869 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1870 * regs. Either way, set MSR_VSX.
1871 */
1872
1873 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1874 "MSR=%lx\n",
1875 regs->nip, regs->msr);
1876
1877 current->thread.used_vsr = 1;
1878
1879 /* This reclaims FP and/or VR regs if they're already enabled */
1880 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1881
1882 current->thread.load_vec = 1;
1883 current->thread.load_fp = 1;
1884
1885 tm_recheckpoint(&current->thread);
1886 }
1887 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1888
1889 void performance_monitor_exception(struct pt_regs *regs)
1890 {
1891 __this_cpu_inc(irq_stat.pmu_irqs);
1892
1893 perf_irq(regs);
1894 }
1895
1896 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1897 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1898 {
1899 int changed = 0;
1900 /*
1901 * Determine the cause of the debug event, clear the
1902 * event flags and send a trap to the handler. Torez
1903 */
1904 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1905 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1906 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1907 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1908 #endif
1909 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1910 5);
1911 changed |= 0x01;
1912 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1913 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1914 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1915 6);
1916 changed |= 0x01;
1917 } else if (debug_status & DBSR_IAC1) {
1918 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1919 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1920 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1921 1);
1922 changed |= 0x01;
1923 } else if (debug_status & DBSR_IAC2) {
1924 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1925 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1926 2);
1927 changed |= 0x01;
1928 } else if (debug_status & DBSR_IAC3) {
1929 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1930 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1931 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1932 3);
1933 changed |= 0x01;
1934 } else if (debug_status & DBSR_IAC4) {
1935 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1936 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1937 4);
1938 changed |= 0x01;
1939 }
1940 /*
1941 * At the point this routine was called, the MSR(DE) was turned off.
1942 * Check all other debug flags and see if that bit needs to be turned
1943 * back on or not.
1944 */
1945 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1946 current->thread.debug.dbcr1))
1947 regs->msr |= MSR_DE;
1948 else
1949 /* Make sure the IDM flag is off */
1950 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1951
1952 if (changed & 0x01)
1953 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1954 }
1955
1956 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1957 {
1958 current->thread.debug.dbsr = debug_status;
1959
1960 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1961 * on server, it stops on the target of the branch. In order to simulate
1962 * the server behaviour, we thus restart right away with a single step
1963 * instead of stopping here when hitting a BT
1964 */
1965 if (debug_status & DBSR_BT) {
1966 regs->msr &= ~MSR_DE;
1967
1968 /* Disable BT */
1969 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1970 /* Clear the BT event */
1971 mtspr(SPRN_DBSR, DBSR_BT);
1972
1973 /* Do the single step trick only when coming from userspace */
1974 if (user_mode(regs)) {
1975 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1976 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1977 regs->msr |= MSR_DE;
1978 return;
1979 }
1980
1981 if (kprobe_post_handler(regs))
1982 return;
1983
1984 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1985 5, SIGTRAP) == NOTIFY_STOP) {
1986 return;
1987 }
1988 if (debugger_sstep(regs))
1989 return;
1990 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1991 regs->msr &= ~MSR_DE;
1992
1993 /* Disable instruction completion */
1994 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1995 /* Clear the instruction completion event */
1996 mtspr(SPRN_DBSR, DBSR_IC);
1997
1998 if (kprobe_post_handler(regs))
1999 return;
2000
2001 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2002 5, SIGTRAP) == NOTIFY_STOP) {
2003 return;
2004 }
2005
2006 if (debugger_sstep(regs))
2007 return;
2008
2009 if (user_mode(regs)) {
2010 current->thread.debug.dbcr0 &= ~DBCR0_IC;
2011 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2012 current->thread.debug.dbcr1))
2013 regs->msr |= MSR_DE;
2014 else
2015 /* Make sure the IDM bit is off */
2016 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2017 }
2018
2019 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2020 } else
2021 handle_debug(regs, debug_status);
2022 }
2023 NOKPROBE_SYMBOL(DebugException);
2024 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2025
2026 #if !defined(CONFIG_TAU_INT)
2027 void TAUException(struct pt_regs *regs)
2028 {
2029 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
2030 regs->nip, regs->msr, regs->trap, print_tainted());
2031 }
2032 #endif /* CONFIG_INT_TAU */
2033
2034 #ifdef CONFIG_ALTIVEC
2035 void altivec_assist_exception(struct pt_regs *regs)
2036 {
2037 int err;
2038
2039 if (!user_mode(regs)) {
2040 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2041 " at %lx\n", regs->nip);
2042 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2043 }
2044
2045 flush_altivec_to_thread(current);
2046
2047 PPC_WARN_EMULATED(altivec, regs);
2048 err = emulate_altivec(regs);
2049 if (err == 0) {
2050 regs->nip += 4; /* skip emulated instruction */
2051 emulate_single_step(regs);
2052 return;
2053 }
2054
2055 if (err == -EFAULT) {
2056 /* got an error reading the instruction */
2057 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2058 } else {
2059 /* didn't recognize the instruction */
2060 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2061 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2062 "in %s at %lx\n", current->comm, regs->nip);
2063 current->thread.vr_state.vscr.u[3] |= 0x10000;
2064 }
2065 }
2066 #endif /* CONFIG_ALTIVEC */
2067
2068 #ifdef CONFIG_FSL_BOOKE
2069 void CacheLockingException(struct pt_regs *regs, unsigned long address,
2070 unsigned long error_code)
2071 {
2072 /* We treat cache locking instructions from the user
2073 * as priv ops, in the future we could try to do
2074 * something smarter
2075 */
2076 if (error_code & (ESR_DLK|ESR_ILK))
2077 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2078 return;
2079 }
2080 #endif /* CONFIG_FSL_BOOKE */
2081
2082 #ifdef CONFIG_SPE
2083 void SPEFloatingPointException(struct pt_regs *regs)
2084 {
2085 extern int do_spe_mathemu(struct pt_regs *regs);
2086 unsigned long spefscr;
2087 int fpexc_mode;
2088 int code = FPE_FLTUNK;
2089 int err;
2090
2091 /* We restore the interrupt state now */
2092 if (!arch_irq_disabled_regs(regs))
2093 local_irq_enable();
2094
2095 flush_spe_to_thread(current);
2096
2097 spefscr = current->thread.spefscr;
2098 fpexc_mode = current->thread.fpexc_mode;
2099
2100 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2101 code = FPE_FLTOVF;
2102 }
2103 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2104 code = FPE_FLTUND;
2105 }
2106 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2107 code = FPE_FLTDIV;
2108 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2109 code = FPE_FLTINV;
2110 }
2111 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2112 code = FPE_FLTRES;
2113
2114 err = do_spe_mathemu(regs);
2115 if (err == 0) {
2116 regs->nip += 4; /* skip emulated instruction */
2117 emulate_single_step(regs);
2118 return;
2119 }
2120
2121 if (err == -EFAULT) {
2122 /* got an error reading the instruction */
2123 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2124 } else if (err == -EINVAL) {
2125 /* didn't recognize the instruction */
2126 printk(KERN_ERR "unrecognized spe instruction "
2127 "in %s at %lx\n", current->comm, regs->nip);
2128 } else {
2129 _exception(SIGFPE, regs, code, regs->nip);
2130 }
2131
2132 return;
2133 }
2134
2135 void SPEFloatingPointRoundException(struct pt_regs *regs)
2136 {
2137 extern int speround_handler(struct pt_regs *regs);
2138 int err;
2139
2140 /* We restore the interrupt state now */
2141 if (!arch_irq_disabled_regs(regs))
2142 local_irq_enable();
2143
2144 preempt_disable();
2145 if (regs->msr & MSR_SPE)
2146 giveup_spe(current);
2147 preempt_enable();
2148
2149 regs->nip -= 4;
2150 err = speround_handler(regs);
2151 if (err == 0) {
2152 regs->nip += 4; /* skip emulated instruction */
2153 emulate_single_step(regs);
2154 return;
2155 }
2156
2157 if (err == -EFAULT) {
2158 /* got an error reading the instruction */
2159 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2160 } else if (err == -EINVAL) {
2161 /* didn't recognize the instruction */
2162 printk(KERN_ERR "unrecognized spe instruction "
2163 "in %s at %lx\n", current->comm, regs->nip);
2164 } else {
2165 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2166 return;
2167 }
2168 }
2169 #endif
2170
2171 /*
2172 * We enter here if we get an unrecoverable exception, that is, one
2173 * that happened at a point where the RI (recoverable interrupt) bit
2174 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2175 * we therefore lost state by taking this exception.
2176 */
2177 void unrecoverable_exception(struct pt_regs *regs)
2178 {
2179 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2180 regs->trap, regs->nip, regs->msr);
2181 die("Unrecoverable exception", regs, SIGABRT);
2182 }
2183 NOKPROBE_SYMBOL(unrecoverable_exception);
2184
2185 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2186 /*
2187 * Default handler for a Watchdog exception,
2188 * spins until a reboot occurs
2189 */
2190 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2191 {
2192 /* Generic WatchdogHandler, implement your own */
2193 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2194 return;
2195 }
2196
2197 void WatchdogException(struct pt_regs *regs)
2198 {
2199 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2200 WatchdogHandler(regs);
2201 }
2202 #endif
2203
2204 /*
2205 * We enter here if we discover during exception entry that we are
2206 * running in supervisor mode with a userspace value in the stack pointer.
2207 */
2208 void kernel_bad_stack(struct pt_regs *regs)
2209 {
2210 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2211 regs->gpr[1], regs->nip);
2212 die("Bad kernel stack pointer", regs, SIGABRT);
2213 }
2214 NOKPROBE_SYMBOL(kernel_bad_stack);
2215
2216 void __init trap_init(void)
2217 {
2218 }
2219
2220
2221 #ifdef CONFIG_PPC_EMULATED_STATS
2222
2223 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2224
2225 struct ppc_emulated ppc_emulated = {
2226 #ifdef CONFIG_ALTIVEC
2227 WARN_EMULATED_SETUP(altivec),
2228 #endif
2229 WARN_EMULATED_SETUP(dcba),
2230 WARN_EMULATED_SETUP(dcbz),
2231 WARN_EMULATED_SETUP(fp_pair),
2232 WARN_EMULATED_SETUP(isel),
2233 WARN_EMULATED_SETUP(mcrxr),
2234 WARN_EMULATED_SETUP(mfpvr),
2235 WARN_EMULATED_SETUP(multiple),
2236 WARN_EMULATED_SETUP(popcntb),
2237 WARN_EMULATED_SETUP(spe),
2238 WARN_EMULATED_SETUP(string),
2239 WARN_EMULATED_SETUP(sync),
2240 WARN_EMULATED_SETUP(unaligned),
2241 #ifdef CONFIG_MATH_EMULATION
2242 WARN_EMULATED_SETUP(math),
2243 #endif
2244 #ifdef CONFIG_VSX
2245 WARN_EMULATED_SETUP(vsx),
2246 #endif
2247 #ifdef CONFIG_PPC64
2248 WARN_EMULATED_SETUP(mfdscr),
2249 WARN_EMULATED_SETUP(mtdscr),
2250 WARN_EMULATED_SETUP(lq_stq),
2251 WARN_EMULATED_SETUP(lxvw4x),
2252 WARN_EMULATED_SETUP(lxvh8x),
2253 WARN_EMULATED_SETUP(lxvd2x),
2254 WARN_EMULATED_SETUP(lxvb16x),
2255 #endif
2256 };
2257
2258 u32 ppc_warn_emulated;
2259
2260 void ppc_warn_emulated_print(const char *type)
2261 {
2262 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2263 type);
2264 }
2265
2266 static int __init ppc_warn_emulated_init(void)
2267 {
2268 struct dentry *dir, *d;
2269 unsigned int i;
2270 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2271
2272 if (!powerpc_debugfs_root)
2273 return -ENODEV;
2274
2275 dir = debugfs_create_dir("emulated_instructions",
2276 powerpc_debugfs_root);
2277 if (!dir)
2278 return -ENOMEM;
2279
2280 d = debugfs_create_u32("do_warn", 0644, dir,
2281 &ppc_warn_emulated);
2282 if (!d)
2283 goto fail;
2284
2285 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2286 d = debugfs_create_u32(entries[i].name, 0644, dir,
2287 (u32 *)&entries[i].val.counter);
2288 if (!d)
2289 goto fail;
2290 }
2291
2292 return 0;
2293
2294 fail:
2295 debugfs_remove_recursive(dir);
2296 return -ENOMEM;
2297 }
2298
2299 device_initcall(ppc_warn_emulated_init);
2300
2301 #endif /* CONFIG_PPC_EMULATED_STATS */