]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/book3s_64_mmu_hv.c
KVM: PPC: Book3S HV: Fix sparse static warning
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/book3s/64/mmu-hash.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
40
41 #include "trace_hv.h"
42
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER 18
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53 unsigned long hpt = 0;
54 struct revmap_entry *rev;
55 struct page *page = NULL;
56 long order = KVM_DEFAULT_HPT_ORDER;
57
58 if (htab_orderp) {
59 order = *htab_orderp;
60 if (order < PPC_MIN_HPT_ORDER)
61 order = PPC_MIN_HPT_ORDER;
62 }
63
64 kvm->arch.hpt_cma_alloc = 0;
65 page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 if (page) {
67 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68 memset((void *)hpt, 0, (1ul << order));
69 kvm->arch.hpt_cma_alloc = 1;
70 }
71
72 /* Lastly try successively smaller sizes from the page allocator */
73 /* Only do this if userspace didn't specify a size via ioctl */
74 while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
76 __GFP_NOWARN, order - PAGE_SHIFT);
77 if (!hpt)
78 --order;
79 }
80
81 if (!hpt)
82 return -ENOMEM;
83
84 kvm->arch.hpt_virt = hpt;
85 kvm->arch.hpt_order = order;
86 /* HPTEs are 2**4 bytes long */
87 kvm->arch.hpt_npte = 1ul << (order - 4);
88 /* 128 (2**7) bytes in each HPTEG */
89 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90
91 /* Allocate reverse map array */
92 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
93 if (!rev) {
94 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
95 goto out_freehpt;
96 }
97 kvm->arch.revmap = rev;
98 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
99
100 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
101 hpt, order, kvm->arch.lpid);
102
103 if (htab_orderp)
104 *htab_orderp = order;
105 return 0;
106
107 out_freehpt:
108 if (kvm->arch.hpt_cma_alloc)
109 kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
110 else
111 free_pages(hpt, order - PAGE_SHIFT);
112 return -ENOMEM;
113 }
114
115 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
116 {
117 long err = -EBUSY;
118 long order;
119
120 mutex_lock(&kvm->lock);
121 if (kvm->arch.hpte_setup_done) {
122 kvm->arch.hpte_setup_done = 0;
123 /* order hpte_setup_done vs. vcpus_running */
124 smp_mb();
125 if (atomic_read(&kvm->arch.vcpus_running)) {
126 kvm->arch.hpte_setup_done = 1;
127 goto out;
128 }
129 }
130 if (kvm->arch.hpt_virt) {
131 order = kvm->arch.hpt_order;
132 /* Set the entire HPT to 0, i.e. invalid HPTEs */
133 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
134 /*
135 * Reset all the reverse-mapping chains for all memslots
136 */
137 kvmppc_rmap_reset(kvm);
138 /* Ensure that each vcpu will flush its TLB on next entry. */
139 cpumask_setall(&kvm->arch.need_tlb_flush);
140 *htab_orderp = order;
141 err = 0;
142 } else {
143 err = kvmppc_alloc_hpt(kvm, htab_orderp);
144 order = *htab_orderp;
145 }
146 out:
147 mutex_unlock(&kvm->lock);
148 return err;
149 }
150
151 void kvmppc_free_hpt(struct kvm *kvm)
152 {
153 kvmppc_free_lpid(kvm->arch.lpid);
154 vfree(kvm->arch.revmap);
155 if (kvm->arch.hpt_cma_alloc)
156 kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
157 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
158 else
159 free_pages(kvm->arch.hpt_virt,
160 kvm->arch.hpt_order - PAGE_SHIFT);
161 }
162
163 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
164 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
165 {
166 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
167 }
168
169 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
170 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
171 {
172 return (pgsize == 0x10000) ? 0x1000 : 0;
173 }
174
175 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
176 unsigned long porder)
177 {
178 unsigned long i;
179 unsigned long npages;
180 unsigned long hp_v, hp_r;
181 unsigned long addr, hash;
182 unsigned long psize;
183 unsigned long hp0, hp1;
184 unsigned long idx_ret;
185 long ret;
186 struct kvm *kvm = vcpu->kvm;
187
188 psize = 1ul << porder;
189 npages = memslot->npages >> (porder - PAGE_SHIFT);
190
191 /* VRMA can't be > 1TB */
192 if (npages > 1ul << (40 - porder))
193 npages = 1ul << (40 - porder);
194 /* Can't use more than 1 HPTE per HPTEG */
195 if (npages > kvm->arch.hpt_mask + 1)
196 npages = kvm->arch.hpt_mask + 1;
197
198 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
199 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
200 hp1 = hpte1_pgsize_encoding(psize) |
201 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
202
203 for (i = 0; i < npages; ++i) {
204 addr = i << porder;
205 /* can't use hpt_hash since va > 64 bits */
206 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
207 /*
208 * We assume that the hash table is empty and no
209 * vcpus are using it at this stage. Since we create
210 * at most one HPTE per HPTEG, we just assume entry 7
211 * is available and use it.
212 */
213 hash = (hash << 3) + 7;
214 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
215 hp_r = hp1 | addr;
216 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
217 &idx_ret);
218 if (ret != H_SUCCESS) {
219 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
220 addr, ret);
221 break;
222 }
223 }
224 }
225
226 int kvmppc_mmu_hv_init(void)
227 {
228 unsigned long host_lpid, rsvd_lpid;
229
230 if (!cpu_has_feature(CPU_FTR_HVMODE))
231 return -EINVAL;
232
233 /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
234 host_lpid = mfspr(SPRN_LPID);
235 rsvd_lpid = LPID_RSVD;
236
237 kvmppc_init_lpid(rsvd_lpid + 1);
238
239 kvmppc_claim_lpid(host_lpid);
240 /* rsvd_lpid is reserved for use in partition switching */
241 kvmppc_claim_lpid(rsvd_lpid);
242
243 return 0;
244 }
245
246 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
247 {
248 unsigned long msr = vcpu->arch.intr_msr;
249
250 /* If transactional, change to suspend mode on IRQ delivery */
251 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
252 msr |= MSR_TS_S;
253 else
254 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
255 kvmppc_set_msr(vcpu, msr);
256 }
257
258 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
259 long pte_index, unsigned long pteh,
260 unsigned long ptel, unsigned long *pte_idx_ret)
261 {
262 long ret;
263
264 /* Protect linux PTE lookup from page table destruction */
265 rcu_read_lock_sched(); /* this disables preemption too */
266 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
267 current->mm->pgd, false, pte_idx_ret);
268 rcu_read_unlock_sched();
269 if (ret == H_TOO_HARD) {
270 /* this can't happen */
271 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
272 ret = H_RESOURCE; /* or something */
273 }
274 return ret;
275
276 }
277
278 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
279 gva_t eaddr)
280 {
281 u64 mask;
282 int i;
283
284 for (i = 0; i < vcpu->arch.slb_nr; i++) {
285 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
286 continue;
287
288 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
289 mask = ESID_MASK_1T;
290 else
291 mask = ESID_MASK;
292
293 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
294 return &vcpu->arch.slb[i];
295 }
296 return NULL;
297 }
298
299 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
300 unsigned long ea)
301 {
302 unsigned long ra_mask;
303
304 ra_mask = hpte_page_size(v, r) - 1;
305 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
306 }
307
308 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
309 struct kvmppc_pte *gpte, bool data, bool iswrite)
310 {
311 struct kvm *kvm = vcpu->kvm;
312 struct kvmppc_slb *slbe;
313 unsigned long slb_v;
314 unsigned long pp, key;
315 unsigned long v, gr;
316 __be64 *hptep;
317 int index;
318 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
319
320 /* Get SLB entry */
321 if (virtmode) {
322 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
323 if (!slbe)
324 return -EINVAL;
325 slb_v = slbe->origv;
326 } else {
327 /* real mode access */
328 slb_v = vcpu->kvm->arch.vrma_slb_v;
329 }
330
331 preempt_disable();
332 /* Find the HPTE in the hash table */
333 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
334 HPTE_V_VALID | HPTE_V_ABSENT);
335 if (index < 0) {
336 preempt_enable();
337 return -ENOENT;
338 }
339 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
340 v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
341 gr = kvm->arch.revmap[index].guest_rpte;
342
343 unlock_hpte(hptep, v);
344 preempt_enable();
345
346 gpte->eaddr = eaddr;
347 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
348
349 /* Get PP bits and key for permission check */
350 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
351 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
352 key &= slb_v;
353
354 /* Calculate permissions */
355 gpte->may_read = hpte_read_permission(pp, key);
356 gpte->may_write = hpte_write_permission(pp, key);
357 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
358
359 /* Storage key permission check for POWER7 */
360 if (data && virtmode) {
361 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
362 if (amrfield & 1)
363 gpte->may_read = 0;
364 if (amrfield & 2)
365 gpte->may_write = 0;
366 }
367
368 /* Get the guest physical address */
369 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
370 return 0;
371 }
372
373 /*
374 * Quick test for whether an instruction is a load or a store.
375 * If the instruction is a load or a store, then this will indicate
376 * which it is, at least on server processors. (Embedded processors
377 * have some external PID instructions that don't follow the rule
378 * embodied here.) If the instruction isn't a load or store, then
379 * this doesn't return anything useful.
380 */
381 static int instruction_is_store(unsigned int instr)
382 {
383 unsigned int mask;
384
385 mask = 0x10000000;
386 if ((instr & 0xfc000000) == 0x7c000000)
387 mask = 0x100; /* major opcode 31 */
388 return (instr & mask) != 0;
389 }
390
391 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392 unsigned long gpa, gva_t ea, int is_store)
393 {
394 u32 last_inst;
395
396 /*
397 * If we fail, we just return to the guest and try executing it again.
398 */
399 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
400 EMULATE_DONE)
401 return RESUME_GUEST;
402
403 /*
404 * WARNING: We do not know for sure whether the instruction we just
405 * read from memory is the same that caused the fault in the first
406 * place. If the instruction we read is neither an load or a store,
407 * then it can't access memory, so we don't need to worry about
408 * enforcing access permissions. So, assuming it is a load or
409 * store, we just check that its direction (load or store) is
410 * consistent with the original fault, since that's what we
411 * checked the access permissions against. If there is a mismatch
412 * we just return and retry the instruction.
413 */
414
415 if (instruction_is_store(last_inst) != !!is_store)
416 return RESUME_GUEST;
417
418 /*
419 * Emulated accesses are emulated by looking at the hash for
420 * translation once, then performing the access later. The
421 * translation could be invalidated in the meantime in which
422 * point performing the subsequent memory access on the old
423 * physical address could possibly be a security hole for the
424 * guest (but not the host).
425 *
426 * This is less of an issue for MMIO stores since they aren't
427 * globally visible. It could be an issue for MMIO loads to
428 * a certain extent but we'll ignore it for now.
429 */
430
431 vcpu->arch.paddr_accessed = gpa;
432 vcpu->arch.vaddr_accessed = ea;
433 return kvmppc_emulate_mmio(run, vcpu);
434 }
435
436 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
437 unsigned long ea, unsigned long dsisr)
438 {
439 struct kvm *kvm = vcpu->kvm;
440 unsigned long hpte[3], r;
441 __be64 *hptep;
442 unsigned long mmu_seq, psize, pte_size;
443 unsigned long gpa_base, gfn_base;
444 unsigned long gpa, gfn, hva, pfn;
445 struct kvm_memory_slot *memslot;
446 unsigned long *rmap;
447 struct revmap_entry *rev;
448 struct page *page, *pages[1];
449 long index, ret, npages;
450 bool is_ci;
451 unsigned int writing, write_ok;
452 struct vm_area_struct *vma;
453 unsigned long rcbits;
454
455 /*
456 * Real-mode code has already searched the HPT and found the
457 * entry we're interested in. Lock the entry and check that
458 * it hasn't changed. If it has, just return and re-execute the
459 * instruction.
460 */
461 if (ea != vcpu->arch.pgfault_addr)
462 return RESUME_GUEST;
463 index = vcpu->arch.pgfault_index;
464 hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 rev = &kvm->arch.revmap[index];
466 preempt_disable();
467 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
468 cpu_relax();
469 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
470 hpte[1] = be64_to_cpu(hptep[1]);
471 hpte[2] = r = rev->guest_rpte;
472 unlock_hpte(hptep, hpte[0]);
473 preempt_enable();
474
475 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
476 hpte[1] != vcpu->arch.pgfault_hpte[1])
477 return RESUME_GUEST;
478
479 /* Translate the logical address and get the page */
480 psize = hpte_page_size(hpte[0], r);
481 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
482 gfn_base = gpa_base >> PAGE_SHIFT;
483 gpa = gpa_base | (ea & (psize - 1));
484 gfn = gpa >> PAGE_SHIFT;
485 memslot = gfn_to_memslot(kvm, gfn);
486
487 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
488
489 /* No memslot means it's an emulated MMIO region */
490 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
491 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
492 dsisr & DSISR_ISSTORE);
493
494 /*
495 * This should never happen, because of the slot_is_aligned()
496 * check in kvmppc_do_h_enter().
497 */
498 if (gfn_base < memslot->base_gfn)
499 return -EFAULT;
500
501 /* used to check for invalidations in progress */
502 mmu_seq = kvm->mmu_notifier_seq;
503 smp_rmb();
504
505 ret = -EFAULT;
506 is_ci = false;
507 pfn = 0;
508 page = NULL;
509 pte_size = PAGE_SIZE;
510 writing = (dsisr & DSISR_ISSTORE) != 0;
511 /* If writing != 0, then the HPTE must allow writing, if we get here */
512 write_ok = writing;
513 hva = gfn_to_hva_memslot(memslot, gfn);
514 npages = get_user_pages_fast(hva, 1, writing, pages);
515 if (npages < 1) {
516 /* Check if it's an I/O mapping */
517 down_read(&current->mm->mmap_sem);
518 vma = find_vma(current->mm, hva);
519 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
520 (vma->vm_flags & VM_PFNMAP)) {
521 pfn = vma->vm_pgoff +
522 ((hva - vma->vm_start) >> PAGE_SHIFT);
523 pte_size = psize;
524 is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
525 write_ok = vma->vm_flags & VM_WRITE;
526 }
527 up_read(&current->mm->mmap_sem);
528 if (!pfn)
529 goto out_put;
530 } else {
531 page = pages[0];
532 pfn = page_to_pfn(page);
533 if (PageHuge(page)) {
534 page = compound_head(page);
535 pte_size <<= compound_order(page);
536 }
537 /* if the guest wants write access, see if that is OK */
538 if (!writing && hpte_is_writable(r)) {
539 pte_t *ptep, pte;
540 unsigned long flags;
541 /*
542 * We need to protect against page table destruction
543 * hugepage split and collapse.
544 */
545 local_irq_save(flags);
546 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
547 hva, NULL, NULL);
548 if (ptep) {
549 pte = kvmppc_read_update_linux_pte(ptep, 1);
550 if (pte_write(pte))
551 write_ok = 1;
552 }
553 local_irq_restore(flags);
554 }
555 }
556
557 if (psize > pte_size)
558 goto out_put;
559
560 /* Check WIMG vs. the actual page we're accessing */
561 if (!hpte_cache_flags_ok(r, is_ci)) {
562 if (is_ci)
563 goto out_put;
564 /*
565 * Allow guest to map emulated device memory as
566 * uncacheable, but actually make it cacheable.
567 */
568 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
569 }
570
571 /*
572 * Set the HPTE to point to pfn.
573 * Since the pfn is at PAGE_SIZE granularity, make sure we
574 * don't mask out lower-order bits if psize < PAGE_SIZE.
575 */
576 if (psize < PAGE_SIZE)
577 psize = PAGE_SIZE;
578 r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
579 if (hpte_is_writable(r) && !write_ok)
580 r = hpte_make_readonly(r);
581 ret = RESUME_GUEST;
582 preempt_disable();
583 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
584 cpu_relax();
585 if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
586 be64_to_cpu(hptep[1]) != hpte[1] ||
587 rev->guest_rpte != hpte[2])
588 /* HPTE has been changed under us; let the guest retry */
589 goto out_unlock;
590 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
591
592 /* Always put the HPTE in the rmap chain for the page base address */
593 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
594 lock_rmap(rmap);
595
596 /* Check if we might have been invalidated; let the guest retry if so */
597 ret = RESUME_GUEST;
598 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
599 unlock_rmap(rmap);
600 goto out_unlock;
601 }
602
603 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
604 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
605 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
606
607 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
608 /* HPTE was previously valid, so we need to invalidate it */
609 unlock_rmap(rmap);
610 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
611 kvmppc_invalidate_hpte(kvm, hptep, index);
612 /* don't lose previous R and C bits */
613 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
614 } else {
615 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
616 }
617
618 hptep[1] = cpu_to_be64(r);
619 eieio();
620 __unlock_hpte(hptep, hpte[0]);
621 asm volatile("ptesync" : : : "memory");
622 preempt_enable();
623 if (page && hpte_is_writable(r))
624 SetPageDirty(page);
625
626 out_put:
627 trace_kvm_page_fault_exit(vcpu, hpte, ret);
628
629 if (page) {
630 /*
631 * We drop pages[0] here, not page because page might
632 * have been set to the head page of a compound, but
633 * we have to drop the reference on the correct tail
634 * page to match the get inside gup()
635 */
636 put_page(pages[0]);
637 }
638 return ret;
639
640 out_unlock:
641 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
642 preempt_enable();
643 goto out_put;
644 }
645
646 static void kvmppc_rmap_reset(struct kvm *kvm)
647 {
648 struct kvm_memslots *slots;
649 struct kvm_memory_slot *memslot;
650 int srcu_idx;
651
652 srcu_idx = srcu_read_lock(&kvm->srcu);
653 slots = kvm_memslots(kvm);
654 kvm_for_each_memslot(memslot, slots) {
655 /*
656 * This assumes it is acceptable to lose reference and
657 * change bits across a reset.
658 */
659 memset(memslot->arch.rmap, 0,
660 memslot->npages * sizeof(*memslot->arch.rmap));
661 }
662 srcu_read_unlock(&kvm->srcu, srcu_idx);
663 }
664
665 static int kvm_handle_hva_range(struct kvm *kvm,
666 unsigned long start,
667 unsigned long end,
668 int (*handler)(struct kvm *kvm,
669 unsigned long *rmapp,
670 unsigned long gfn))
671 {
672 int ret;
673 int retval = 0;
674 struct kvm_memslots *slots;
675 struct kvm_memory_slot *memslot;
676
677 slots = kvm_memslots(kvm);
678 kvm_for_each_memslot(memslot, slots) {
679 unsigned long hva_start, hva_end;
680 gfn_t gfn, gfn_end;
681
682 hva_start = max(start, memslot->userspace_addr);
683 hva_end = min(end, memslot->userspace_addr +
684 (memslot->npages << PAGE_SHIFT));
685 if (hva_start >= hva_end)
686 continue;
687 /*
688 * {gfn(page) | page intersects with [hva_start, hva_end)} =
689 * {gfn, gfn+1, ..., gfn_end-1}.
690 */
691 gfn = hva_to_gfn_memslot(hva_start, memslot);
692 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
693
694 for (; gfn < gfn_end; ++gfn) {
695 gfn_t gfn_offset = gfn - memslot->base_gfn;
696
697 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
698 retval |= ret;
699 }
700 }
701
702 return retval;
703 }
704
705 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
706 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
707 unsigned long gfn))
708 {
709 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
710 }
711
712 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
713 unsigned long gfn)
714 {
715 struct revmap_entry *rev = kvm->arch.revmap;
716 unsigned long h, i, j;
717 __be64 *hptep;
718 unsigned long ptel, psize, rcbits;
719
720 for (;;) {
721 lock_rmap(rmapp);
722 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
723 unlock_rmap(rmapp);
724 break;
725 }
726
727 /*
728 * To avoid an ABBA deadlock with the HPTE lock bit,
729 * we can't spin on the HPTE lock while holding the
730 * rmap chain lock.
731 */
732 i = *rmapp & KVMPPC_RMAP_INDEX;
733 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
734 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
735 /* unlock rmap before spinning on the HPTE lock */
736 unlock_rmap(rmapp);
737 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
738 cpu_relax();
739 continue;
740 }
741 j = rev[i].forw;
742 if (j == i) {
743 /* chain is now empty */
744 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
745 } else {
746 /* remove i from chain */
747 h = rev[i].back;
748 rev[h].forw = j;
749 rev[j].back = h;
750 rev[i].forw = rev[i].back = i;
751 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
752 }
753
754 /* Now check and modify the HPTE */
755 ptel = rev[i].guest_rpte;
756 psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
757 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
758 hpte_rpn(ptel, psize) == gfn) {
759 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
760 kvmppc_invalidate_hpte(kvm, hptep, i);
761 /* Harvest R and C */
762 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
763 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
764 if (rcbits & HPTE_R_C)
765 kvmppc_update_rmap_change(rmapp, psize);
766 if (rcbits & ~rev[i].guest_rpte) {
767 rev[i].guest_rpte = ptel | rcbits;
768 note_hpte_modification(kvm, &rev[i]);
769 }
770 }
771 unlock_rmap(rmapp);
772 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
773 }
774 return 0;
775 }
776
777 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
778 {
779 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
780 return 0;
781 }
782
783 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
784 {
785 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
786 return 0;
787 }
788
789 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
790 struct kvm_memory_slot *memslot)
791 {
792 unsigned long *rmapp;
793 unsigned long gfn;
794 unsigned long n;
795
796 rmapp = memslot->arch.rmap;
797 gfn = memslot->base_gfn;
798 for (n = memslot->npages; n; --n) {
799 /*
800 * Testing the present bit without locking is OK because
801 * the memslot has been marked invalid already, and hence
802 * no new HPTEs referencing this page can be created,
803 * thus the present bit can't go from 0 to 1.
804 */
805 if (*rmapp & KVMPPC_RMAP_PRESENT)
806 kvm_unmap_rmapp(kvm, rmapp, gfn);
807 ++rmapp;
808 ++gfn;
809 }
810 }
811
812 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
813 unsigned long gfn)
814 {
815 struct revmap_entry *rev = kvm->arch.revmap;
816 unsigned long head, i, j;
817 __be64 *hptep;
818 int ret = 0;
819
820 retry:
821 lock_rmap(rmapp);
822 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
823 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
824 ret = 1;
825 }
826 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
827 unlock_rmap(rmapp);
828 return ret;
829 }
830
831 i = head = *rmapp & KVMPPC_RMAP_INDEX;
832 do {
833 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
834 j = rev[i].forw;
835
836 /* If this HPTE isn't referenced, ignore it */
837 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
838 continue;
839
840 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
841 /* unlock rmap before spinning on the HPTE lock */
842 unlock_rmap(rmapp);
843 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
844 cpu_relax();
845 goto retry;
846 }
847
848 /* Now check and modify the HPTE */
849 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
850 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
851 kvmppc_clear_ref_hpte(kvm, hptep, i);
852 if (!(rev[i].guest_rpte & HPTE_R_R)) {
853 rev[i].guest_rpte |= HPTE_R_R;
854 note_hpte_modification(kvm, &rev[i]);
855 }
856 ret = 1;
857 }
858 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
859 } while ((i = j) != head);
860
861 unlock_rmap(rmapp);
862 return ret;
863 }
864
865 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
866 {
867 return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
868 }
869
870 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
871 unsigned long gfn)
872 {
873 struct revmap_entry *rev = kvm->arch.revmap;
874 unsigned long head, i, j;
875 unsigned long *hp;
876 int ret = 1;
877
878 if (*rmapp & KVMPPC_RMAP_REFERENCED)
879 return 1;
880
881 lock_rmap(rmapp);
882 if (*rmapp & KVMPPC_RMAP_REFERENCED)
883 goto out;
884
885 if (*rmapp & KVMPPC_RMAP_PRESENT) {
886 i = head = *rmapp & KVMPPC_RMAP_INDEX;
887 do {
888 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
889 j = rev[i].forw;
890 if (be64_to_cpu(hp[1]) & HPTE_R_R)
891 goto out;
892 } while ((i = j) != head);
893 }
894 ret = 0;
895
896 out:
897 unlock_rmap(rmapp);
898 return ret;
899 }
900
901 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
902 {
903 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
904 }
905
906 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
907 {
908 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
909 }
910
911 static int vcpus_running(struct kvm *kvm)
912 {
913 return atomic_read(&kvm->arch.vcpus_running) != 0;
914 }
915
916 /*
917 * Returns the number of system pages that are dirty.
918 * This can be more than 1 if we find a huge-page HPTE.
919 */
920 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
921 {
922 struct revmap_entry *rev = kvm->arch.revmap;
923 unsigned long head, i, j;
924 unsigned long n;
925 unsigned long v, r;
926 __be64 *hptep;
927 int npages_dirty = 0;
928
929 retry:
930 lock_rmap(rmapp);
931 if (*rmapp & KVMPPC_RMAP_CHANGED) {
932 long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
933 >> KVMPPC_RMAP_CHG_SHIFT;
934 *rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
935 npages_dirty = 1;
936 if (change_order > PAGE_SHIFT)
937 npages_dirty = 1ul << (change_order - PAGE_SHIFT);
938 }
939 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
940 unlock_rmap(rmapp);
941 return npages_dirty;
942 }
943
944 i = head = *rmapp & KVMPPC_RMAP_INDEX;
945 do {
946 unsigned long hptep1;
947 hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
948 j = rev[i].forw;
949
950 /*
951 * Checking the C (changed) bit here is racy since there
952 * is no guarantee about when the hardware writes it back.
953 * If the HPTE is not writable then it is stable since the
954 * page can't be written to, and we would have done a tlbie
955 * (which forces the hardware to complete any writeback)
956 * when making the HPTE read-only.
957 * If vcpus are running then this call is racy anyway
958 * since the page could get dirtied subsequently, so we
959 * expect there to be a further call which would pick up
960 * any delayed C bit writeback.
961 * Otherwise we need to do the tlbie even if C==0 in
962 * order to pick up any delayed writeback of C.
963 */
964 hptep1 = be64_to_cpu(hptep[1]);
965 if (!(hptep1 & HPTE_R_C) &&
966 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
967 continue;
968
969 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
970 /* unlock rmap before spinning on the HPTE lock */
971 unlock_rmap(rmapp);
972 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
973 cpu_relax();
974 goto retry;
975 }
976
977 /* Now check and modify the HPTE */
978 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
979 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
980 continue;
981 }
982
983 /* need to make it temporarily absent so C is stable */
984 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
985 kvmppc_invalidate_hpte(kvm, hptep, i);
986 v = be64_to_cpu(hptep[0]);
987 r = be64_to_cpu(hptep[1]);
988 if (r & HPTE_R_C) {
989 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
990 if (!(rev[i].guest_rpte & HPTE_R_C)) {
991 rev[i].guest_rpte |= HPTE_R_C;
992 note_hpte_modification(kvm, &rev[i]);
993 }
994 n = hpte_page_size(v, r);
995 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
996 if (n > npages_dirty)
997 npages_dirty = n;
998 eieio();
999 }
1000 v &= ~HPTE_V_ABSENT;
1001 v |= HPTE_V_VALID;
1002 __unlock_hpte(hptep, v);
1003 } while ((i = j) != head);
1004
1005 unlock_rmap(rmapp);
1006 return npages_dirty;
1007 }
1008
1009 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1010 struct kvm_memory_slot *memslot,
1011 unsigned long *map)
1012 {
1013 unsigned long gfn;
1014
1015 if (!vpa->dirty || !vpa->pinned_addr)
1016 return;
1017 gfn = vpa->gpa >> PAGE_SHIFT;
1018 if (gfn < memslot->base_gfn ||
1019 gfn >= memslot->base_gfn + memslot->npages)
1020 return;
1021
1022 vpa->dirty = false;
1023 if (map)
1024 __set_bit_le(gfn - memslot->base_gfn, map);
1025 }
1026
1027 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1028 unsigned long *map)
1029 {
1030 unsigned long i, j;
1031 unsigned long *rmapp;
1032 struct kvm_vcpu *vcpu;
1033
1034 preempt_disable();
1035 rmapp = memslot->arch.rmap;
1036 for (i = 0; i < memslot->npages; ++i) {
1037 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1038 /*
1039 * Note that if npages > 0 then i must be a multiple of npages,
1040 * since we always put huge-page HPTEs in the rmap chain
1041 * corresponding to their page base address.
1042 */
1043 if (npages && map)
1044 for (j = i; npages; ++j, --npages)
1045 __set_bit_le(j, map);
1046 ++rmapp;
1047 }
1048
1049 /* Harvest dirty bits from VPA and DTL updates */
1050 /* Note: we never modify the SLB shadow buffer areas */
1051 kvm_for_each_vcpu(i, vcpu, kvm) {
1052 spin_lock(&vcpu->arch.vpa_update_lock);
1053 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1054 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1055 spin_unlock(&vcpu->arch.vpa_update_lock);
1056 }
1057 preempt_enable();
1058 return 0;
1059 }
1060
1061 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1062 unsigned long *nb_ret)
1063 {
1064 struct kvm_memory_slot *memslot;
1065 unsigned long gfn = gpa >> PAGE_SHIFT;
1066 struct page *page, *pages[1];
1067 int npages;
1068 unsigned long hva, offset;
1069 int srcu_idx;
1070
1071 srcu_idx = srcu_read_lock(&kvm->srcu);
1072 memslot = gfn_to_memslot(kvm, gfn);
1073 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1074 goto err;
1075 hva = gfn_to_hva_memslot(memslot, gfn);
1076 npages = get_user_pages_fast(hva, 1, 1, pages);
1077 if (npages < 1)
1078 goto err;
1079 page = pages[0];
1080 srcu_read_unlock(&kvm->srcu, srcu_idx);
1081
1082 offset = gpa & (PAGE_SIZE - 1);
1083 if (nb_ret)
1084 *nb_ret = PAGE_SIZE - offset;
1085 return page_address(page) + offset;
1086
1087 err:
1088 srcu_read_unlock(&kvm->srcu, srcu_idx);
1089 return NULL;
1090 }
1091
1092 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1093 bool dirty)
1094 {
1095 struct page *page = virt_to_page(va);
1096 struct kvm_memory_slot *memslot;
1097 unsigned long gfn;
1098 unsigned long *rmap;
1099 int srcu_idx;
1100
1101 put_page(page);
1102
1103 if (!dirty)
1104 return;
1105
1106 /* We need to mark this page dirty in the rmap chain */
1107 gfn = gpa >> PAGE_SHIFT;
1108 srcu_idx = srcu_read_lock(&kvm->srcu);
1109 memslot = gfn_to_memslot(kvm, gfn);
1110 if (memslot) {
1111 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1112 lock_rmap(rmap);
1113 *rmap |= KVMPPC_RMAP_CHANGED;
1114 unlock_rmap(rmap);
1115 }
1116 srcu_read_unlock(&kvm->srcu, srcu_idx);
1117 }
1118
1119 /*
1120 * Functions for reading and writing the hash table via reads and
1121 * writes on a file descriptor.
1122 *
1123 * Reads return the guest view of the hash table, which has to be
1124 * pieced together from the real hash table and the guest_rpte
1125 * values in the revmap array.
1126 *
1127 * On writes, each HPTE written is considered in turn, and if it
1128 * is valid, it is written to the HPT as if an H_ENTER with the
1129 * exact flag set was done. When the invalid count is non-zero
1130 * in the header written to the stream, the kernel will make
1131 * sure that that many HPTEs are invalid, and invalidate them
1132 * if not.
1133 */
1134
1135 struct kvm_htab_ctx {
1136 unsigned long index;
1137 unsigned long flags;
1138 struct kvm *kvm;
1139 int first_pass;
1140 };
1141
1142 #define HPTE_SIZE (2 * sizeof(unsigned long))
1143
1144 /*
1145 * Returns 1 if this HPT entry has been modified or has pending
1146 * R/C bit changes.
1147 */
1148 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1149 {
1150 unsigned long rcbits_unset;
1151
1152 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1153 return 1;
1154
1155 /* Also need to consider changes in reference and changed bits */
1156 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1157 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1158 (be64_to_cpu(hptp[1]) & rcbits_unset))
1159 return 1;
1160
1161 return 0;
1162 }
1163
1164 static long record_hpte(unsigned long flags, __be64 *hptp,
1165 unsigned long *hpte, struct revmap_entry *revp,
1166 int want_valid, int first_pass)
1167 {
1168 unsigned long v, r;
1169 unsigned long rcbits_unset;
1170 int ok = 1;
1171 int valid, dirty;
1172
1173 /* Unmodified entries are uninteresting except on the first pass */
1174 dirty = hpte_dirty(revp, hptp);
1175 if (!first_pass && !dirty)
1176 return 0;
1177
1178 valid = 0;
1179 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1180 valid = 1;
1181 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1182 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1183 valid = 0;
1184 }
1185 if (valid != want_valid)
1186 return 0;
1187
1188 v = r = 0;
1189 if (valid || dirty) {
1190 /* lock the HPTE so it's stable and read it */
1191 preempt_disable();
1192 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1193 cpu_relax();
1194 v = be64_to_cpu(hptp[0]);
1195
1196 /* re-evaluate valid and dirty from synchronized HPTE value */
1197 valid = !!(v & HPTE_V_VALID);
1198 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1199
1200 /* Harvest R and C into guest view if necessary */
1201 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1202 if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1203 revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1204 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1205 dirty = 1;
1206 }
1207
1208 if (v & HPTE_V_ABSENT) {
1209 v &= ~HPTE_V_ABSENT;
1210 v |= HPTE_V_VALID;
1211 valid = 1;
1212 }
1213 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1214 valid = 0;
1215
1216 r = revp->guest_rpte;
1217 /* only clear modified if this is the right sort of entry */
1218 if (valid == want_valid && dirty) {
1219 r &= ~HPTE_GR_MODIFIED;
1220 revp->guest_rpte = r;
1221 }
1222 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1223 preempt_enable();
1224 if (!(valid == want_valid && (first_pass || dirty)))
1225 ok = 0;
1226 }
1227 hpte[0] = cpu_to_be64(v);
1228 hpte[1] = cpu_to_be64(r);
1229 return ok;
1230 }
1231
1232 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1233 size_t count, loff_t *ppos)
1234 {
1235 struct kvm_htab_ctx *ctx = file->private_data;
1236 struct kvm *kvm = ctx->kvm;
1237 struct kvm_get_htab_header hdr;
1238 __be64 *hptp;
1239 struct revmap_entry *revp;
1240 unsigned long i, nb, nw;
1241 unsigned long __user *lbuf;
1242 struct kvm_get_htab_header __user *hptr;
1243 unsigned long flags;
1244 int first_pass;
1245 unsigned long hpte[2];
1246
1247 if (!access_ok(VERIFY_WRITE, buf, count))
1248 return -EFAULT;
1249
1250 first_pass = ctx->first_pass;
1251 flags = ctx->flags;
1252
1253 i = ctx->index;
1254 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1255 revp = kvm->arch.revmap + i;
1256 lbuf = (unsigned long __user *)buf;
1257
1258 nb = 0;
1259 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1260 /* Initialize header */
1261 hptr = (struct kvm_get_htab_header __user *)buf;
1262 hdr.n_valid = 0;
1263 hdr.n_invalid = 0;
1264 nw = nb;
1265 nb += sizeof(hdr);
1266 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1267
1268 /* Skip uninteresting entries, i.e. clean on not-first pass */
1269 if (!first_pass) {
1270 while (i < kvm->arch.hpt_npte &&
1271 !hpte_dirty(revp, hptp)) {
1272 ++i;
1273 hptp += 2;
1274 ++revp;
1275 }
1276 }
1277 hdr.index = i;
1278
1279 /* Grab a series of valid entries */
1280 while (i < kvm->arch.hpt_npte &&
1281 hdr.n_valid < 0xffff &&
1282 nb + HPTE_SIZE < count &&
1283 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1284 /* valid entry, write it out */
1285 ++hdr.n_valid;
1286 if (__put_user(hpte[0], lbuf) ||
1287 __put_user(hpte[1], lbuf + 1))
1288 return -EFAULT;
1289 nb += HPTE_SIZE;
1290 lbuf += 2;
1291 ++i;
1292 hptp += 2;
1293 ++revp;
1294 }
1295 /* Now skip invalid entries while we can */
1296 while (i < kvm->arch.hpt_npte &&
1297 hdr.n_invalid < 0xffff &&
1298 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1299 /* found an invalid entry */
1300 ++hdr.n_invalid;
1301 ++i;
1302 hptp += 2;
1303 ++revp;
1304 }
1305
1306 if (hdr.n_valid || hdr.n_invalid) {
1307 /* write back the header */
1308 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1309 return -EFAULT;
1310 nw = nb;
1311 buf = (char __user *)lbuf;
1312 } else {
1313 nb = nw;
1314 }
1315
1316 /* Check if we've wrapped around the hash table */
1317 if (i >= kvm->arch.hpt_npte) {
1318 i = 0;
1319 ctx->first_pass = 0;
1320 break;
1321 }
1322 }
1323
1324 ctx->index = i;
1325
1326 return nb;
1327 }
1328
1329 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1330 size_t count, loff_t *ppos)
1331 {
1332 struct kvm_htab_ctx *ctx = file->private_data;
1333 struct kvm *kvm = ctx->kvm;
1334 struct kvm_get_htab_header hdr;
1335 unsigned long i, j;
1336 unsigned long v, r;
1337 unsigned long __user *lbuf;
1338 __be64 *hptp;
1339 unsigned long tmp[2];
1340 ssize_t nb;
1341 long int err, ret;
1342 int hpte_setup;
1343
1344 if (!access_ok(VERIFY_READ, buf, count))
1345 return -EFAULT;
1346
1347 /* lock out vcpus from running while we're doing this */
1348 mutex_lock(&kvm->lock);
1349 hpte_setup = kvm->arch.hpte_setup_done;
1350 if (hpte_setup) {
1351 kvm->arch.hpte_setup_done = 0; /* temporarily */
1352 /* order hpte_setup_done vs. vcpus_running */
1353 smp_mb();
1354 if (atomic_read(&kvm->arch.vcpus_running)) {
1355 kvm->arch.hpte_setup_done = 1;
1356 mutex_unlock(&kvm->lock);
1357 return -EBUSY;
1358 }
1359 }
1360
1361 err = 0;
1362 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1363 err = -EFAULT;
1364 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1365 break;
1366
1367 err = 0;
1368 if (nb + hdr.n_valid * HPTE_SIZE > count)
1369 break;
1370
1371 nb += sizeof(hdr);
1372 buf += sizeof(hdr);
1373
1374 err = -EINVAL;
1375 i = hdr.index;
1376 if (i >= kvm->arch.hpt_npte ||
1377 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1378 break;
1379
1380 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1381 lbuf = (unsigned long __user *)buf;
1382 for (j = 0; j < hdr.n_valid; ++j) {
1383 __be64 hpte_v;
1384 __be64 hpte_r;
1385
1386 err = -EFAULT;
1387 if (__get_user(hpte_v, lbuf) ||
1388 __get_user(hpte_r, lbuf + 1))
1389 goto out;
1390 v = be64_to_cpu(hpte_v);
1391 r = be64_to_cpu(hpte_r);
1392 err = -EINVAL;
1393 if (!(v & HPTE_V_VALID))
1394 goto out;
1395 lbuf += 2;
1396 nb += HPTE_SIZE;
1397
1398 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1399 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1400 err = -EIO;
1401 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1402 tmp);
1403 if (ret != H_SUCCESS) {
1404 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1405 "r=%lx\n", ret, i, v, r);
1406 goto out;
1407 }
1408 if (!hpte_setup && is_vrma_hpte(v)) {
1409 unsigned long psize = hpte_base_page_size(v, r);
1410 unsigned long senc = slb_pgsize_encoding(psize);
1411 unsigned long lpcr;
1412
1413 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1414 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1415 lpcr = senc << (LPCR_VRMASD_SH - 4);
1416 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1417 hpte_setup = 1;
1418 }
1419 ++i;
1420 hptp += 2;
1421 }
1422
1423 for (j = 0; j < hdr.n_invalid; ++j) {
1424 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1425 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1426 ++i;
1427 hptp += 2;
1428 }
1429 err = 0;
1430 }
1431
1432 out:
1433 /* Order HPTE updates vs. hpte_setup_done */
1434 smp_wmb();
1435 kvm->arch.hpte_setup_done = hpte_setup;
1436 mutex_unlock(&kvm->lock);
1437
1438 if (err)
1439 return err;
1440 return nb;
1441 }
1442
1443 static int kvm_htab_release(struct inode *inode, struct file *filp)
1444 {
1445 struct kvm_htab_ctx *ctx = filp->private_data;
1446
1447 filp->private_data = NULL;
1448 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1449 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1450 kvm_put_kvm(ctx->kvm);
1451 kfree(ctx);
1452 return 0;
1453 }
1454
1455 static const struct file_operations kvm_htab_fops = {
1456 .read = kvm_htab_read,
1457 .write = kvm_htab_write,
1458 .llseek = default_llseek,
1459 .release = kvm_htab_release,
1460 };
1461
1462 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1463 {
1464 int ret;
1465 struct kvm_htab_ctx *ctx;
1466 int rwflag;
1467
1468 /* reject flags we don't recognize */
1469 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1470 return -EINVAL;
1471 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1472 if (!ctx)
1473 return -ENOMEM;
1474 kvm_get_kvm(kvm);
1475 ctx->kvm = kvm;
1476 ctx->index = ghf->start_index;
1477 ctx->flags = ghf->flags;
1478 ctx->first_pass = 1;
1479
1480 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1481 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1482 if (ret < 0) {
1483 kvm_put_kvm(kvm);
1484 return ret;
1485 }
1486
1487 if (rwflag == O_RDONLY) {
1488 mutex_lock(&kvm->slots_lock);
1489 atomic_inc(&kvm->arch.hpte_mod_interest);
1490 /* make sure kvmppc_do_h_enter etc. see the increment */
1491 synchronize_srcu_expedited(&kvm->srcu);
1492 mutex_unlock(&kvm->slots_lock);
1493 }
1494
1495 return ret;
1496 }
1497
1498 struct debugfs_htab_state {
1499 struct kvm *kvm;
1500 struct mutex mutex;
1501 unsigned long hpt_index;
1502 int chars_left;
1503 int buf_index;
1504 char buf[64];
1505 };
1506
1507 static int debugfs_htab_open(struct inode *inode, struct file *file)
1508 {
1509 struct kvm *kvm = inode->i_private;
1510 struct debugfs_htab_state *p;
1511
1512 p = kzalloc(sizeof(*p), GFP_KERNEL);
1513 if (!p)
1514 return -ENOMEM;
1515
1516 kvm_get_kvm(kvm);
1517 p->kvm = kvm;
1518 mutex_init(&p->mutex);
1519 file->private_data = p;
1520
1521 return nonseekable_open(inode, file);
1522 }
1523
1524 static int debugfs_htab_release(struct inode *inode, struct file *file)
1525 {
1526 struct debugfs_htab_state *p = file->private_data;
1527
1528 kvm_put_kvm(p->kvm);
1529 kfree(p);
1530 return 0;
1531 }
1532
1533 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1534 size_t len, loff_t *ppos)
1535 {
1536 struct debugfs_htab_state *p = file->private_data;
1537 ssize_t ret, r;
1538 unsigned long i, n;
1539 unsigned long v, hr, gr;
1540 struct kvm *kvm;
1541 __be64 *hptp;
1542
1543 ret = mutex_lock_interruptible(&p->mutex);
1544 if (ret)
1545 return ret;
1546
1547 if (p->chars_left) {
1548 n = p->chars_left;
1549 if (n > len)
1550 n = len;
1551 r = copy_to_user(buf, p->buf + p->buf_index, n);
1552 n -= r;
1553 p->chars_left -= n;
1554 p->buf_index += n;
1555 buf += n;
1556 len -= n;
1557 ret = n;
1558 if (r) {
1559 if (!n)
1560 ret = -EFAULT;
1561 goto out;
1562 }
1563 }
1564
1565 kvm = p->kvm;
1566 i = p->hpt_index;
1567 hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1568 for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1569 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1570 continue;
1571
1572 /* lock the HPTE so it's stable and read it */
1573 preempt_disable();
1574 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1575 cpu_relax();
1576 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1577 hr = be64_to_cpu(hptp[1]);
1578 gr = kvm->arch.revmap[i].guest_rpte;
1579 unlock_hpte(hptp, v);
1580 preempt_enable();
1581
1582 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1583 continue;
1584
1585 n = scnprintf(p->buf, sizeof(p->buf),
1586 "%6lx %.16lx %.16lx %.16lx\n",
1587 i, v, hr, gr);
1588 p->chars_left = n;
1589 if (n > len)
1590 n = len;
1591 r = copy_to_user(buf, p->buf, n);
1592 n -= r;
1593 p->chars_left -= n;
1594 p->buf_index = n;
1595 buf += n;
1596 len -= n;
1597 ret += n;
1598 if (r) {
1599 if (!ret)
1600 ret = -EFAULT;
1601 goto out;
1602 }
1603 }
1604 p->hpt_index = i;
1605
1606 out:
1607 mutex_unlock(&p->mutex);
1608 return ret;
1609 }
1610
1611 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1612 size_t len, loff_t *ppos)
1613 {
1614 return -EACCES;
1615 }
1616
1617 static const struct file_operations debugfs_htab_fops = {
1618 .owner = THIS_MODULE,
1619 .open = debugfs_htab_open,
1620 .release = debugfs_htab_release,
1621 .read = debugfs_htab_read,
1622 .write = debugfs_htab_write,
1623 .llseek = generic_file_llseek,
1624 };
1625
1626 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1627 {
1628 kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1629 kvm->arch.debugfs_dir, kvm,
1630 &debugfs_htab_fops);
1631 }
1632
1633 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1634 {
1635 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1636
1637 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
1638
1639 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1640 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1641
1642 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1643 }