]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/book3s_64_mmu_hv.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27
28 #include <asm/tlbflush.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/kvm_book3s.h>
31 #include <asm/mmu-hash64.h>
32 #include <asm/hvcall.h>
33 #include <asm/synch.h>
34 #include <asm/ppc-opcode.h>
35 #include <asm/cputable.h>
36
37 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
38 #define MAX_LPID_970 63
39 #define NR_LPIDS (LPID_RSVD + 1)
40 unsigned long lpid_inuse[BITS_TO_LONGS(NR_LPIDS)];
41
42 long kvmppc_alloc_hpt(struct kvm *kvm)
43 {
44 unsigned long hpt;
45 unsigned long lpid;
46 struct revmap_entry *rev;
47 struct kvmppc_linear_info *li;
48
49 /* Allocate guest's hashed page table */
50 li = kvm_alloc_hpt();
51 if (li) {
52 /* using preallocated memory */
53 hpt = (ulong)li->base_virt;
54 kvm->arch.hpt_li = li;
55 } else {
56 /* using dynamic memory */
57 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
58 __GFP_NOWARN, HPT_ORDER - PAGE_SHIFT);
59 }
60
61 if (!hpt) {
62 pr_err("kvm_alloc_hpt: Couldn't alloc HPT\n");
63 return -ENOMEM;
64 }
65 kvm->arch.hpt_virt = hpt;
66
67 /* Allocate reverse map array */
68 rev = vmalloc(sizeof(struct revmap_entry) * HPT_NPTE);
69 if (!rev) {
70 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
71 goto out_freehpt;
72 }
73 kvm->arch.revmap = rev;
74
75 /* Allocate the guest's logical partition ID */
76 do {
77 lpid = find_first_zero_bit(lpid_inuse, NR_LPIDS);
78 if (lpid >= NR_LPIDS) {
79 pr_err("kvm_alloc_hpt: No LPIDs free\n");
80 goto out_freeboth;
81 }
82 } while (test_and_set_bit(lpid, lpid_inuse));
83
84 kvm->arch.sdr1 = __pa(hpt) | (HPT_ORDER - 18);
85 kvm->arch.lpid = lpid;
86
87 pr_info("KVM guest htab at %lx, LPID %lx\n", hpt, lpid);
88 return 0;
89
90 out_freeboth:
91 vfree(rev);
92 out_freehpt:
93 free_pages(hpt, HPT_ORDER - PAGE_SHIFT);
94 return -ENOMEM;
95 }
96
97 void kvmppc_free_hpt(struct kvm *kvm)
98 {
99 clear_bit(kvm->arch.lpid, lpid_inuse);
100 vfree(kvm->arch.revmap);
101 if (kvm->arch.hpt_li)
102 kvm_release_hpt(kvm->arch.hpt_li);
103 else
104 free_pages(kvm->arch.hpt_virt, HPT_ORDER - PAGE_SHIFT);
105 }
106
107 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
108 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
109 {
110 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
111 }
112
113 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
114 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
115 {
116 return (pgsize == 0x10000) ? 0x1000 : 0;
117 }
118
119 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
120 unsigned long porder)
121 {
122 unsigned long i;
123 unsigned long npages;
124 unsigned long hp_v, hp_r;
125 unsigned long addr, hash;
126 unsigned long psize;
127 unsigned long hp0, hp1;
128 long ret;
129
130 psize = 1ul << porder;
131 npages = memslot->npages >> (porder - PAGE_SHIFT);
132
133 /* VRMA can't be > 1TB */
134 if (npages > 1ul << (40 - porder))
135 npages = 1ul << (40 - porder);
136 /* Can't use more than 1 HPTE per HPTEG */
137 if (npages > HPT_NPTEG)
138 npages = HPT_NPTEG;
139
140 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
141 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
142 hp1 = hpte1_pgsize_encoding(psize) |
143 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
144
145 for (i = 0; i < npages; ++i) {
146 addr = i << porder;
147 /* can't use hpt_hash since va > 64 bits */
148 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & HPT_HASH_MASK;
149 /*
150 * We assume that the hash table is empty and no
151 * vcpus are using it at this stage. Since we create
152 * at most one HPTE per HPTEG, we just assume entry 7
153 * is available and use it.
154 */
155 hash = (hash << 3) + 7;
156 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
157 hp_r = hp1 | addr;
158 ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
159 if (ret != H_SUCCESS) {
160 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
161 addr, ret);
162 break;
163 }
164 }
165 }
166
167 int kvmppc_mmu_hv_init(void)
168 {
169 unsigned long host_lpid, rsvd_lpid;
170
171 if (!cpu_has_feature(CPU_FTR_HVMODE))
172 return -EINVAL;
173
174 memset(lpid_inuse, 0, sizeof(lpid_inuse));
175
176 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
177 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
178 rsvd_lpid = LPID_RSVD;
179 } else {
180 host_lpid = 0; /* PPC970 */
181 rsvd_lpid = MAX_LPID_970;
182 }
183
184 set_bit(host_lpid, lpid_inuse);
185 /* rsvd_lpid is reserved for use in partition switching */
186 set_bit(rsvd_lpid, lpid_inuse);
187
188 return 0;
189 }
190
191 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
192 {
193 }
194
195 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
196 {
197 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
198 }
199
200 /*
201 * This is called to get a reference to a guest page if there isn't
202 * one already in the kvm->arch.slot_phys[][] arrays.
203 */
204 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
205 struct kvm_memory_slot *memslot,
206 unsigned long psize)
207 {
208 unsigned long start;
209 long np, err;
210 struct page *page, *hpage, *pages[1];
211 unsigned long s, pgsize;
212 unsigned long *physp;
213 unsigned int is_io, got, pgorder;
214 struct vm_area_struct *vma;
215 unsigned long pfn, i, npages;
216
217 physp = kvm->arch.slot_phys[memslot->id];
218 if (!physp)
219 return -EINVAL;
220 if (physp[gfn - memslot->base_gfn])
221 return 0;
222
223 is_io = 0;
224 got = 0;
225 page = NULL;
226 pgsize = psize;
227 err = -EINVAL;
228 start = gfn_to_hva_memslot(memslot, gfn);
229
230 /* Instantiate and get the page we want access to */
231 np = get_user_pages_fast(start, 1, 1, pages);
232 if (np != 1) {
233 /* Look up the vma for the page */
234 down_read(&current->mm->mmap_sem);
235 vma = find_vma(current->mm, start);
236 if (!vma || vma->vm_start > start ||
237 start + psize > vma->vm_end ||
238 !(vma->vm_flags & VM_PFNMAP))
239 goto up_err;
240 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
241 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
242 /* check alignment of pfn vs. requested page size */
243 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
244 goto up_err;
245 up_read(&current->mm->mmap_sem);
246
247 } else {
248 page = pages[0];
249 got = KVMPPC_GOT_PAGE;
250
251 /* See if this is a large page */
252 s = PAGE_SIZE;
253 if (PageHuge(page)) {
254 hpage = compound_head(page);
255 s <<= compound_order(hpage);
256 /* Get the whole large page if slot alignment is ok */
257 if (s > psize && slot_is_aligned(memslot, s) &&
258 !(memslot->userspace_addr & (s - 1))) {
259 start &= ~(s - 1);
260 pgsize = s;
261 page = hpage;
262 }
263 }
264 if (s < psize)
265 goto out;
266 pfn = page_to_pfn(page);
267 }
268
269 npages = pgsize >> PAGE_SHIFT;
270 pgorder = __ilog2(npages);
271 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
272 spin_lock(&kvm->arch.slot_phys_lock);
273 for (i = 0; i < npages; ++i) {
274 if (!physp[i]) {
275 physp[i] = ((pfn + i) << PAGE_SHIFT) +
276 got + is_io + pgorder;
277 got = 0;
278 }
279 }
280 spin_unlock(&kvm->arch.slot_phys_lock);
281 err = 0;
282
283 out:
284 if (got) {
285 if (PageHuge(page))
286 page = compound_head(page);
287 put_page(page);
288 }
289 return err;
290
291 up_err:
292 up_read(&current->mm->mmap_sem);
293 return err;
294 }
295
296 /*
297 * We come here on a H_ENTER call from the guest when we are not
298 * using mmu notifiers and we don't have the requested page pinned
299 * already.
300 */
301 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
302 long pte_index, unsigned long pteh, unsigned long ptel)
303 {
304 struct kvm *kvm = vcpu->kvm;
305 unsigned long psize, gpa, gfn;
306 struct kvm_memory_slot *memslot;
307 long ret;
308
309 if (kvm->arch.using_mmu_notifiers)
310 goto do_insert;
311
312 psize = hpte_page_size(pteh, ptel);
313 if (!psize)
314 return H_PARAMETER;
315
316 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
317
318 /* Find the memslot (if any) for this address */
319 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
320 gfn = gpa >> PAGE_SHIFT;
321 memslot = gfn_to_memslot(kvm, gfn);
322 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
323 if (!slot_is_aligned(memslot, psize))
324 return H_PARAMETER;
325 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
326 return H_PARAMETER;
327 }
328
329 do_insert:
330 /* Protect linux PTE lookup from page table destruction */
331 rcu_read_lock_sched(); /* this disables preemption too */
332 vcpu->arch.pgdir = current->mm->pgd;
333 ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
334 rcu_read_unlock_sched();
335 if (ret == H_TOO_HARD) {
336 /* this can't happen */
337 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
338 ret = H_RESOURCE; /* or something */
339 }
340 return ret;
341
342 }
343
344 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
345 gva_t eaddr)
346 {
347 u64 mask;
348 int i;
349
350 for (i = 0; i < vcpu->arch.slb_nr; i++) {
351 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
352 continue;
353
354 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
355 mask = ESID_MASK_1T;
356 else
357 mask = ESID_MASK;
358
359 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
360 return &vcpu->arch.slb[i];
361 }
362 return NULL;
363 }
364
365 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
366 unsigned long ea)
367 {
368 unsigned long ra_mask;
369
370 ra_mask = hpte_page_size(v, r) - 1;
371 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
372 }
373
374 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
375 struct kvmppc_pte *gpte, bool data)
376 {
377 struct kvm *kvm = vcpu->kvm;
378 struct kvmppc_slb *slbe;
379 unsigned long slb_v;
380 unsigned long pp, key;
381 unsigned long v, gr;
382 unsigned long *hptep;
383 int index;
384 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
385
386 /* Get SLB entry */
387 if (virtmode) {
388 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
389 if (!slbe)
390 return -EINVAL;
391 slb_v = slbe->origv;
392 } else {
393 /* real mode access */
394 slb_v = vcpu->kvm->arch.vrma_slb_v;
395 }
396
397 /* Find the HPTE in the hash table */
398 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
399 HPTE_V_VALID | HPTE_V_ABSENT);
400 if (index < 0)
401 return -ENOENT;
402 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
403 v = hptep[0] & ~HPTE_V_HVLOCK;
404 gr = kvm->arch.revmap[index].guest_rpte;
405
406 /* Unlock the HPTE */
407 asm volatile("lwsync" : : : "memory");
408 hptep[0] = v;
409
410 gpte->eaddr = eaddr;
411 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
412
413 /* Get PP bits and key for permission check */
414 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
415 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
416 key &= slb_v;
417
418 /* Calculate permissions */
419 gpte->may_read = hpte_read_permission(pp, key);
420 gpte->may_write = hpte_write_permission(pp, key);
421 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
422
423 /* Storage key permission check for POWER7 */
424 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
425 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
426 if (amrfield & 1)
427 gpte->may_read = 0;
428 if (amrfield & 2)
429 gpte->may_write = 0;
430 }
431
432 /* Get the guest physical address */
433 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
434 return 0;
435 }
436
437 /*
438 * Quick test for whether an instruction is a load or a store.
439 * If the instruction is a load or a store, then this will indicate
440 * which it is, at least on server processors. (Embedded processors
441 * have some external PID instructions that don't follow the rule
442 * embodied here.) If the instruction isn't a load or store, then
443 * this doesn't return anything useful.
444 */
445 static int instruction_is_store(unsigned int instr)
446 {
447 unsigned int mask;
448
449 mask = 0x10000000;
450 if ((instr & 0xfc000000) == 0x7c000000)
451 mask = 0x100; /* major opcode 31 */
452 return (instr & mask) != 0;
453 }
454
455 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
456 unsigned long gpa, int is_store)
457 {
458 int ret;
459 u32 last_inst;
460 unsigned long srr0 = kvmppc_get_pc(vcpu);
461
462 /* We try to load the last instruction. We don't let
463 * emulate_instruction do it as it doesn't check what
464 * kvmppc_ld returns.
465 * If we fail, we just return to the guest and try executing it again.
466 */
467 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
468 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
469 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
470 return RESUME_GUEST;
471 vcpu->arch.last_inst = last_inst;
472 }
473
474 /*
475 * WARNING: We do not know for sure whether the instruction we just
476 * read from memory is the same that caused the fault in the first
477 * place. If the instruction we read is neither an load or a store,
478 * then it can't access memory, so we don't need to worry about
479 * enforcing access permissions. So, assuming it is a load or
480 * store, we just check that its direction (load or store) is
481 * consistent with the original fault, since that's what we
482 * checked the access permissions against. If there is a mismatch
483 * we just return and retry the instruction.
484 */
485
486 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
487 return RESUME_GUEST;
488
489 /*
490 * Emulated accesses are emulated by looking at the hash for
491 * translation once, then performing the access later. The
492 * translation could be invalidated in the meantime in which
493 * point performing the subsequent memory access on the old
494 * physical address could possibly be a security hole for the
495 * guest (but not the host).
496 *
497 * This is less of an issue for MMIO stores since they aren't
498 * globally visible. It could be an issue for MMIO loads to
499 * a certain extent but we'll ignore it for now.
500 */
501
502 vcpu->arch.paddr_accessed = gpa;
503 return kvmppc_emulate_mmio(run, vcpu);
504 }
505
506 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
507 unsigned long ea, unsigned long dsisr)
508 {
509 struct kvm *kvm = vcpu->kvm;
510 unsigned long *hptep, hpte[3], r;
511 unsigned long mmu_seq, psize, pte_size;
512 unsigned long gfn, hva, pfn;
513 struct kvm_memory_slot *memslot;
514 unsigned long *rmap;
515 struct revmap_entry *rev;
516 struct page *page, *pages[1];
517 long index, ret, npages;
518 unsigned long is_io;
519 unsigned int writing, write_ok;
520 struct vm_area_struct *vma;
521 unsigned long rcbits;
522
523 /*
524 * Real-mode code has already searched the HPT and found the
525 * entry we're interested in. Lock the entry and check that
526 * it hasn't changed. If it has, just return and re-execute the
527 * instruction.
528 */
529 if (ea != vcpu->arch.pgfault_addr)
530 return RESUME_GUEST;
531 index = vcpu->arch.pgfault_index;
532 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
533 rev = &kvm->arch.revmap[index];
534 preempt_disable();
535 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
536 cpu_relax();
537 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
538 hpte[1] = hptep[1];
539 hpte[2] = r = rev->guest_rpte;
540 asm volatile("lwsync" : : : "memory");
541 hptep[0] = hpte[0];
542 preempt_enable();
543
544 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
545 hpte[1] != vcpu->arch.pgfault_hpte[1])
546 return RESUME_GUEST;
547
548 /* Translate the logical address and get the page */
549 psize = hpte_page_size(hpte[0], r);
550 gfn = hpte_rpn(r, psize);
551 memslot = gfn_to_memslot(kvm, gfn);
552
553 /* No memslot means it's an emulated MMIO region */
554 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
555 unsigned long gpa = (gfn << PAGE_SHIFT) | (ea & (psize - 1));
556 return kvmppc_hv_emulate_mmio(run, vcpu, gpa,
557 dsisr & DSISR_ISSTORE);
558 }
559
560 if (!kvm->arch.using_mmu_notifiers)
561 return -EFAULT; /* should never get here */
562
563 /* used to check for invalidations in progress */
564 mmu_seq = kvm->mmu_notifier_seq;
565 smp_rmb();
566
567 is_io = 0;
568 pfn = 0;
569 page = NULL;
570 pte_size = PAGE_SIZE;
571 writing = (dsisr & DSISR_ISSTORE) != 0;
572 /* If writing != 0, then the HPTE must allow writing, if we get here */
573 write_ok = writing;
574 hva = gfn_to_hva_memslot(memslot, gfn);
575 npages = get_user_pages_fast(hva, 1, writing, pages);
576 if (npages < 1) {
577 /* Check if it's an I/O mapping */
578 down_read(&current->mm->mmap_sem);
579 vma = find_vma(current->mm, hva);
580 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
581 (vma->vm_flags & VM_PFNMAP)) {
582 pfn = vma->vm_pgoff +
583 ((hva - vma->vm_start) >> PAGE_SHIFT);
584 pte_size = psize;
585 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
586 write_ok = vma->vm_flags & VM_WRITE;
587 }
588 up_read(&current->mm->mmap_sem);
589 if (!pfn)
590 return -EFAULT;
591 } else {
592 page = pages[0];
593 if (PageHuge(page)) {
594 page = compound_head(page);
595 pte_size <<= compound_order(page);
596 }
597 /* if the guest wants write access, see if that is OK */
598 if (!writing && hpte_is_writable(r)) {
599 pte_t *ptep, pte;
600
601 /*
602 * We need to protect against page table destruction
603 * while looking up and updating the pte.
604 */
605 rcu_read_lock_sched();
606 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
607 hva, NULL);
608 if (ptep && pte_present(*ptep)) {
609 pte = kvmppc_read_update_linux_pte(ptep, 1);
610 if (pte_write(pte))
611 write_ok = 1;
612 }
613 rcu_read_unlock_sched();
614 }
615 pfn = page_to_pfn(page);
616 }
617
618 ret = -EFAULT;
619 if (psize > pte_size)
620 goto out_put;
621
622 /* Check WIMG vs. the actual page we're accessing */
623 if (!hpte_cache_flags_ok(r, is_io)) {
624 if (is_io)
625 return -EFAULT;
626 /*
627 * Allow guest to map emulated device memory as
628 * uncacheable, but actually make it cacheable.
629 */
630 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
631 }
632
633 /* Set the HPTE to point to pfn */
634 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
635 if (hpte_is_writable(r) && !write_ok)
636 r = hpte_make_readonly(r);
637 ret = RESUME_GUEST;
638 preempt_disable();
639 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
640 cpu_relax();
641 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
642 rev->guest_rpte != hpte[2])
643 /* HPTE has been changed under us; let the guest retry */
644 goto out_unlock;
645 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
646
647 rmap = &memslot->rmap[gfn - memslot->base_gfn];
648 lock_rmap(rmap);
649
650 /* Check if we might have been invalidated; let the guest retry if so */
651 ret = RESUME_GUEST;
652 if (mmu_notifier_retry(vcpu, mmu_seq)) {
653 unlock_rmap(rmap);
654 goto out_unlock;
655 }
656
657 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
658 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
659 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
660
661 if (hptep[0] & HPTE_V_VALID) {
662 /* HPTE was previously valid, so we need to invalidate it */
663 unlock_rmap(rmap);
664 hptep[0] |= HPTE_V_ABSENT;
665 kvmppc_invalidate_hpte(kvm, hptep, index);
666 /* don't lose previous R and C bits */
667 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
668 } else {
669 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
670 }
671
672 hptep[1] = r;
673 eieio();
674 hptep[0] = hpte[0];
675 asm volatile("ptesync" : : : "memory");
676 preempt_enable();
677 if (page && hpte_is_writable(r))
678 SetPageDirty(page);
679
680 out_put:
681 if (page)
682 put_page(page);
683 return ret;
684
685 out_unlock:
686 hptep[0] &= ~HPTE_V_HVLOCK;
687 preempt_enable();
688 goto out_put;
689 }
690
691 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
692 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
693 unsigned long gfn))
694 {
695 int ret;
696 int retval = 0;
697 struct kvm_memslots *slots;
698 struct kvm_memory_slot *memslot;
699
700 slots = kvm_memslots(kvm);
701 kvm_for_each_memslot(memslot, slots) {
702 unsigned long start = memslot->userspace_addr;
703 unsigned long end;
704
705 end = start + (memslot->npages << PAGE_SHIFT);
706 if (hva >= start && hva < end) {
707 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
708
709 ret = handler(kvm, &memslot->rmap[gfn_offset],
710 memslot->base_gfn + gfn_offset);
711 retval |= ret;
712 }
713 }
714
715 return retval;
716 }
717
718 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
719 unsigned long gfn)
720 {
721 struct revmap_entry *rev = kvm->arch.revmap;
722 unsigned long h, i, j;
723 unsigned long *hptep;
724 unsigned long ptel, psize, rcbits;
725
726 for (;;) {
727 lock_rmap(rmapp);
728 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
729 unlock_rmap(rmapp);
730 break;
731 }
732
733 /*
734 * To avoid an ABBA deadlock with the HPTE lock bit,
735 * we can't spin on the HPTE lock while holding the
736 * rmap chain lock.
737 */
738 i = *rmapp & KVMPPC_RMAP_INDEX;
739 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
740 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
741 /* unlock rmap before spinning on the HPTE lock */
742 unlock_rmap(rmapp);
743 while (hptep[0] & HPTE_V_HVLOCK)
744 cpu_relax();
745 continue;
746 }
747 j = rev[i].forw;
748 if (j == i) {
749 /* chain is now empty */
750 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
751 } else {
752 /* remove i from chain */
753 h = rev[i].back;
754 rev[h].forw = j;
755 rev[j].back = h;
756 rev[i].forw = rev[i].back = i;
757 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
758 }
759
760 /* Now check and modify the HPTE */
761 ptel = rev[i].guest_rpte;
762 psize = hpte_page_size(hptep[0], ptel);
763 if ((hptep[0] & HPTE_V_VALID) &&
764 hpte_rpn(ptel, psize) == gfn) {
765 hptep[0] |= HPTE_V_ABSENT;
766 kvmppc_invalidate_hpte(kvm, hptep, i);
767 /* Harvest R and C */
768 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
769 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
770 rev[i].guest_rpte = ptel | rcbits;
771 }
772 unlock_rmap(rmapp);
773 hptep[0] &= ~HPTE_V_HVLOCK;
774 }
775 return 0;
776 }
777
778 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
779 {
780 if (kvm->arch.using_mmu_notifiers)
781 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
782 return 0;
783 }
784
785 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
786 unsigned long gfn)
787 {
788 struct revmap_entry *rev = kvm->arch.revmap;
789 unsigned long head, i, j;
790 unsigned long *hptep;
791 int ret = 0;
792
793 retry:
794 lock_rmap(rmapp);
795 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
796 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
797 ret = 1;
798 }
799 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
800 unlock_rmap(rmapp);
801 return ret;
802 }
803
804 i = head = *rmapp & KVMPPC_RMAP_INDEX;
805 do {
806 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
807 j = rev[i].forw;
808
809 /* If this HPTE isn't referenced, ignore it */
810 if (!(hptep[1] & HPTE_R_R))
811 continue;
812
813 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
814 /* unlock rmap before spinning on the HPTE lock */
815 unlock_rmap(rmapp);
816 while (hptep[0] & HPTE_V_HVLOCK)
817 cpu_relax();
818 goto retry;
819 }
820
821 /* Now check and modify the HPTE */
822 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
823 kvmppc_clear_ref_hpte(kvm, hptep, i);
824 rev[i].guest_rpte |= HPTE_R_R;
825 ret = 1;
826 }
827 hptep[0] &= ~HPTE_V_HVLOCK;
828 } while ((i = j) != head);
829
830 unlock_rmap(rmapp);
831 return ret;
832 }
833
834 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
835 {
836 if (!kvm->arch.using_mmu_notifiers)
837 return 0;
838 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
839 }
840
841 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
842 unsigned long gfn)
843 {
844 struct revmap_entry *rev = kvm->arch.revmap;
845 unsigned long head, i, j;
846 unsigned long *hp;
847 int ret = 1;
848
849 if (*rmapp & KVMPPC_RMAP_REFERENCED)
850 return 1;
851
852 lock_rmap(rmapp);
853 if (*rmapp & KVMPPC_RMAP_REFERENCED)
854 goto out;
855
856 if (*rmapp & KVMPPC_RMAP_PRESENT) {
857 i = head = *rmapp & KVMPPC_RMAP_INDEX;
858 do {
859 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
860 j = rev[i].forw;
861 if (hp[1] & HPTE_R_R)
862 goto out;
863 } while ((i = j) != head);
864 }
865 ret = 0;
866
867 out:
868 unlock_rmap(rmapp);
869 return ret;
870 }
871
872 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
873 {
874 if (!kvm->arch.using_mmu_notifiers)
875 return 0;
876 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
877 }
878
879 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
880 {
881 if (!kvm->arch.using_mmu_notifiers)
882 return;
883 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
884 }
885
886 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
887 {
888 struct revmap_entry *rev = kvm->arch.revmap;
889 unsigned long head, i, j;
890 unsigned long *hptep;
891 int ret = 0;
892
893 retry:
894 lock_rmap(rmapp);
895 if (*rmapp & KVMPPC_RMAP_CHANGED) {
896 *rmapp &= ~KVMPPC_RMAP_CHANGED;
897 ret = 1;
898 }
899 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
900 unlock_rmap(rmapp);
901 return ret;
902 }
903
904 i = head = *rmapp & KVMPPC_RMAP_INDEX;
905 do {
906 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
907 j = rev[i].forw;
908
909 if (!(hptep[1] & HPTE_R_C))
910 continue;
911
912 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
913 /* unlock rmap before spinning on the HPTE lock */
914 unlock_rmap(rmapp);
915 while (hptep[0] & HPTE_V_HVLOCK)
916 cpu_relax();
917 goto retry;
918 }
919
920 /* Now check and modify the HPTE */
921 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
922 /* need to make it temporarily absent to clear C */
923 hptep[0] |= HPTE_V_ABSENT;
924 kvmppc_invalidate_hpte(kvm, hptep, i);
925 hptep[1] &= ~HPTE_R_C;
926 eieio();
927 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
928 rev[i].guest_rpte |= HPTE_R_C;
929 ret = 1;
930 }
931 hptep[0] &= ~HPTE_V_HVLOCK;
932 } while ((i = j) != head);
933
934 unlock_rmap(rmapp);
935 return ret;
936 }
937
938 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
939 {
940 unsigned long i;
941 unsigned long *rmapp, *map;
942
943 preempt_disable();
944 rmapp = memslot->rmap;
945 map = memslot->dirty_bitmap;
946 for (i = 0; i < memslot->npages; ++i) {
947 if (kvm_test_clear_dirty(kvm, rmapp))
948 __set_bit_le(i, map);
949 ++rmapp;
950 }
951 preempt_enable();
952 return 0;
953 }
954
955 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
956 unsigned long *nb_ret)
957 {
958 struct kvm_memory_slot *memslot;
959 unsigned long gfn = gpa >> PAGE_SHIFT;
960 struct page *page, *pages[1];
961 int npages;
962 unsigned long hva, psize, offset;
963 unsigned long pa;
964 unsigned long *physp;
965
966 memslot = gfn_to_memslot(kvm, gfn);
967 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
968 return NULL;
969 if (!kvm->arch.using_mmu_notifiers) {
970 physp = kvm->arch.slot_phys[memslot->id];
971 if (!physp)
972 return NULL;
973 physp += gfn - memslot->base_gfn;
974 pa = *physp;
975 if (!pa) {
976 if (kvmppc_get_guest_page(kvm, gfn, memslot,
977 PAGE_SIZE) < 0)
978 return NULL;
979 pa = *physp;
980 }
981 page = pfn_to_page(pa >> PAGE_SHIFT);
982 } else {
983 hva = gfn_to_hva_memslot(memslot, gfn);
984 npages = get_user_pages_fast(hva, 1, 1, pages);
985 if (npages < 1)
986 return NULL;
987 page = pages[0];
988 }
989 psize = PAGE_SIZE;
990 if (PageHuge(page)) {
991 page = compound_head(page);
992 psize <<= compound_order(page);
993 }
994 if (!kvm->arch.using_mmu_notifiers)
995 get_page(page);
996 offset = gpa & (psize - 1);
997 if (nb_ret)
998 *nb_ret = psize - offset;
999 return page_address(page) + offset;
1000 }
1001
1002 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1003 {
1004 struct page *page = virt_to_page(va);
1005
1006 page = compound_head(page);
1007 put_page(page);
1008 }
1009
1010 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1011 {
1012 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1013
1014 if (cpu_has_feature(CPU_FTR_ARCH_206))
1015 vcpu->arch.slb_nr = 32; /* POWER7 */
1016 else
1017 vcpu->arch.slb_nr = 64;
1018
1019 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1020 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1021
1022 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1023 }