]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kvm/book3s_64_mmu_radix.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kvm / book3s_64_mmu_radix.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/debugfs.h>
14
15 #include <asm/kvm_ppc.h>
16 #include <asm/kvm_book3s.h>
17 #include <asm/page.h>
18 #include <asm/mmu.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/pte-walk.h>
22
23 /*
24 * Supported radix tree geometry.
25 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
26 * for a page size of 64k or 4k.
27 */
28 static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
29
30 unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
31 gva_t eaddr, void *to, void *from,
32 unsigned long n)
33 {
34 int uninitialized_var(old_pid), old_lpid;
35 unsigned long quadrant, ret = n;
36 bool is_load = !!to;
37
38 /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
39 if (kvmhv_on_pseries())
40 return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
41 __pa(to), __pa(from), n);
42
43 quadrant = 1;
44 if (!pid)
45 quadrant = 2;
46 if (is_load)
47 from = (void *) (eaddr | (quadrant << 62));
48 else
49 to = (void *) (eaddr | (quadrant << 62));
50
51 preempt_disable();
52
53 /* switch the lpid first to avoid running host with unallocated pid */
54 old_lpid = mfspr(SPRN_LPID);
55 if (old_lpid != lpid)
56 mtspr(SPRN_LPID, lpid);
57 if (quadrant == 1) {
58 old_pid = mfspr(SPRN_PID);
59 if (old_pid != pid)
60 mtspr(SPRN_PID, pid);
61 }
62 isync();
63
64 pagefault_disable();
65 if (is_load)
66 ret = raw_copy_from_user(to, from, n);
67 else
68 ret = raw_copy_to_user(to, from, n);
69 pagefault_enable();
70
71 /* switch the pid first to avoid running host with unallocated pid */
72 if (quadrant == 1 && pid != old_pid)
73 mtspr(SPRN_PID, old_pid);
74 if (lpid != old_lpid)
75 mtspr(SPRN_LPID, old_lpid);
76 isync();
77
78 preempt_enable();
79
80 return ret;
81 }
82 EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix);
83
84 static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
85 void *to, void *from, unsigned long n)
86 {
87 int lpid = vcpu->kvm->arch.lpid;
88 int pid = vcpu->arch.pid;
89
90 /* This would cause a data segment intr so don't allow the access */
91 if (eaddr & (0x3FFUL << 52))
92 return -EINVAL;
93
94 /* Should we be using the nested lpid */
95 if (vcpu->arch.nested)
96 lpid = vcpu->arch.nested->shadow_lpid;
97
98 /* If accessing quadrant 3 then pid is expected to be 0 */
99 if (((eaddr >> 62) & 0x3) == 0x3)
100 pid = 0;
101
102 eaddr &= ~(0xFFFUL << 52);
103
104 return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
105 }
106
107 long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
108 unsigned long n)
109 {
110 long ret;
111
112 ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
113 if (ret > 0)
114 memset(to + (n - ret), 0, ret);
115
116 return ret;
117 }
118 EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix);
119
120 long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
121 unsigned long n)
122 {
123 return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
124 }
125 EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix);
126
127 int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
128 struct kvmppc_pte *gpte, u64 root,
129 u64 *pte_ret_p)
130 {
131 struct kvm *kvm = vcpu->kvm;
132 int ret, level, ps;
133 unsigned long rts, bits, offset, index;
134 u64 pte, base, gpa;
135 __be64 rpte;
136
137 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
138 ((root & RTS2_MASK) >> RTS2_SHIFT);
139 bits = root & RPDS_MASK;
140 base = root & RPDB_MASK;
141
142 offset = rts + 31;
143
144 /* Current implementations only support 52-bit space */
145 if (offset != 52)
146 return -EINVAL;
147
148 /* Walk each level of the radix tree */
149 for (level = 3; level >= 0; --level) {
150 u64 addr;
151 /* Check a valid size */
152 if (level && bits != p9_supported_radix_bits[level])
153 return -EINVAL;
154 if (level == 0 && !(bits == 5 || bits == 9))
155 return -EINVAL;
156 offset -= bits;
157 index = (eaddr >> offset) & ((1UL << bits) - 1);
158 /* Check that low bits of page table base are zero */
159 if (base & ((1UL << (bits + 3)) - 1))
160 return -EINVAL;
161 /* Read the entry from guest memory */
162 addr = base + (index * sizeof(rpte));
163 ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
164 if (ret) {
165 if (pte_ret_p)
166 *pte_ret_p = addr;
167 return ret;
168 }
169 pte = __be64_to_cpu(rpte);
170 if (!(pte & _PAGE_PRESENT))
171 return -ENOENT;
172 /* Check if a leaf entry */
173 if (pte & _PAGE_PTE)
174 break;
175 /* Get ready to walk the next level */
176 base = pte & RPDB_MASK;
177 bits = pte & RPDS_MASK;
178 }
179
180 /* Need a leaf at lowest level; 512GB pages not supported */
181 if (level < 0 || level == 3)
182 return -EINVAL;
183
184 /* We found a valid leaf PTE */
185 /* Offset is now log base 2 of the page size */
186 gpa = pte & 0x01fffffffffff000ul;
187 if (gpa & ((1ul << offset) - 1))
188 return -EINVAL;
189 gpa |= eaddr & ((1ul << offset) - 1);
190 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
191 if (offset == mmu_psize_defs[ps].shift)
192 break;
193 gpte->page_size = ps;
194 gpte->page_shift = offset;
195
196 gpte->eaddr = eaddr;
197 gpte->raddr = gpa;
198
199 /* Work out permissions */
200 gpte->may_read = !!(pte & _PAGE_READ);
201 gpte->may_write = !!(pte & _PAGE_WRITE);
202 gpte->may_execute = !!(pte & _PAGE_EXEC);
203
204 gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
205
206 if (pte_ret_p)
207 *pte_ret_p = pte;
208
209 return 0;
210 }
211
212 /*
213 * Used to walk a partition or process table radix tree in guest memory
214 * Note: We exploit the fact that a partition table and a process
215 * table have the same layout, a partition-scoped page table and a
216 * process-scoped page table have the same layout, and the 2nd
217 * doubleword of a partition table entry has the same layout as
218 * the PTCR register.
219 */
220 int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
221 struct kvmppc_pte *gpte, u64 table,
222 int table_index, u64 *pte_ret_p)
223 {
224 struct kvm *kvm = vcpu->kvm;
225 int ret;
226 unsigned long size, ptbl, root;
227 struct prtb_entry entry;
228
229 if ((table & PRTS_MASK) > 24)
230 return -EINVAL;
231 size = 1ul << ((table & PRTS_MASK) + 12);
232
233 /* Is the table big enough to contain this entry? */
234 if ((table_index * sizeof(entry)) >= size)
235 return -EINVAL;
236
237 /* Read the table to find the root of the radix tree */
238 ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
239 ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
240 if (ret)
241 return ret;
242
243 /* Root is stored in the first double word */
244 root = be64_to_cpu(entry.prtb0);
245
246 return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
247 }
248
249 int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
250 struct kvmppc_pte *gpte, bool data, bool iswrite)
251 {
252 u32 pid;
253 u64 pte;
254 int ret;
255
256 /* Work out effective PID */
257 switch (eaddr >> 62) {
258 case 0:
259 pid = vcpu->arch.pid;
260 break;
261 case 3:
262 pid = 0;
263 break;
264 default:
265 return -EINVAL;
266 }
267
268 ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
269 vcpu->kvm->arch.process_table, pid, &pte);
270 if (ret)
271 return ret;
272
273 /* Check privilege (applies only to process scoped translations) */
274 if (kvmppc_get_msr(vcpu) & MSR_PR) {
275 if (pte & _PAGE_PRIVILEGED) {
276 gpte->may_read = 0;
277 gpte->may_write = 0;
278 gpte->may_execute = 0;
279 }
280 } else {
281 if (!(pte & _PAGE_PRIVILEGED)) {
282 /* Check AMR/IAMR to see if strict mode is in force */
283 if (vcpu->arch.amr & (1ul << 62))
284 gpte->may_read = 0;
285 if (vcpu->arch.amr & (1ul << 63))
286 gpte->may_write = 0;
287 if (vcpu->arch.iamr & (1ul << 62))
288 gpte->may_execute = 0;
289 }
290 }
291
292 return 0;
293 }
294
295 void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
296 unsigned int pshift, unsigned int lpid)
297 {
298 unsigned long psize = PAGE_SIZE;
299 int psi;
300 long rc;
301 unsigned long rb;
302
303 if (pshift)
304 psize = 1UL << pshift;
305 else
306 pshift = PAGE_SHIFT;
307
308 addr &= ~(psize - 1);
309
310 if (!kvmhv_on_pseries()) {
311 radix__flush_tlb_lpid_page(lpid, addr, psize);
312 return;
313 }
314
315 psi = shift_to_mmu_psize(pshift);
316 rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
317 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
318 lpid, rb);
319 if (rc)
320 pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
321 }
322
323 static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
324 {
325 long rc;
326
327 if (!kvmhv_on_pseries()) {
328 radix__flush_pwc_lpid(lpid);
329 return;
330 }
331
332 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
333 lpid, TLBIEL_INVAL_SET_LPID);
334 if (rc)
335 pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
336 }
337
338 static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
339 unsigned long clr, unsigned long set,
340 unsigned long addr, unsigned int shift)
341 {
342 return __radix_pte_update(ptep, clr, set);
343 }
344
345 void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
346 pte_t *ptep, pte_t pte)
347 {
348 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
349 }
350
351 static struct kmem_cache *kvm_pte_cache;
352 static struct kmem_cache *kvm_pmd_cache;
353
354 static pte_t *kvmppc_pte_alloc(void)
355 {
356 return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
357 }
358
359 static void kvmppc_pte_free(pte_t *ptep)
360 {
361 kmem_cache_free(kvm_pte_cache, ptep);
362 }
363
364 /* Like pmd_huge() and pmd_large(), but works regardless of config options */
365 static inline int pmd_is_leaf(pmd_t pmd)
366 {
367 return !!(pmd_val(pmd) & _PAGE_PTE);
368 }
369
370 static pmd_t *kvmppc_pmd_alloc(void)
371 {
372 return kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
373 }
374
375 static void kvmppc_pmd_free(pmd_t *pmdp)
376 {
377 kmem_cache_free(kvm_pmd_cache, pmdp);
378 }
379
380 /* Called with kvm->mmu_lock held */
381 void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
382 unsigned int shift,
383 const struct kvm_memory_slot *memslot,
384 unsigned int lpid)
385
386 {
387 unsigned long old;
388 unsigned long gfn = gpa >> PAGE_SHIFT;
389 unsigned long page_size = PAGE_SIZE;
390 unsigned long hpa;
391
392 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
393 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
394
395 /* The following only applies to L1 entries */
396 if (lpid != kvm->arch.lpid)
397 return;
398
399 if (!memslot) {
400 memslot = gfn_to_memslot(kvm, gfn);
401 if (!memslot)
402 return;
403 }
404 if (shift) { /* 1GB or 2MB page */
405 page_size = 1ul << shift;
406 if (shift == PMD_SHIFT)
407 kvm->stat.num_2M_pages--;
408 else if (shift == PUD_SHIFT)
409 kvm->stat.num_1G_pages--;
410 }
411
412 gpa &= ~(page_size - 1);
413 hpa = old & PTE_RPN_MASK;
414 kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
415
416 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
417 kvmppc_update_dirty_map(memslot, gfn, page_size);
418 }
419
420 /*
421 * kvmppc_free_p?d are used to free existing page tables, and recursively
422 * descend and clear and free children.
423 * Callers are responsible for flushing the PWC.
424 *
425 * When page tables are being unmapped/freed as part of page fault path
426 * (full == false), ptes are not expected. There is code to unmap them
427 * and emit a warning if encountered, but there may already be data
428 * corruption due to the unexpected mappings.
429 */
430 static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
431 unsigned int lpid)
432 {
433 if (full) {
434 memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
435 } else {
436 pte_t *p = pte;
437 unsigned long it;
438
439 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
440 if (pte_val(*p) == 0)
441 continue;
442 WARN_ON_ONCE(1);
443 kvmppc_unmap_pte(kvm, p,
444 pte_pfn(*p) << PAGE_SHIFT,
445 PAGE_SHIFT, NULL, lpid);
446 }
447 }
448
449 kvmppc_pte_free(pte);
450 }
451
452 static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
453 unsigned int lpid)
454 {
455 unsigned long im;
456 pmd_t *p = pmd;
457
458 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
459 if (!pmd_present(*p))
460 continue;
461 if (pmd_is_leaf(*p)) {
462 if (full) {
463 pmd_clear(p);
464 } else {
465 WARN_ON_ONCE(1);
466 kvmppc_unmap_pte(kvm, (pte_t *)p,
467 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
468 PMD_SHIFT, NULL, lpid);
469 }
470 } else {
471 pte_t *pte;
472
473 pte = pte_offset_map(p, 0);
474 kvmppc_unmap_free_pte(kvm, pte, full, lpid);
475 pmd_clear(p);
476 }
477 }
478 kvmppc_pmd_free(pmd);
479 }
480
481 static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
482 unsigned int lpid)
483 {
484 unsigned long iu;
485 pud_t *p = pud;
486
487 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
488 if (!pud_present(*p))
489 continue;
490 if (pud_huge(*p)) {
491 pud_clear(p);
492 } else {
493 pmd_t *pmd;
494
495 pmd = pmd_offset(p, 0);
496 kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
497 pud_clear(p);
498 }
499 }
500 pud_free(kvm->mm, pud);
501 }
502
503 void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
504 {
505 unsigned long ig;
506
507 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
508 pud_t *pud;
509
510 if (!pgd_present(*pgd))
511 continue;
512 pud = pud_offset(pgd, 0);
513 kvmppc_unmap_free_pud(kvm, pud, lpid);
514 pgd_clear(pgd);
515 }
516 }
517
518 void kvmppc_free_radix(struct kvm *kvm)
519 {
520 if (kvm->arch.pgtable) {
521 kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
522 kvm->arch.lpid);
523 pgd_free(kvm->mm, kvm->arch.pgtable);
524 kvm->arch.pgtable = NULL;
525 }
526 }
527
528 static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
529 unsigned long gpa, unsigned int lpid)
530 {
531 pte_t *pte = pte_offset_kernel(pmd, 0);
532
533 /*
534 * Clearing the pmd entry then flushing the PWC ensures that the pte
535 * page no longer be cached by the MMU, so can be freed without
536 * flushing the PWC again.
537 */
538 pmd_clear(pmd);
539 kvmppc_radix_flush_pwc(kvm, lpid);
540
541 kvmppc_unmap_free_pte(kvm, pte, false, lpid);
542 }
543
544 static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
545 unsigned long gpa, unsigned int lpid)
546 {
547 pmd_t *pmd = pmd_offset(pud, 0);
548
549 /*
550 * Clearing the pud entry then flushing the PWC ensures that the pmd
551 * page and any children pte pages will no longer be cached by the MMU,
552 * so can be freed without flushing the PWC again.
553 */
554 pud_clear(pud);
555 kvmppc_radix_flush_pwc(kvm, lpid);
556
557 kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
558 }
559
560 /*
561 * There are a number of bits which may differ between different faults to
562 * the same partition scope entry. RC bits, in the course of cleaning and
563 * aging. And the write bit can change, either the access could have been
564 * upgraded, or a read fault could happen concurrently with a write fault
565 * that sets those bits first.
566 */
567 #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
568
569 int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
570 unsigned long gpa, unsigned int level,
571 unsigned long mmu_seq, unsigned int lpid,
572 unsigned long *rmapp, struct rmap_nested **n_rmap)
573 {
574 pgd_t *pgd;
575 pud_t *pud, *new_pud = NULL;
576 pmd_t *pmd, *new_pmd = NULL;
577 pte_t *ptep, *new_ptep = NULL;
578 int ret;
579
580 /* Traverse the guest's 2nd-level tree, allocate new levels needed */
581 pgd = pgtable + pgd_index(gpa);
582 pud = NULL;
583 if (pgd_present(*pgd))
584 pud = pud_offset(pgd, gpa);
585 else
586 new_pud = pud_alloc_one(kvm->mm, gpa);
587
588 pmd = NULL;
589 if (pud && pud_present(*pud) && !pud_huge(*pud))
590 pmd = pmd_offset(pud, gpa);
591 else if (level <= 1)
592 new_pmd = kvmppc_pmd_alloc();
593
594 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
595 new_ptep = kvmppc_pte_alloc();
596
597 /* Check if we might have been invalidated; let the guest retry if so */
598 spin_lock(&kvm->mmu_lock);
599 ret = -EAGAIN;
600 if (mmu_notifier_retry(kvm, mmu_seq))
601 goto out_unlock;
602
603 /* Now traverse again under the lock and change the tree */
604 ret = -ENOMEM;
605 if (pgd_none(*pgd)) {
606 if (!new_pud)
607 goto out_unlock;
608 pgd_populate(kvm->mm, pgd, new_pud);
609 new_pud = NULL;
610 }
611 pud = pud_offset(pgd, gpa);
612 if (pud_huge(*pud)) {
613 unsigned long hgpa = gpa & PUD_MASK;
614
615 /* Check if we raced and someone else has set the same thing */
616 if (level == 2) {
617 if (pud_raw(*pud) == pte_raw(pte)) {
618 ret = 0;
619 goto out_unlock;
620 }
621 /* Valid 1GB page here already, add our extra bits */
622 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
623 PTE_BITS_MUST_MATCH);
624 kvmppc_radix_update_pte(kvm, (pte_t *)pud,
625 0, pte_val(pte), hgpa, PUD_SHIFT);
626 ret = 0;
627 goto out_unlock;
628 }
629 /*
630 * If we raced with another CPU which has just put
631 * a 1GB pte in after we saw a pmd page, try again.
632 */
633 if (!new_pmd) {
634 ret = -EAGAIN;
635 goto out_unlock;
636 }
637 /* Valid 1GB page here already, remove it */
638 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
639 lpid);
640 }
641 if (level == 2) {
642 if (!pud_none(*pud)) {
643 /*
644 * There's a page table page here, but we wanted to
645 * install a large page, so remove and free the page
646 * table page.
647 */
648 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
649 }
650 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
651 if (rmapp && n_rmap)
652 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
653 ret = 0;
654 goto out_unlock;
655 }
656 if (pud_none(*pud)) {
657 if (!new_pmd)
658 goto out_unlock;
659 pud_populate(kvm->mm, pud, new_pmd);
660 new_pmd = NULL;
661 }
662 pmd = pmd_offset(pud, gpa);
663 if (pmd_is_leaf(*pmd)) {
664 unsigned long lgpa = gpa & PMD_MASK;
665
666 /* Check if we raced and someone else has set the same thing */
667 if (level == 1) {
668 if (pmd_raw(*pmd) == pte_raw(pte)) {
669 ret = 0;
670 goto out_unlock;
671 }
672 /* Valid 2MB page here already, add our extra bits */
673 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
674 PTE_BITS_MUST_MATCH);
675 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
676 0, pte_val(pte), lgpa, PMD_SHIFT);
677 ret = 0;
678 goto out_unlock;
679 }
680
681 /*
682 * If we raced with another CPU which has just put
683 * a 2MB pte in after we saw a pte page, try again.
684 */
685 if (!new_ptep) {
686 ret = -EAGAIN;
687 goto out_unlock;
688 }
689 /* Valid 2MB page here already, remove it */
690 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
691 lpid);
692 }
693 if (level == 1) {
694 if (!pmd_none(*pmd)) {
695 /*
696 * There's a page table page here, but we wanted to
697 * install a large page, so remove and free the page
698 * table page.
699 */
700 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
701 }
702 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
703 if (rmapp && n_rmap)
704 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
705 ret = 0;
706 goto out_unlock;
707 }
708 if (pmd_none(*pmd)) {
709 if (!new_ptep)
710 goto out_unlock;
711 pmd_populate(kvm->mm, pmd, new_ptep);
712 new_ptep = NULL;
713 }
714 ptep = pte_offset_kernel(pmd, gpa);
715 if (pte_present(*ptep)) {
716 /* Check if someone else set the same thing */
717 if (pte_raw(*ptep) == pte_raw(pte)) {
718 ret = 0;
719 goto out_unlock;
720 }
721 /* Valid page here already, add our extra bits */
722 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
723 PTE_BITS_MUST_MATCH);
724 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
725 ret = 0;
726 goto out_unlock;
727 }
728 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
729 if (rmapp && n_rmap)
730 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
731 ret = 0;
732
733 out_unlock:
734 spin_unlock(&kvm->mmu_lock);
735 if (new_pud)
736 pud_free(kvm->mm, new_pud);
737 if (new_pmd)
738 kvmppc_pmd_free(new_pmd);
739 if (new_ptep)
740 kvmppc_pte_free(new_ptep);
741 return ret;
742 }
743
744 bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing,
745 unsigned long gpa, unsigned int lpid)
746 {
747 unsigned long pgflags;
748 unsigned int shift;
749 pte_t *ptep;
750
751 /*
752 * Need to set an R or C bit in the 2nd-level tables;
753 * since we are just helping out the hardware here,
754 * it is sufficient to do what the hardware does.
755 */
756 pgflags = _PAGE_ACCESSED;
757 if (writing)
758 pgflags |= _PAGE_DIRTY;
759 /*
760 * We are walking the secondary (partition-scoped) page table here.
761 * We can do this without disabling irq because the Linux MM
762 * subsystem doesn't do THP splits and collapses on this tree.
763 */
764 ptep = __find_linux_pte(pgtable, gpa, NULL, &shift);
765 if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
766 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
767 return true;
768 }
769 return false;
770 }
771
772 int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
773 unsigned long gpa,
774 struct kvm_memory_slot *memslot,
775 bool writing, bool kvm_ro,
776 pte_t *inserted_pte, unsigned int *levelp)
777 {
778 struct kvm *kvm = vcpu->kvm;
779 struct page *page = NULL;
780 unsigned long mmu_seq;
781 unsigned long hva, gfn = gpa >> PAGE_SHIFT;
782 bool upgrade_write = false;
783 bool *upgrade_p = &upgrade_write;
784 pte_t pte, *ptep;
785 unsigned int shift, level;
786 int ret;
787 bool large_enable;
788
789 /* used to check for invalidations in progress */
790 mmu_seq = kvm->mmu_notifier_seq;
791 smp_rmb();
792
793 /*
794 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
795 * do it with !atomic && !async, which is how we call it.
796 * We always ask for write permission since the common case
797 * is that the page is writable.
798 */
799 hva = gfn_to_hva_memslot(memslot, gfn);
800 if (!kvm_ro && __get_user_pages_fast(hva, 1, 1, &page) == 1) {
801 upgrade_write = true;
802 } else {
803 unsigned long pfn;
804
805 /* Call KVM generic code to do the slow-path check */
806 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
807 writing, upgrade_p);
808 if (is_error_noslot_pfn(pfn))
809 return -EFAULT;
810 page = NULL;
811 if (pfn_valid(pfn)) {
812 page = pfn_to_page(pfn);
813 if (PageReserved(page))
814 page = NULL;
815 }
816 }
817
818 /*
819 * Read the PTE from the process' radix tree and use that
820 * so we get the shift and attribute bits.
821 */
822 local_irq_disable();
823 ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
824 /*
825 * If the PTE disappeared temporarily due to a THP
826 * collapse, just return and let the guest try again.
827 */
828 if (!ptep) {
829 local_irq_enable();
830 if (page)
831 put_page(page);
832 return RESUME_GUEST;
833 }
834 pte = *ptep;
835 local_irq_enable();
836
837 /* If we're logging dirty pages, always map single pages */
838 large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
839
840 /* Get pte level from shift/size */
841 if (large_enable && shift == PUD_SHIFT &&
842 (gpa & (PUD_SIZE - PAGE_SIZE)) ==
843 (hva & (PUD_SIZE - PAGE_SIZE))) {
844 level = 2;
845 } else if (large_enable && shift == PMD_SHIFT &&
846 (gpa & (PMD_SIZE - PAGE_SIZE)) ==
847 (hva & (PMD_SIZE - PAGE_SIZE))) {
848 level = 1;
849 } else {
850 level = 0;
851 if (shift > PAGE_SHIFT) {
852 /*
853 * If the pte maps more than one page, bring over
854 * bits from the virtual address to get the real
855 * address of the specific single page we want.
856 */
857 unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
858 pte = __pte(pte_val(pte) | (hva & rpnmask));
859 }
860 }
861
862 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
863 if (writing || upgrade_write) {
864 if (pte_val(pte) & _PAGE_WRITE)
865 pte = __pte(pte_val(pte) | _PAGE_DIRTY);
866 } else {
867 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
868 }
869
870 /* Allocate space in the tree and write the PTE */
871 ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
872 mmu_seq, kvm->arch.lpid, NULL, NULL);
873 if (inserted_pte)
874 *inserted_pte = pte;
875 if (levelp)
876 *levelp = level;
877
878 if (page) {
879 if (!ret && (pte_val(pte) & _PAGE_WRITE))
880 set_page_dirty_lock(page);
881 put_page(page);
882 }
883
884 /* Increment number of large pages if we (successfully) inserted one */
885 if (!ret) {
886 if (level == 1)
887 kvm->stat.num_2M_pages++;
888 else if (level == 2)
889 kvm->stat.num_1G_pages++;
890 }
891
892 return ret;
893 }
894
895 int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
896 unsigned long ea, unsigned long dsisr)
897 {
898 struct kvm *kvm = vcpu->kvm;
899 unsigned long gpa, gfn;
900 struct kvm_memory_slot *memslot;
901 long ret;
902 bool writing = !!(dsisr & DSISR_ISSTORE);
903 bool kvm_ro = false;
904
905 /* Check for unusual errors */
906 if (dsisr & DSISR_UNSUPP_MMU) {
907 pr_err("KVM: Got unsupported MMU fault\n");
908 return -EFAULT;
909 }
910 if (dsisr & DSISR_BADACCESS) {
911 /* Reflect to the guest as DSI */
912 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
913 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
914 return RESUME_GUEST;
915 }
916
917 /* Translate the logical address */
918 gpa = vcpu->arch.fault_gpa & ~0xfffUL;
919 gpa &= ~0xF000000000000000ul;
920 gfn = gpa >> PAGE_SHIFT;
921 if (!(dsisr & DSISR_PRTABLE_FAULT))
922 gpa |= ea & 0xfff;
923
924 /* Get the corresponding memslot */
925 memslot = gfn_to_memslot(kvm, gfn);
926
927 /* No memslot means it's an emulated MMIO region */
928 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
929 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
930 DSISR_SET_RC)) {
931 /*
932 * Bad address in guest page table tree, or other
933 * unusual error - reflect it to the guest as DSI.
934 */
935 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
936 return RESUME_GUEST;
937 }
938 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing);
939 }
940
941 if (memslot->flags & KVM_MEM_READONLY) {
942 if (writing) {
943 /* give the guest a DSI */
944 kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
945 DSISR_PROTFAULT);
946 return RESUME_GUEST;
947 }
948 kvm_ro = true;
949 }
950
951 /* Failed to set the reference/change bits */
952 if (dsisr & DSISR_SET_RC) {
953 spin_lock(&kvm->mmu_lock);
954 if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable,
955 writing, gpa, kvm->arch.lpid))
956 dsisr &= ~DSISR_SET_RC;
957 spin_unlock(&kvm->mmu_lock);
958
959 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
960 DSISR_PROTFAULT | DSISR_SET_RC)))
961 return RESUME_GUEST;
962 }
963
964 /* Try to insert a pte */
965 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
966 kvm_ro, NULL, NULL);
967
968 if (ret == 0 || ret == -EAGAIN)
969 ret = RESUME_GUEST;
970 return ret;
971 }
972
973 /* Called with kvm->mmu_lock held */
974 int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
975 unsigned long gfn)
976 {
977 pte_t *ptep;
978 unsigned long gpa = gfn << PAGE_SHIFT;
979 unsigned int shift;
980
981 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
982 if (ptep && pte_present(*ptep))
983 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
984 kvm->arch.lpid);
985 return 0;
986 }
987
988 /* Called with kvm->mmu_lock held */
989 int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
990 unsigned long gfn)
991 {
992 pte_t *ptep;
993 unsigned long gpa = gfn << PAGE_SHIFT;
994 unsigned int shift;
995 int ref = 0;
996 unsigned long old, *rmapp;
997
998 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
999 if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
1000 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1001 gpa, shift);
1002 /* XXX need to flush tlb here? */
1003 /* Also clear bit in ptes in shadow pgtable for nested guests */
1004 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1005 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1006 old & PTE_RPN_MASK,
1007 1UL << shift);
1008 ref = 1;
1009 }
1010 return ref;
1011 }
1012
1013 /* Called with kvm->mmu_lock held */
1014 int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1015 unsigned long gfn)
1016 {
1017 pte_t *ptep;
1018 unsigned long gpa = gfn << PAGE_SHIFT;
1019 unsigned int shift;
1020 int ref = 0;
1021
1022 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1023 if (ptep && pte_present(*ptep) && pte_young(*ptep))
1024 ref = 1;
1025 return ref;
1026 }
1027
1028 /* Returns the number of PAGE_SIZE pages that are dirty */
1029 static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1030 struct kvm_memory_slot *memslot, int pagenum)
1031 {
1032 unsigned long gfn = memslot->base_gfn + pagenum;
1033 unsigned long gpa = gfn << PAGE_SHIFT;
1034 pte_t *ptep;
1035 unsigned int shift;
1036 int ret = 0;
1037 unsigned long old, *rmapp;
1038
1039 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1040 if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
1041 ret = 1;
1042 if (shift)
1043 ret = 1 << (shift - PAGE_SHIFT);
1044 spin_lock(&kvm->mmu_lock);
1045 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1046 gpa, shift);
1047 kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
1048 /* Also clear bit in ptes in shadow pgtable for nested guests */
1049 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1050 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1051 old & PTE_RPN_MASK,
1052 1UL << shift);
1053 spin_unlock(&kvm->mmu_lock);
1054 }
1055 return ret;
1056 }
1057
1058 long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1059 struct kvm_memory_slot *memslot, unsigned long *map)
1060 {
1061 unsigned long i, j;
1062 int npages;
1063
1064 for (i = 0; i < memslot->npages; i = j) {
1065 npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1066
1067 /*
1068 * Note that if npages > 0 then i must be a multiple of npages,
1069 * since huge pages are only used to back the guest at guest
1070 * real addresses that are a multiple of their size.
1071 * Since we have at most one PTE covering any given guest
1072 * real address, if npages > 1 we can skip to i + npages.
1073 */
1074 j = i + 1;
1075 if (npages) {
1076 set_dirty_bits(map, i, npages);
1077 j = i + npages;
1078 }
1079 }
1080 return 0;
1081 }
1082
1083 void kvmppc_radix_flush_memslot(struct kvm *kvm,
1084 const struct kvm_memory_slot *memslot)
1085 {
1086 unsigned long n;
1087 pte_t *ptep;
1088 unsigned long gpa;
1089 unsigned int shift;
1090
1091 gpa = memslot->base_gfn << PAGE_SHIFT;
1092 spin_lock(&kvm->mmu_lock);
1093 for (n = memslot->npages; n; --n) {
1094 ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
1095 if (ptep && pte_present(*ptep))
1096 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1097 kvm->arch.lpid);
1098 gpa += PAGE_SIZE;
1099 }
1100 spin_unlock(&kvm->mmu_lock);
1101 }
1102
1103 static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1104 int psize, int *indexp)
1105 {
1106 if (!mmu_psize_defs[psize].shift)
1107 return;
1108 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1109 (mmu_psize_defs[psize].ap << 29);
1110 ++(*indexp);
1111 }
1112
1113 int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1114 {
1115 int i;
1116
1117 if (!radix_enabled())
1118 return -EINVAL;
1119 memset(info, 0, sizeof(*info));
1120
1121 /* 4k page size */
1122 info->geometries[0].page_shift = 12;
1123 info->geometries[0].level_bits[0] = 9;
1124 for (i = 1; i < 4; ++i)
1125 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1126 /* 64k page size */
1127 info->geometries[1].page_shift = 16;
1128 for (i = 0; i < 4; ++i)
1129 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1130
1131 i = 0;
1132 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1133 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1134 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1135 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1136
1137 return 0;
1138 }
1139
1140 int kvmppc_init_vm_radix(struct kvm *kvm)
1141 {
1142 kvm->arch.pgtable = pgd_alloc(kvm->mm);
1143 if (!kvm->arch.pgtable)
1144 return -ENOMEM;
1145 return 0;
1146 }
1147
1148 static void pte_ctor(void *addr)
1149 {
1150 memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1151 }
1152
1153 static void pmd_ctor(void *addr)
1154 {
1155 memset(addr, 0, RADIX_PMD_TABLE_SIZE);
1156 }
1157
1158 struct debugfs_radix_state {
1159 struct kvm *kvm;
1160 struct mutex mutex;
1161 unsigned long gpa;
1162 int lpid;
1163 int chars_left;
1164 int buf_index;
1165 char buf[128];
1166 u8 hdr;
1167 };
1168
1169 static int debugfs_radix_open(struct inode *inode, struct file *file)
1170 {
1171 struct kvm *kvm = inode->i_private;
1172 struct debugfs_radix_state *p;
1173
1174 p = kzalloc(sizeof(*p), GFP_KERNEL);
1175 if (!p)
1176 return -ENOMEM;
1177
1178 kvm_get_kvm(kvm);
1179 p->kvm = kvm;
1180 mutex_init(&p->mutex);
1181 file->private_data = p;
1182
1183 return nonseekable_open(inode, file);
1184 }
1185
1186 static int debugfs_radix_release(struct inode *inode, struct file *file)
1187 {
1188 struct debugfs_radix_state *p = file->private_data;
1189
1190 kvm_put_kvm(p->kvm);
1191 kfree(p);
1192 return 0;
1193 }
1194
1195 static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1196 size_t len, loff_t *ppos)
1197 {
1198 struct debugfs_radix_state *p = file->private_data;
1199 ssize_t ret, r;
1200 unsigned long n;
1201 struct kvm *kvm;
1202 unsigned long gpa;
1203 pgd_t *pgt;
1204 struct kvm_nested_guest *nested;
1205 pgd_t pgd, *pgdp;
1206 pud_t pud, *pudp;
1207 pmd_t pmd, *pmdp;
1208 pte_t *ptep;
1209 int shift;
1210 unsigned long pte;
1211
1212 kvm = p->kvm;
1213 if (!kvm_is_radix(kvm))
1214 return 0;
1215
1216 ret = mutex_lock_interruptible(&p->mutex);
1217 if (ret)
1218 return ret;
1219
1220 if (p->chars_left) {
1221 n = p->chars_left;
1222 if (n > len)
1223 n = len;
1224 r = copy_to_user(buf, p->buf + p->buf_index, n);
1225 n -= r;
1226 p->chars_left -= n;
1227 p->buf_index += n;
1228 buf += n;
1229 len -= n;
1230 ret = n;
1231 if (r) {
1232 if (!n)
1233 ret = -EFAULT;
1234 goto out;
1235 }
1236 }
1237
1238 gpa = p->gpa;
1239 nested = NULL;
1240 pgt = NULL;
1241 while (len != 0 && p->lpid >= 0) {
1242 if (gpa >= RADIX_PGTABLE_RANGE) {
1243 gpa = 0;
1244 pgt = NULL;
1245 if (nested) {
1246 kvmhv_put_nested(nested);
1247 nested = NULL;
1248 }
1249 p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1250 p->hdr = 0;
1251 if (p->lpid < 0)
1252 break;
1253 }
1254 if (!pgt) {
1255 if (p->lpid == 0) {
1256 pgt = kvm->arch.pgtable;
1257 } else {
1258 nested = kvmhv_get_nested(kvm, p->lpid, false);
1259 if (!nested) {
1260 gpa = RADIX_PGTABLE_RANGE;
1261 continue;
1262 }
1263 pgt = nested->shadow_pgtable;
1264 }
1265 }
1266 n = 0;
1267 if (!p->hdr) {
1268 if (p->lpid > 0)
1269 n = scnprintf(p->buf, sizeof(p->buf),
1270 "\nNested LPID %d: ", p->lpid);
1271 n += scnprintf(p->buf + n, sizeof(p->buf) - n,
1272 "pgdir: %lx\n", (unsigned long)pgt);
1273 p->hdr = 1;
1274 goto copy;
1275 }
1276
1277 pgdp = pgt + pgd_index(gpa);
1278 pgd = READ_ONCE(*pgdp);
1279 if (!(pgd_val(pgd) & _PAGE_PRESENT)) {
1280 gpa = (gpa & PGDIR_MASK) + PGDIR_SIZE;
1281 continue;
1282 }
1283
1284 pudp = pud_offset(&pgd, gpa);
1285 pud = READ_ONCE(*pudp);
1286 if (!(pud_val(pud) & _PAGE_PRESENT)) {
1287 gpa = (gpa & PUD_MASK) + PUD_SIZE;
1288 continue;
1289 }
1290 if (pud_val(pud) & _PAGE_PTE) {
1291 pte = pud_val(pud);
1292 shift = PUD_SHIFT;
1293 goto leaf;
1294 }
1295
1296 pmdp = pmd_offset(&pud, gpa);
1297 pmd = READ_ONCE(*pmdp);
1298 if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1299 gpa = (gpa & PMD_MASK) + PMD_SIZE;
1300 continue;
1301 }
1302 if (pmd_val(pmd) & _PAGE_PTE) {
1303 pte = pmd_val(pmd);
1304 shift = PMD_SHIFT;
1305 goto leaf;
1306 }
1307
1308 ptep = pte_offset_kernel(&pmd, gpa);
1309 pte = pte_val(READ_ONCE(*ptep));
1310 if (!(pte & _PAGE_PRESENT)) {
1311 gpa += PAGE_SIZE;
1312 continue;
1313 }
1314 shift = PAGE_SHIFT;
1315 leaf:
1316 n = scnprintf(p->buf, sizeof(p->buf),
1317 " %lx: %lx %d\n", gpa, pte, shift);
1318 gpa += 1ul << shift;
1319 copy:
1320 p->chars_left = n;
1321 if (n > len)
1322 n = len;
1323 r = copy_to_user(buf, p->buf, n);
1324 n -= r;
1325 p->chars_left -= n;
1326 p->buf_index = n;
1327 buf += n;
1328 len -= n;
1329 ret += n;
1330 if (r) {
1331 if (!ret)
1332 ret = -EFAULT;
1333 break;
1334 }
1335 }
1336 p->gpa = gpa;
1337 if (nested)
1338 kvmhv_put_nested(nested);
1339
1340 out:
1341 mutex_unlock(&p->mutex);
1342 return ret;
1343 }
1344
1345 static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1346 size_t len, loff_t *ppos)
1347 {
1348 return -EACCES;
1349 }
1350
1351 static const struct file_operations debugfs_radix_fops = {
1352 .owner = THIS_MODULE,
1353 .open = debugfs_radix_open,
1354 .release = debugfs_radix_release,
1355 .read = debugfs_radix_read,
1356 .write = debugfs_radix_write,
1357 .llseek = generic_file_llseek,
1358 };
1359
1360 void kvmhv_radix_debugfs_init(struct kvm *kvm)
1361 {
1362 kvm->arch.radix_dentry = debugfs_create_file("radix", 0400,
1363 kvm->arch.debugfs_dir, kvm,
1364 &debugfs_radix_fops);
1365 }
1366
1367 int kvmppc_radix_init(void)
1368 {
1369 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
1370
1371 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1372 if (!kvm_pte_cache)
1373 return -ENOMEM;
1374
1375 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1376
1377 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1378 if (!kvm_pmd_cache) {
1379 kmem_cache_destroy(kvm_pte_cache);
1380 return -ENOMEM;
1381 }
1382
1383 return 0;
1384 }
1385
1386 void kvmppc_radix_exit(void)
1387 {
1388 kmem_cache_destroy(kvm_pte_cache);
1389 kmem_cache_destroy(kvm_pmd_cache);
1390 }