]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
16191915e8d0f2f8b5d8662aecd5d6cbc749ee9c
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71 int me;
72 int cpu = vcpu->cpu;
73 wait_queue_head_t *wqp;
74
75 wqp = kvm_arch_vcpu_wq(vcpu);
76 if (waitqueue_active(wqp)) {
77 wake_up_interruptible(wqp);
78 ++vcpu->stat.halt_wakeup;
79 }
80
81 me = get_cpu();
82
83 /* CPU points to the first thread of the core */
84 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85 int real_cpu = cpu + vcpu->arch.ptid;
86 if (paca[real_cpu].kvm_hstate.xics_phys)
87 xics_wake_cpu(real_cpu);
88 else if (cpu_online(cpu))
89 smp_send_reschedule(cpu);
90 }
91 put_cpu();
92 }
93
94 /*
95 * We use the vcpu_load/put functions to measure stolen time.
96 * Stolen time is counted as time when either the vcpu is able to
97 * run as part of a virtual core, but the task running the vcore
98 * is preempted or sleeping, or when the vcpu needs something done
99 * in the kernel by the task running the vcpu, but that task is
100 * preempted or sleeping. Those two things have to be counted
101 * separately, since one of the vcpu tasks will take on the job
102 * of running the core, and the other vcpu tasks in the vcore will
103 * sleep waiting for it to do that, but that sleep shouldn't count
104 * as stolen time.
105 *
106 * Hence we accumulate stolen time when the vcpu can run as part of
107 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108 * needs its task to do other things in the kernel (for example,
109 * service a page fault) in busy_stolen. We don't accumulate
110 * stolen time for a vcore when it is inactive, or for a vcpu
111 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
112 * a misnomer; it means that the vcpu task is not executing in
113 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114 * the kernel. We don't have any way of dividing up that time
115 * between time that the vcpu is genuinely stopped, time that
116 * the task is actively working on behalf of the vcpu, and time
117 * that the task is preempted, so we don't count any of it as
118 * stolen.
119 *
120 * Updates to busy_stolen are protected by arch.tbacct_lock;
121 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122 * of the vcpu that has taken responsibility for running the vcore
123 * (i.e. vc->runner). The stolen times are measured in units of
124 * timebase ticks. (Note that the != TB_NIL checks below are
125 * purely defensive; they should never fail.)
126 */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130 struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132 spin_lock(&vcpu->arch.tbacct_lock);
133 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134 vc->preempt_tb != TB_NIL) {
135 vc->stolen_tb += mftb() - vc->preempt_tb;
136 vc->preempt_tb = TB_NIL;
137 }
138 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139 vcpu->arch.busy_preempt != TB_NIL) {
140 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141 vcpu->arch.busy_preempt = TB_NIL;
142 }
143 spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150 spin_lock(&vcpu->arch.tbacct_lock);
151 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152 vc->preempt_tb = mftb();
153 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154 vcpu->arch.busy_preempt = mftb();
155 spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160 vcpu->arch.shregs.msr = msr;
161 kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166 vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171 int r;
172
173 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
175 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176 for (r = 0; r < 16; ++r)
177 pr_err("r%2d = %.16lx r%d = %.16lx\n",
178 r, kvmppc_get_gpr(vcpu, r),
179 r+16, kvmppc_get_gpr(vcpu, r+16));
180 pr_err("ctr = %.16lx lr = %.16lx\n",
181 vcpu->arch.ctr, vcpu->arch.lr);
182 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
189 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191 pr_err("fault dar = %.16lx dsisr = %.8x\n",
192 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194 for (r = 0; r < vcpu->arch.slb_max; ++r)
195 pr_err(" ESID = %.16llx VSID = %.16llx\n",
196 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199 vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204 int r;
205 struct kvm_vcpu *v, *ret = NULL;
206
207 mutex_lock(&kvm->lock);
208 kvm_for_each_vcpu(r, v, kvm) {
209 if (v->vcpu_id == id) {
210 ret = v;
211 break;
212 }
213 }
214 mutex_unlock(&kvm->lock);
215 return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220 vpa->shared_proc = 1;
221 vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225 unsigned long addr, unsigned long len)
226 {
227 /* check address is cacheline aligned */
228 if (addr & (L1_CACHE_BYTES - 1))
229 return -EINVAL;
230 spin_lock(&vcpu->arch.vpa_update_lock);
231 if (v->next_gpa != addr || v->len != len) {
232 v->next_gpa = addr;
233 v->len = addr ? len : 0;
234 v->update_pending = 1;
235 }
236 spin_unlock(&vcpu->arch.vpa_update_lock);
237 return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242 u32 dummy;
243 union {
244 u16 hword;
245 u32 word;
246 } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251 if (vpap->update_pending)
252 return vpap->next_gpa != 0;
253 return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257 unsigned long flags,
258 unsigned long vcpuid, unsigned long vpa)
259 {
260 struct kvm *kvm = vcpu->kvm;
261 unsigned long len, nb;
262 void *va;
263 struct kvm_vcpu *tvcpu;
264 int err;
265 int subfunc;
266 struct kvmppc_vpa *vpap;
267
268 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269 if (!tvcpu)
270 return H_PARAMETER;
271
272 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274 subfunc == H_VPA_REG_SLB) {
275 /* Registering new area - address must be cache-line aligned */
276 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277 return H_PARAMETER;
278
279 /* convert logical addr to kernel addr and read length */
280 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281 if (va == NULL)
282 return H_PARAMETER;
283 if (subfunc == H_VPA_REG_VPA)
284 len = ((struct reg_vpa *)va)->length.hword;
285 else
286 len = ((struct reg_vpa *)va)->length.word;
287 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289 /* Check length */
290 if (len > nb || len < sizeof(struct reg_vpa))
291 return H_PARAMETER;
292 } else {
293 vpa = 0;
294 len = 0;
295 }
296
297 err = H_PARAMETER;
298 vpap = NULL;
299 spin_lock(&tvcpu->arch.vpa_update_lock);
300
301 switch (subfunc) {
302 case H_VPA_REG_VPA: /* register VPA */
303 if (len < sizeof(struct lppaca))
304 break;
305 vpap = &tvcpu->arch.vpa;
306 err = 0;
307 break;
308
309 case H_VPA_REG_DTL: /* register DTL */
310 if (len < sizeof(struct dtl_entry))
311 break;
312 len -= len % sizeof(struct dtl_entry);
313
314 /* Check that they have previously registered a VPA */
315 err = H_RESOURCE;
316 if (!vpa_is_registered(&tvcpu->arch.vpa))
317 break;
318
319 vpap = &tvcpu->arch.dtl;
320 err = 0;
321 break;
322
323 case H_VPA_REG_SLB: /* register SLB shadow buffer */
324 /* Check that they have previously registered a VPA */
325 err = H_RESOURCE;
326 if (!vpa_is_registered(&tvcpu->arch.vpa))
327 break;
328
329 vpap = &tvcpu->arch.slb_shadow;
330 err = 0;
331 break;
332
333 case H_VPA_DEREG_VPA: /* deregister VPA */
334 /* Check they don't still have a DTL or SLB buf registered */
335 err = H_RESOURCE;
336 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337 vpa_is_registered(&tvcpu->arch.slb_shadow))
338 break;
339
340 vpap = &tvcpu->arch.vpa;
341 err = 0;
342 break;
343
344 case H_VPA_DEREG_DTL: /* deregister DTL */
345 vpap = &tvcpu->arch.dtl;
346 err = 0;
347 break;
348
349 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
350 vpap = &tvcpu->arch.slb_shadow;
351 err = 0;
352 break;
353 }
354
355 if (vpap) {
356 vpap->next_gpa = vpa;
357 vpap->len = len;
358 vpap->update_pending = 1;
359 }
360
361 spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363 return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368 struct kvm *kvm = vcpu->kvm;
369 void *va;
370 unsigned long nb;
371 unsigned long gpa;
372
373 /*
374 * We need to pin the page pointed to by vpap->next_gpa,
375 * but we can't call kvmppc_pin_guest_page under the lock
376 * as it does get_user_pages() and down_read(). So we
377 * have to drop the lock, pin the page, then get the lock
378 * again and check that a new area didn't get registered
379 * in the meantime.
380 */
381 for (;;) {
382 gpa = vpap->next_gpa;
383 spin_unlock(&vcpu->arch.vpa_update_lock);
384 va = NULL;
385 nb = 0;
386 if (gpa)
387 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388 spin_lock(&vcpu->arch.vpa_update_lock);
389 if (gpa == vpap->next_gpa)
390 break;
391 /* sigh... unpin that one and try again */
392 if (va)
393 kvmppc_unpin_guest_page(kvm, va, gpa, false);
394 }
395
396 vpap->update_pending = 0;
397 if (va && nb < vpap->len) {
398 /*
399 * If it's now too short, it must be that userspace
400 * has changed the mappings underlying guest memory,
401 * so unregister the region.
402 */
403 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404 va = NULL;
405 }
406 if (vpap->pinned_addr)
407 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408 vpap->dirty);
409 vpap->gpa = gpa;
410 vpap->pinned_addr = va;
411 vpap->dirty = false;
412 if (va)
413 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418 if (!(vcpu->arch.vpa.update_pending ||
419 vcpu->arch.slb_shadow.update_pending ||
420 vcpu->arch.dtl.update_pending))
421 return;
422
423 spin_lock(&vcpu->arch.vpa_update_lock);
424 if (vcpu->arch.vpa.update_pending) {
425 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426 if (vcpu->arch.vpa.pinned_addr)
427 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428 }
429 if (vcpu->arch.dtl.update_pending) {
430 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432 vcpu->arch.dtl_index = 0;
433 }
434 if (vcpu->arch.slb_shadow.update_pending)
435 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436 spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440 * Return the accumulated stolen time for the vcore up until `now'.
441 * The caller should hold the vcore lock.
442 */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445 u64 p;
446
447 /*
448 * If we are the task running the vcore, then since we hold
449 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450 * can't be updated, so we don't need the tbacct_lock.
451 * If the vcore is inactive, it can't become active (since we
452 * hold the vcore lock), so the vcpu load/put functions won't
453 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454 */
455 if (vc->vcore_state != VCORE_INACTIVE &&
456 vc->runner->arch.run_task != current) {
457 spin_lock(&vc->runner->arch.tbacct_lock);
458 p = vc->stolen_tb;
459 if (vc->preempt_tb != TB_NIL)
460 p += now - vc->preempt_tb;
461 spin_unlock(&vc->runner->arch.tbacct_lock);
462 } else {
463 p = vc->stolen_tb;
464 }
465 return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469 struct kvmppc_vcore *vc)
470 {
471 struct dtl_entry *dt;
472 struct lppaca *vpa;
473 unsigned long stolen;
474 unsigned long core_stolen;
475 u64 now;
476
477 dt = vcpu->arch.dtl_ptr;
478 vpa = vcpu->arch.vpa.pinned_addr;
479 now = mftb();
480 core_stolen = vcore_stolen_time(vc, now);
481 stolen = core_stolen - vcpu->arch.stolen_logged;
482 vcpu->arch.stolen_logged = core_stolen;
483 spin_lock(&vcpu->arch.tbacct_lock);
484 stolen += vcpu->arch.busy_stolen;
485 vcpu->arch.busy_stolen = 0;
486 spin_unlock(&vcpu->arch.tbacct_lock);
487 if (!dt || !vpa)
488 return;
489 memset(dt, 0, sizeof(struct dtl_entry));
490 dt->dispatch_reason = 7;
491 dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492 dt->timebase = now;
493 dt->enqueue_to_dispatch_time = stolen;
494 dt->srr0 = kvmppc_get_pc(vcpu);
495 dt->srr1 = vcpu->arch.shregs.msr;
496 ++dt;
497 if (dt == vcpu->arch.dtl.pinned_end)
498 dt = vcpu->arch.dtl.pinned_addr;
499 vcpu->arch.dtl_ptr = dt;
500 /* order writing *dt vs. writing vpa->dtl_idx */
501 smp_wmb();
502 vpa->dtl_idx = ++vcpu->arch.dtl_index;
503 vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508 unsigned long req = kvmppc_get_gpr(vcpu, 3);
509 unsigned long target, ret = H_SUCCESS;
510 struct kvm_vcpu *tvcpu;
511 int idx, rc;
512
513 switch (req) {
514 case H_ENTER:
515 idx = srcu_read_lock(&vcpu->kvm->srcu);
516 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517 kvmppc_get_gpr(vcpu, 5),
518 kvmppc_get_gpr(vcpu, 6),
519 kvmppc_get_gpr(vcpu, 7));
520 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521 break;
522 case H_CEDE:
523 break;
524 case H_PROD:
525 target = kvmppc_get_gpr(vcpu, 4);
526 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527 if (!tvcpu) {
528 ret = H_PARAMETER;
529 break;
530 }
531 tvcpu->arch.prodded = 1;
532 smp_mb();
533 if (vcpu->arch.ceded) {
534 if (waitqueue_active(&vcpu->wq)) {
535 wake_up_interruptible(&vcpu->wq);
536 vcpu->stat.halt_wakeup++;
537 }
538 }
539 break;
540 case H_CONFER:
541 break;
542 case H_REGISTER_VPA:
543 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544 kvmppc_get_gpr(vcpu, 5),
545 kvmppc_get_gpr(vcpu, 6));
546 break;
547 case H_RTAS:
548 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549 return RESUME_HOST;
550
551 rc = kvmppc_rtas_hcall(vcpu);
552
553 if (rc == -ENOENT)
554 return RESUME_HOST;
555 else if (rc == 0)
556 break;
557
558 /* Send the error out to userspace via KVM_RUN */
559 return rc;
560
561 case H_XIRR:
562 case H_CPPR:
563 case H_EOI:
564 case H_IPI:
565 if (kvmppc_xics_enabled(vcpu)) {
566 ret = kvmppc_xics_hcall(vcpu, req);
567 break;
568 } /* fallthrough */
569 default:
570 return RESUME_HOST;
571 }
572 kvmppc_set_gpr(vcpu, 3, ret);
573 vcpu->arch.hcall_needed = 0;
574 return RESUME_GUEST;
575 }
576
577 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
578 struct task_struct *tsk)
579 {
580 int r = RESUME_HOST;
581
582 vcpu->stat.sum_exits++;
583
584 run->exit_reason = KVM_EXIT_UNKNOWN;
585 run->ready_for_interrupt_injection = 1;
586 switch (vcpu->arch.trap) {
587 /* We're good on these - the host merely wanted to get our attention */
588 case BOOK3S_INTERRUPT_HV_DECREMENTER:
589 vcpu->stat.dec_exits++;
590 r = RESUME_GUEST;
591 break;
592 case BOOK3S_INTERRUPT_EXTERNAL:
593 vcpu->stat.ext_intr_exits++;
594 r = RESUME_GUEST;
595 break;
596 case BOOK3S_INTERRUPT_PERFMON:
597 r = RESUME_GUEST;
598 break;
599 case BOOK3S_INTERRUPT_MACHINE_CHECK:
600 /*
601 * Deliver a machine check interrupt to the guest.
602 * We have to do this, even if the host has handled the
603 * machine check, because machine checks use SRR0/1 and
604 * the interrupt might have trashed guest state in them.
605 */
606 kvmppc_book3s_queue_irqprio(vcpu,
607 BOOK3S_INTERRUPT_MACHINE_CHECK);
608 r = RESUME_GUEST;
609 break;
610 case BOOK3S_INTERRUPT_PROGRAM:
611 {
612 ulong flags;
613 /*
614 * Normally program interrupts are delivered directly
615 * to the guest by the hardware, but we can get here
616 * as a result of a hypervisor emulation interrupt
617 * (e40) getting turned into a 700 by BML RTAS.
618 */
619 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
620 kvmppc_core_queue_program(vcpu, flags);
621 r = RESUME_GUEST;
622 break;
623 }
624 case BOOK3S_INTERRUPT_SYSCALL:
625 {
626 /* hcall - punt to userspace */
627 int i;
628
629 if (vcpu->arch.shregs.msr & MSR_PR) {
630 /* sc 1 from userspace - reflect to guest syscall */
631 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
632 r = RESUME_GUEST;
633 break;
634 }
635 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
636 for (i = 0; i < 9; ++i)
637 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
638 run->exit_reason = KVM_EXIT_PAPR_HCALL;
639 vcpu->arch.hcall_needed = 1;
640 r = RESUME_HOST;
641 break;
642 }
643 /*
644 * We get these next two if the guest accesses a page which it thinks
645 * it has mapped but which is not actually present, either because
646 * it is for an emulated I/O device or because the corresonding
647 * host page has been paged out. Any other HDSI/HISI interrupts
648 * have been handled already.
649 */
650 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
651 r = RESUME_PAGE_FAULT;
652 break;
653 case BOOK3S_INTERRUPT_H_INST_STORAGE:
654 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
655 vcpu->arch.fault_dsisr = 0;
656 r = RESUME_PAGE_FAULT;
657 break;
658 /*
659 * This occurs if the guest executes an illegal instruction.
660 * We just generate a program interrupt to the guest, since
661 * we don't emulate any guest instructions at this stage.
662 */
663 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
664 kvmppc_core_queue_program(vcpu, 0x80000);
665 r = RESUME_GUEST;
666 break;
667 default:
668 kvmppc_dump_regs(vcpu);
669 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
670 vcpu->arch.trap, kvmppc_get_pc(vcpu),
671 vcpu->arch.shregs.msr);
672 r = RESUME_HOST;
673 BUG();
674 break;
675 }
676
677 return r;
678 }
679
680 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
681 struct kvm_sregs *sregs)
682 {
683 int i;
684
685 sregs->pvr = vcpu->arch.pvr;
686
687 memset(sregs, 0, sizeof(struct kvm_sregs));
688 for (i = 0; i < vcpu->arch.slb_max; i++) {
689 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
690 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
691 }
692
693 return 0;
694 }
695
696 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
697 struct kvm_sregs *sregs)
698 {
699 int i, j;
700
701 kvmppc_set_pvr(vcpu, sregs->pvr);
702
703 j = 0;
704 for (i = 0; i < vcpu->arch.slb_nr; i++) {
705 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
706 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
707 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
708 ++j;
709 }
710 }
711 vcpu->arch.slb_max = j;
712
713 return 0;
714 }
715
716 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
717 {
718 int r = 0;
719 long int i;
720
721 switch (id) {
722 case KVM_REG_PPC_HIOR:
723 *val = get_reg_val(id, 0);
724 break;
725 case KVM_REG_PPC_DABR:
726 *val = get_reg_val(id, vcpu->arch.dabr);
727 break;
728 case KVM_REG_PPC_DSCR:
729 *val = get_reg_val(id, vcpu->arch.dscr);
730 break;
731 case KVM_REG_PPC_PURR:
732 *val = get_reg_val(id, vcpu->arch.purr);
733 break;
734 case KVM_REG_PPC_SPURR:
735 *val = get_reg_val(id, vcpu->arch.spurr);
736 break;
737 case KVM_REG_PPC_AMR:
738 *val = get_reg_val(id, vcpu->arch.amr);
739 break;
740 case KVM_REG_PPC_UAMOR:
741 *val = get_reg_val(id, vcpu->arch.uamor);
742 break;
743 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
744 i = id - KVM_REG_PPC_MMCR0;
745 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
746 break;
747 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
748 i = id - KVM_REG_PPC_PMC1;
749 *val = get_reg_val(id, vcpu->arch.pmc[i]);
750 break;
751 #ifdef CONFIG_VSX
752 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
753 if (cpu_has_feature(CPU_FTR_VSX)) {
754 /* VSX => FP reg i is stored in arch.vsr[2*i] */
755 long int i = id - KVM_REG_PPC_FPR0;
756 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
757 } else {
758 /* let generic code handle it */
759 r = -EINVAL;
760 }
761 break;
762 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
763 if (cpu_has_feature(CPU_FTR_VSX)) {
764 long int i = id - KVM_REG_PPC_VSR0;
765 val->vsxval[0] = vcpu->arch.vsr[2 * i];
766 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
767 } else {
768 r = -ENXIO;
769 }
770 break;
771 #endif /* CONFIG_VSX */
772 case KVM_REG_PPC_VPA_ADDR:
773 spin_lock(&vcpu->arch.vpa_update_lock);
774 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
775 spin_unlock(&vcpu->arch.vpa_update_lock);
776 break;
777 case KVM_REG_PPC_VPA_SLB:
778 spin_lock(&vcpu->arch.vpa_update_lock);
779 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
780 val->vpaval.length = vcpu->arch.slb_shadow.len;
781 spin_unlock(&vcpu->arch.vpa_update_lock);
782 break;
783 case KVM_REG_PPC_VPA_DTL:
784 spin_lock(&vcpu->arch.vpa_update_lock);
785 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
786 val->vpaval.length = vcpu->arch.dtl.len;
787 spin_unlock(&vcpu->arch.vpa_update_lock);
788 break;
789 default:
790 r = -EINVAL;
791 break;
792 }
793
794 return r;
795 }
796
797 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
798 {
799 int r = 0;
800 long int i;
801 unsigned long addr, len;
802
803 switch (id) {
804 case KVM_REG_PPC_HIOR:
805 /* Only allow this to be set to zero */
806 if (set_reg_val(id, *val))
807 r = -EINVAL;
808 break;
809 case KVM_REG_PPC_DABR:
810 vcpu->arch.dabr = set_reg_val(id, *val);
811 break;
812 case KVM_REG_PPC_DSCR:
813 vcpu->arch.dscr = set_reg_val(id, *val);
814 break;
815 case KVM_REG_PPC_PURR:
816 vcpu->arch.purr = set_reg_val(id, *val);
817 break;
818 case KVM_REG_PPC_SPURR:
819 vcpu->arch.spurr = set_reg_val(id, *val);
820 break;
821 case KVM_REG_PPC_AMR:
822 vcpu->arch.amr = set_reg_val(id, *val);
823 break;
824 case KVM_REG_PPC_UAMOR:
825 vcpu->arch.uamor = set_reg_val(id, *val);
826 break;
827 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
828 i = id - KVM_REG_PPC_MMCR0;
829 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
830 break;
831 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
832 i = id - KVM_REG_PPC_PMC1;
833 vcpu->arch.pmc[i] = set_reg_val(id, *val);
834 break;
835 #ifdef CONFIG_VSX
836 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
837 if (cpu_has_feature(CPU_FTR_VSX)) {
838 /* VSX => FP reg i is stored in arch.vsr[2*i] */
839 long int i = id - KVM_REG_PPC_FPR0;
840 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
841 } else {
842 /* let generic code handle it */
843 r = -EINVAL;
844 }
845 break;
846 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
847 if (cpu_has_feature(CPU_FTR_VSX)) {
848 long int i = id - KVM_REG_PPC_VSR0;
849 vcpu->arch.vsr[2 * i] = val->vsxval[0];
850 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
851 } else {
852 r = -ENXIO;
853 }
854 break;
855 #endif /* CONFIG_VSX */
856 case KVM_REG_PPC_VPA_ADDR:
857 addr = set_reg_val(id, *val);
858 r = -EINVAL;
859 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
860 vcpu->arch.dtl.next_gpa))
861 break;
862 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
863 break;
864 case KVM_REG_PPC_VPA_SLB:
865 addr = val->vpaval.addr;
866 len = val->vpaval.length;
867 r = -EINVAL;
868 if (addr && !vcpu->arch.vpa.next_gpa)
869 break;
870 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
871 break;
872 case KVM_REG_PPC_VPA_DTL:
873 addr = val->vpaval.addr;
874 len = val->vpaval.length;
875 r = -EINVAL;
876 if (addr && (len < sizeof(struct dtl_entry) ||
877 !vcpu->arch.vpa.next_gpa))
878 break;
879 len -= len % sizeof(struct dtl_entry);
880 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
881 break;
882 default:
883 r = -EINVAL;
884 break;
885 }
886
887 return r;
888 }
889
890 int kvmppc_core_check_processor_compat(void)
891 {
892 if (cpu_has_feature(CPU_FTR_HVMODE))
893 return 0;
894 return -EIO;
895 }
896
897 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
898 {
899 struct kvm_vcpu *vcpu;
900 int err = -EINVAL;
901 int core;
902 struct kvmppc_vcore *vcore;
903
904 core = id / threads_per_core;
905 if (core >= KVM_MAX_VCORES)
906 goto out;
907
908 err = -ENOMEM;
909 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
910 if (!vcpu)
911 goto out;
912
913 err = kvm_vcpu_init(vcpu, kvm, id);
914 if (err)
915 goto free_vcpu;
916
917 vcpu->arch.shared = &vcpu->arch.shregs;
918 vcpu->arch.mmcr[0] = MMCR0_FC;
919 vcpu->arch.ctrl = CTRL_RUNLATCH;
920 /* default to host PVR, since we can't spoof it */
921 vcpu->arch.pvr = mfspr(SPRN_PVR);
922 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
923 spin_lock_init(&vcpu->arch.vpa_update_lock);
924 spin_lock_init(&vcpu->arch.tbacct_lock);
925 vcpu->arch.busy_preempt = TB_NIL;
926
927 kvmppc_mmu_book3s_hv_init(vcpu);
928
929 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
930
931 init_waitqueue_head(&vcpu->arch.cpu_run);
932
933 mutex_lock(&kvm->lock);
934 vcore = kvm->arch.vcores[core];
935 if (!vcore) {
936 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
937 if (vcore) {
938 INIT_LIST_HEAD(&vcore->runnable_threads);
939 spin_lock_init(&vcore->lock);
940 init_waitqueue_head(&vcore->wq);
941 vcore->preempt_tb = TB_NIL;
942 }
943 kvm->arch.vcores[core] = vcore;
944 kvm->arch.online_vcores++;
945 }
946 mutex_unlock(&kvm->lock);
947
948 if (!vcore)
949 goto free_vcpu;
950
951 spin_lock(&vcore->lock);
952 ++vcore->num_threads;
953 spin_unlock(&vcore->lock);
954 vcpu->arch.vcore = vcore;
955
956 vcpu->arch.cpu_type = KVM_CPU_3S_64;
957 kvmppc_sanity_check(vcpu);
958
959 return vcpu;
960
961 free_vcpu:
962 kmem_cache_free(kvm_vcpu_cache, vcpu);
963 out:
964 return ERR_PTR(err);
965 }
966
967 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
968 {
969 if (vpa->pinned_addr)
970 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
971 vpa->dirty);
972 }
973
974 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
975 {
976 spin_lock(&vcpu->arch.vpa_update_lock);
977 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
978 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
979 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
980 spin_unlock(&vcpu->arch.vpa_update_lock);
981 kvm_vcpu_uninit(vcpu);
982 kmem_cache_free(kvm_vcpu_cache, vcpu);
983 }
984
985 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
986 {
987 unsigned long dec_nsec, now;
988
989 now = get_tb();
990 if (now > vcpu->arch.dec_expires) {
991 /* decrementer has already gone negative */
992 kvmppc_core_queue_dec(vcpu);
993 kvmppc_core_prepare_to_enter(vcpu);
994 return;
995 }
996 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
997 / tb_ticks_per_sec;
998 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
999 HRTIMER_MODE_REL);
1000 vcpu->arch.timer_running = 1;
1001 }
1002
1003 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1004 {
1005 vcpu->arch.ceded = 0;
1006 if (vcpu->arch.timer_running) {
1007 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1008 vcpu->arch.timer_running = 0;
1009 }
1010 }
1011
1012 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1013
1014 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1015 struct kvm_vcpu *vcpu)
1016 {
1017 u64 now;
1018
1019 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1020 return;
1021 spin_lock(&vcpu->arch.tbacct_lock);
1022 now = mftb();
1023 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1024 vcpu->arch.stolen_logged;
1025 vcpu->arch.busy_preempt = now;
1026 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1027 spin_unlock(&vcpu->arch.tbacct_lock);
1028 --vc->n_runnable;
1029 list_del(&vcpu->arch.run_list);
1030 }
1031
1032 static int kvmppc_grab_hwthread(int cpu)
1033 {
1034 struct paca_struct *tpaca;
1035 long timeout = 1000;
1036
1037 tpaca = &paca[cpu];
1038
1039 /* Ensure the thread won't go into the kernel if it wakes */
1040 tpaca->kvm_hstate.hwthread_req = 1;
1041 tpaca->kvm_hstate.kvm_vcpu = NULL;
1042
1043 /*
1044 * If the thread is already executing in the kernel (e.g. handling
1045 * a stray interrupt), wait for it to get back to nap mode.
1046 * The smp_mb() is to ensure that our setting of hwthread_req
1047 * is visible before we look at hwthread_state, so if this
1048 * races with the code at system_reset_pSeries and the thread
1049 * misses our setting of hwthread_req, we are sure to see its
1050 * setting of hwthread_state, and vice versa.
1051 */
1052 smp_mb();
1053 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1054 if (--timeout <= 0) {
1055 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1056 return -EBUSY;
1057 }
1058 udelay(1);
1059 }
1060 return 0;
1061 }
1062
1063 static void kvmppc_release_hwthread(int cpu)
1064 {
1065 struct paca_struct *tpaca;
1066
1067 tpaca = &paca[cpu];
1068 tpaca->kvm_hstate.hwthread_req = 0;
1069 tpaca->kvm_hstate.kvm_vcpu = NULL;
1070 }
1071
1072 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1073 {
1074 int cpu;
1075 struct paca_struct *tpaca;
1076 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1077
1078 if (vcpu->arch.timer_running) {
1079 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1080 vcpu->arch.timer_running = 0;
1081 }
1082 cpu = vc->pcpu + vcpu->arch.ptid;
1083 tpaca = &paca[cpu];
1084 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1085 tpaca->kvm_hstate.kvm_vcore = vc;
1086 tpaca->kvm_hstate.napping = 0;
1087 vcpu->cpu = vc->pcpu;
1088 smp_wmb();
1089 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1090 if (vcpu->arch.ptid) {
1091 xics_wake_cpu(cpu);
1092 ++vc->n_woken;
1093 }
1094 #endif
1095 }
1096
1097 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1098 {
1099 int i;
1100
1101 HMT_low();
1102 i = 0;
1103 while (vc->nap_count < vc->n_woken) {
1104 if (++i >= 1000000) {
1105 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1106 vc->nap_count, vc->n_woken);
1107 break;
1108 }
1109 cpu_relax();
1110 }
1111 HMT_medium();
1112 }
1113
1114 /*
1115 * Check that we are on thread 0 and that any other threads in
1116 * this core are off-line. Then grab the threads so they can't
1117 * enter the kernel.
1118 */
1119 static int on_primary_thread(void)
1120 {
1121 int cpu = smp_processor_id();
1122 int thr = cpu_thread_in_core(cpu);
1123
1124 if (thr)
1125 return 0;
1126 while (++thr < threads_per_core)
1127 if (cpu_online(cpu + thr))
1128 return 0;
1129
1130 /* Grab all hw threads so they can't go into the kernel */
1131 for (thr = 1; thr < threads_per_core; ++thr) {
1132 if (kvmppc_grab_hwthread(cpu + thr)) {
1133 /* Couldn't grab one; let the others go */
1134 do {
1135 kvmppc_release_hwthread(cpu + thr);
1136 } while (--thr > 0);
1137 return 0;
1138 }
1139 }
1140 return 1;
1141 }
1142
1143 /*
1144 * Run a set of guest threads on a physical core.
1145 * Called with vc->lock held.
1146 */
1147 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1148 {
1149 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1150 long ret;
1151 u64 now;
1152 int ptid, i, need_vpa_update;
1153 int srcu_idx;
1154 struct kvm_vcpu *vcpus_to_update[threads_per_core];
1155
1156 /* don't start if any threads have a signal pending */
1157 need_vpa_update = 0;
1158 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1159 if (signal_pending(vcpu->arch.run_task))
1160 return;
1161 if (vcpu->arch.vpa.update_pending ||
1162 vcpu->arch.slb_shadow.update_pending ||
1163 vcpu->arch.dtl.update_pending)
1164 vcpus_to_update[need_vpa_update++] = vcpu;
1165 }
1166
1167 /*
1168 * Initialize *vc, in particular vc->vcore_state, so we can
1169 * drop the vcore lock if necessary.
1170 */
1171 vc->n_woken = 0;
1172 vc->nap_count = 0;
1173 vc->entry_exit_count = 0;
1174 vc->vcore_state = VCORE_STARTING;
1175 vc->in_guest = 0;
1176 vc->napping_threads = 0;
1177
1178 /*
1179 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1180 * which can't be called with any spinlocks held.
1181 */
1182 if (need_vpa_update) {
1183 spin_unlock(&vc->lock);
1184 for (i = 0; i < need_vpa_update; ++i)
1185 kvmppc_update_vpas(vcpus_to_update[i]);
1186 spin_lock(&vc->lock);
1187 }
1188
1189 /*
1190 * Assign physical thread IDs, first to non-ceded vcpus
1191 * and then to ceded ones.
1192 */
1193 ptid = 0;
1194 vcpu0 = NULL;
1195 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1196 if (!vcpu->arch.ceded) {
1197 if (!ptid)
1198 vcpu0 = vcpu;
1199 vcpu->arch.ptid = ptid++;
1200 }
1201 }
1202 if (!vcpu0)
1203 goto out; /* nothing to run; should never happen */
1204 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1205 if (vcpu->arch.ceded)
1206 vcpu->arch.ptid = ptid++;
1207
1208 /*
1209 * Make sure we are running on thread 0, and that
1210 * secondary threads are offline.
1211 */
1212 if (threads_per_core > 1 && !on_primary_thread()) {
1213 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1214 vcpu->arch.ret = -EBUSY;
1215 goto out;
1216 }
1217
1218 vc->pcpu = smp_processor_id();
1219 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1220 kvmppc_start_thread(vcpu);
1221 kvmppc_create_dtl_entry(vcpu, vc);
1222 }
1223
1224 vc->vcore_state = VCORE_RUNNING;
1225 preempt_disable();
1226 spin_unlock(&vc->lock);
1227
1228 kvm_guest_enter();
1229
1230 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1231
1232 __kvmppc_vcore_entry(NULL, vcpu0);
1233
1234 spin_lock(&vc->lock);
1235 /* disable sending of IPIs on virtual external irqs */
1236 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1237 vcpu->cpu = -1;
1238 /* wait for secondary threads to finish writing their state to memory */
1239 if (vc->nap_count < vc->n_woken)
1240 kvmppc_wait_for_nap(vc);
1241 for (i = 0; i < threads_per_core; ++i)
1242 kvmppc_release_hwthread(vc->pcpu + i);
1243 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1244 vc->vcore_state = VCORE_EXITING;
1245 spin_unlock(&vc->lock);
1246
1247 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1248
1249 /* make sure updates to secondary vcpu structs are visible now */
1250 smp_mb();
1251 kvm_guest_exit();
1252
1253 preempt_enable();
1254 kvm_resched(vcpu);
1255
1256 spin_lock(&vc->lock);
1257 now = get_tb();
1258 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1259 /* cancel pending dec exception if dec is positive */
1260 if (now < vcpu->arch.dec_expires &&
1261 kvmppc_core_pending_dec(vcpu))
1262 kvmppc_core_dequeue_dec(vcpu);
1263
1264 ret = RESUME_GUEST;
1265 if (vcpu->arch.trap)
1266 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1267 vcpu->arch.run_task);
1268
1269 vcpu->arch.ret = ret;
1270 vcpu->arch.trap = 0;
1271
1272 if (vcpu->arch.ceded) {
1273 if (ret != RESUME_GUEST)
1274 kvmppc_end_cede(vcpu);
1275 else
1276 kvmppc_set_timer(vcpu);
1277 }
1278 }
1279
1280 out:
1281 vc->vcore_state = VCORE_INACTIVE;
1282 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1283 arch.run_list) {
1284 if (vcpu->arch.ret != RESUME_GUEST) {
1285 kvmppc_remove_runnable(vc, vcpu);
1286 wake_up(&vcpu->arch.cpu_run);
1287 }
1288 }
1289 }
1290
1291 /*
1292 * Wait for some other vcpu thread to execute us, and
1293 * wake us up when we need to handle something in the host.
1294 */
1295 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1296 {
1297 DEFINE_WAIT(wait);
1298
1299 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1300 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1301 schedule();
1302 finish_wait(&vcpu->arch.cpu_run, &wait);
1303 }
1304
1305 /*
1306 * All the vcpus in this vcore are idle, so wait for a decrementer
1307 * or external interrupt to one of the vcpus. vc->lock is held.
1308 */
1309 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1310 {
1311 DEFINE_WAIT(wait);
1312
1313 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1314 vc->vcore_state = VCORE_SLEEPING;
1315 spin_unlock(&vc->lock);
1316 schedule();
1317 finish_wait(&vc->wq, &wait);
1318 spin_lock(&vc->lock);
1319 vc->vcore_state = VCORE_INACTIVE;
1320 }
1321
1322 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1323 {
1324 int n_ceded;
1325 struct kvmppc_vcore *vc;
1326 struct kvm_vcpu *v, *vn;
1327
1328 kvm_run->exit_reason = 0;
1329 vcpu->arch.ret = RESUME_GUEST;
1330 vcpu->arch.trap = 0;
1331 kvmppc_update_vpas(vcpu);
1332
1333 /*
1334 * Synchronize with other threads in this virtual core
1335 */
1336 vc = vcpu->arch.vcore;
1337 spin_lock(&vc->lock);
1338 vcpu->arch.ceded = 0;
1339 vcpu->arch.run_task = current;
1340 vcpu->arch.kvm_run = kvm_run;
1341 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1342 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1343 vcpu->arch.busy_preempt = TB_NIL;
1344 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1345 ++vc->n_runnable;
1346
1347 /*
1348 * This happens the first time this is called for a vcpu.
1349 * If the vcore is already running, we may be able to start
1350 * this thread straight away and have it join in.
1351 */
1352 if (!signal_pending(current)) {
1353 if (vc->vcore_state == VCORE_RUNNING &&
1354 VCORE_EXIT_COUNT(vc) == 0) {
1355 vcpu->arch.ptid = vc->n_runnable - 1;
1356 kvmppc_create_dtl_entry(vcpu, vc);
1357 kvmppc_start_thread(vcpu);
1358 } else if (vc->vcore_state == VCORE_SLEEPING) {
1359 wake_up(&vc->wq);
1360 }
1361
1362 }
1363
1364 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1365 !signal_pending(current)) {
1366 if (vc->vcore_state != VCORE_INACTIVE) {
1367 spin_unlock(&vc->lock);
1368 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1369 spin_lock(&vc->lock);
1370 continue;
1371 }
1372 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1373 arch.run_list) {
1374 kvmppc_core_prepare_to_enter(v);
1375 if (signal_pending(v->arch.run_task)) {
1376 kvmppc_remove_runnable(vc, v);
1377 v->stat.signal_exits++;
1378 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1379 v->arch.ret = -EINTR;
1380 wake_up(&v->arch.cpu_run);
1381 }
1382 }
1383 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1384 break;
1385 vc->runner = vcpu;
1386 n_ceded = 0;
1387 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1388 if (!v->arch.pending_exceptions)
1389 n_ceded += v->arch.ceded;
1390 if (n_ceded == vc->n_runnable)
1391 kvmppc_vcore_blocked(vc);
1392 else
1393 kvmppc_run_core(vc);
1394 vc->runner = NULL;
1395 }
1396
1397 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1398 (vc->vcore_state == VCORE_RUNNING ||
1399 vc->vcore_state == VCORE_EXITING)) {
1400 spin_unlock(&vc->lock);
1401 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1402 spin_lock(&vc->lock);
1403 }
1404
1405 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1406 kvmppc_remove_runnable(vc, vcpu);
1407 vcpu->stat.signal_exits++;
1408 kvm_run->exit_reason = KVM_EXIT_INTR;
1409 vcpu->arch.ret = -EINTR;
1410 }
1411
1412 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1413 /* Wake up some vcpu to run the core */
1414 v = list_first_entry(&vc->runnable_threads,
1415 struct kvm_vcpu, arch.run_list);
1416 wake_up(&v->arch.cpu_run);
1417 }
1418
1419 spin_unlock(&vc->lock);
1420 return vcpu->arch.ret;
1421 }
1422
1423 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1424 {
1425 int r;
1426 int srcu_idx;
1427
1428 if (!vcpu->arch.sane) {
1429 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1430 return -EINVAL;
1431 }
1432
1433 kvmppc_core_prepare_to_enter(vcpu);
1434
1435 /* No need to go into the guest when all we'll do is come back out */
1436 if (signal_pending(current)) {
1437 run->exit_reason = KVM_EXIT_INTR;
1438 return -EINTR;
1439 }
1440
1441 atomic_inc(&vcpu->kvm->arch.vcpus_running);
1442 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1443 smp_mb();
1444
1445 /* On the first time here, set up HTAB and VRMA or RMA */
1446 if (!vcpu->kvm->arch.rma_setup_done) {
1447 r = kvmppc_hv_setup_htab_rma(vcpu);
1448 if (r)
1449 goto out;
1450 }
1451
1452 flush_fp_to_thread(current);
1453 flush_altivec_to_thread(current);
1454 flush_vsx_to_thread(current);
1455 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1456 vcpu->arch.pgdir = current->mm->pgd;
1457 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1458
1459 do {
1460 r = kvmppc_run_vcpu(run, vcpu);
1461
1462 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1463 !(vcpu->arch.shregs.msr & MSR_PR)) {
1464 r = kvmppc_pseries_do_hcall(vcpu);
1465 kvmppc_core_prepare_to_enter(vcpu);
1466 } else if (r == RESUME_PAGE_FAULT) {
1467 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1468 r = kvmppc_book3s_hv_page_fault(run, vcpu,
1469 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1470 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1471 }
1472 } while (r == RESUME_GUEST);
1473
1474 out:
1475 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1476 atomic_dec(&vcpu->kvm->arch.vcpus_running);
1477 return r;
1478 }
1479
1480
1481 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1482 Assumes POWER7 or PPC970. */
1483 static inline int lpcr_rmls(unsigned long rma_size)
1484 {
1485 switch (rma_size) {
1486 case 32ul << 20: /* 32 MB */
1487 if (cpu_has_feature(CPU_FTR_ARCH_206))
1488 return 8; /* only supported on POWER7 */
1489 return -1;
1490 case 64ul << 20: /* 64 MB */
1491 return 3;
1492 case 128ul << 20: /* 128 MB */
1493 return 7;
1494 case 256ul << 20: /* 256 MB */
1495 return 4;
1496 case 1ul << 30: /* 1 GB */
1497 return 2;
1498 case 16ul << 30: /* 16 GB */
1499 return 1;
1500 case 256ul << 30: /* 256 GB */
1501 return 0;
1502 default:
1503 return -1;
1504 }
1505 }
1506
1507 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1508 {
1509 struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1510 struct page *page;
1511
1512 if (vmf->pgoff >= ri->npages)
1513 return VM_FAULT_SIGBUS;
1514
1515 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1516 get_page(page);
1517 vmf->page = page;
1518 return 0;
1519 }
1520
1521 static const struct vm_operations_struct kvm_rma_vm_ops = {
1522 .fault = kvm_rma_fault,
1523 };
1524
1525 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1526 {
1527 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1528 vma->vm_ops = &kvm_rma_vm_ops;
1529 return 0;
1530 }
1531
1532 static int kvm_rma_release(struct inode *inode, struct file *filp)
1533 {
1534 struct kvmppc_linear_info *ri = filp->private_data;
1535
1536 kvm_release_rma(ri);
1537 return 0;
1538 }
1539
1540 static struct file_operations kvm_rma_fops = {
1541 .mmap = kvm_rma_mmap,
1542 .release = kvm_rma_release,
1543 };
1544
1545 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1546 {
1547 struct kvmppc_linear_info *ri;
1548 long fd;
1549
1550 ri = kvm_alloc_rma();
1551 if (!ri)
1552 return -ENOMEM;
1553
1554 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1555 if (fd < 0)
1556 kvm_release_rma(ri);
1557
1558 ret->rma_size = ri->npages << PAGE_SHIFT;
1559 return fd;
1560 }
1561
1562 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1563 int linux_psize)
1564 {
1565 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1566
1567 if (!def->shift)
1568 return;
1569 (*sps)->page_shift = def->shift;
1570 (*sps)->slb_enc = def->sllp;
1571 (*sps)->enc[0].page_shift = def->shift;
1572 (*sps)->enc[0].pte_enc = def->penc;
1573 (*sps)++;
1574 }
1575
1576 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1577 {
1578 struct kvm_ppc_one_seg_page_size *sps;
1579
1580 info->flags = KVM_PPC_PAGE_SIZES_REAL;
1581 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1582 info->flags |= KVM_PPC_1T_SEGMENTS;
1583 info->slb_size = mmu_slb_size;
1584
1585 /* We only support these sizes for now, and no muti-size segments */
1586 sps = &info->sps[0];
1587 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1588 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1589 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1590
1591 return 0;
1592 }
1593
1594 /*
1595 * Get (and clear) the dirty memory log for a memory slot.
1596 */
1597 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1598 {
1599 struct kvm_memory_slot *memslot;
1600 int r;
1601 unsigned long n;
1602
1603 mutex_lock(&kvm->slots_lock);
1604
1605 r = -EINVAL;
1606 if (log->slot >= KVM_USER_MEM_SLOTS)
1607 goto out;
1608
1609 memslot = id_to_memslot(kvm->memslots, log->slot);
1610 r = -ENOENT;
1611 if (!memslot->dirty_bitmap)
1612 goto out;
1613
1614 n = kvm_dirty_bitmap_bytes(memslot);
1615 memset(memslot->dirty_bitmap, 0, n);
1616
1617 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1618 if (r)
1619 goto out;
1620
1621 r = -EFAULT;
1622 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1623 goto out;
1624
1625 r = 0;
1626 out:
1627 mutex_unlock(&kvm->slots_lock);
1628 return r;
1629 }
1630
1631 static void unpin_slot(struct kvm_memory_slot *memslot)
1632 {
1633 unsigned long *physp;
1634 unsigned long j, npages, pfn;
1635 struct page *page;
1636
1637 physp = memslot->arch.slot_phys;
1638 npages = memslot->npages;
1639 if (!physp)
1640 return;
1641 for (j = 0; j < npages; j++) {
1642 if (!(physp[j] & KVMPPC_GOT_PAGE))
1643 continue;
1644 pfn = physp[j] >> PAGE_SHIFT;
1645 page = pfn_to_page(pfn);
1646 SetPageDirty(page);
1647 put_page(page);
1648 }
1649 }
1650
1651 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1652 struct kvm_memory_slot *dont)
1653 {
1654 if (!dont || free->arch.rmap != dont->arch.rmap) {
1655 vfree(free->arch.rmap);
1656 free->arch.rmap = NULL;
1657 }
1658 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1659 unpin_slot(free);
1660 vfree(free->arch.slot_phys);
1661 free->arch.slot_phys = NULL;
1662 }
1663 }
1664
1665 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1666 unsigned long npages)
1667 {
1668 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1669 if (!slot->arch.rmap)
1670 return -ENOMEM;
1671 slot->arch.slot_phys = NULL;
1672
1673 return 0;
1674 }
1675
1676 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1677 struct kvm_memory_slot *memslot,
1678 struct kvm_userspace_memory_region *mem)
1679 {
1680 unsigned long *phys;
1681
1682 /* Allocate a slot_phys array if needed */
1683 phys = memslot->arch.slot_phys;
1684 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1685 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1686 if (!phys)
1687 return -ENOMEM;
1688 memslot->arch.slot_phys = phys;
1689 }
1690
1691 return 0;
1692 }
1693
1694 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1695 struct kvm_userspace_memory_region *mem,
1696 const struct kvm_memory_slot *old)
1697 {
1698 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1699 struct kvm_memory_slot *memslot;
1700
1701 if (npages && old->npages) {
1702 /*
1703 * If modifying a memslot, reset all the rmap dirty bits.
1704 * If this is a new memslot, we don't need to do anything
1705 * since the rmap array starts out as all zeroes,
1706 * i.e. no pages are dirty.
1707 */
1708 memslot = id_to_memslot(kvm->memslots, mem->slot);
1709 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1710 }
1711 }
1712
1713 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1714 {
1715 int err = 0;
1716 struct kvm *kvm = vcpu->kvm;
1717 struct kvmppc_linear_info *ri = NULL;
1718 unsigned long hva;
1719 struct kvm_memory_slot *memslot;
1720 struct vm_area_struct *vma;
1721 unsigned long lpcr, senc;
1722 unsigned long psize, porder;
1723 unsigned long rma_size;
1724 unsigned long rmls;
1725 unsigned long *physp;
1726 unsigned long i, npages;
1727 int srcu_idx;
1728
1729 mutex_lock(&kvm->lock);
1730 if (kvm->arch.rma_setup_done)
1731 goto out; /* another vcpu beat us to it */
1732
1733 /* Allocate hashed page table (if not done already) and reset it */
1734 if (!kvm->arch.hpt_virt) {
1735 err = kvmppc_alloc_hpt(kvm, NULL);
1736 if (err) {
1737 pr_err("KVM: Couldn't alloc HPT\n");
1738 goto out;
1739 }
1740 }
1741
1742 /* Look up the memslot for guest physical address 0 */
1743 srcu_idx = srcu_read_lock(&kvm->srcu);
1744 memslot = gfn_to_memslot(kvm, 0);
1745
1746 /* We must have some memory at 0 by now */
1747 err = -EINVAL;
1748 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1749 goto out_srcu;
1750
1751 /* Look up the VMA for the start of this memory slot */
1752 hva = memslot->userspace_addr;
1753 down_read(&current->mm->mmap_sem);
1754 vma = find_vma(current->mm, hva);
1755 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1756 goto up_out;
1757
1758 psize = vma_kernel_pagesize(vma);
1759 porder = __ilog2(psize);
1760
1761 /* Is this one of our preallocated RMAs? */
1762 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1763 hva == vma->vm_start)
1764 ri = vma->vm_file->private_data;
1765
1766 up_read(&current->mm->mmap_sem);
1767
1768 if (!ri) {
1769 /* On POWER7, use VRMA; on PPC970, give up */
1770 err = -EPERM;
1771 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1772 pr_err("KVM: CPU requires an RMO\n");
1773 goto out_srcu;
1774 }
1775
1776 /* We can handle 4k, 64k or 16M pages in the VRMA */
1777 err = -EINVAL;
1778 if (!(psize == 0x1000 || psize == 0x10000 ||
1779 psize == 0x1000000))
1780 goto out_srcu;
1781
1782 /* Update VRMASD field in the LPCR */
1783 senc = slb_pgsize_encoding(psize);
1784 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1785 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1786 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1787 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1788 kvm->arch.lpcr = lpcr;
1789
1790 /* Create HPTEs in the hash page table for the VRMA */
1791 kvmppc_map_vrma(vcpu, memslot, porder);
1792
1793 } else {
1794 /* Set up to use an RMO region */
1795 rma_size = ri->npages;
1796 if (rma_size > memslot->npages)
1797 rma_size = memslot->npages;
1798 rma_size <<= PAGE_SHIFT;
1799 rmls = lpcr_rmls(rma_size);
1800 err = -EINVAL;
1801 if (rmls < 0) {
1802 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1803 goto out_srcu;
1804 }
1805 atomic_inc(&ri->use_count);
1806 kvm->arch.rma = ri;
1807
1808 /* Update LPCR and RMOR */
1809 lpcr = kvm->arch.lpcr;
1810 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1811 /* PPC970; insert RMLS value (split field) in HID4 */
1812 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1813 (3ul << HID4_RMLS2_SH));
1814 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1815 ((rmls & 3) << HID4_RMLS2_SH);
1816 /* RMOR is also in HID4 */
1817 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1818 << HID4_RMOR_SH;
1819 } else {
1820 /* POWER7 */
1821 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1822 lpcr |= rmls << LPCR_RMLS_SH;
1823 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1824 }
1825 kvm->arch.lpcr = lpcr;
1826 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1827 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1828
1829 /* Initialize phys addrs of pages in RMO */
1830 npages = ri->npages;
1831 porder = __ilog2(npages);
1832 physp = memslot->arch.slot_phys;
1833 if (physp) {
1834 if (npages > memslot->npages)
1835 npages = memslot->npages;
1836 spin_lock(&kvm->arch.slot_phys_lock);
1837 for (i = 0; i < npages; ++i)
1838 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1839 porder;
1840 spin_unlock(&kvm->arch.slot_phys_lock);
1841 }
1842 }
1843
1844 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1845 smp_wmb();
1846 kvm->arch.rma_setup_done = 1;
1847 err = 0;
1848 out_srcu:
1849 srcu_read_unlock(&kvm->srcu, srcu_idx);
1850 out:
1851 mutex_unlock(&kvm->lock);
1852 return err;
1853
1854 up_out:
1855 up_read(&current->mm->mmap_sem);
1856 goto out;
1857 }
1858
1859 int kvmppc_core_init_vm(struct kvm *kvm)
1860 {
1861 unsigned long lpcr, lpid;
1862
1863 /* Allocate the guest's logical partition ID */
1864
1865 lpid = kvmppc_alloc_lpid();
1866 if (lpid < 0)
1867 return -ENOMEM;
1868 kvm->arch.lpid = lpid;
1869
1870 /*
1871 * Since we don't flush the TLB when tearing down a VM,
1872 * and this lpid might have previously been used,
1873 * make sure we flush on each core before running the new VM.
1874 */
1875 cpumask_setall(&kvm->arch.need_tlb_flush);
1876
1877 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1878 INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1879
1880 kvm->arch.rma = NULL;
1881
1882 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1883
1884 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1885 /* PPC970; HID4 is effectively the LPCR */
1886 kvm->arch.host_lpid = 0;
1887 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1888 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1889 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1890 ((lpid & 0xf) << HID4_LPID5_SH);
1891 } else {
1892 /* POWER7; init LPCR for virtual RMA mode */
1893 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1894 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1895 lpcr &= LPCR_PECE | LPCR_LPES;
1896 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1897 LPCR_VPM0 | LPCR_VPM1;
1898 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1899 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1900 }
1901 kvm->arch.lpcr = lpcr;
1902
1903 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1904 spin_lock_init(&kvm->arch.slot_phys_lock);
1905
1906 /*
1907 * Don't allow secondary CPU threads to come online
1908 * while any KVM VMs exist.
1909 */
1910 inhibit_secondary_onlining();
1911
1912 return 0;
1913 }
1914
1915 void kvmppc_core_destroy_vm(struct kvm *kvm)
1916 {
1917 uninhibit_secondary_onlining();
1918
1919 if (kvm->arch.rma) {
1920 kvm_release_rma(kvm->arch.rma);
1921 kvm->arch.rma = NULL;
1922 }
1923
1924 kvmppc_rtas_tokens_free(kvm);
1925
1926 kvmppc_free_hpt(kvm);
1927 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1928 }
1929
1930 /* These are stubs for now */
1931 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1932 {
1933 }
1934
1935 /* We don't need to emulate any privileged instructions or dcbz */
1936 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1937 unsigned int inst, int *advance)
1938 {
1939 return EMULATE_FAIL;
1940 }
1941
1942 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1943 {
1944 return EMULATE_FAIL;
1945 }
1946
1947 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1948 {
1949 return EMULATE_FAIL;
1950 }
1951
1952 static int kvmppc_book3s_hv_init(void)
1953 {
1954 int r;
1955
1956 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1957
1958 if (r)
1959 return r;
1960
1961 r = kvmppc_mmu_hv_init();
1962
1963 return r;
1964 }
1965
1966 static void kvmppc_book3s_hv_exit(void)
1967 {
1968 kvm_exit();
1969 }
1970
1971 module_init(kvmppc_book3s_hv_init);
1972 module_exit(kvmppc_book3s_hv_exit);