]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108 .set = param_set_int,
109 .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
113 S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
117 S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
119 #endif
120
121 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
122 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
123
124 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
125 int *ip)
126 {
127 int i = *ip;
128 struct kvm_vcpu *vcpu;
129
130 while (++i < MAX_SMT_THREADS) {
131 vcpu = READ_ONCE(vc->runnable_threads[i]);
132 if (vcpu) {
133 *ip = i;
134 return vcpu;
135 }
136 }
137 return NULL;
138 }
139
140 /* Used to traverse the list of runnable threads for a given vcore */
141 #define for_each_runnable_thread(i, vcpu, vc) \
142 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
143
144 static bool kvmppc_ipi_thread(int cpu)
145 {
146 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
147
148 /* On POWER9 we can use msgsnd to IPI any cpu */
149 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
150 msg |= get_hard_smp_processor_id(cpu);
151 smp_mb();
152 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
153 return true;
154 }
155
156 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
157 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
158 preempt_disable();
159 if (cpu_first_thread_sibling(cpu) ==
160 cpu_first_thread_sibling(smp_processor_id())) {
161 msg |= cpu_thread_in_core(cpu);
162 smp_mb();
163 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
164 preempt_enable();
165 return true;
166 }
167 preempt_enable();
168 }
169
170 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
171 if (cpu >= 0 && cpu < nr_cpu_ids) {
172 if (paca[cpu].kvm_hstate.xics_phys) {
173 xics_wake_cpu(cpu);
174 return true;
175 }
176 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
177 return true;
178 }
179 #endif
180
181 return false;
182 }
183
184 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
185 {
186 int cpu;
187 struct swait_queue_head *wqp;
188
189 wqp = kvm_arch_vcpu_wq(vcpu);
190 if (swq_has_sleeper(wqp)) {
191 swake_up(wqp);
192 ++vcpu->stat.halt_wakeup;
193 }
194
195 cpu = READ_ONCE(vcpu->arch.thread_cpu);
196 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
197 return;
198
199 /* CPU points to the first thread of the core */
200 cpu = vcpu->cpu;
201 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
202 smp_send_reschedule(cpu);
203 }
204
205 /*
206 * We use the vcpu_load/put functions to measure stolen time.
207 * Stolen time is counted as time when either the vcpu is able to
208 * run as part of a virtual core, but the task running the vcore
209 * is preempted or sleeping, or when the vcpu needs something done
210 * in the kernel by the task running the vcpu, but that task is
211 * preempted or sleeping. Those two things have to be counted
212 * separately, since one of the vcpu tasks will take on the job
213 * of running the core, and the other vcpu tasks in the vcore will
214 * sleep waiting for it to do that, but that sleep shouldn't count
215 * as stolen time.
216 *
217 * Hence we accumulate stolen time when the vcpu can run as part of
218 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
219 * needs its task to do other things in the kernel (for example,
220 * service a page fault) in busy_stolen. We don't accumulate
221 * stolen time for a vcore when it is inactive, or for a vcpu
222 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
223 * a misnomer; it means that the vcpu task is not executing in
224 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
225 * the kernel. We don't have any way of dividing up that time
226 * between time that the vcpu is genuinely stopped, time that
227 * the task is actively working on behalf of the vcpu, and time
228 * that the task is preempted, so we don't count any of it as
229 * stolen.
230 *
231 * Updates to busy_stolen are protected by arch.tbacct_lock;
232 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
233 * lock. The stolen times are measured in units of timebase ticks.
234 * (Note that the != TB_NIL checks below are purely defensive;
235 * they should never fail.)
236 */
237
238 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(&vc->stoltb_lock, flags);
243 vc->preempt_tb = mftb();
244 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
245 }
246
247 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
248 {
249 unsigned long flags;
250
251 spin_lock_irqsave(&vc->stoltb_lock, flags);
252 if (vc->preempt_tb != TB_NIL) {
253 vc->stolen_tb += mftb() - vc->preempt_tb;
254 vc->preempt_tb = TB_NIL;
255 }
256 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
257 }
258
259 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
260 {
261 struct kvmppc_vcore *vc = vcpu->arch.vcore;
262 unsigned long flags;
263
264 /*
265 * We can test vc->runner without taking the vcore lock,
266 * because only this task ever sets vc->runner to this
267 * vcpu, and once it is set to this vcpu, only this task
268 * ever sets it to NULL.
269 */
270 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
271 kvmppc_core_end_stolen(vc);
272
273 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
274 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
275 vcpu->arch.busy_preempt != TB_NIL) {
276 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
277 vcpu->arch.busy_preempt = TB_NIL;
278 }
279 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
280 }
281
282 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
283 {
284 struct kvmppc_vcore *vc = vcpu->arch.vcore;
285 unsigned long flags;
286
287 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
288 kvmppc_core_start_stolen(vc);
289
290 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
291 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
292 vcpu->arch.busy_preempt = mftb();
293 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
294 }
295
296 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
297 {
298 /*
299 * Check for illegal transactional state bit combination
300 * and if we find it, force the TS field to a safe state.
301 */
302 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
303 msr &= ~MSR_TS_MASK;
304 vcpu->arch.shregs.msr = msr;
305 kvmppc_end_cede(vcpu);
306 }
307
308 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
309 {
310 vcpu->arch.pvr = pvr;
311 }
312
313 /* Dummy value used in computing PCR value below */
314 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
315
316 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
317 {
318 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
319 struct kvmppc_vcore *vc = vcpu->arch.vcore;
320
321 /* We can (emulate) our own architecture version and anything older */
322 if (cpu_has_feature(CPU_FTR_ARCH_300))
323 host_pcr_bit = PCR_ARCH_300;
324 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
325 host_pcr_bit = PCR_ARCH_207;
326 else if (cpu_has_feature(CPU_FTR_ARCH_206))
327 host_pcr_bit = PCR_ARCH_206;
328 else
329 host_pcr_bit = PCR_ARCH_205;
330
331 /* Determine lowest PCR bit needed to run guest in given PVR level */
332 guest_pcr_bit = host_pcr_bit;
333 if (arch_compat) {
334 switch (arch_compat) {
335 case PVR_ARCH_205:
336 guest_pcr_bit = PCR_ARCH_205;
337 break;
338 case PVR_ARCH_206:
339 case PVR_ARCH_206p:
340 guest_pcr_bit = PCR_ARCH_206;
341 break;
342 case PVR_ARCH_207:
343 guest_pcr_bit = PCR_ARCH_207;
344 break;
345 case PVR_ARCH_300:
346 guest_pcr_bit = PCR_ARCH_300;
347 break;
348 default:
349 return -EINVAL;
350 }
351 }
352
353 /* Check requested PCR bits don't exceed our capabilities */
354 if (guest_pcr_bit > host_pcr_bit)
355 return -EINVAL;
356
357 spin_lock(&vc->lock);
358 vc->arch_compat = arch_compat;
359 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
360 vc->pcr = host_pcr_bit - guest_pcr_bit;
361 spin_unlock(&vc->lock);
362
363 return 0;
364 }
365
366 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
367 {
368 int r;
369
370 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
371 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
372 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
373 for (r = 0; r < 16; ++r)
374 pr_err("r%2d = %.16lx r%d = %.16lx\n",
375 r, kvmppc_get_gpr(vcpu, r),
376 r+16, kvmppc_get_gpr(vcpu, r+16));
377 pr_err("ctr = %.16lx lr = %.16lx\n",
378 vcpu->arch.ctr, vcpu->arch.lr);
379 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
380 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
381 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
382 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
383 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
384 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
385 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
386 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
387 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
388 pr_err("fault dar = %.16lx dsisr = %.8x\n",
389 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
390 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
391 for (r = 0; r < vcpu->arch.slb_max; ++r)
392 pr_err(" ESID = %.16llx VSID = %.16llx\n",
393 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
394 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
395 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
396 vcpu->arch.last_inst);
397 }
398
399 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
400 {
401 struct kvm_vcpu *ret;
402
403 mutex_lock(&kvm->lock);
404 ret = kvm_get_vcpu_by_id(kvm, id);
405 mutex_unlock(&kvm->lock);
406 return ret;
407 }
408
409 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
410 {
411 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
412 vpa->yield_count = cpu_to_be32(1);
413 }
414
415 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
416 unsigned long addr, unsigned long len)
417 {
418 /* check address is cacheline aligned */
419 if (addr & (L1_CACHE_BYTES - 1))
420 return -EINVAL;
421 spin_lock(&vcpu->arch.vpa_update_lock);
422 if (v->next_gpa != addr || v->len != len) {
423 v->next_gpa = addr;
424 v->len = addr ? len : 0;
425 v->update_pending = 1;
426 }
427 spin_unlock(&vcpu->arch.vpa_update_lock);
428 return 0;
429 }
430
431 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
432 struct reg_vpa {
433 u32 dummy;
434 union {
435 __be16 hword;
436 __be32 word;
437 } length;
438 };
439
440 static int vpa_is_registered(struct kvmppc_vpa *vpap)
441 {
442 if (vpap->update_pending)
443 return vpap->next_gpa != 0;
444 return vpap->pinned_addr != NULL;
445 }
446
447 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
448 unsigned long flags,
449 unsigned long vcpuid, unsigned long vpa)
450 {
451 struct kvm *kvm = vcpu->kvm;
452 unsigned long len, nb;
453 void *va;
454 struct kvm_vcpu *tvcpu;
455 int err;
456 int subfunc;
457 struct kvmppc_vpa *vpap;
458
459 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
460 if (!tvcpu)
461 return H_PARAMETER;
462
463 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
464 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
465 subfunc == H_VPA_REG_SLB) {
466 /* Registering new area - address must be cache-line aligned */
467 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
468 return H_PARAMETER;
469
470 /* convert logical addr to kernel addr and read length */
471 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
472 if (va == NULL)
473 return H_PARAMETER;
474 if (subfunc == H_VPA_REG_VPA)
475 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
476 else
477 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
478 kvmppc_unpin_guest_page(kvm, va, vpa, false);
479
480 /* Check length */
481 if (len > nb || len < sizeof(struct reg_vpa))
482 return H_PARAMETER;
483 } else {
484 vpa = 0;
485 len = 0;
486 }
487
488 err = H_PARAMETER;
489 vpap = NULL;
490 spin_lock(&tvcpu->arch.vpa_update_lock);
491
492 switch (subfunc) {
493 case H_VPA_REG_VPA: /* register VPA */
494 /*
495 * The size of our lppaca is 1kB because of the way we align
496 * it for the guest to avoid crossing a 4kB boundary. We only
497 * use 640 bytes of the structure though, so we should accept
498 * clients that set a size of 640.
499 */
500 if (len < 640)
501 break;
502 vpap = &tvcpu->arch.vpa;
503 err = 0;
504 break;
505
506 case H_VPA_REG_DTL: /* register DTL */
507 if (len < sizeof(struct dtl_entry))
508 break;
509 len -= len % sizeof(struct dtl_entry);
510
511 /* Check that they have previously registered a VPA */
512 err = H_RESOURCE;
513 if (!vpa_is_registered(&tvcpu->arch.vpa))
514 break;
515
516 vpap = &tvcpu->arch.dtl;
517 err = 0;
518 break;
519
520 case H_VPA_REG_SLB: /* register SLB shadow buffer */
521 /* Check that they have previously registered a VPA */
522 err = H_RESOURCE;
523 if (!vpa_is_registered(&tvcpu->arch.vpa))
524 break;
525
526 vpap = &tvcpu->arch.slb_shadow;
527 err = 0;
528 break;
529
530 case H_VPA_DEREG_VPA: /* deregister VPA */
531 /* Check they don't still have a DTL or SLB buf registered */
532 err = H_RESOURCE;
533 if (vpa_is_registered(&tvcpu->arch.dtl) ||
534 vpa_is_registered(&tvcpu->arch.slb_shadow))
535 break;
536
537 vpap = &tvcpu->arch.vpa;
538 err = 0;
539 break;
540
541 case H_VPA_DEREG_DTL: /* deregister DTL */
542 vpap = &tvcpu->arch.dtl;
543 err = 0;
544 break;
545
546 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
547 vpap = &tvcpu->arch.slb_shadow;
548 err = 0;
549 break;
550 }
551
552 if (vpap) {
553 vpap->next_gpa = vpa;
554 vpap->len = len;
555 vpap->update_pending = 1;
556 }
557
558 spin_unlock(&tvcpu->arch.vpa_update_lock);
559
560 return err;
561 }
562
563 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
564 {
565 struct kvm *kvm = vcpu->kvm;
566 void *va;
567 unsigned long nb;
568 unsigned long gpa;
569
570 /*
571 * We need to pin the page pointed to by vpap->next_gpa,
572 * but we can't call kvmppc_pin_guest_page under the lock
573 * as it does get_user_pages() and down_read(). So we
574 * have to drop the lock, pin the page, then get the lock
575 * again and check that a new area didn't get registered
576 * in the meantime.
577 */
578 for (;;) {
579 gpa = vpap->next_gpa;
580 spin_unlock(&vcpu->arch.vpa_update_lock);
581 va = NULL;
582 nb = 0;
583 if (gpa)
584 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
585 spin_lock(&vcpu->arch.vpa_update_lock);
586 if (gpa == vpap->next_gpa)
587 break;
588 /* sigh... unpin that one and try again */
589 if (va)
590 kvmppc_unpin_guest_page(kvm, va, gpa, false);
591 }
592
593 vpap->update_pending = 0;
594 if (va && nb < vpap->len) {
595 /*
596 * If it's now too short, it must be that userspace
597 * has changed the mappings underlying guest memory,
598 * so unregister the region.
599 */
600 kvmppc_unpin_guest_page(kvm, va, gpa, false);
601 va = NULL;
602 }
603 if (vpap->pinned_addr)
604 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
605 vpap->dirty);
606 vpap->gpa = gpa;
607 vpap->pinned_addr = va;
608 vpap->dirty = false;
609 if (va)
610 vpap->pinned_end = va + vpap->len;
611 }
612
613 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
614 {
615 if (!(vcpu->arch.vpa.update_pending ||
616 vcpu->arch.slb_shadow.update_pending ||
617 vcpu->arch.dtl.update_pending))
618 return;
619
620 spin_lock(&vcpu->arch.vpa_update_lock);
621 if (vcpu->arch.vpa.update_pending) {
622 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
623 if (vcpu->arch.vpa.pinned_addr)
624 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
625 }
626 if (vcpu->arch.dtl.update_pending) {
627 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
628 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
629 vcpu->arch.dtl_index = 0;
630 }
631 if (vcpu->arch.slb_shadow.update_pending)
632 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
633 spin_unlock(&vcpu->arch.vpa_update_lock);
634 }
635
636 /*
637 * Return the accumulated stolen time for the vcore up until `now'.
638 * The caller should hold the vcore lock.
639 */
640 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
641 {
642 u64 p;
643 unsigned long flags;
644
645 spin_lock_irqsave(&vc->stoltb_lock, flags);
646 p = vc->stolen_tb;
647 if (vc->vcore_state != VCORE_INACTIVE &&
648 vc->preempt_tb != TB_NIL)
649 p += now - vc->preempt_tb;
650 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
651 return p;
652 }
653
654 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
655 struct kvmppc_vcore *vc)
656 {
657 struct dtl_entry *dt;
658 struct lppaca *vpa;
659 unsigned long stolen;
660 unsigned long core_stolen;
661 u64 now;
662 unsigned long flags;
663
664 dt = vcpu->arch.dtl_ptr;
665 vpa = vcpu->arch.vpa.pinned_addr;
666 now = mftb();
667 core_stolen = vcore_stolen_time(vc, now);
668 stolen = core_stolen - vcpu->arch.stolen_logged;
669 vcpu->arch.stolen_logged = core_stolen;
670 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
671 stolen += vcpu->arch.busy_stolen;
672 vcpu->arch.busy_stolen = 0;
673 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
674 if (!dt || !vpa)
675 return;
676 memset(dt, 0, sizeof(struct dtl_entry));
677 dt->dispatch_reason = 7;
678 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
679 dt->timebase = cpu_to_be64(now + vc->tb_offset);
680 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
681 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
682 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
683 ++dt;
684 if (dt == vcpu->arch.dtl.pinned_end)
685 dt = vcpu->arch.dtl.pinned_addr;
686 vcpu->arch.dtl_ptr = dt;
687 /* order writing *dt vs. writing vpa->dtl_idx */
688 smp_wmb();
689 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
690 vcpu->arch.dtl.dirty = true;
691 }
692
693 /* See if there is a doorbell interrupt pending for a vcpu */
694 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
695 {
696 int thr;
697 struct kvmppc_vcore *vc;
698
699 if (vcpu->arch.doorbell_request)
700 return true;
701 /*
702 * Ensure that the read of vcore->dpdes comes after the read
703 * of vcpu->doorbell_request. This barrier matches the
704 * lwsync in book3s_hv_rmhandlers.S just before the
705 * fast_guest_return label.
706 */
707 smp_rmb();
708 vc = vcpu->arch.vcore;
709 thr = vcpu->vcpu_id - vc->first_vcpuid;
710 return !!(vc->dpdes & (1 << thr));
711 }
712
713 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
714 {
715 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
716 return true;
717 if ((!vcpu->arch.vcore->arch_compat) &&
718 cpu_has_feature(CPU_FTR_ARCH_207S))
719 return true;
720 return false;
721 }
722
723 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
724 unsigned long resource, unsigned long value1,
725 unsigned long value2)
726 {
727 switch (resource) {
728 case H_SET_MODE_RESOURCE_SET_CIABR:
729 if (!kvmppc_power8_compatible(vcpu))
730 return H_P2;
731 if (value2)
732 return H_P4;
733 if (mflags)
734 return H_UNSUPPORTED_FLAG_START;
735 /* Guests can't breakpoint the hypervisor */
736 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
737 return H_P3;
738 vcpu->arch.ciabr = value1;
739 return H_SUCCESS;
740 case H_SET_MODE_RESOURCE_SET_DAWR:
741 if (!kvmppc_power8_compatible(vcpu))
742 return H_P2;
743 if (mflags)
744 return H_UNSUPPORTED_FLAG_START;
745 if (value2 & DABRX_HYP)
746 return H_P4;
747 vcpu->arch.dawr = value1;
748 vcpu->arch.dawrx = value2;
749 return H_SUCCESS;
750 default:
751 return H_TOO_HARD;
752 }
753 }
754
755 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
756 {
757 struct kvmppc_vcore *vcore = target->arch.vcore;
758
759 /*
760 * We expect to have been called by the real mode handler
761 * (kvmppc_rm_h_confer()) which would have directly returned
762 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
763 * have useful work to do and should not confer) so we don't
764 * recheck that here.
765 */
766
767 spin_lock(&vcore->lock);
768 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
769 vcore->vcore_state != VCORE_INACTIVE &&
770 vcore->runner)
771 target = vcore->runner;
772 spin_unlock(&vcore->lock);
773
774 return kvm_vcpu_yield_to(target);
775 }
776
777 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
778 {
779 int yield_count = 0;
780 struct lppaca *lppaca;
781
782 spin_lock(&vcpu->arch.vpa_update_lock);
783 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
784 if (lppaca)
785 yield_count = be32_to_cpu(lppaca->yield_count);
786 spin_unlock(&vcpu->arch.vpa_update_lock);
787 return yield_count;
788 }
789
790 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
791 {
792 unsigned long req = kvmppc_get_gpr(vcpu, 3);
793 unsigned long target, ret = H_SUCCESS;
794 int yield_count;
795 struct kvm_vcpu *tvcpu;
796 int idx, rc;
797
798 if (req <= MAX_HCALL_OPCODE &&
799 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
800 return RESUME_HOST;
801
802 switch (req) {
803 case H_CEDE:
804 break;
805 case H_PROD:
806 target = kvmppc_get_gpr(vcpu, 4);
807 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
808 if (!tvcpu) {
809 ret = H_PARAMETER;
810 break;
811 }
812 tvcpu->arch.prodded = 1;
813 smp_mb();
814 if (tvcpu->arch.ceded)
815 kvmppc_fast_vcpu_kick_hv(tvcpu);
816 break;
817 case H_CONFER:
818 target = kvmppc_get_gpr(vcpu, 4);
819 if (target == -1)
820 break;
821 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
822 if (!tvcpu) {
823 ret = H_PARAMETER;
824 break;
825 }
826 yield_count = kvmppc_get_gpr(vcpu, 5);
827 if (kvmppc_get_yield_count(tvcpu) != yield_count)
828 break;
829 kvm_arch_vcpu_yield_to(tvcpu);
830 break;
831 case H_REGISTER_VPA:
832 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
833 kvmppc_get_gpr(vcpu, 5),
834 kvmppc_get_gpr(vcpu, 6));
835 break;
836 case H_RTAS:
837 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
838 return RESUME_HOST;
839
840 idx = srcu_read_lock(&vcpu->kvm->srcu);
841 rc = kvmppc_rtas_hcall(vcpu);
842 srcu_read_unlock(&vcpu->kvm->srcu, idx);
843
844 if (rc == -ENOENT)
845 return RESUME_HOST;
846 else if (rc == 0)
847 break;
848
849 /* Send the error out to userspace via KVM_RUN */
850 return rc;
851 case H_LOGICAL_CI_LOAD:
852 ret = kvmppc_h_logical_ci_load(vcpu);
853 if (ret == H_TOO_HARD)
854 return RESUME_HOST;
855 break;
856 case H_LOGICAL_CI_STORE:
857 ret = kvmppc_h_logical_ci_store(vcpu);
858 if (ret == H_TOO_HARD)
859 return RESUME_HOST;
860 break;
861 case H_SET_MODE:
862 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
863 kvmppc_get_gpr(vcpu, 5),
864 kvmppc_get_gpr(vcpu, 6),
865 kvmppc_get_gpr(vcpu, 7));
866 if (ret == H_TOO_HARD)
867 return RESUME_HOST;
868 break;
869 case H_XIRR:
870 case H_CPPR:
871 case H_EOI:
872 case H_IPI:
873 case H_IPOLL:
874 case H_XIRR_X:
875 if (kvmppc_xics_enabled(vcpu)) {
876 if (xive_enabled()) {
877 ret = H_NOT_AVAILABLE;
878 return RESUME_GUEST;
879 }
880 ret = kvmppc_xics_hcall(vcpu, req);
881 break;
882 }
883 return RESUME_HOST;
884 case H_PUT_TCE:
885 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
886 kvmppc_get_gpr(vcpu, 5),
887 kvmppc_get_gpr(vcpu, 6));
888 if (ret == H_TOO_HARD)
889 return RESUME_HOST;
890 break;
891 case H_PUT_TCE_INDIRECT:
892 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
893 kvmppc_get_gpr(vcpu, 5),
894 kvmppc_get_gpr(vcpu, 6),
895 kvmppc_get_gpr(vcpu, 7));
896 if (ret == H_TOO_HARD)
897 return RESUME_HOST;
898 break;
899 case H_STUFF_TCE:
900 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
901 kvmppc_get_gpr(vcpu, 5),
902 kvmppc_get_gpr(vcpu, 6),
903 kvmppc_get_gpr(vcpu, 7));
904 if (ret == H_TOO_HARD)
905 return RESUME_HOST;
906 break;
907 default:
908 return RESUME_HOST;
909 }
910 kvmppc_set_gpr(vcpu, 3, ret);
911 vcpu->arch.hcall_needed = 0;
912 return RESUME_GUEST;
913 }
914
915 static int kvmppc_hcall_impl_hv(unsigned long cmd)
916 {
917 switch (cmd) {
918 case H_CEDE:
919 case H_PROD:
920 case H_CONFER:
921 case H_REGISTER_VPA:
922 case H_SET_MODE:
923 case H_LOGICAL_CI_LOAD:
924 case H_LOGICAL_CI_STORE:
925 #ifdef CONFIG_KVM_XICS
926 case H_XIRR:
927 case H_CPPR:
928 case H_EOI:
929 case H_IPI:
930 case H_IPOLL:
931 case H_XIRR_X:
932 #endif
933 return 1;
934 }
935
936 /* See if it's in the real-mode table */
937 return kvmppc_hcall_impl_hv_realmode(cmd);
938 }
939
940 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
941 struct kvm_vcpu *vcpu)
942 {
943 u32 last_inst;
944
945 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
946 EMULATE_DONE) {
947 /*
948 * Fetch failed, so return to guest and
949 * try executing it again.
950 */
951 return RESUME_GUEST;
952 }
953
954 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
955 run->exit_reason = KVM_EXIT_DEBUG;
956 run->debug.arch.address = kvmppc_get_pc(vcpu);
957 return RESUME_HOST;
958 } else {
959 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
960 return RESUME_GUEST;
961 }
962 }
963
964 static void do_nothing(void *x)
965 {
966 }
967
968 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
969 {
970 int thr, cpu, pcpu, nthreads;
971 struct kvm_vcpu *v;
972 unsigned long dpdes;
973
974 nthreads = vcpu->kvm->arch.emul_smt_mode;
975 dpdes = 0;
976 cpu = vcpu->vcpu_id & ~(nthreads - 1);
977 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
978 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
979 if (!v)
980 continue;
981 /*
982 * If the vcpu is currently running on a physical cpu thread,
983 * interrupt it in order to pull it out of the guest briefly,
984 * which will update its vcore->dpdes value.
985 */
986 pcpu = READ_ONCE(v->cpu);
987 if (pcpu >= 0)
988 smp_call_function_single(pcpu, do_nothing, NULL, 1);
989 if (kvmppc_doorbell_pending(v))
990 dpdes |= 1 << thr;
991 }
992 return dpdes;
993 }
994
995 /*
996 * On POWER9, emulate doorbell-related instructions in order to
997 * give the guest the illusion of running on a multi-threaded core.
998 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
999 * and mfspr DPDES.
1000 */
1001 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1002 {
1003 u32 inst, rb, thr;
1004 unsigned long arg;
1005 struct kvm *kvm = vcpu->kvm;
1006 struct kvm_vcpu *tvcpu;
1007
1008 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1009 return EMULATE_FAIL;
1010 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1011 return RESUME_GUEST;
1012 if (get_op(inst) != 31)
1013 return EMULATE_FAIL;
1014 rb = get_rb(inst);
1015 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1016 switch (get_xop(inst)) {
1017 case OP_31_XOP_MSGSNDP:
1018 arg = kvmppc_get_gpr(vcpu, rb);
1019 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1020 break;
1021 arg &= 0x3f;
1022 if (arg >= kvm->arch.emul_smt_mode)
1023 break;
1024 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1025 if (!tvcpu)
1026 break;
1027 if (!tvcpu->arch.doorbell_request) {
1028 tvcpu->arch.doorbell_request = 1;
1029 kvmppc_fast_vcpu_kick_hv(tvcpu);
1030 }
1031 break;
1032 case OP_31_XOP_MSGCLRP:
1033 arg = kvmppc_get_gpr(vcpu, rb);
1034 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1035 break;
1036 vcpu->arch.vcore->dpdes = 0;
1037 vcpu->arch.doorbell_request = 0;
1038 break;
1039 case OP_31_XOP_MFSPR:
1040 switch (get_sprn(inst)) {
1041 case SPRN_TIR:
1042 arg = thr;
1043 break;
1044 case SPRN_DPDES:
1045 arg = kvmppc_read_dpdes(vcpu);
1046 break;
1047 default:
1048 return EMULATE_FAIL;
1049 }
1050 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1051 break;
1052 default:
1053 return EMULATE_FAIL;
1054 }
1055 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1056 return RESUME_GUEST;
1057 }
1058
1059 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060 struct task_struct *tsk)
1061 {
1062 int r = RESUME_HOST;
1063
1064 vcpu->stat.sum_exits++;
1065
1066 /*
1067 * This can happen if an interrupt occurs in the last stages
1068 * of guest entry or the first stages of guest exit (i.e. after
1069 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1070 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1071 * That can happen due to a bug, or due to a machine check
1072 * occurring at just the wrong time.
1073 */
1074 if (vcpu->arch.shregs.msr & MSR_HV) {
1075 printk(KERN_EMERG "KVM trap in HV mode!\n");
1076 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1077 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1078 vcpu->arch.shregs.msr);
1079 kvmppc_dump_regs(vcpu);
1080 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1081 run->hw.hardware_exit_reason = vcpu->arch.trap;
1082 return RESUME_HOST;
1083 }
1084 run->exit_reason = KVM_EXIT_UNKNOWN;
1085 run->ready_for_interrupt_injection = 1;
1086 switch (vcpu->arch.trap) {
1087 /* We're good on these - the host merely wanted to get our attention */
1088 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1089 vcpu->stat.dec_exits++;
1090 r = RESUME_GUEST;
1091 break;
1092 case BOOK3S_INTERRUPT_EXTERNAL:
1093 case BOOK3S_INTERRUPT_H_DOORBELL:
1094 case BOOK3S_INTERRUPT_H_VIRT:
1095 vcpu->stat.ext_intr_exits++;
1096 r = RESUME_GUEST;
1097 break;
1098 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099 case BOOK3S_INTERRUPT_HMI:
1100 case BOOK3S_INTERRUPT_PERFMON:
1101 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102 r = RESUME_GUEST;
1103 break;
1104 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1106 run->exit_reason = KVM_EXIT_NMI;
1107 run->hw.hardware_exit_reason = vcpu->arch.trap;
1108 /* Clear out the old NMI status from run->flags */
1109 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1110 /* Now set the NMI status */
1111 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1112 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1113 else
1114 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1115
1116 r = RESUME_HOST;
1117 /* Print the MCE event to host console. */
1118 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119 break;
1120 case BOOK3S_INTERRUPT_PROGRAM:
1121 {
1122 ulong flags;
1123 /*
1124 * Normally program interrupts are delivered directly
1125 * to the guest by the hardware, but we can get here
1126 * as a result of a hypervisor emulation interrupt
1127 * (e40) getting turned into a 700 by BML RTAS.
1128 */
1129 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1130 kvmppc_core_queue_program(vcpu, flags);
1131 r = RESUME_GUEST;
1132 break;
1133 }
1134 case BOOK3S_INTERRUPT_SYSCALL:
1135 {
1136 /* hcall - punt to userspace */
1137 int i;
1138
1139 /* hypercall with MSR_PR has already been handled in rmode,
1140 * and never reaches here.
1141 */
1142
1143 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1144 for (i = 0; i < 9; ++i)
1145 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1146 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1147 vcpu->arch.hcall_needed = 1;
1148 r = RESUME_HOST;
1149 break;
1150 }
1151 /*
1152 * We get these next two if the guest accesses a page which it thinks
1153 * it has mapped but which is not actually present, either because
1154 * it is for an emulated I/O device or because the corresonding
1155 * host page has been paged out. Any other HDSI/HISI interrupts
1156 * have been handled already.
1157 */
1158 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159 r = RESUME_PAGE_FAULT;
1160 break;
1161 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1163 vcpu->arch.fault_dsisr = 0;
1164 r = RESUME_PAGE_FAULT;
1165 break;
1166 /*
1167 * This occurs if the guest executes an illegal instruction.
1168 * If the guest debug is disabled, generate a program interrupt
1169 * to the guest. If guest debug is enabled, we need to check
1170 * whether the instruction is a software breakpoint instruction.
1171 * Accordingly return to Guest or Host.
1172 */
1173 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1175 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1176 swab32(vcpu->arch.emul_inst) :
1177 vcpu->arch.emul_inst;
1178 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1179 r = kvmppc_emulate_debug_inst(run, vcpu);
1180 } else {
1181 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1182 r = RESUME_GUEST;
1183 }
1184 break;
1185 /*
1186 * This occurs if the guest (kernel or userspace), does something that
1187 * is prohibited by HFSCR.
1188 * On POWER9, this could be a doorbell instruction that we need
1189 * to emulate.
1190 * Otherwise, we just generate a program interrupt to the guest.
1191 */
1192 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1193 r = EMULATE_FAIL;
1194 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1195 r = kvmppc_emulate_doorbell_instr(vcpu);
1196 if (r == EMULATE_FAIL) {
1197 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1198 r = RESUME_GUEST;
1199 }
1200 break;
1201 case BOOK3S_INTERRUPT_HV_RM_HARD:
1202 r = RESUME_PASSTHROUGH;
1203 break;
1204 default:
1205 kvmppc_dump_regs(vcpu);
1206 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1207 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1208 vcpu->arch.shregs.msr);
1209 run->hw.hardware_exit_reason = vcpu->arch.trap;
1210 r = RESUME_HOST;
1211 break;
1212 }
1213
1214 return r;
1215 }
1216
1217 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1218 struct kvm_sregs *sregs)
1219 {
1220 int i;
1221
1222 memset(sregs, 0, sizeof(struct kvm_sregs));
1223 sregs->pvr = vcpu->arch.pvr;
1224 for (i = 0; i < vcpu->arch.slb_max; i++) {
1225 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1226 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1227 }
1228
1229 return 0;
1230 }
1231
1232 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1233 struct kvm_sregs *sregs)
1234 {
1235 int i, j;
1236
1237 /* Only accept the same PVR as the host's, since we can't spoof it */
1238 if (sregs->pvr != vcpu->arch.pvr)
1239 return -EINVAL;
1240
1241 j = 0;
1242 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1243 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1244 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1245 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1246 ++j;
1247 }
1248 }
1249 vcpu->arch.slb_max = j;
1250
1251 return 0;
1252 }
1253
1254 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1255 bool preserve_top32)
1256 {
1257 struct kvm *kvm = vcpu->kvm;
1258 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1259 u64 mask;
1260
1261 mutex_lock(&kvm->lock);
1262 spin_lock(&vc->lock);
1263 /*
1264 * If ILE (interrupt little-endian) has changed, update the
1265 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1266 */
1267 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1268 struct kvm_vcpu *vcpu;
1269 int i;
1270
1271 kvm_for_each_vcpu(i, vcpu, kvm) {
1272 if (vcpu->arch.vcore != vc)
1273 continue;
1274 if (new_lpcr & LPCR_ILE)
1275 vcpu->arch.intr_msr |= MSR_LE;
1276 else
1277 vcpu->arch.intr_msr &= ~MSR_LE;
1278 }
1279 }
1280
1281 /*
1282 * Userspace can only modify DPFD (default prefetch depth),
1283 * ILE (interrupt little-endian) and TC (translation control).
1284 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1285 */
1286 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1287 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1288 mask |= LPCR_AIL;
1289 /*
1290 * On POWER9, allow userspace to enable large decrementer for the
1291 * guest, whether or not the host has it enabled.
1292 */
1293 if (cpu_has_feature(CPU_FTR_ARCH_300))
1294 mask |= LPCR_LD;
1295
1296 /* Broken 32-bit version of LPCR must not clear top bits */
1297 if (preserve_top32)
1298 mask &= 0xFFFFFFFF;
1299 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1300 spin_unlock(&vc->lock);
1301 mutex_unlock(&kvm->lock);
1302 }
1303
1304 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1305 union kvmppc_one_reg *val)
1306 {
1307 int r = 0;
1308 long int i;
1309
1310 switch (id) {
1311 case KVM_REG_PPC_DEBUG_INST:
1312 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1313 break;
1314 case KVM_REG_PPC_HIOR:
1315 *val = get_reg_val(id, 0);
1316 break;
1317 case KVM_REG_PPC_DABR:
1318 *val = get_reg_val(id, vcpu->arch.dabr);
1319 break;
1320 case KVM_REG_PPC_DABRX:
1321 *val = get_reg_val(id, vcpu->arch.dabrx);
1322 break;
1323 case KVM_REG_PPC_DSCR:
1324 *val = get_reg_val(id, vcpu->arch.dscr);
1325 break;
1326 case KVM_REG_PPC_PURR:
1327 *val = get_reg_val(id, vcpu->arch.purr);
1328 break;
1329 case KVM_REG_PPC_SPURR:
1330 *val = get_reg_val(id, vcpu->arch.spurr);
1331 break;
1332 case KVM_REG_PPC_AMR:
1333 *val = get_reg_val(id, vcpu->arch.amr);
1334 break;
1335 case KVM_REG_PPC_UAMOR:
1336 *val = get_reg_val(id, vcpu->arch.uamor);
1337 break;
1338 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1339 i = id - KVM_REG_PPC_MMCR0;
1340 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1341 break;
1342 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1343 i = id - KVM_REG_PPC_PMC1;
1344 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1345 break;
1346 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1347 i = id - KVM_REG_PPC_SPMC1;
1348 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1349 break;
1350 case KVM_REG_PPC_SIAR:
1351 *val = get_reg_val(id, vcpu->arch.siar);
1352 break;
1353 case KVM_REG_PPC_SDAR:
1354 *val = get_reg_val(id, vcpu->arch.sdar);
1355 break;
1356 case KVM_REG_PPC_SIER:
1357 *val = get_reg_val(id, vcpu->arch.sier);
1358 break;
1359 case KVM_REG_PPC_IAMR:
1360 *val = get_reg_val(id, vcpu->arch.iamr);
1361 break;
1362 case KVM_REG_PPC_PSPB:
1363 *val = get_reg_val(id, vcpu->arch.pspb);
1364 break;
1365 case KVM_REG_PPC_DPDES:
1366 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1367 break;
1368 case KVM_REG_PPC_VTB:
1369 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1370 break;
1371 case KVM_REG_PPC_DAWR:
1372 *val = get_reg_val(id, vcpu->arch.dawr);
1373 break;
1374 case KVM_REG_PPC_DAWRX:
1375 *val = get_reg_val(id, vcpu->arch.dawrx);
1376 break;
1377 case KVM_REG_PPC_CIABR:
1378 *val = get_reg_val(id, vcpu->arch.ciabr);
1379 break;
1380 case KVM_REG_PPC_CSIGR:
1381 *val = get_reg_val(id, vcpu->arch.csigr);
1382 break;
1383 case KVM_REG_PPC_TACR:
1384 *val = get_reg_val(id, vcpu->arch.tacr);
1385 break;
1386 case KVM_REG_PPC_TCSCR:
1387 *val = get_reg_val(id, vcpu->arch.tcscr);
1388 break;
1389 case KVM_REG_PPC_PID:
1390 *val = get_reg_val(id, vcpu->arch.pid);
1391 break;
1392 case KVM_REG_PPC_ACOP:
1393 *val = get_reg_val(id, vcpu->arch.acop);
1394 break;
1395 case KVM_REG_PPC_WORT:
1396 *val = get_reg_val(id, vcpu->arch.wort);
1397 break;
1398 case KVM_REG_PPC_TIDR:
1399 *val = get_reg_val(id, vcpu->arch.tid);
1400 break;
1401 case KVM_REG_PPC_PSSCR:
1402 *val = get_reg_val(id, vcpu->arch.psscr);
1403 break;
1404 case KVM_REG_PPC_VPA_ADDR:
1405 spin_lock(&vcpu->arch.vpa_update_lock);
1406 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1407 spin_unlock(&vcpu->arch.vpa_update_lock);
1408 break;
1409 case KVM_REG_PPC_VPA_SLB:
1410 spin_lock(&vcpu->arch.vpa_update_lock);
1411 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1412 val->vpaval.length = vcpu->arch.slb_shadow.len;
1413 spin_unlock(&vcpu->arch.vpa_update_lock);
1414 break;
1415 case KVM_REG_PPC_VPA_DTL:
1416 spin_lock(&vcpu->arch.vpa_update_lock);
1417 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1418 val->vpaval.length = vcpu->arch.dtl.len;
1419 spin_unlock(&vcpu->arch.vpa_update_lock);
1420 break;
1421 case KVM_REG_PPC_TB_OFFSET:
1422 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1423 break;
1424 case KVM_REG_PPC_LPCR:
1425 case KVM_REG_PPC_LPCR_64:
1426 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1427 break;
1428 case KVM_REG_PPC_PPR:
1429 *val = get_reg_val(id, vcpu->arch.ppr);
1430 break;
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432 case KVM_REG_PPC_TFHAR:
1433 *val = get_reg_val(id, vcpu->arch.tfhar);
1434 break;
1435 case KVM_REG_PPC_TFIAR:
1436 *val = get_reg_val(id, vcpu->arch.tfiar);
1437 break;
1438 case KVM_REG_PPC_TEXASR:
1439 *val = get_reg_val(id, vcpu->arch.texasr);
1440 break;
1441 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1442 i = id - KVM_REG_PPC_TM_GPR0;
1443 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1444 break;
1445 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1446 {
1447 int j;
1448 i = id - KVM_REG_PPC_TM_VSR0;
1449 if (i < 32)
1450 for (j = 0; j < TS_FPRWIDTH; j++)
1451 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1452 else {
1453 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1454 val->vval = vcpu->arch.vr_tm.vr[i-32];
1455 else
1456 r = -ENXIO;
1457 }
1458 break;
1459 }
1460 case KVM_REG_PPC_TM_CR:
1461 *val = get_reg_val(id, vcpu->arch.cr_tm);
1462 break;
1463 case KVM_REG_PPC_TM_XER:
1464 *val = get_reg_val(id, vcpu->arch.xer_tm);
1465 break;
1466 case KVM_REG_PPC_TM_LR:
1467 *val = get_reg_val(id, vcpu->arch.lr_tm);
1468 break;
1469 case KVM_REG_PPC_TM_CTR:
1470 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1471 break;
1472 case KVM_REG_PPC_TM_FPSCR:
1473 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1474 break;
1475 case KVM_REG_PPC_TM_AMR:
1476 *val = get_reg_val(id, vcpu->arch.amr_tm);
1477 break;
1478 case KVM_REG_PPC_TM_PPR:
1479 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1480 break;
1481 case KVM_REG_PPC_TM_VRSAVE:
1482 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1483 break;
1484 case KVM_REG_PPC_TM_VSCR:
1485 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1486 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1487 else
1488 r = -ENXIO;
1489 break;
1490 case KVM_REG_PPC_TM_DSCR:
1491 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1492 break;
1493 case KVM_REG_PPC_TM_TAR:
1494 *val = get_reg_val(id, vcpu->arch.tar_tm);
1495 break;
1496 #endif
1497 case KVM_REG_PPC_ARCH_COMPAT:
1498 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1499 break;
1500 default:
1501 r = -EINVAL;
1502 break;
1503 }
1504
1505 return r;
1506 }
1507
1508 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1509 union kvmppc_one_reg *val)
1510 {
1511 int r = 0;
1512 long int i;
1513 unsigned long addr, len;
1514
1515 switch (id) {
1516 case KVM_REG_PPC_HIOR:
1517 /* Only allow this to be set to zero */
1518 if (set_reg_val(id, *val))
1519 r = -EINVAL;
1520 break;
1521 case KVM_REG_PPC_DABR:
1522 vcpu->arch.dabr = set_reg_val(id, *val);
1523 break;
1524 case KVM_REG_PPC_DABRX:
1525 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1526 break;
1527 case KVM_REG_PPC_DSCR:
1528 vcpu->arch.dscr = set_reg_val(id, *val);
1529 break;
1530 case KVM_REG_PPC_PURR:
1531 vcpu->arch.purr = set_reg_val(id, *val);
1532 break;
1533 case KVM_REG_PPC_SPURR:
1534 vcpu->arch.spurr = set_reg_val(id, *val);
1535 break;
1536 case KVM_REG_PPC_AMR:
1537 vcpu->arch.amr = set_reg_val(id, *val);
1538 break;
1539 case KVM_REG_PPC_UAMOR:
1540 vcpu->arch.uamor = set_reg_val(id, *val);
1541 break;
1542 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1543 i = id - KVM_REG_PPC_MMCR0;
1544 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1545 break;
1546 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1547 i = id - KVM_REG_PPC_PMC1;
1548 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1549 break;
1550 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1551 i = id - KVM_REG_PPC_SPMC1;
1552 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1553 break;
1554 case KVM_REG_PPC_SIAR:
1555 vcpu->arch.siar = set_reg_val(id, *val);
1556 break;
1557 case KVM_REG_PPC_SDAR:
1558 vcpu->arch.sdar = set_reg_val(id, *val);
1559 break;
1560 case KVM_REG_PPC_SIER:
1561 vcpu->arch.sier = set_reg_val(id, *val);
1562 break;
1563 case KVM_REG_PPC_IAMR:
1564 vcpu->arch.iamr = set_reg_val(id, *val);
1565 break;
1566 case KVM_REG_PPC_PSPB:
1567 vcpu->arch.pspb = set_reg_val(id, *val);
1568 break;
1569 case KVM_REG_PPC_DPDES:
1570 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1571 break;
1572 case KVM_REG_PPC_VTB:
1573 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1574 break;
1575 case KVM_REG_PPC_DAWR:
1576 vcpu->arch.dawr = set_reg_val(id, *val);
1577 break;
1578 case KVM_REG_PPC_DAWRX:
1579 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1580 break;
1581 case KVM_REG_PPC_CIABR:
1582 vcpu->arch.ciabr = set_reg_val(id, *val);
1583 /* Don't allow setting breakpoints in hypervisor code */
1584 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1585 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1586 break;
1587 case KVM_REG_PPC_CSIGR:
1588 vcpu->arch.csigr = set_reg_val(id, *val);
1589 break;
1590 case KVM_REG_PPC_TACR:
1591 vcpu->arch.tacr = set_reg_val(id, *val);
1592 break;
1593 case KVM_REG_PPC_TCSCR:
1594 vcpu->arch.tcscr = set_reg_val(id, *val);
1595 break;
1596 case KVM_REG_PPC_PID:
1597 vcpu->arch.pid = set_reg_val(id, *val);
1598 break;
1599 case KVM_REG_PPC_ACOP:
1600 vcpu->arch.acop = set_reg_val(id, *val);
1601 break;
1602 case KVM_REG_PPC_WORT:
1603 vcpu->arch.wort = set_reg_val(id, *val);
1604 break;
1605 case KVM_REG_PPC_TIDR:
1606 vcpu->arch.tid = set_reg_val(id, *val);
1607 break;
1608 case KVM_REG_PPC_PSSCR:
1609 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1610 break;
1611 case KVM_REG_PPC_VPA_ADDR:
1612 addr = set_reg_val(id, *val);
1613 r = -EINVAL;
1614 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1615 vcpu->arch.dtl.next_gpa))
1616 break;
1617 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1618 break;
1619 case KVM_REG_PPC_VPA_SLB:
1620 addr = val->vpaval.addr;
1621 len = val->vpaval.length;
1622 r = -EINVAL;
1623 if (addr && !vcpu->arch.vpa.next_gpa)
1624 break;
1625 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1626 break;
1627 case KVM_REG_PPC_VPA_DTL:
1628 addr = val->vpaval.addr;
1629 len = val->vpaval.length;
1630 r = -EINVAL;
1631 if (addr && (len < sizeof(struct dtl_entry) ||
1632 !vcpu->arch.vpa.next_gpa))
1633 break;
1634 len -= len % sizeof(struct dtl_entry);
1635 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1636 break;
1637 case KVM_REG_PPC_TB_OFFSET:
1638 /*
1639 * POWER9 DD1 has an erratum where writing TBU40 causes
1640 * the timebase to lose ticks. So we don't let the
1641 * timebase offset be changed on P9 DD1. (It is
1642 * initialized to zero.)
1643 */
1644 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1645 break;
1646 /* round up to multiple of 2^24 */
1647 vcpu->arch.vcore->tb_offset =
1648 ALIGN(set_reg_val(id, *val), 1UL << 24);
1649 break;
1650 case KVM_REG_PPC_LPCR:
1651 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1652 break;
1653 case KVM_REG_PPC_LPCR_64:
1654 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1655 break;
1656 case KVM_REG_PPC_PPR:
1657 vcpu->arch.ppr = set_reg_val(id, *val);
1658 break;
1659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1660 case KVM_REG_PPC_TFHAR:
1661 vcpu->arch.tfhar = set_reg_val(id, *val);
1662 break;
1663 case KVM_REG_PPC_TFIAR:
1664 vcpu->arch.tfiar = set_reg_val(id, *val);
1665 break;
1666 case KVM_REG_PPC_TEXASR:
1667 vcpu->arch.texasr = set_reg_val(id, *val);
1668 break;
1669 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1670 i = id - KVM_REG_PPC_TM_GPR0;
1671 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1672 break;
1673 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1674 {
1675 int j;
1676 i = id - KVM_REG_PPC_TM_VSR0;
1677 if (i < 32)
1678 for (j = 0; j < TS_FPRWIDTH; j++)
1679 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1680 else
1681 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1682 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1683 else
1684 r = -ENXIO;
1685 break;
1686 }
1687 case KVM_REG_PPC_TM_CR:
1688 vcpu->arch.cr_tm = set_reg_val(id, *val);
1689 break;
1690 case KVM_REG_PPC_TM_XER:
1691 vcpu->arch.xer_tm = set_reg_val(id, *val);
1692 break;
1693 case KVM_REG_PPC_TM_LR:
1694 vcpu->arch.lr_tm = set_reg_val(id, *val);
1695 break;
1696 case KVM_REG_PPC_TM_CTR:
1697 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1698 break;
1699 case KVM_REG_PPC_TM_FPSCR:
1700 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1701 break;
1702 case KVM_REG_PPC_TM_AMR:
1703 vcpu->arch.amr_tm = set_reg_val(id, *val);
1704 break;
1705 case KVM_REG_PPC_TM_PPR:
1706 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1707 break;
1708 case KVM_REG_PPC_TM_VRSAVE:
1709 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1710 break;
1711 case KVM_REG_PPC_TM_VSCR:
1712 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1713 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1714 else
1715 r = - ENXIO;
1716 break;
1717 case KVM_REG_PPC_TM_DSCR:
1718 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1719 break;
1720 case KVM_REG_PPC_TM_TAR:
1721 vcpu->arch.tar_tm = set_reg_val(id, *val);
1722 break;
1723 #endif
1724 case KVM_REG_PPC_ARCH_COMPAT:
1725 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1726 break;
1727 default:
1728 r = -EINVAL;
1729 break;
1730 }
1731
1732 return r;
1733 }
1734
1735 /*
1736 * On POWER9, threads are independent and can be in different partitions.
1737 * Therefore we consider each thread to be a subcore.
1738 * There is a restriction that all threads have to be in the same
1739 * MMU mode (radix or HPT), unfortunately, but since we only support
1740 * HPT guests on a HPT host so far, that isn't an impediment yet.
1741 */
1742 static int threads_per_vcore(struct kvm *kvm)
1743 {
1744 if (kvm->arch.threads_indep)
1745 return 1;
1746 return threads_per_subcore;
1747 }
1748
1749 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1750 {
1751 struct kvmppc_vcore *vcore;
1752
1753 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1754
1755 if (vcore == NULL)
1756 return NULL;
1757
1758 spin_lock_init(&vcore->lock);
1759 spin_lock_init(&vcore->stoltb_lock);
1760 init_swait_queue_head(&vcore->wq);
1761 vcore->preempt_tb = TB_NIL;
1762 vcore->lpcr = kvm->arch.lpcr;
1763 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1764 vcore->kvm = kvm;
1765 INIT_LIST_HEAD(&vcore->preempt_list);
1766
1767 return vcore;
1768 }
1769
1770 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1771 static struct debugfs_timings_element {
1772 const char *name;
1773 size_t offset;
1774 } timings[] = {
1775 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1776 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1777 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1778 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1779 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1780 };
1781
1782 #define N_TIMINGS (ARRAY_SIZE(timings))
1783
1784 struct debugfs_timings_state {
1785 struct kvm_vcpu *vcpu;
1786 unsigned int buflen;
1787 char buf[N_TIMINGS * 100];
1788 };
1789
1790 static int debugfs_timings_open(struct inode *inode, struct file *file)
1791 {
1792 struct kvm_vcpu *vcpu = inode->i_private;
1793 struct debugfs_timings_state *p;
1794
1795 p = kzalloc(sizeof(*p), GFP_KERNEL);
1796 if (!p)
1797 return -ENOMEM;
1798
1799 kvm_get_kvm(vcpu->kvm);
1800 p->vcpu = vcpu;
1801 file->private_data = p;
1802
1803 return nonseekable_open(inode, file);
1804 }
1805
1806 static int debugfs_timings_release(struct inode *inode, struct file *file)
1807 {
1808 struct debugfs_timings_state *p = file->private_data;
1809
1810 kvm_put_kvm(p->vcpu->kvm);
1811 kfree(p);
1812 return 0;
1813 }
1814
1815 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1816 size_t len, loff_t *ppos)
1817 {
1818 struct debugfs_timings_state *p = file->private_data;
1819 struct kvm_vcpu *vcpu = p->vcpu;
1820 char *s, *buf_end;
1821 struct kvmhv_tb_accumulator tb;
1822 u64 count;
1823 loff_t pos;
1824 ssize_t n;
1825 int i, loops;
1826 bool ok;
1827
1828 if (!p->buflen) {
1829 s = p->buf;
1830 buf_end = s + sizeof(p->buf);
1831 for (i = 0; i < N_TIMINGS; ++i) {
1832 struct kvmhv_tb_accumulator *acc;
1833
1834 acc = (struct kvmhv_tb_accumulator *)
1835 ((unsigned long)vcpu + timings[i].offset);
1836 ok = false;
1837 for (loops = 0; loops < 1000; ++loops) {
1838 count = acc->seqcount;
1839 if (!(count & 1)) {
1840 smp_rmb();
1841 tb = *acc;
1842 smp_rmb();
1843 if (count == acc->seqcount) {
1844 ok = true;
1845 break;
1846 }
1847 }
1848 udelay(1);
1849 }
1850 if (!ok)
1851 snprintf(s, buf_end - s, "%s: stuck\n",
1852 timings[i].name);
1853 else
1854 snprintf(s, buf_end - s,
1855 "%s: %llu %llu %llu %llu\n",
1856 timings[i].name, count / 2,
1857 tb_to_ns(tb.tb_total),
1858 tb_to_ns(tb.tb_min),
1859 tb_to_ns(tb.tb_max));
1860 s += strlen(s);
1861 }
1862 p->buflen = s - p->buf;
1863 }
1864
1865 pos = *ppos;
1866 if (pos >= p->buflen)
1867 return 0;
1868 if (len > p->buflen - pos)
1869 len = p->buflen - pos;
1870 n = copy_to_user(buf, p->buf + pos, len);
1871 if (n) {
1872 if (n == len)
1873 return -EFAULT;
1874 len -= n;
1875 }
1876 *ppos = pos + len;
1877 return len;
1878 }
1879
1880 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1881 size_t len, loff_t *ppos)
1882 {
1883 return -EACCES;
1884 }
1885
1886 static const struct file_operations debugfs_timings_ops = {
1887 .owner = THIS_MODULE,
1888 .open = debugfs_timings_open,
1889 .release = debugfs_timings_release,
1890 .read = debugfs_timings_read,
1891 .write = debugfs_timings_write,
1892 .llseek = generic_file_llseek,
1893 };
1894
1895 /* Create a debugfs directory for the vcpu */
1896 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1897 {
1898 char buf[16];
1899 struct kvm *kvm = vcpu->kvm;
1900
1901 snprintf(buf, sizeof(buf), "vcpu%u", id);
1902 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1903 return;
1904 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1905 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1906 return;
1907 vcpu->arch.debugfs_timings =
1908 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1909 vcpu, &debugfs_timings_ops);
1910 }
1911
1912 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1913 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1914 {
1915 }
1916 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1917
1918 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1919 unsigned int id)
1920 {
1921 struct kvm_vcpu *vcpu;
1922 int err;
1923 int core;
1924 struct kvmppc_vcore *vcore;
1925
1926 err = -ENOMEM;
1927 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1928 if (!vcpu)
1929 goto out;
1930
1931 err = kvm_vcpu_init(vcpu, kvm, id);
1932 if (err)
1933 goto free_vcpu;
1934
1935 vcpu->arch.shared = &vcpu->arch.shregs;
1936 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1937 /*
1938 * The shared struct is never shared on HV,
1939 * so we can always use host endianness
1940 */
1941 #ifdef __BIG_ENDIAN__
1942 vcpu->arch.shared_big_endian = true;
1943 #else
1944 vcpu->arch.shared_big_endian = false;
1945 #endif
1946 #endif
1947 vcpu->arch.mmcr[0] = MMCR0_FC;
1948 vcpu->arch.ctrl = CTRL_RUNLATCH;
1949 /* default to host PVR, since we can't spoof it */
1950 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1951 spin_lock_init(&vcpu->arch.vpa_update_lock);
1952 spin_lock_init(&vcpu->arch.tbacct_lock);
1953 vcpu->arch.busy_preempt = TB_NIL;
1954 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1955
1956 /*
1957 * Set the default HFSCR for the guest from the host value.
1958 * This value is only used on POWER9.
1959 * On POWER9 DD1, TM doesn't work, so we make sure to
1960 * prevent the guest from using it.
1961 * On POWER9, we want to virtualize the doorbell facility, so we
1962 * turn off the HFSCR bit, which causes those instructions to trap.
1963 */
1964 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1965 if (!cpu_has_feature(CPU_FTR_TM))
1966 vcpu->arch.hfscr &= ~HFSCR_TM;
1967 if (cpu_has_feature(CPU_FTR_ARCH_300))
1968 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1969
1970 kvmppc_mmu_book3s_hv_init(vcpu);
1971
1972 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1973
1974 init_waitqueue_head(&vcpu->arch.cpu_run);
1975
1976 mutex_lock(&kvm->lock);
1977 vcore = NULL;
1978 err = -EINVAL;
1979 core = id / kvm->arch.smt_mode;
1980 if (core < KVM_MAX_VCORES) {
1981 vcore = kvm->arch.vcores[core];
1982 if (!vcore) {
1983 err = -ENOMEM;
1984 vcore = kvmppc_vcore_create(kvm, core);
1985 kvm->arch.vcores[core] = vcore;
1986 kvm->arch.online_vcores++;
1987 }
1988 }
1989 mutex_unlock(&kvm->lock);
1990
1991 if (!vcore)
1992 goto free_vcpu;
1993
1994 spin_lock(&vcore->lock);
1995 ++vcore->num_threads;
1996 spin_unlock(&vcore->lock);
1997 vcpu->arch.vcore = vcore;
1998 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1999 vcpu->arch.thread_cpu = -1;
2000 vcpu->arch.prev_cpu = -1;
2001
2002 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2003 kvmppc_sanity_check(vcpu);
2004
2005 debugfs_vcpu_init(vcpu, id);
2006
2007 return vcpu;
2008
2009 free_vcpu:
2010 kmem_cache_free(kvm_vcpu_cache, vcpu);
2011 out:
2012 return ERR_PTR(err);
2013 }
2014
2015 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2016 unsigned long flags)
2017 {
2018 int err;
2019 int esmt = 0;
2020
2021 if (flags)
2022 return -EINVAL;
2023 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2024 return -EINVAL;
2025 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2026 /*
2027 * On POWER8 (or POWER7), the threading mode is "strict",
2028 * so we pack smt_mode vcpus per vcore.
2029 */
2030 if (smt_mode > threads_per_subcore)
2031 return -EINVAL;
2032 } else {
2033 /*
2034 * On POWER9, the threading mode is "loose",
2035 * so each vcpu gets its own vcore.
2036 */
2037 esmt = smt_mode;
2038 smt_mode = 1;
2039 }
2040 mutex_lock(&kvm->lock);
2041 err = -EBUSY;
2042 if (!kvm->arch.online_vcores) {
2043 kvm->arch.smt_mode = smt_mode;
2044 kvm->arch.emul_smt_mode = esmt;
2045 err = 0;
2046 }
2047 mutex_unlock(&kvm->lock);
2048
2049 return err;
2050 }
2051
2052 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2053 {
2054 if (vpa->pinned_addr)
2055 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2056 vpa->dirty);
2057 }
2058
2059 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2060 {
2061 spin_lock(&vcpu->arch.vpa_update_lock);
2062 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2063 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2064 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2065 spin_unlock(&vcpu->arch.vpa_update_lock);
2066 kvm_vcpu_uninit(vcpu);
2067 kmem_cache_free(kvm_vcpu_cache, vcpu);
2068 }
2069
2070 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2071 {
2072 /* Indicate we want to get back into the guest */
2073 return 1;
2074 }
2075
2076 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2077 {
2078 unsigned long dec_nsec, now;
2079
2080 now = get_tb();
2081 if (now > vcpu->arch.dec_expires) {
2082 /* decrementer has already gone negative */
2083 kvmppc_core_queue_dec(vcpu);
2084 kvmppc_core_prepare_to_enter(vcpu);
2085 return;
2086 }
2087 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2088 / tb_ticks_per_sec;
2089 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2090 vcpu->arch.timer_running = 1;
2091 }
2092
2093 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2094 {
2095 vcpu->arch.ceded = 0;
2096 if (vcpu->arch.timer_running) {
2097 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2098 vcpu->arch.timer_running = 0;
2099 }
2100 }
2101
2102 extern int __kvmppc_vcore_entry(void);
2103
2104 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2105 struct kvm_vcpu *vcpu)
2106 {
2107 u64 now;
2108
2109 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2110 return;
2111 spin_lock_irq(&vcpu->arch.tbacct_lock);
2112 now = mftb();
2113 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2114 vcpu->arch.stolen_logged;
2115 vcpu->arch.busy_preempt = now;
2116 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2117 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2118 --vc->n_runnable;
2119 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2120 }
2121
2122 static int kvmppc_grab_hwthread(int cpu)
2123 {
2124 struct paca_struct *tpaca;
2125 long timeout = 10000;
2126
2127 tpaca = &paca[cpu];
2128
2129 /* Ensure the thread won't go into the kernel if it wakes */
2130 tpaca->kvm_hstate.kvm_vcpu = NULL;
2131 tpaca->kvm_hstate.kvm_vcore = NULL;
2132 tpaca->kvm_hstate.napping = 0;
2133 smp_wmb();
2134 tpaca->kvm_hstate.hwthread_req = 1;
2135
2136 /*
2137 * If the thread is already executing in the kernel (e.g. handling
2138 * a stray interrupt), wait for it to get back to nap mode.
2139 * The smp_mb() is to ensure that our setting of hwthread_req
2140 * is visible before we look at hwthread_state, so if this
2141 * races with the code at system_reset_pSeries and the thread
2142 * misses our setting of hwthread_req, we are sure to see its
2143 * setting of hwthread_state, and vice versa.
2144 */
2145 smp_mb();
2146 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2147 if (--timeout <= 0) {
2148 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2149 return -EBUSY;
2150 }
2151 udelay(1);
2152 }
2153 return 0;
2154 }
2155
2156 static void kvmppc_release_hwthread(int cpu)
2157 {
2158 struct paca_struct *tpaca;
2159
2160 tpaca = &paca[cpu];
2161 tpaca->kvm_hstate.hwthread_req = 0;
2162 tpaca->kvm_hstate.kvm_vcpu = NULL;
2163 tpaca->kvm_hstate.kvm_vcore = NULL;
2164 tpaca->kvm_hstate.kvm_split_mode = NULL;
2165 }
2166
2167 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2168 {
2169 int i;
2170
2171 cpu = cpu_first_thread_sibling(cpu);
2172 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2173 /*
2174 * Make sure setting of bit in need_tlb_flush precedes
2175 * testing of cpu_in_guest bits. The matching barrier on
2176 * the other side is the first smp_mb() in kvmppc_run_core().
2177 */
2178 smp_mb();
2179 for (i = 0; i < threads_per_core; ++i)
2180 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2181 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2182 }
2183
2184 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2185 {
2186 struct kvm *kvm = vcpu->kvm;
2187
2188 /*
2189 * With radix, the guest can do TLB invalidations itself,
2190 * and it could choose to use the local form (tlbiel) if
2191 * it is invalidating a translation that has only ever been
2192 * used on one vcpu. However, that doesn't mean it has
2193 * only ever been used on one physical cpu, since vcpus
2194 * can move around between pcpus. To cope with this, when
2195 * a vcpu moves from one pcpu to another, we need to tell
2196 * any vcpus running on the same core as this vcpu previously
2197 * ran to flush the TLB. The TLB is shared between threads,
2198 * so we use a single bit in .need_tlb_flush for all 4 threads.
2199 */
2200 if (vcpu->arch.prev_cpu != pcpu) {
2201 if (vcpu->arch.prev_cpu >= 0 &&
2202 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2203 cpu_first_thread_sibling(pcpu))
2204 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2205 vcpu->arch.prev_cpu = pcpu;
2206 }
2207 }
2208
2209 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2210 {
2211 int cpu;
2212 struct paca_struct *tpaca;
2213 struct kvm *kvm = vc->kvm;
2214
2215 cpu = vc->pcpu;
2216 if (vcpu) {
2217 if (vcpu->arch.timer_running) {
2218 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2219 vcpu->arch.timer_running = 0;
2220 }
2221 cpu += vcpu->arch.ptid;
2222 vcpu->cpu = vc->pcpu;
2223 vcpu->arch.thread_cpu = cpu;
2224 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2225 }
2226 tpaca = &paca[cpu];
2227 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2228 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2229 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2230 smp_wmb();
2231 tpaca->kvm_hstate.kvm_vcore = vc;
2232 if (cpu != smp_processor_id())
2233 kvmppc_ipi_thread(cpu);
2234 }
2235
2236 static void kvmppc_wait_for_nap(int n_threads)
2237 {
2238 int cpu = smp_processor_id();
2239 int i, loops;
2240
2241 if (n_threads <= 1)
2242 return;
2243 for (loops = 0; loops < 1000000; ++loops) {
2244 /*
2245 * Check if all threads are finished.
2246 * We set the vcore pointer when starting a thread
2247 * and the thread clears it when finished, so we look
2248 * for any threads that still have a non-NULL vcore ptr.
2249 */
2250 for (i = 1; i < n_threads; ++i)
2251 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2252 break;
2253 if (i == n_threads) {
2254 HMT_medium();
2255 return;
2256 }
2257 HMT_low();
2258 }
2259 HMT_medium();
2260 for (i = 1; i < n_threads; ++i)
2261 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2262 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2263 }
2264
2265 /*
2266 * Check that we are on thread 0 and that any other threads in
2267 * this core are off-line. Then grab the threads so they can't
2268 * enter the kernel.
2269 */
2270 static int on_primary_thread(void)
2271 {
2272 int cpu = smp_processor_id();
2273 int thr;
2274
2275 /* Are we on a primary subcore? */
2276 if (cpu_thread_in_subcore(cpu))
2277 return 0;
2278
2279 thr = 0;
2280 while (++thr < threads_per_subcore)
2281 if (cpu_online(cpu + thr))
2282 return 0;
2283
2284 /* Grab all hw threads so they can't go into the kernel */
2285 for (thr = 1; thr < threads_per_subcore; ++thr) {
2286 if (kvmppc_grab_hwthread(cpu + thr)) {
2287 /* Couldn't grab one; let the others go */
2288 do {
2289 kvmppc_release_hwthread(cpu + thr);
2290 } while (--thr > 0);
2291 return 0;
2292 }
2293 }
2294 return 1;
2295 }
2296
2297 /*
2298 * A list of virtual cores for each physical CPU.
2299 * These are vcores that could run but their runner VCPU tasks are
2300 * (or may be) preempted.
2301 */
2302 struct preempted_vcore_list {
2303 struct list_head list;
2304 spinlock_t lock;
2305 };
2306
2307 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2308
2309 static void init_vcore_lists(void)
2310 {
2311 int cpu;
2312
2313 for_each_possible_cpu(cpu) {
2314 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2315 spin_lock_init(&lp->lock);
2316 INIT_LIST_HEAD(&lp->list);
2317 }
2318 }
2319
2320 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2321 {
2322 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2323
2324 vc->vcore_state = VCORE_PREEMPT;
2325 vc->pcpu = smp_processor_id();
2326 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2327 spin_lock(&lp->lock);
2328 list_add_tail(&vc->preempt_list, &lp->list);
2329 spin_unlock(&lp->lock);
2330 }
2331
2332 /* Start accumulating stolen time */
2333 kvmppc_core_start_stolen(vc);
2334 }
2335
2336 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2337 {
2338 struct preempted_vcore_list *lp;
2339
2340 kvmppc_core_end_stolen(vc);
2341 if (!list_empty(&vc->preempt_list)) {
2342 lp = &per_cpu(preempted_vcores, vc->pcpu);
2343 spin_lock(&lp->lock);
2344 list_del_init(&vc->preempt_list);
2345 spin_unlock(&lp->lock);
2346 }
2347 vc->vcore_state = VCORE_INACTIVE;
2348 }
2349
2350 /*
2351 * This stores information about the virtual cores currently
2352 * assigned to a physical core.
2353 */
2354 struct core_info {
2355 int n_subcores;
2356 int max_subcore_threads;
2357 int total_threads;
2358 int subcore_threads[MAX_SUBCORES];
2359 struct kvmppc_vcore *vc[MAX_SUBCORES];
2360 };
2361
2362 /*
2363 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2364 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2365 */
2366 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2367
2368 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2369 {
2370 memset(cip, 0, sizeof(*cip));
2371 cip->n_subcores = 1;
2372 cip->max_subcore_threads = vc->num_threads;
2373 cip->total_threads = vc->num_threads;
2374 cip->subcore_threads[0] = vc->num_threads;
2375 cip->vc[0] = vc;
2376 }
2377
2378 static bool subcore_config_ok(int n_subcores, int n_threads)
2379 {
2380 /*
2381 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core
2382 * mode, with one thread per subcore.
2383 */
2384 if (cpu_has_feature(CPU_FTR_ARCH_300))
2385 return n_subcores <= 4 && n_threads == 1;
2386
2387 /* On POWER8, can only dynamically split if unsplit to begin with */
2388 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2389 return false;
2390 if (n_subcores > MAX_SUBCORES)
2391 return false;
2392 if (n_subcores > 1) {
2393 if (!(dynamic_mt_modes & 2))
2394 n_subcores = 4;
2395 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2396 return false;
2397 }
2398
2399 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2400 }
2401
2402 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2403 {
2404 vc->entry_exit_map = 0;
2405 vc->in_guest = 0;
2406 vc->napping_threads = 0;
2407 vc->conferring_threads = 0;
2408 }
2409
2410 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2411 {
2412 int n_threads = vc->num_threads;
2413 int sub;
2414
2415 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2416 return false;
2417
2418 /* POWER9 currently requires all threads to be in the same MMU mode */
2419 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
2420 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2421 return false;
2422
2423 if (n_threads < cip->max_subcore_threads)
2424 n_threads = cip->max_subcore_threads;
2425 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2426 return false;
2427 cip->max_subcore_threads = n_threads;
2428
2429 sub = cip->n_subcores;
2430 ++cip->n_subcores;
2431 cip->total_threads += vc->num_threads;
2432 cip->subcore_threads[sub] = vc->num_threads;
2433 cip->vc[sub] = vc;
2434 init_vcore_to_run(vc);
2435 list_del_init(&vc->preempt_list);
2436
2437 return true;
2438 }
2439
2440 /*
2441 * Work out whether it is possible to piggyback the execution of
2442 * vcore *pvc onto the execution of the other vcores described in *cip.
2443 */
2444 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2445 int target_threads)
2446 {
2447 if (cip->total_threads + pvc->num_threads > target_threads)
2448 return false;
2449
2450 return can_dynamic_split(pvc, cip);
2451 }
2452
2453 static void prepare_threads(struct kvmppc_vcore *vc)
2454 {
2455 int i;
2456 struct kvm_vcpu *vcpu;
2457
2458 for_each_runnable_thread(i, vcpu, vc) {
2459 if (signal_pending(vcpu->arch.run_task))
2460 vcpu->arch.ret = -EINTR;
2461 else if (vcpu->arch.vpa.update_pending ||
2462 vcpu->arch.slb_shadow.update_pending ||
2463 vcpu->arch.dtl.update_pending)
2464 vcpu->arch.ret = RESUME_GUEST;
2465 else
2466 continue;
2467 kvmppc_remove_runnable(vc, vcpu);
2468 wake_up(&vcpu->arch.cpu_run);
2469 }
2470 }
2471
2472 static void collect_piggybacks(struct core_info *cip, int target_threads)
2473 {
2474 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2475 struct kvmppc_vcore *pvc, *vcnext;
2476
2477 spin_lock(&lp->lock);
2478 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2479 if (!spin_trylock(&pvc->lock))
2480 continue;
2481 prepare_threads(pvc);
2482 if (!pvc->n_runnable) {
2483 list_del_init(&pvc->preempt_list);
2484 if (pvc->runner == NULL) {
2485 pvc->vcore_state = VCORE_INACTIVE;
2486 kvmppc_core_end_stolen(pvc);
2487 }
2488 spin_unlock(&pvc->lock);
2489 continue;
2490 }
2491 if (!can_piggyback(pvc, cip, target_threads)) {
2492 spin_unlock(&pvc->lock);
2493 continue;
2494 }
2495 kvmppc_core_end_stolen(pvc);
2496 pvc->vcore_state = VCORE_PIGGYBACK;
2497 if (cip->total_threads >= target_threads)
2498 break;
2499 }
2500 spin_unlock(&lp->lock);
2501 }
2502
2503 static bool recheck_signals(struct core_info *cip)
2504 {
2505 int sub, i;
2506 struct kvm_vcpu *vcpu;
2507
2508 for (sub = 0; sub < cip->n_subcores; ++sub)
2509 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2510 if (signal_pending(vcpu->arch.run_task))
2511 return true;
2512 return false;
2513 }
2514
2515 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2516 {
2517 int still_running = 0, i;
2518 u64 now;
2519 long ret;
2520 struct kvm_vcpu *vcpu;
2521
2522 spin_lock(&vc->lock);
2523 now = get_tb();
2524 for_each_runnable_thread(i, vcpu, vc) {
2525 /* cancel pending dec exception if dec is positive */
2526 if (now < vcpu->arch.dec_expires &&
2527 kvmppc_core_pending_dec(vcpu))
2528 kvmppc_core_dequeue_dec(vcpu);
2529
2530 trace_kvm_guest_exit(vcpu);
2531
2532 ret = RESUME_GUEST;
2533 if (vcpu->arch.trap)
2534 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2535 vcpu->arch.run_task);
2536
2537 vcpu->arch.ret = ret;
2538 vcpu->arch.trap = 0;
2539
2540 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2541 if (vcpu->arch.pending_exceptions)
2542 kvmppc_core_prepare_to_enter(vcpu);
2543 if (vcpu->arch.ceded)
2544 kvmppc_set_timer(vcpu);
2545 else
2546 ++still_running;
2547 } else {
2548 kvmppc_remove_runnable(vc, vcpu);
2549 wake_up(&vcpu->arch.cpu_run);
2550 }
2551 }
2552 if (!is_master) {
2553 if (still_running > 0) {
2554 kvmppc_vcore_preempt(vc);
2555 } else if (vc->runner) {
2556 vc->vcore_state = VCORE_PREEMPT;
2557 kvmppc_core_start_stolen(vc);
2558 } else {
2559 vc->vcore_state = VCORE_INACTIVE;
2560 }
2561 if (vc->n_runnable > 0 && vc->runner == NULL) {
2562 /* make sure there's a candidate runner awake */
2563 i = -1;
2564 vcpu = next_runnable_thread(vc, &i);
2565 wake_up(&vcpu->arch.cpu_run);
2566 }
2567 }
2568 spin_unlock(&vc->lock);
2569 }
2570
2571 /*
2572 * Clear core from the list of active host cores as we are about to
2573 * enter the guest. Only do this if it is the primary thread of the
2574 * core (not if a subcore) that is entering the guest.
2575 */
2576 static inline int kvmppc_clear_host_core(unsigned int cpu)
2577 {
2578 int core;
2579
2580 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2581 return 0;
2582 /*
2583 * Memory barrier can be omitted here as we will do a smp_wmb()
2584 * later in kvmppc_start_thread and we need ensure that state is
2585 * visible to other CPUs only after we enter guest.
2586 */
2587 core = cpu >> threads_shift;
2588 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2589 return 0;
2590 }
2591
2592 /*
2593 * Advertise this core as an active host core since we exited the guest
2594 * Only need to do this if it is the primary thread of the core that is
2595 * exiting.
2596 */
2597 static inline int kvmppc_set_host_core(unsigned int cpu)
2598 {
2599 int core;
2600
2601 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2602 return 0;
2603
2604 /*
2605 * Memory barrier can be omitted here because we do a spin_unlock
2606 * immediately after this which provides the memory barrier.
2607 */
2608 core = cpu >> threads_shift;
2609 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2610 return 0;
2611 }
2612
2613 static void set_irq_happened(int trap)
2614 {
2615 switch (trap) {
2616 case BOOK3S_INTERRUPT_EXTERNAL:
2617 local_paca->irq_happened |= PACA_IRQ_EE;
2618 break;
2619 case BOOK3S_INTERRUPT_H_DOORBELL:
2620 local_paca->irq_happened |= PACA_IRQ_DBELL;
2621 break;
2622 case BOOK3S_INTERRUPT_HMI:
2623 local_paca->irq_happened |= PACA_IRQ_HMI;
2624 break;
2625 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2626 replay_system_reset();
2627 break;
2628 }
2629 }
2630
2631 /*
2632 * Run a set of guest threads on a physical core.
2633 * Called with vc->lock held.
2634 */
2635 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2636 {
2637 struct kvm_vcpu *vcpu;
2638 int i;
2639 int srcu_idx;
2640 struct core_info core_info;
2641 struct kvmppc_vcore *pvc;
2642 struct kvm_split_mode split_info, *sip;
2643 int split, subcore_size, active;
2644 int sub;
2645 bool thr0_done;
2646 unsigned long cmd_bit, stat_bit;
2647 int pcpu, thr;
2648 int target_threads;
2649 int controlled_threads;
2650 int trap;
2651 bool is_power8;
2652 bool hpt_on_radix;
2653
2654 /*
2655 * Remove from the list any threads that have a signal pending
2656 * or need a VPA update done
2657 */
2658 prepare_threads(vc);
2659
2660 /* if the runner is no longer runnable, let the caller pick a new one */
2661 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2662 return;
2663
2664 /*
2665 * Initialize *vc.
2666 */
2667 init_vcore_to_run(vc);
2668 vc->preempt_tb = TB_NIL;
2669
2670 /*
2671 * Number of threads that we will be controlling: the same as
2672 * the number of threads per subcore, except on POWER9,
2673 * where it's 1 because the threads are (mostly) independent.
2674 */
2675 controlled_threads = threads_per_vcore(vc->kvm);
2676
2677 /*
2678 * Make sure we are running on primary threads, and that secondary
2679 * threads are offline. Also check if the number of threads in this
2680 * guest are greater than the current system threads per guest.
2681 * On POWER9, we need to be not in independent-threads mode if
2682 * this is a HPT guest on a radix host.
2683 */
2684 hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm);
2685 if (((controlled_threads > 1) &&
2686 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2687 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2688 for_each_runnable_thread(i, vcpu, vc) {
2689 vcpu->arch.ret = -EBUSY;
2690 kvmppc_remove_runnable(vc, vcpu);
2691 wake_up(&vcpu->arch.cpu_run);
2692 }
2693 goto out;
2694 }
2695
2696 /*
2697 * See if we could run any other vcores on the physical core
2698 * along with this one.
2699 */
2700 init_core_info(&core_info, vc);
2701 pcpu = smp_processor_id();
2702 target_threads = controlled_threads;
2703 if (target_smt_mode && target_smt_mode < target_threads)
2704 target_threads = target_smt_mode;
2705 if (vc->num_threads < target_threads)
2706 collect_piggybacks(&core_info, target_threads);
2707
2708 /*
2709 * On radix, arrange for TLB flushing if necessary.
2710 * This has to be done before disabling interrupts since
2711 * it uses smp_call_function().
2712 */
2713 pcpu = smp_processor_id();
2714 if (kvm_is_radix(vc->kvm)) {
2715 for (sub = 0; sub < core_info.n_subcores; ++sub)
2716 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2717 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2718 }
2719
2720 /*
2721 * Hard-disable interrupts, and check resched flag and signals.
2722 * If we need to reschedule or deliver a signal, clean up
2723 * and return without going into the guest(s).
2724 * If the mmu_ready flag has been cleared, don't go into the
2725 * guest because that means a HPT resize operation is in progress.
2726 */
2727 local_irq_disable();
2728 hard_irq_disable();
2729 if (lazy_irq_pending() || need_resched() ||
2730 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2731 local_irq_enable();
2732 vc->vcore_state = VCORE_INACTIVE;
2733 /* Unlock all except the primary vcore */
2734 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2735 pvc = core_info.vc[sub];
2736 /* Put back on to the preempted vcores list */
2737 kvmppc_vcore_preempt(pvc);
2738 spin_unlock(&pvc->lock);
2739 }
2740 for (i = 0; i < controlled_threads; ++i)
2741 kvmppc_release_hwthread(pcpu + i);
2742 return;
2743 }
2744
2745 kvmppc_clear_host_core(pcpu);
2746
2747 /* Decide on micro-threading (split-core) mode */
2748 subcore_size = threads_per_subcore;
2749 cmd_bit = stat_bit = 0;
2750 split = core_info.n_subcores;
2751 sip = NULL;
2752 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2753 && !cpu_has_feature(CPU_FTR_ARCH_300);
2754
2755 if (split > 1 || hpt_on_radix) {
2756 sip = &split_info;
2757 memset(&split_info, 0, sizeof(split_info));
2758 for (sub = 0; sub < core_info.n_subcores; ++sub)
2759 split_info.vc[sub] = core_info.vc[sub];
2760
2761 if (is_power8) {
2762 if (split == 2 && (dynamic_mt_modes & 2)) {
2763 cmd_bit = HID0_POWER8_1TO2LPAR;
2764 stat_bit = HID0_POWER8_2LPARMODE;
2765 } else {
2766 split = 4;
2767 cmd_bit = HID0_POWER8_1TO4LPAR;
2768 stat_bit = HID0_POWER8_4LPARMODE;
2769 }
2770 subcore_size = MAX_SMT_THREADS / split;
2771 split_info.rpr = mfspr(SPRN_RPR);
2772 split_info.pmmar = mfspr(SPRN_PMMAR);
2773 split_info.ldbar = mfspr(SPRN_LDBAR);
2774 split_info.subcore_size = subcore_size;
2775 } else {
2776 split_info.subcore_size = 1;
2777 if (hpt_on_radix) {
2778 /* Use the split_info for LPCR/LPIDR changes */
2779 split_info.lpcr_req = vc->lpcr;
2780 split_info.lpidr_req = vc->kvm->arch.lpid;
2781 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2782 split_info.do_set = 1;
2783 }
2784 }
2785
2786 /* order writes to split_info before kvm_split_mode pointer */
2787 smp_wmb();
2788 }
2789
2790 for (thr = 0; thr < controlled_threads; ++thr) {
2791 paca[pcpu + thr].kvm_hstate.tid = thr;
2792 paca[pcpu + thr].kvm_hstate.napping = 0;
2793 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2794 }
2795
2796 /* Initiate micro-threading (split-core) on POWER8 if required */
2797 if (cmd_bit) {
2798 unsigned long hid0 = mfspr(SPRN_HID0);
2799
2800 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2801 mb();
2802 mtspr(SPRN_HID0, hid0);
2803 isync();
2804 for (;;) {
2805 hid0 = mfspr(SPRN_HID0);
2806 if (hid0 & stat_bit)
2807 break;
2808 cpu_relax();
2809 }
2810 }
2811
2812 /* Start all the threads */
2813 active = 0;
2814 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2815 thr = is_power8 ? subcore_thread_map[sub] : sub;
2816 thr0_done = false;
2817 active |= 1 << thr;
2818 pvc = core_info.vc[sub];
2819 pvc->pcpu = pcpu + thr;
2820 for_each_runnable_thread(i, vcpu, pvc) {
2821 kvmppc_start_thread(vcpu, pvc);
2822 kvmppc_create_dtl_entry(vcpu, pvc);
2823 trace_kvm_guest_enter(vcpu);
2824 if (!vcpu->arch.ptid)
2825 thr0_done = true;
2826 active |= 1 << (thr + vcpu->arch.ptid);
2827 }
2828 /*
2829 * We need to start the first thread of each subcore
2830 * even if it doesn't have a vcpu.
2831 */
2832 if (!thr0_done)
2833 kvmppc_start_thread(NULL, pvc);
2834 thr += pvc->num_threads;
2835 }
2836
2837 /*
2838 * Ensure that split_info.do_nap is set after setting
2839 * the vcore pointer in the PACA of the secondaries.
2840 */
2841 smp_mb();
2842
2843 /*
2844 * When doing micro-threading, poke the inactive threads as well.
2845 * This gets them to the nap instruction after kvm_do_nap,
2846 * which reduces the time taken to unsplit later.
2847 * For POWER9 HPT guest on radix host, we need all the secondary
2848 * threads woken up so they can do the LPCR/LPIDR change.
2849 */
2850 if (cmd_bit || hpt_on_radix) {
2851 split_info.do_nap = 1; /* ask secondaries to nap when done */
2852 for (thr = 1; thr < threads_per_subcore; ++thr)
2853 if (!(active & (1 << thr)))
2854 kvmppc_ipi_thread(pcpu + thr);
2855 }
2856
2857 vc->vcore_state = VCORE_RUNNING;
2858 preempt_disable();
2859
2860 trace_kvmppc_run_core(vc, 0);
2861
2862 for (sub = 0; sub < core_info.n_subcores; ++sub)
2863 spin_unlock(&core_info.vc[sub]->lock);
2864
2865 /*
2866 * Interrupts will be enabled once we get into the guest,
2867 * so tell lockdep that we're about to enable interrupts.
2868 */
2869 trace_hardirqs_on();
2870
2871 guest_enter();
2872
2873 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2874
2875 trap = __kvmppc_vcore_entry();
2876
2877 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2878
2879 guest_exit();
2880
2881 trace_hardirqs_off();
2882 set_irq_happened(trap);
2883
2884 spin_lock(&vc->lock);
2885 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2886 vc->vcore_state = VCORE_EXITING;
2887
2888 /* wait for secondary threads to finish writing their state to memory */
2889 kvmppc_wait_for_nap(controlled_threads);
2890
2891 /* Return to whole-core mode if we split the core earlier */
2892 if (cmd_bit) {
2893 unsigned long hid0 = mfspr(SPRN_HID0);
2894 unsigned long loops = 0;
2895
2896 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2897 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2898 mb();
2899 mtspr(SPRN_HID0, hid0);
2900 isync();
2901 for (;;) {
2902 hid0 = mfspr(SPRN_HID0);
2903 if (!(hid0 & stat_bit))
2904 break;
2905 cpu_relax();
2906 ++loops;
2907 }
2908 } else if (hpt_on_radix) {
2909 /* Wait for all threads to have seen final sync */
2910 for (thr = 1; thr < controlled_threads; ++thr) {
2911 while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2912 HMT_low();
2913 barrier();
2914 }
2915 HMT_medium();
2916 }
2917 }
2918 split_info.do_nap = 0;
2919
2920 kvmppc_set_host_core(pcpu);
2921
2922 local_irq_enable();
2923
2924 /* Let secondaries go back to the offline loop */
2925 for (i = 0; i < controlled_threads; ++i) {
2926 kvmppc_release_hwthread(pcpu + i);
2927 if (sip && sip->napped[i])
2928 kvmppc_ipi_thread(pcpu + i);
2929 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2930 }
2931
2932 spin_unlock(&vc->lock);
2933
2934 /* make sure updates to secondary vcpu structs are visible now */
2935 smp_mb();
2936
2937 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2938 pvc = core_info.vc[sub];
2939 post_guest_process(pvc, pvc == vc);
2940 }
2941
2942 spin_lock(&vc->lock);
2943 preempt_enable();
2944
2945 out:
2946 vc->vcore_state = VCORE_INACTIVE;
2947 trace_kvmppc_run_core(vc, 1);
2948 }
2949
2950 /*
2951 * Wait for some other vcpu thread to execute us, and
2952 * wake us up when we need to handle something in the host.
2953 */
2954 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2955 struct kvm_vcpu *vcpu, int wait_state)
2956 {
2957 DEFINE_WAIT(wait);
2958
2959 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2960 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2961 spin_unlock(&vc->lock);
2962 schedule();
2963 spin_lock(&vc->lock);
2964 }
2965 finish_wait(&vcpu->arch.cpu_run, &wait);
2966 }
2967
2968 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2969 {
2970 /* 10us base */
2971 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2972 vc->halt_poll_ns = 10000;
2973 else
2974 vc->halt_poll_ns *= halt_poll_ns_grow;
2975 }
2976
2977 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2978 {
2979 if (halt_poll_ns_shrink == 0)
2980 vc->halt_poll_ns = 0;
2981 else
2982 vc->halt_poll_ns /= halt_poll_ns_shrink;
2983 }
2984
2985 #ifdef CONFIG_KVM_XICS
2986 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2987 {
2988 if (!xive_enabled())
2989 return false;
2990 return vcpu->arch.xive_saved_state.pipr <
2991 vcpu->arch.xive_saved_state.cppr;
2992 }
2993 #else
2994 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2995 {
2996 return false;
2997 }
2998 #endif /* CONFIG_KVM_XICS */
2999
3000 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3001 {
3002 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3003 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3004 return true;
3005
3006 return false;
3007 }
3008
3009 /*
3010 * Check to see if any of the runnable vcpus on the vcore have pending
3011 * exceptions or are no longer ceded
3012 */
3013 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3014 {
3015 struct kvm_vcpu *vcpu;
3016 int i;
3017
3018 for_each_runnable_thread(i, vcpu, vc) {
3019 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3020 return 1;
3021 }
3022
3023 return 0;
3024 }
3025
3026 /*
3027 * All the vcpus in this vcore are idle, so wait for a decrementer
3028 * or external interrupt to one of the vcpus. vc->lock is held.
3029 */
3030 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3031 {
3032 ktime_t cur, start_poll, start_wait;
3033 int do_sleep = 1;
3034 u64 block_ns;
3035 DECLARE_SWAITQUEUE(wait);
3036
3037 /* Poll for pending exceptions and ceded state */
3038 cur = start_poll = ktime_get();
3039 if (vc->halt_poll_ns) {
3040 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3041 ++vc->runner->stat.halt_attempted_poll;
3042
3043 vc->vcore_state = VCORE_POLLING;
3044 spin_unlock(&vc->lock);
3045
3046 do {
3047 if (kvmppc_vcore_check_block(vc)) {
3048 do_sleep = 0;
3049 break;
3050 }
3051 cur = ktime_get();
3052 } while (single_task_running() && ktime_before(cur, stop));
3053
3054 spin_lock(&vc->lock);
3055 vc->vcore_state = VCORE_INACTIVE;
3056
3057 if (!do_sleep) {
3058 ++vc->runner->stat.halt_successful_poll;
3059 goto out;
3060 }
3061 }
3062
3063 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3064
3065 if (kvmppc_vcore_check_block(vc)) {
3066 finish_swait(&vc->wq, &wait);
3067 do_sleep = 0;
3068 /* If we polled, count this as a successful poll */
3069 if (vc->halt_poll_ns)
3070 ++vc->runner->stat.halt_successful_poll;
3071 goto out;
3072 }
3073
3074 start_wait = ktime_get();
3075
3076 vc->vcore_state = VCORE_SLEEPING;
3077 trace_kvmppc_vcore_blocked(vc, 0);
3078 spin_unlock(&vc->lock);
3079 schedule();
3080 finish_swait(&vc->wq, &wait);
3081 spin_lock(&vc->lock);
3082 vc->vcore_state = VCORE_INACTIVE;
3083 trace_kvmppc_vcore_blocked(vc, 1);
3084 ++vc->runner->stat.halt_successful_wait;
3085
3086 cur = ktime_get();
3087
3088 out:
3089 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3090
3091 /* Attribute wait time */
3092 if (do_sleep) {
3093 vc->runner->stat.halt_wait_ns +=
3094 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3095 /* Attribute failed poll time */
3096 if (vc->halt_poll_ns)
3097 vc->runner->stat.halt_poll_fail_ns +=
3098 ktime_to_ns(start_wait) -
3099 ktime_to_ns(start_poll);
3100 } else {
3101 /* Attribute successful poll time */
3102 if (vc->halt_poll_ns)
3103 vc->runner->stat.halt_poll_success_ns +=
3104 ktime_to_ns(cur) -
3105 ktime_to_ns(start_poll);
3106 }
3107
3108 /* Adjust poll time */
3109 if (halt_poll_ns) {
3110 if (block_ns <= vc->halt_poll_ns)
3111 ;
3112 /* We slept and blocked for longer than the max halt time */
3113 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3114 shrink_halt_poll_ns(vc);
3115 /* We slept and our poll time is too small */
3116 else if (vc->halt_poll_ns < halt_poll_ns &&
3117 block_ns < halt_poll_ns)
3118 grow_halt_poll_ns(vc);
3119 if (vc->halt_poll_ns > halt_poll_ns)
3120 vc->halt_poll_ns = halt_poll_ns;
3121 } else
3122 vc->halt_poll_ns = 0;
3123
3124 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3125 }
3126
3127 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3128 {
3129 int r = 0;
3130 struct kvm *kvm = vcpu->kvm;
3131
3132 mutex_lock(&kvm->lock);
3133 if (!kvm->arch.mmu_ready) {
3134 if (!kvm_is_radix(kvm))
3135 r = kvmppc_hv_setup_htab_rma(vcpu);
3136 if (!r) {
3137 if (cpu_has_feature(CPU_FTR_ARCH_300))
3138 kvmppc_setup_partition_table(kvm);
3139 kvm->arch.mmu_ready = 1;
3140 }
3141 }
3142 mutex_unlock(&kvm->lock);
3143 return r;
3144 }
3145
3146 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3147 {
3148 int n_ceded, i, r;
3149 struct kvmppc_vcore *vc;
3150 struct kvm_vcpu *v;
3151
3152 trace_kvmppc_run_vcpu_enter(vcpu);
3153
3154 kvm_run->exit_reason = 0;
3155 vcpu->arch.ret = RESUME_GUEST;
3156 vcpu->arch.trap = 0;
3157 kvmppc_update_vpas(vcpu);
3158
3159 /*
3160 * Synchronize with other threads in this virtual core
3161 */
3162 vc = vcpu->arch.vcore;
3163 spin_lock(&vc->lock);
3164 vcpu->arch.ceded = 0;
3165 vcpu->arch.run_task = current;
3166 vcpu->arch.kvm_run = kvm_run;
3167 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3168 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3169 vcpu->arch.busy_preempt = TB_NIL;
3170 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3171 ++vc->n_runnable;
3172
3173 /*
3174 * This happens the first time this is called for a vcpu.
3175 * If the vcore is already running, we may be able to start
3176 * this thread straight away and have it join in.
3177 */
3178 if (!signal_pending(current)) {
3179 if (vc->vcore_state == VCORE_PIGGYBACK) {
3180 if (spin_trylock(&vc->lock)) {
3181 if (vc->vcore_state == VCORE_RUNNING &&
3182 !VCORE_IS_EXITING(vc)) {
3183 kvmppc_create_dtl_entry(vcpu, vc);
3184 kvmppc_start_thread(vcpu, vc);
3185 trace_kvm_guest_enter(vcpu);
3186 }
3187 spin_unlock(&vc->lock);
3188 }
3189 } else if (vc->vcore_state == VCORE_RUNNING &&
3190 !VCORE_IS_EXITING(vc)) {
3191 kvmppc_create_dtl_entry(vcpu, vc);
3192 kvmppc_start_thread(vcpu, vc);
3193 trace_kvm_guest_enter(vcpu);
3194 } else if (vc->vcore_state == VCORE_SLEEPING) {
3195 swake_up(&vc->wq);
3196 }
3197
3198 }
3199
3200 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3201 !signal_pending(current)) {
3202 /* See if the MMU is ready to go */
3203 if (!vcpu->kvm->arch.mmu_ready) {
3204 spin_unlock(&vc->lock);
3205 r = kvmhv_setup_mmu(vcpu);
3206 spin_lock(&vc->lock);
3207 if (r) {
3208 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3209 kvm_run->fail_entry.
3210 hardware_entry_failure_reason = 0;
3211 vcpu->arch.ret = r;
3212 break;
3213 }
3214 }
3215
3216 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3217 kvmppc_vcore_end_preempt(vc);
3218
3219 if (vc->vcore_state != VCORE_INACTIVE) {
3220 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3221 continue;
3222 }
3223 for_each_runnable_thread(i, v, vc) {
3224 kvmppc_core_prepare_to_enter(v);
3225 if (signal_pending(v->arch.run_task)) {
3226 kvmppc_remove_runnable(vc, v);
3227 v->stat.signal_exits++;
3228 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3229 v->arch.ret = -EINTR;
3230 wake_up(&v->arch.cpu_run);
3231 }
3232 }
3233 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3234 break;
3235 n_ceded = 0;
3236 for_each_runnable_thread(i, v, vc) {
3237 if (!kvmppc_vcpu_woken(v))
3238 n_ceded += v->arch.ceded;
3239 else
3240 v->arch.ceded = 0;
3241 }
3242 vc->runner = vcpu;
3243 if (n_ceded == vc->n_runnable) {
3244 kvmppc_vcore_blocked(vc);
3245 } else if (need_resched()) {
3246 kvmppc_vcore_preempt(vc);
3247 /* Let something else run */
3248 cond_resched_lock(&vc->lock);
3249 if (vc->vcore_state == VCORE_PREEMPT)
3250 kvmppc_vcore_end_preempt(vc);
3251 } else {
3252 kvmppc_run_core(vc);
3253 }
3254 vc->runner = NULL;
3255 }
3256
3257 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3258 (vc->vcore_state == VCORE_RUNNING ||
3259 vc->vcore_state == VCORE_EXITING ||
3260 vc->vcore_state == VCORE_PIGGYBACK))
3261 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3262
3263 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3264 kvmppc_vcore_end_preempt(vc);
3265
3266 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3267 kvmppc_remove_runnable(vc, vcpu);
3268 vcpu->stat.signal_exits++;
3269 kvm_run->exit_reason = KVM_EXIT_INTR;
3270 vcpu->arch.ret = -EINTR;
3271 }
3272
3273 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3274 /* Wake up some vcpu to run the core */
3275 i = -1;
3276 v = next_runnable_thread(vc, &i);
3277 wake_up(&v->arch.cpu_run);
3278 }
3279
3280 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3281 spin_unlock(&vc->lock);
3282 return vcpu->arch.ret;
3283 }
3284
3285 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3286 {
3287 int r;
3288 int srcu_idx;
3289 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3290 unsigned long user_tar = 0;
3291 unsigned int user_vrsave;
3292 struct kvm *kvm;
3293
3294 if (!vcpu->arch.sane) {
3295 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3296 return -EINVAL;
3297 }
3298
3299 /*
3300 * Don't allow entry with a suspended transaction, because
3301 * the guest entry/exit code will lose it.
3302 * If the guest has TM enabled, save away their TM-related SPRs
3303 * (they will get restored by the TM unavailable interrupt).
3304 */
3305 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3306 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3307 (current->thread.regs->msr & MSR_TM)) {
3308 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3309 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3310 run->fail_entry.hardware_entry_failure_reason = 0;
3311 return -EINVAL;
3312 }
3313 /* Enable TM so we can read the TM SPRs */
3314 mtmsr(mfmsr() | MSR_TM);
3315 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3316 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3317 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3318 current->thread.regs->msr &= ~MSR_TM;
3319 }
3320 #endif
3321
3322 kvmppc_core_prepare_to_enter(vcpu);
3323
3324 /* No need to go into the guest when all we'll do is come back out */
3325 if (signal_pending(current)) {
3326 run->exit_reason = KVM_EXIT_INTR;
3327 return -EINTR;
3328 }
3329
3330 kvm = vcpu->kvm;
3331 atomic_inc(&kvm->arch.vcpus_running);
3332 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3333 smp_mb();
3334
3335 flush_all_to_thread(current);
3336
3337 /* Save userspace EBB and other register values */
3338 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3339 ebb_regs[0] = mfspr(SPRN_EBBHR);
3340 ebb_regs[1] = mfspr(SPRN_EBBRR);
3341 ebb_regs[2] = mfspr(SPRN_BESCR);
3342 user_tar = mfspr(SPRN_TAR);
3343 }
3344 user_vrsave = mfspr(SPRN_VRSAVE);
3345
3346 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3347 vcpu->arch.pgdir = current->mm->pgd;
3348 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3349
3350 do {
3351 r = kvmppc_run_vcpu(run, vcpu);
3352
3353 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3354 !(vcpu->arch.shregs.msr & MSR_PR)) {
3355 trace_kvm_hcall_enter(vcpu);
3356 r = kvmppc_pseries_do_hcall(vcpu);
3357 trace_kvm_hcall_exit(vcpu, r);
3358 kvmppc_core_prepare_to_enter(vcpu);
3359 } else if (r == RESUME_PAGE_FAULT) {
3360 srcu_idx = srcu_read_lock(&kvm->srcu);
3361 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3362 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3363 srcu_read_unlock(&kvm->srcu, srcu_idx);
3364 } else if (r == RESUME_PASSTHROUGH) {
3365 if (WARN_ON(xive_enabled()))
3366 r = H_SUCCESS;
3367 else
3368 r = kvmppc_xics_rm_complete(vcpu, 0);
3369 }
3370 } while (is_kvmppc_resume_guest(r));
3371
3372 /* Restore userspace EBB and other register values */
3373 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3374 mtspr(SPRN_EBBHR, ebb_regs[0]);
3375 mtspr(SPRN_EBBRR, ebb_regs[1]);
3376 mtspr(SPRN_BESCR, ebb_regs[2]);
3377 mtspr(SPRN_TAR, user_tar);
3378 mtspr(SPRN_FSCR, current->thread.fscr);
3379 }
3380 mtspr(SPRN_VRSAVE, user_vrsave);
3381
3382 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3383 atomic_dec(&kvm->arch.vcpus_running);
3384 return r;
3385 }
3386
3387 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3388 int shift, int sllp)
3389 {
3390 (*sps)->page_shift = shift;
3391 (*sps)->slb_enc = sllp;
3392 (*sps)->enc[0].page_shift = shift;
3393 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3394 /*
3395 * Add 16MB MPSS support (may get filtered out by userspace)
3396 */
3397 if (shift != 24) {
3398 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3399 if (penc != -1) {
3400 (*sps)->enc[1].page_shift = 24;
3401 (*sps)->enc[1].pte_enc = penc;
3402 }
3403 }
3404 (*sps)++;
3405 }
3406
3407 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3408 struct kvm_ppc_smmu_info *info)
3409 {
3410 struct kvm_ppc_one_seg_page_size *sps;
3411
3412 /*
3413 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3414 * POWER7 doesn't support keys for instruction accesses,
3415 * POWER8 and POWER9 do.
3416 */
3417 info->data_keys = 32;
3418 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3419
3420 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3421 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3422 info->slb_size = 32;
3423
3424 /* We only support these sizes for now, and no muti-size segments */
3425 sps = &info->sps[0];
3426 kvmppc_add_seg_page_size(&sps, 12, 0);
3427 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3428 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3429
3430 return 0;
3431 }
3432
3433 /*
3434 * Get (and clear) the dirty memory log for a memory slot.
3435 */
3436 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3437 struct kvm_dirty_log *log)
3438 {
3439 struct kvm_memslots *slots;
3440 struct kvm_memory_slot *memslot;
3441 int i, r;
3442 unsigned long n;
3443 unsigned long *buf, *p;
3444 struct kvm_vcpu *vcpu;
3445
3446 mutex_lock(&kvm->slots_lock);
3447
3448 r = -EINVAL;
3449 if (log->slot >= KVM_USER_MEM_SLOTS)
3450 goto out;
3451
3452 slots = kvm_memslots(kvm);
3453 memslot = id_to_memslot(slots, log->slot);
3454 r = -ENOENT;
3455 if (!memslot->dirty_bitmap)
3456 goto out;
3457
3458 /*
3459 * Use second half of bitmap area because both HPT and radix
3460 * accumulate bits in the first half.
3461 */
3462 n = kvm_dirty_bitmap_bytes(memslot);
3463 buf = memslot->dirty_bitmap + n / sizeof(long);
3464 memset(buf, 0, n);
3465
3466 if (kvm_is_radix(kvm))
3467 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3468 else
3469 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3470 if (r)
3471 goto out;
3472
3473 /*
3474 * We accumulate dirty bits in the first half of the
3475 * memslot's dirty_bitmap area, for when pages are paged
3476 * out or modified by the host directly. Pick up these
3477 * bits and add them to the map.
3478 */
3479 p = memslot->dirty_bitmap;
3480 for (i = 0; i < n / sizeof(long); ++i)
3481 buf[i] |= xchg(&p[i], 0);
3482
3483 /* Harvest dirty bits from VPA and DTL updates */
3484 /* Note: we never modify the SLB shadow buffer areas */
3485 kvm_for_each_vcpu(i, vcpu, kvm) {
3486 spin_lock(&vcpu->arch.vpa_update_lock);
3487 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3488 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3489 spin_unlock(&vcpu->arch.vpa_update_lock);
3490 }
3491
3492 r = -EFAULT;
3493 if (copy_to_user(log->dirty_bitmap, buf, n))
3494 goto out;
3495
3496 r = 0;
3497 out:
3498 mutex_unlock(&kvm->slots_lock);
3499 return r;
3500 }
3501
3502 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3503 struct kvm_memory_slot *dont)
3504 {
3505 if (!dont || free->arch.rmap != dont->arch.rmap) {
3506 vfree(free->arch.rmap);
3507 free->arch.rmap = NULL;
3508 }
3509 }
3510
3511 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3512 unsigned long npages)
3513 {
3514 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3515 if (!slot->arch.rmap)
3516 return -ENOMEM;
3517
3518 return 0;
3519 }
3520
3521 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3522 struct kvm_memory_slot *memslot,
3523 const struct kvm_userspace_memory_region *mem)
3524 {
3525 return 0;
3526 }
3527
3528 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3529 const struct kvm_userspace_memory_region *mem,
3530 const struct kvm_memory_slot *old,
3531 const struct kvm_memory_slot *new)
3532 {
3533 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3534
3535 /*
3536 * If we are making a new memslot, it might make
3537 * some address that was previously cached as emulated
3538 * MMIO be no longer emulated MMIO, so invalidate
3539 * all the caches of emulated MMIO translations.
3540 */
3541 if (npages)
3542 atomic64_inc(&kvm->arch.mmio_update);
3543 }
3544
3545 /*
3546 * Update LPCR values in kvm->arch and in vcores.
3547 * Caller must hold kvm->lock.
3548 */
3549 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3550 {
3551 long int i;
3552 u32 cores_done = 0;
3553
3554 if ((kvm->arch.lpcr & mask) == lpcr)
3555 return;
3556
3557 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3558
3559 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3560 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3561 if (!vc)
3562 continue;
3563 spin_lock(&vc->lock);
3564 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3565 spin_unlock(&vc->lock);
3566 if (++cores_done >= kvm->arch.online_vcores)
3567 break;
3568 }
3569 }
3570
3571 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3572 {
3573 return;
3574 }
3575
3576 void kvmppc_setup_partition_table(struct kvm *kvm)
3577 {
3578 unsigned long dw0, dw1;
3579
3580 if (!kvm_is_radix(kvm)) {
3581 /* PS field - page size for VRMA */
3582 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3583 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3584 /* HTABSIZE and HTABORG fields */
3585 dw0 |= kvm->arch.sdr1;
3586
3587 /* Second dword as set by userspace */
3588 dw1 = kvm->arch.process_table;
3589 } else {
3590 dw0 = PATB_HR | radix__get_tree_size() |
3591 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3592 dw1 = PATB_GR | kvm->arch.process_table;
3593 }
3594
3595 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3596 }
3597
3598 /*
3599 * Set up HPT (hashed page table) and RMA (real-mode area).
3600 * Must be called with kvm->lock held.
3601 */
3602 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3603 {
3604 int err = 0;
3605 struct kvm *kvm = vcpu->kvm;
3606 unsigned long hva;
3607 struct kvm_memory_slot *memslot;
3608 struct vm_area_struct *vma;
3609 unsigned long lpcr = 0, senc;
3610 unsigned long psize, porder;
3611 int srcu_idx;
3612
3613 /* Allocate hashed page table (if not done already) and reset it */
3614 if (!kvm->arch.hpt.virt) {
3615 int order = KVM_DEFAULT_HPT_ORDER;
3616 struct kvm_hpt_info info;
3617
3618 err = kvmppc_allocate_hpt(&info, order);
3619 /* If we get here, it means userspace didn't specify a
3620 * size explicitly. So, try successively smaller
3621 * sizes if the default failed. */
3622 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3623 err = kvmppc_allocate_hpt(&info, order);
3624
3625 if (err < 0) {
3626 pr_err("KVM: Couldn't alloc HPT\n");
3627 goto out;
3628 }
3629
3630 kvmppc_set_hpt(kvm, &info);
3631 }
3632
3633 /* Look up the memslot for guest physical address 0 */
3634 srcu_idx = srcu_read_lock(&kvm->srcu);
3635 memslot = gfn_to_memslot(kvm, 0);
3636
3637 /* We must have some memory at 0 by now */
3638 err = -EINVAL;
3639 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3640 goto out_srcu;
3641
3642 /* Look up the VMA for the start of this memory slot */
3643 hva = memslot->userspace_addr;
3644 down_read(&current->mm->mmap_sem);
3645 vma = find_vma(current->mm, hva);
3646 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3647 goto up_out;
3648
3649 psize = vma_kernel_pagesize(vma);
3650 porder = __ilog2(psize);
3651
3652 up_read(&current->mm->mmap_sem);
3653
3654 /* We can handle 4k, 64k or 16M pages in the VRMA */
3655 err = -EINVAL;
3656 if (!(psize == 0x1000 || psize == 0x10000 ||
3657 psize == 0x1000000))
3658 goto out_srcu;
3659
3660 senc = slb_pgsize_encoding(psize);
3661 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3662 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3663 /* Create HPTEs in the hash page table for the VRMA */
3664 kvmppc_map_vrma(vcpu, memslot, porder);
3665
3666 /* Update VRMASD field in the LPCR */
3667 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3668 /* the -4 is to account for senc values starting at 0x10 */
3669 lpcr = senc << (LPCR_VRMASD_SH - 4);
3670 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3671 }
3672
3673 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3674 smp_wmb();
3675 err = 0;
3676 out_srcu:
3677 srcu_read_unlock(&kvm->srcu, srcu_idx);
3678 out:
3679 return err;
3680
3681 up_out:
3682 up_read(&current->mm->mmap_sem);
3683 goto out_srcu;
3684 }
3685
3686 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3687 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3688 {
3689 kvmppc_free_radix(kvm);
3690 kvmppc_update_lpcr(kvm, LPCR_VPM1,
3691 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3692 kvmppc_rmap_reset(kvm);
3693 kvm->arch.radix = 0;
3694 kvm->arch.process_table = 0;
3695 return 0;
3696 }
3697
3698 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3699 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3700 {
3701 int err;
3702
3703 err = kvmppc_init_vm_radix(kvm);
3704 if (err)
3705 return err;
3706
3707 kvmppc_free_hpt(&kvm->arch.hpt);
3708 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3709 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3710 kvm->arch.radix = 1;
3711 return 0;
3712 }
3713
3714 #ifdef CONFIG_KVM_XICS
3715 /*
3716 * Allocate a per-core structure for managing state about which cores are
3717 * running in the host versus the guest and for exchanging data between
3718 * real mode KVM and CPU running in the host.
3719 * This is only done for the first VM.
3720 * The allocated structure stays even if all VMs have stopped.
3721 * It is only freed when the kvm-hv module is unloaded.
3722 * It's OK for this routine to fail, we just don't support host
3723 * core operations like redirecting H_IPI wakeups.
3724 */
3725 void kvmppc_alloc_host_rm_ops(void)
3726 {
3727 struct kvmppc_host_rm_ops *ops;
3728 unsigned long l_ops;
3729 int cpu, core;
3730 int size;
3731
3732 /* Not the first time here ? */
3733 if (kvmppc_host_rm_ops_hv != NULL)
3734 return;
3735
3736 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3737 if (!ops)
3738 return;
3739
3740 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3741 ops->rm_core = kzalloc(size, GFP_KERNEL);
3742
3743 if (!ops->rm_core) {
3744 kfree(ops);
3745 return;
3746 }
3747
3748 cpus_read_lock();
3749
3750 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3751 if (!cpu_online(cpu))
3752 continue;
3753
3754 core = cpu >> threads_shift;
3755 ops->rm_core[core].rm_state.in_host = 1;
3756 }
3757
3758 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3759
3760 /*
3761 * Make the contents of the kvmppc_host_rm_ops structure visible
3762 * to other CPUs before we assign it to the global variable.
3763 * Do an atomic assignment (no locks used here), but if someone
3764 * beats us to it, just free our copy and return.
3765 */
3766 smp_wmb();
3767 l_ops = (unsigned long) ops;
3768
3769 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3770 cpus_read_unlock();
3771 kfree(ops->rm_core);
3772 kfree(ops);
3773 return;
3774 }
3775
3776 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3777 "ppc/kvm_book3s:prepare",
3778 kvmppc_set_host_core,
3779 kvmppc_clear_host_core);
3780 cpus_read_unlock();
3781 }
3782
3783 void kvmppc_free_host_rm_ops(void)
3784 {
3785 if (kvmppc_host_rm_ops_hv) {
3786 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3787 kfree(kvmppc_host_rm_ops_hv->rm_core);
3788 kfree(kvmppc_host_rm_ops_hv);
3789 kvmppc_host_rm_ops_hv = NULL;
3790 }
3791 }
3792 #endif
3793
3794 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3795 {
3796 unsigned long lpcr, lpid;
3797 char buf[32];
3798 int ret;
3799
3800 /* Allocate the guest's logical partition ID */
3801
3802 lpid = kvmppc_alloc_lpid();
3803 if ((long)lpid < 0)
3804 return -ENOMEM;
3805 kvm->arch.lpid = lpid;
3806
3807 kvmppc_alloc_host_rm_ops();
3808
3809 /*
3810 * Since we don't flush the TLB when tearing down a VM,
3811 * and this lpid might have previously been used,
3812 * make sure we flush on each core before running the new VM.
3813 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3814 * does this flush for us.
3815 */
3816 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3817 cpumask_setall(&kvm->arch.need_tlb_flush);
3818
3819 /* Start out with the default set of hcalls enabled */
3820 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3821 sizeof(kvm->arch.enabled_hcalls));
3822
3823 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3824 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3825
3826 /* Init LPCR for virtual RMA mode */
3827 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3828 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3829 lpcr &= LPCR_PECE | LPCR_LPES;
3830 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3831 LPCR_VPM0 | LPCR_VPM1;
3832 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3833 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3834 /* On POWER8 turn on online bit to enable PURR/SPURR */
3835 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3836 lpcr |= LPCR_ONL;
3837 /*
3838 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3839 * Set HVICE bit to enable hypervisor virtualization interrupts.
3840 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3841 * be unnecessary but better safe than sorry in case we re-enable
3842 * EE in HV mode with this LPCR still set)
3843 */
3844 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3845 lpcr &= ~LPCR_VPM0;
3846 lpcr |= LPCR_HVICE | LPCR_HEIC;
3847
3848 /*
3849 * If xive is enabled, we route 0x500 interrupts directly
3850 * to the guest.
3851 */
3852 if (xive_enabled())
3853 lpcr |= LPCR_LPES;
3854 }
3855
3856 /*
3857 * If the host uses radix, the guest starts out as radix.
3858 */
3859 if (radix_enabled()) {
3860 kvm->arch.radix = 1;
3861 kvm->arch.mmu_ready = 1;
3862 lpcr &= ~LPCR_VPM1;
3863 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3864 ret = kvmppc_init_vm_radix(kvm);
3865 if (ret) {
3866 kvmppc_free_lpid(kvm->arch.lpid);
3867 return ret;
3868 }
3869 kvmppc_setup_partition_table(kvm);
3870 }
3871
3872 kvm->arch.lpcr = lpcr;
3873
3874 /* Initialization for future HPT resizes */
3875 kvm->arch.resize_hpt = NULL;
3876
3877 /*
3878 * Work out how many sets the TLB has, for the use of
3879 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3880 */
3881 if (radix_enabled())
3882 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3883 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3884 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3885 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3886 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3887 else
3888 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3889
3890 /*
3891 * Track that we now have a HV mode VM active. This blocks secondary
3892 * CPU threads from coming online.
3893 * On POWER9, we only need to do this if the "indep_threads_mode"
3894 * module parameter has been set to N.
3895 */
3896 if (cpu_has_feature(CPU_FTR_ARCH_300))
3897 kvm->arch.threads_indep = indep_threads_mode;
3898 if (!kvm->arch.threads_indep)
3899 kvm_hv_vm_activated();
3900
3901 /*
3902 * Initialize smt_mode depending on processor.
3903 * POWER8 and earlier have to use "strict" threading, where
3904 * all vCPUs in a vcore have to run on the same (sub)core,
3905 * whereas on POWER9 the threads can each run a different
3906 * guest.
3907 */
3908 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3909 kvm->arch.smt_mode = threads_per_subcore;
3910 else
3911 kvm->arch.smt_mode = 1;
3912 kvm->arch.emul_smt_mode = 1;
3913
3914 /*
3915 * Create a debugfs directory for the VM
3916 */
3917 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3918 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3919 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3920 kvmppc_mmu_debugfs_init(kvm);
3921
3922 return 0;
3923 }
3924
3925 static void kvmppc_free_vcores(struct kvm *kvm)
3926 {
3927 long int i;
3928
3929 for (i = 0; i < KVM_MAX_VCORES; ++i)
3930 kfree(kvm->arch.vcores[i]);
3931 kvm->arch.online_vcores = 0;
3932 }
3933
3934 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3935 {
3936 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3937
3938 if (!kvm->arch.threads_indep)
3939 kvm_hv_vm_deactivated();
3940
3941 kvmppc_free_vcores(kvm);
3942
3943 kvmppc_free_lpid(kvm->arch.lpid);
3944
3945 if (kvm_is_radix(kvm))
3946 kvmppc_free_radix(kvm);
3947 else
3948 kvmppc_free_hpt(&kvm->arch.hpt);
3949
3950 kvmppc_free_pimap(kvm);
3951 }
3952
3953 /* We don't need to emulate any privileged instructions or dcbz */
3954 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3955 unsigned int inst, int *advance)
3956 {
3957 return EMULATE_FAIL;
3958 }
3959
3960 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3961 ulong spr_val)
3962 {
3963 return EMULATE_FAIL;
3964 }
3965
3966 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3967 ulong *spr_val)
3968 {
3969 return EMULATE_FAIL;
3970 }
3971
3972 static int kvmppc_core_check_processor_compat_hv(void)
3973 {
3974 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3975 !cpu_has_feature(CPU_FTR_ARCH_206))
3976 return -EIO;
3977
3978 return 0;
3979 }
3980
3981 #ifdef CONFIG_KVM_XICS
3982
3983 void kvmppc_free_pimap(struct kvm *kvm)
3984 {
3985 kfree(kvm->arch.pimap);
3986 }
3987
3988 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3989 {
3990 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3991 }
3992
3993 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3994 {
3995 struct irq_desc *desc;
3996 struct kvmppc_irq_map *irq_map;
3997 struct kvmppc_passthru_irqmap *pimap;
3998 struct irq_chip *chip;
3999 int i, rc = 0;
4000
4001 if (!kvm_irq_bypass)
4002 return 1;
4003
4004 desc = irq_to_desc(host_irq);
4005 if (!desc)
4006 return -EIO;
4007
4008 mutex_lock(&kvm->lock);
4009
4010 pimap = kvm->arch.pimap;
4011 if (pimap == NULL) {
4012 /* First call, allocate structure to hold IRQ map */
4013 pimap = kvmppc_alloc_pimap();
4014 if (pimap == NULL) {
4015 mutex_unlock(&kvm->lock);
4016 return -ENOMEM;
4017 }
4018 kvm->arch.pimap = pimap;
4019 }
4020
4021 /*
4022 * For now, we only support interrupts for which the EOI operation
4023 * is an OPAL call followed by a write to XIRR, since that's
4024 * what our real-mode EOI code does, or a XIVE interrupt
4025 */
4026 chip = irq_data_get_irq_chip(&desc->irq_data);
4027 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4028 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4029 host_irq, guest_gsi);
4030 mutex_unlock(&kvm->lock);
4031 return -ENOENT;
4032 }
4033
4034 /*
4035 * See if we already have an entry for this guest IRQ number.
4036 * If it's mapped to a hardware IRQ number, that's an error,
4037 * otherwise re-use this entry.
4038 */
4039 for (i = 0; i < pimap->n_mapped; i++) {
4040 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4041 if (pimap->mapped[i].r_hwirq) {
4042 mutex_unlock(&kvm->lock);
4043 return -EINVAL;
4044 }
4045 break;
4046 }
4047 }
4048
4049 if (i == KVMPPC_PIRQ_MAPPED) {
4050 mutex_unlock(&kvm->lock);
4051 return -EAGAIN; /* table is full */
4052 }
4053
4054 irq_map = &pimap->mapped[i];
4055
4056 irq_map->v_hwirq = guest_gsi;
4057 irq_map->desc = desc;
4058
4059 /*
4060 * Order the above two stores before the next to serialize with
4061 * the KVM real mode handler.
4062 */
4063 smp_wmb();
4064 irq_map->r_hwirq = desc->irq_data.hwirq;
4065
4066 if (i == pimap->n_mapped)
4067 pimap->n_mapped++;
4068
4069 if (xive_enabled())
4070 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4071 else
4072 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4073 if (rc)
4074 irq_map->r_hwirq = 0;
4075
4076 mutex_unlock(&kvm->lock);
4077
4078 return 0;
4079 }
4080
4081 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4082 {
4083 struct irq_desc *desc;
4084 struct kvmppc_passthru_irqmap *pimap;
4085 int i, rc = 0;
4086
4087 if (!kvm_irq_bypass)
4088 return 0;
4089
4090 desc = irq_to_desc(host_irq);
4091 if (!desc)
4092 return -EIO;
4093
4094 mutex_lock(&kvm->lock);
4095 if (!kvm->arch.pimap)
4096 goto unlock;
4097
4098 pimap = kvm->arch.pimap;
4099
4100 for (i = 0; i < pimap->n_mapped; i++) {
4101 if (guest_gsi == pimap->mapped[i].v_hwirq)
4102 break;
4103 }
4104
4105 if (i == pimap->n_mapped) {
4106 mutex_unlock(&kvm->lock);
4107 return -ENODEV;
4108 }
4109
4110 if (xive_enabled())
4111 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4112 else
4113 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4114
4115 /* invalidate the entry (what do do on error from the above ?) */
4116 pimap->mapped[i].r_hwirq = 0;
4117
4118 /*
4119 * We don't free this structure even when the count goes to
4120 * zero. The structure is freed when we destroy the VM.
4121 */
4122 unlock:
4123 mutex_unlock(&kvm->lock);
4124 return rc;
4125 }
4126
4127 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4128 struct irq_bypass_producer *prod)
4129 {
4130 int ret = 0;
4131 struct kvm_kernel_irqfd *irqfd =
4132 container_of(cons, struct kvm_kernel_irqfd, consumer);
4133
4134 irqfd->producer = prod;
4135
4136 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4137 if (ret)
4138 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4139 prod->irq, irqfd->gsi, ret);
4140
4141 return ret;
4142 }
4143
4144 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4145 struct irq_bypass_producer *prod)
4146 {
4147 int ret;
4148 struct kvm_kernel_irqfd *irqfd =
4149 container_of(cons, struct kvm_kernel_irqfd, consumer);
4150
4151 irqfd->producer = NULL;
4152
4153 /*
4154 * When producer of consumer is unregistered, we change back to
4155 * default external interrupt handling mode - KVM real mode
4156 * will switch back to host.
4157 */
4158 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4159 if (ret)
4160 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4161 prod->irq, irqfd->gsi, ret);
4162 }
4163 #endif
4164
4165 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4166 unsigned int ioctl, unsigned long arg)
4167 {
4168 struct kvm *kvm __maybe_unused = filp->private_data;
4169 void __user *argp = (void __user *)arg;
4170 long r;
4171
4172 switch (ioctl) {
4173
4174 case KVM_PPC_ALLOCATE_HTAB: {
4175 u32 htab_order;
4176
4177 r = -EFAULT;
4178 if (get_user(htab_order, (u32 __user *)argp))
4179 break;
4180 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4181 if (r)
4182 break;
4183 r = 0;
4184 break;
4185 }
4186
4187 case KVM_PPC_GET_HTAB_FD: {
4188 struct kvm_get_htab_fd ghf;
4189
4190 r = -EFAULT;
4191 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4192 break;
4193 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4194 break;
4195 }
4196
4197 case KVM_PPC_RESIZE_HPT_PREPARE: {
4198 struct kvm_ppc_resize_hpt rhpt;
4199
4200 r = -EFAULT;
4201 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4202 break;
4203
4204 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4205 break;
4206 }
4207
4208 case KVM_PPC_RESIZE_HPT_COMMIT: {
4209 struct kvm_ppc_resize_hpt rhpt;
4210
4211 r = -EFAULT;
4212 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4213 break;
4214
4215 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4216 break;
4217 }
4218
4219 default:
4220 r = -ENOTTY;
4221 }
4222
4223 return r;
4224 }
4225
4226 /*
4227 * List of hcall numbers to enable by default.
4228 * For compatibility with old userspace, we enable by default
4229 * all hcalls that were implemented before the hcall-enabling
4230 * facility was added. Note this list should not include H_RTAS.
4231 */
4232 static unsigned int default_hcall_list[] = {
4233 H_REMOVE,
4234 H_ENTER,
4235 H_READ,
4236 H_PROTECT,
4237 H_BULK_REMOVE,
4238 H_GET_TCE,
4239 H_PUT_TCE,
4240 H_SET_DABR,
4241 H_SET_XDABR,
4242 H_CEDE,
4243 H_PROD,
4244 H_CONFER,
4245 H_REGISTER_VPA,
4246 #ifdef CONFIG_KVM_XICS
4247 H_EOI,
4248 H_CPPR,
4249 H_IPI,
4250 H_IPOLL,
4251 H_XIRR,
4252 H_XIRR_X,
4253 #endif
4254 0
4255 };
4256
4257 static void init_default_hcalls(void)
4258 {
4259 int i;
4260 unsigned int hcall;
4261
4262 for (i = 0; default_hcall_list[i]; ++i) {
4263 hcall = default_hcall_list[i];
4264 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4265 __set_bit(hcall / 4, default_enabled_hcalls);
4266 }
4267 }
4268
4269 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4270 {
4271 unsigned long lpcr;
4272 int radix;
4273 int err;
4274
4275 /* If not on a POWER9, reject it */
4276 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4277 return -ENODEV;
4278
4279 /* If any unknown flags set, reject it */
4280 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4281 return -EINVAL;
4282
4283 /* GR (guest radix) bit in process_table field must match */
4284 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4285 if (!!(cfg->process_table & PATB_GR) != radix)
4286 return -EINVAL;
4287
4288 /* Process table size field must be reasonable, i.e. <= 24 */
4289 if ((cfg->process_table & PRTS_MASK) > 24)
4290 return -EINVAL;
4291
4292 /* We can change a guest to/from radix now, if the host is radix */
4293 if (radix && !radix_enabled())
4294 return -EINVAL;
4295
4296 mutex_lock(&kvm->lock);
4297 if (radix != kvm_is_radix(kvm)) {
4298 if (kvm->arch.mmu_ready) {
4299 kvm->arch.mmu_ready = 0;
4300 /* order mmu_ready vs. vcpus_running */
4301 smp_mb();
4302 if (atomic_read(&kvm->arch.vcpus_running)) {
4303 kvm->arch.mmu_ready = 1;
4304 err = -EBUSY;
4305 goto out_unlock;
4306 }
4307 }
4308 if (radix)
4309 err = kvmppc_switch_mmu_to_radix(kvm);
4310 else
4311 err = kvmppc_switch_mmu_to_hpt(kvm);
4312 if (err)
4313 goto out_unlock;
4314 }
4315
4316 kvm->arch.process_table = cfg->process_table;
4317 kvmppc_setup_partition_table(kvm);
4318
4319 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4320 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4321 err = 0;
4322
4323 out_unlock:
4324 mutex_unlock(&kvm->lock);
4325 return err;
4326 }
4327
4328 static struct kvmppc_ops kvm_ops_hv = {
4329 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4330 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4331 .get_one_reg = kvmppc_get_one_reg_hv,
4332 .set_one_reg = kvmppc_set_one_reg_hv,
4333 .vcpu_load = kvmppc_core_vcpu_load_hv,
4334 .vcpu_put = kvmppc_core_vcpu_put_hv,
4335 .set_msr = kvmppc_set_msr_hv,
4336 .vcpu_run = kvmppc_vcpu_run_hv,
4337 .vcpu_create = kvmppc_core_vcpu_create_hv,
4338 .vcpu_free = kvmppc_core_vcpu_free_hv,
4339 .check_requests = kvmppc_core_check_requests_hv,
4340 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4341 .flush_memslot = kvmppc_core_flush_memslot_hv,
4342 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4343 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4344 .unmap_hva = kvm_unmap_hva_hv,
4345 .unmap_hva_range = kvm_unmap_hva_range_hv,
4346 .age_hva = kvm_age_hva_hv,
4347 .test_age_hva = kvm_test_age_hva_hv,
4348 .set_spte_hva = kvm_set_spte_hva_hv,
4349 .mmu_destroy = kvmppc_mmu_destroy_hv,
4350 .free_memslot = kvmppc_core_free_memslot_hv,
4351 .create_memslot = kvmppc_core_create_memslot_hv,
4352 .init_vm = kvmppc_core_init_vm_hv,
4353 .destroy_vm = kvmppc_core_destroy_vm_hv,
4354 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4355 .emulate_op = kvmppc_core_emulate_op_hv,
4356 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4357 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4358 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4359 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4360 .hcall_implemented = kvmppc_hcall_impl_hv,
4361 #ifdef CONFIG_KVM_XICS
4362 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4363 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4364 #endif
4365 .configure_mmu = kvmhv_configure_mmu,
4366 .get_rmmu_info = kvmhv_get_rmmu_info,
4367 .set_smt_mode = kvmhv_set_smt_mode,
4368 };
4369
4370 static int kvm_init_subcore_bitmap(void)
4371 {
4372 int i, j;
4373 int nr_cores = cpu_nr_cores();
4374 struct sibling_subcore_state *sibling_subcore_state;
4375
4376 for (i = 0; i < nr_cores; i++) {
4377 int first_cpu = i * threads_per_core;
4378 int node = cpu_to_node(first_cpu);
4379
4380 /* Ignore if it is already allocated. */
4381 if (paca[first_cpu].sibling_subcore_state)
4382 continue;
4383
4384 sibling_subcore_state =
4385 kmalloc_node(sizeof(struct sibling_subcore_state),
4386 GFP_KERNEL, node);
4387 if (!sibling_subcore_state)
4388 return -ENOMEM;
4389
4390 memset(sibling_subcore_state, 0,
4391 sizeof(struct sibling_subcore_state));
4392
4393 for (j = 0; j < threads_per_core; j++) {
4394 int cpu = first_cpu + j;
4395
4396 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4397 }
4398 }
4399 return 0;
4400 }
4401
4402 static int kvmppc_radix_possible(void)
4403 {
4404 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4405 }
4406
4407 static int kvmppc_book3s_init_hv(void)
4408 {
4409 int r;
4410 /*
4411 * FIXME!! Do we need to check on all cpus ?
4412 */
4413 r = kvmppc_core_check_processor_compat_hv();
4414 if (r < 0)
4415 return -ENODEV;
4416
4417 r = kvm_init_subcore_bitmap();
4418 if (r)
4419 return r;
4420
4421 /*
4422 * We need a way of accessing the XICS interrupt controller,
4423 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4424 * indirectly, via OPAL.
4425 */
4426 #ifdef CONFIG_SMP
4427 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4428 struct device_node *np;
4429
4430 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4431 if (!np) {
4432 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4433 return -ENODEV;
4434 }
4435 }
4436 #endif
4437
4438 kvm_ops_hv.owner = THIS_MODULE;
4439 kvmppc_hv_ops = &kvm_ops_hv;
4440
4441 init_default_hcalls();
4442
4443 init_vcore_lists();
4444
4445 r = kvmppc_mmu_hv_init();
4446 if (r)
4447 return r;
4448
4449 if (kvmppc_radix_possible())
4450 r = kvmppc_radix_init();
4451 return r;
4452 }
4453
4454 static void kvmppc_book3s_exit_hv(void)
4455 {
4456 kvmppc_free_host_rm_ops();
4457 if (kvmppc_radix_possible())
4458 kvmppc_radix_exit();
4459 kvmppc_hv_ops = NULL;
4460 }
4461
4462 module_init(kvmppc_book3s_init_hv);
4463 module_exit(kvmppc_book3s_exit_hv);
4464 MODULE_LICENSE("GPL");
4465 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4466 MODULE_ALIAS("devname:kvm");