]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
KVM: remove kvm_guest_enter/exit wrappers
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpu.h>
31 #include <linux/cpumask.h>
32 #include <linux/spinlock.h>
33 #include <linux/page-flags.h>
34 #include <linux/srcu.h>
35 #include <linux/miscdevice.h>
36 #include <linux/debugfs.h>
37
38 #include <asm/reg.h>
39 #include <asm/cputable.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <linux/gfp.h>
56 #include <linux/vmalloc.h>
57 #include <linux/highmem.h>
58 #include <linux/hugetlb.h>
59 #include <linux/module.h>
60
61 #include "book3s.h"
62
63 #define CREATE_TRACE_POINTS
64 #include "trace_hv.h"
65
66 /* #define EXIT_DEBUG */
67 /* #define EXIT_DEBUG_SIMPLE */
68 /* #define EXIT_DEBUG_INT */
69
70 /* Used to indicate that a guest page fault needs to be handled */
71 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
72
73 /* Used as a "null" value for timebase values */
74 #define TB_NIL (~(u64)0)
75
76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77
78 static int dynamic_mt_modes = 6;
79 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
81 static int target_smt_mode;
82 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
84
85 #ifdef CONFIG_KVM_XICS
86 static struct kernel_param_ops module_param_ops = {
87 .set = param_set_int,
88 .get = param_get_int,
89 };
90
91 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
92 S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
94 #endif
95
96 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
97 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
98
99 static bool kvmppc_ipi_thread(int cpu)
100 {
101 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
103 preempt_disable();
104 if (cpu_first_thread_sibling(cpu) ==
105 cpu_first_thread_sibling(smp_processor_id())) {
106 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
107 msg |= cpu_thread_in_core(cpu);
108 smp_mb();
109 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
110 preempt_enable();
111 return true;
112 }
113 preempt_enable();
114 }
115
116 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
117 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
118 xics_wake_cpu(cpu);
119 return true;
120 }
121 #endif
122
123 return false;
124 }
125
126 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
127 {
128 int cpu;
129 struct swait_queue_head *wqp;
130
131 wqp = kvm_arch_vcpu_wq(vcpu);
132 if (swait_active(wqp)) {
133 swake_up(wqp);
134 ++vcpu->stat.halt_wakeup;
135 }
136
137 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
138 return;
139
140 /* CPU points to the first thread of the core */
141 cpu = vcpu->cpu;
142 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
143 smp_send_reschedule(cpu);
144 }
145
146 /*
147 * We use the vcpu_load/put functions to measure stolen time.
148 * Stolen time is counted as time when either the vcpu is able to
149 * run as part of a virtual core, but the task running the vcore
150 * is preempted or sleeping, or when the vcpu needs something done
151 * in the kernel by the task running the vcpu, but that task is
152 * preempted or sleeping. Those two things have to be counted
153 * separately, since one of the vcpu tasks will take on the job
154 * of running the core, and the other vcpu tasks in the vcore will
155 * sleep waiting for it to do that, but that sleep shouldn't count
156 * as stolen time.
157 *
158 * Hence we accumulate stolen time when the vcpu can run as part of
159 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
160 * needs its task to do other things in the kernel (for example,
161 * service a page fault) in busy_stolen. We don't accumulate
162 * stolen time for a vcore when it is inactive, or for a vcpu
163 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
164 * a misnomer; it means that the vcpu task is not executing in
165 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
166 * the kernel. We don't have any way of dividing up that time
167 * between time that the vcpu is genuinely stopped, time that
168 * the task is actively working on behalf of the vcpu, and time
169 * that the task is preempted, so we don't count any of it as
170 * stolen.
171 *
172 * Updates to busy_stolen are protected by arch.tbacct_lock;
173 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
174 * lock. The stolen times are measured in units of timebase ticks.
175 * (Note that the != TB_NIL checks below are purely defensive;
176 * they should never fail.)
177 */
178
179 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
180 {
181 unsigned long flags;
182
183 spin_lock_irqsave(&vc->stoltb_lock, flags);
184 vc->preempt_tb = mftb();
185 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
186 }
187
188 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
189 {
190 unsigned long flags;
191
192 spin_lock_irqsave(&vc->stoltb_lock, flags);
193 if (vc->preempt_tb != TB_NIL) {
194 vc->stolen_tb += mftb() - vc->preempt_tb;
195 vc->preempt_tb = TB_NIL;
196 }
197 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
198 }
199
200 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
201 {
202 struct kvmppc_vcore *vc = vcpu->arch.vcore;
203 unsigned long flags;
204
205 /*
206 * We can test vc->runner without taking the vcore lock,
207 * because only this task ever sets vc->runner to this
208 * vcpu, and once it is set to this vcpu, only this task
209 * ever sets it to NULL.
210 */
211 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
212 kvmppc_core_end_stolen(vc);
213
214 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
215 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
216 vcpu->arch.busy_preempt != TB_NIL) {
217 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
218 vcpu->arch.busy_preempt = TB_NIL;
219 }
220 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
221 }
222
223 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
224 {
225 struct kvmppc_vcore *vc = vcpu->arch.vcore;
226 unsigned long flags;
227
228 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
229 kvmppc_core_start_stolen(vc);
230
231 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
232 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
233 vcpu->arch.busy_preempt = mftb();
234 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
235 }
236
237 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
238 {
239 /*
240 * Check for illegal transactional state bit combination
241 * and if we find it, force the TS field to a safe state.
242 */
243 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
244 msr &= ~MSR_TS_MASK;
245 vcpu->arch.shregs.msr = msr;
246 kvmppc_end_cede(vcpu);
247 }
248
249 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
250 {
251 vcpu->arch.pvr = pvr;
252 }
253
254 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
255 {
256 unsigned long pcr = 0;
257 struct kvmppc_vcore *vc = vcpu->arch.vcore;
258
259 if (arch_compat) {
260 switch (arch_compat) {
261 case PVR_ARCH_205:
262 /*
263 * If an arch bit is set in PCR, all the defined
264 * higher-order arch bits also have to be set.
265 */
266 pcr = PCR_ARCH_206 | PCR_ARCH_205;
267 break;
268 case PVR_ARCH_206:
269 case PVR_ARCH_206p:
270 pcr = PCR_ARCH_206;
271 break;
272 case PVR_ARCH_207:
273 break;
274 default:
275 return -EINVAL;
276 }
277
278 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
279 /* POWER7 can't emulate POWER8 */
280 if (!(pcr & PCR_ARCH_206))
281 return -EINVAL;
282 pcr &= ~PCR_ARCH_206;
283 }
284 }
285
286 spin_lock(&vc->lock);
287 vc->arch_compat = arch_compat;
288 vc->pcr = pcr;
289 spin_unlock(&vc->lock);
290
291 return 0;
292 }
293
294 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
295 {
296 int r;
297
298 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
299 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
300 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
301 for (r = 0; r < 16; ++r)
302 pr_err("r%2d = %.16lx r%d = %.16lx\n",
303 r, kvmppc_get_gpr(vcpu, r),
304 r+16, kvmppc_get_gpr(vcpu, r+16));
305 pr_err("ctr = %.16lx lr = %.16lx\n",
306 vcpu->arch.ctr, vcpu->arch.lr);
307 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
308 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
309 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
310 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
311 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
312 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
313 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
314 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
315 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
316 pr_err("fault dar = %.16lx dsisr = %.8x\n",
317 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
318 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
319 for (r = 0; r < vcpu->arch.slb_max; ++r)
320 pr_err(" ESID = %.16llx VSID = %.16llx\n",
321 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
322 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
323 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
324 vcpu->arch.last_inst);
325 }
326
327 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
328 {
329 struct kvm_vcpu *ret;
330
331 mutex_lock(&kvm->lock);
332 ret = kvm_get_vcpu_by_id(kvm, id);
333 mutex_unlock(&kvm->lock);
334 return ret;
335 }
336
337 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
338 {
339 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
340 vpa->yield_count = cpu_to_be32(1);
341 }
342
343 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
344 unsigned long addr, unsigned long len)
345 {
346 /* check address is cacheline aligned */
347 if (addr & (L1_CACHE_BYTES - 1))
348 return -EINVAL;
349 spin_lock(&vcpu->arch.vpa_update_lock);
350 if (v->next_gpa != addr || v->len != len) {
351 v->next_gpa = addr;
352 v->len = addr ? len : 0;
353 v->update_pending = 1;
354 }
355 spin_unlock(&vcpu->arch.vpa_update_lock);
356 return 0;
357 }
358
359 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
360 struct reg_vpa {
361 u32 dummy;
362 union {
363 __be16 hword;
364 __be32 word;
365 } length;
366 };
367
368 static int vpa_is_registered(struct kvmppc_vpa *vpap)
369 {
370 if (vpap->update_pending)
371 return vpap->next_gpa != 0;
372 return vpap->pinned_addr != NULL;
373 }
374
375 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
376 unsigned long flags,
377 unsigned long vcpuid, unsigned long vpa)
378 {
379 struct kvm *kvm = vcpu->kvm;
380 unsigned long len, nb;
381 void *va;
382 struct kvm_vcpu *tvcpu;
383 int err;
384 int subfunc;
385 struct kvmppc_vpa *vpap;
386
387 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
388 if (!tvcpu)
389 return H_PARAMETER;
390
391 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
392 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
393 subfunc == H_VPA_REG_SLB) {
394 /* Registering new area - address must be cache-line aligned */
395 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
396 return H_PARAMETER;
397
398 /* convert logical addr to kernel addr and read length */
399 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
400 if (va == NULL)
401 return H_PARAMETER;
402 if (subfunc == H_VPA_REG_VPA)
403 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
404 else
405 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
406 kvmppc_unpin_guest_page(kvm, va, vpa, false);
407
408 /* Check length */
409 if (len > nb || len < sizeof(struct reg_vpa))
410 return H_PARAMETER;
411 } else {
412 vpa = 0;
413 len = 0;
414 }
415
416 err = H_PARAMETER;
417 vpap = NULL;
418 spin_lock(&tvcpu->arch.vpa_update_lock);
419
420 switch (subfunc) {
421 case H_VPA_REG_VPA: /* register VPA */
422 if (len < sizeof(struct lppaca))
423 break;
424 vpap = &tvcpu->arch.vpa;
425 err = 0;
426 break;
427
428 case H_VPA_REG_DTL: /* register DTL */
429 if (len < sizeof(struct dtl_entry))
430 break;
431 len -= len % sizeof(struct dtl_entry);
432
433 /* Check that they have previously registered a VPA */
434 err = H_RESOURCE;
435 if (!vpa_is_registered(&tvcpu->arch.vpa))
436 break;
437
438 vpap = &tvcpu->arch.dtl;
439 err = 0;
440 break;
441
442 case H_VPA_REG_SLB: /* register SLB shadow buffer */
443 /* Check that they have previously registered a VPA */
444 err = H_RESOURCE;
445 if (!vpa_is_registered(&tvcpu->arch.vpa))
446 break;
447
448 vpap = &tvcpu->arch.slb_shadow;
449 err = 0;
450 break;
451
452 case H_VPA_DEREG_VPA: /* deregister VPA */
453 /* Check they don't still have a DTL or SLB buf registered */
454 err = H_RESOURCE;
455 if (vpa_is_registered(&tvcpu->arch.dtl) ||
456 vpa_is_registered(&tvcpu->arch.slb_shadow))
457 break;
458
459 vpap = &tvcpu->arch.vpa;
460 err = 0;
461 break;
462
463 case H_VPA_DEREG_DTL: /* deregister DTL */
464 vpap = &tvcpu->arch.dtl;
465 err = 0;
466 break;
467
468 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
469 vpap = &tvcpu->arch.slb_shadow;
470 err = 0;
471 break;
472 }
473
474 if (vpap) {
475 vpap->next_gpa = vpa;
476 vpap->len = len;
477 vpap->update_pending = 1;
478 }
479
480 spin_unlock(&tvcpu->arch.vpa_update_lock);
481
482 return err;
483 }
484
485 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
486 {
487 struct kvm *kvm = vcpu->kvm;
488 void *va;
489 unsigned long nb;
490 unsigned long gpa;
491
492 /*
493 * We need to pin the page pointed to by vpap->next_gpa,
494 * but we can't call kvmppc_pin_guest_page under the lock
495 * as it does get_user_pages() and down_read(). So we
496 * have to drop the lock, pin the page, then get the lock
497 * again and check that a new area didn't get registered
498 * in the meantime.
499 */
500 for (;;) {
501 gpa = vpap->next_gpa;
502 spin_unlock(&vcpu->arch.vpa_update_lock);
503 va = NULL;
504 nb = 0;
505 if (gpa)
506 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
507 spin_lock(&vcpu->arch.vpa_update_lock);
508 if (gpa == vpap->next_gpa)
509 break;
510 /* sigh... unpin that one and try again */
511 if (va)
512 kvmppc_unpin_guest_page(kvm, va, gpa, false);
513 }
514
515 vpap->update_pending = 0;
516 if (va && nb < vpap->len) {
517 /*
518 * If it's now too short, it must be that userspace
519 * has changed the mappings underlying guest memory,
520 * so unregister the region.
521 */
522 kvmppc_unpin_guest_page(kvm, va, gpa, false);
523 va = NULL;
524 }
525 if (vpap->pinned_addr)
526 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
527 vpap->dirty);
528 vpap->gpa = gpa;
529 vpap->pinned_addr = va;
530 vpap->dirty = false;
531 if (va)
532 vpap->pinned_end = va + vpap->len;
533 }
534
535 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
536 {
537 if (!(vcpu->arch.vpa.update_pending ||
538 vcpu->arch.slb_shadow.update_pending ||
539 vcpu->arch.dtl.update_pending))
540 return;
541
542 spin_lock(&vcpu->arch.vpa_update_lock);
543 if (vcpu->arch.vpa.update_pending) {
544 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
545 if (vcpu->arch.vpa.pinned_addr)
546 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
547 }
548 if (vcpu->arch.dtl.update_pending) {
549 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
550 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
551 vcpu->arch.dtl_index = 0;
552 }
553 if (vcpu->arch.slb_shadow.update_pending)
554 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
555 spin_unlock(&vcpu->arch.vpa_update_lock);
556 }
557
558 /*
559 * Return the accumulated stolen time for the vcore up until `now'.
560 * The caller should hold the vcore lock.
561 */
562 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
563 {
564 u64 p;
565 unsigned long flags;
566
567 spin_lock_irqsave(&vc->stoltb_lock, flags);
568 p = vc->stolen_tb;
569 if (vc->vcore_state != VCORE_INACTIVE &&
570 vc->preempt_tb != TB_NIL)
571 p += now - vc->preempt_tb;
572 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
573 return p;
574 }
575
576 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
577 struct kvmppc_vcore *vc)
578 {
579 struct dtl_entry *dt;
580 struct lppaca *vpa;
581 unsigned long stolen;
582 unsigned long core_stolen;
583 u64 now;
584
585 dt = vcpu->arch.dtl_ptr;
586 vpa = vcpu->arch.vpa.pinned_addr;
587 now = mftb();
588 core_stolen = vcore_stolen_time(vc, now);
589 stolen = core_stolen - vcpu->arch.stolen_logged;
590 vcpu->arch.stolen_logged = core_stolen;
591 spin_lock_irq(&vcpu->arch.tbacct_lock);
592 stolen += vcpu->arch.busy_stolen;
593 vcpu->arch.busy_stolen = 0;
594 spin_unlock_irq(&vcpu->arch.tbacct_lock);
595 if (!dt || !vpa)
596 return;
597 memset(dt, 0, sizeof(struct dtl_entry));
598 dt->dispatch_reason = 7;
599 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
600 dt->timebase = cpu_to_be64(now + vc->tb_offset);
601 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
602 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
603 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
604 ++dt;
605 if (dt == vcpu->arch.dtl.pinned_end)
606 dt = vcpu->arch.dtl.pinned_addr;
607 vcpu->arch.dtl_ptr = dt;
608 /* order writing *dt vs. writing vpa->dtl_idx */
609 smp_wmb();
610 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
611 vcpu->arch.dtl.dirty = true;
612 }
613
614 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
615 {
616 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
617 return true;
618 if ((!vcpu->arch.vcore->arch_compat) &&
619 cpu_has_feature(CPU_FTR_ARCH_207S))
620 return true;
621 return false;
622 }
623
624 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
625 unsigned long resource, unsigned long value1,
626 unsigned long value2)
627 {
628 switch (resource) {
629 case H_SET_MODE_RESOURCE_SET_CIABR:
630 if (!kvmppc_power8_compatible(vcpu))
631 return H_P2;
632 if (value2)
633 return H_P4;
634 if (mflags)
635 return H_UNSUPPORTED_FLAG_START;
636 /* Guests can't breakpoint the hypervisor */
637 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
638 return H_P3;
639 vcpu->arch.ciabr = value1;
640 return H_SUCCESS;
641 case H_SET_MODE_RESOURCE_SET_DAWR:
642 if (!kvmppc_power8_compatible(vcpu))
643 return H_P2;
644 if (mflags)
645 return H_UNSUPPORTED_FLAG_START;
646 if (value2 & DABRX_HYP)
647 return H_P4;
648 vcpu->arch.dawr = value1;
649 vcpu->arch.dawrx = value2;
650 return H_SUCCESS;
651 default:
652 return H_TOO_HARD;
653 }
654 }
655
656 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
657 {
658 struct kvmppc_vcore *vcore = target->arch.vcore;
659
660 /*
661 * We expect to have been called by the real mode handler
662 * (kvmppc_rm_h_confer()) which would have directly returned
663 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
664 * have useful work to do and should not confer) so we don't
665 * recheck that here.
666 */
667
668 spin_lock(&vcore->lock);
669 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
670 vcore->vcore_state != VCORE_INACTIVE &&
671 vcore->runner)
672 target = vcore->runner;
673 spin_unlock(&vcore->lock);
674
675 return kvm_vcpu_yield_to(target);
676 }
677
678 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
679 {
680 int yield_count = 0;
681 struct lppaca *lppaca;
682
683 spin_lock(&vcpu->arch.vpa_update_lock);
684 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
685 if (lppaca)
686 yield_count = be32_to_cpu(lppaca->yield_count);
687 spin_unlock(&vcpu->arch.vpa_update_lock);
688 return yield_count;
689 }
690
691 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
692 {
693 unsigned long req = kvmppc_get_gpr(vcpu, 3);
694 unsigned long target, ret = H_SUCCESS;
695 int yield_count;
696 struct kvm_vcpu *tvcpu;
697 int idx, rc;
698
699 if (req <= MAX_HCALL_OPCODE &&
700 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
701 return RESUME_HOST;
702
703 switch (req) {
704 case H_CEDE:
705 break;
706 case H_PROD:
707 target = kvmppc_get_gpr(vcpu, 4);
708 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
709 if (!tvcpu) {
710 ret = H_PARAMETER;
711 break;
712 }
713 tvcpu->arch.prodded = 1;
714 smp_mb();
715 if (vcpu->arch.ceded) {
716 if (swait_active(&vcpu->wq)) {
717 swake_up(&vcpu->wq);
718 vcpu->stat.halt_wakeup++;
719 }
720 }
721 break;
722 case H_CONFER:
723 target = kvmppc_get_gpr(vcpu, 4);
724 if (target == -1)
725 break;
726 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
727 if (!tvcpu) {
728 ret = H_PARAMETER;
729 break;
730 }
731 yield_count = kvmppc_get_gpr(vcpu, 5);
732 if (kvmppc_get_yield_count(tvcpu) != yield_count)
733 break;
734 kvm_arch_vcpu_yield_to(tvcpu);
735 break;
736 case H_REGISTER_VPA:
737 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
738 kvmppc_get_gpr(vcpu, 5),
739 kvmppc_get_gpr(vcpu, 6));
740 break;
741 case H_RTAS:
742 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
743 return RESUME_HOST;
744
745 idx = srcu_read_lock(&vcpu->kvm->srcu);
746 rc = kvmppc_rtas_hcall(vcpu);
747 srcu_read_unlock(&vcpu->kvm->srcu, idx);
748
749 if (rc == -ENOENT)
750 return RESUME_HOST;
751 else if (rc == 0)
752 break;
753
754 /* Send the error out to userspace via KVM_RUN */
755 return rc;
756 case H_LOGICAL_CI_LOAD:
757 ret = kvmppc_h_logical_ci_load(vcpu);
758 if (ret == H_TOO_HARD)
759 return RESUME_HOST;
760 break;
761 case H_LOGICAL_CI_STORE:
762 ret = kvmppc_h_logical_ci_store(vcpu);
763 if (ret == H_TOO_HARD)
764 return RESUME_HOST;
765 break;
766 case H_SET_MODE:
767 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
768 kvmppc_get_gpr(vcpu, 5),
769 kvmppc_get_gpr(vcpu, 6),
770 kvmppc_get_gpr(vcpu, 7));
771 if (ret == H_TOO_HARD)
772 return RESUME_HOST;
773 break;
774 case H_XIRR:
775 case H_CPPR:
776 case H_EOI:
777 case H_IPI:
778 case H_IPOLL:
779 case H_XIRR_X:
780 if (kvmppc_xics_enabled(vcpu)) {
781 ret = kvmppc_xics_hcall(vcpu, req);
782 break;
783 }
784 return RESUME_HOST;
785 case H_PUT_TCE:
786 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
787 kvmppc_get_gpr(vcpu, 5),
788 kvmppc_get_gpr(vcpu, 6));
789 if (ret == H_TOO_HARD)
790 return RESUME_HOST;
791 break;
792 case H_PUT_TCE_INDIRECT:
793 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
794 kvmppc_get_gpr(vcpu, 5),
795 kvmppc_get_gpr(vcpu, 6),
796 kvmppc_get_gpr(vcpu, 7));
797 if (ret == H_TOO_HARD)
798 return RESUME_HOST;
799 break;
800 case H_STUFF_TCE:
801 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
802 kvmppc_get_gpr(vcpu, 5),
803 kvmppc_get_gpr(vcpu, 6),
804 kvmppc_get_gpr(vcpu, 7));
805 if (ret == H_TOO_HARD)
806 return RESUME_HOST;
807 break;
808 default:
809 return RESUME_HOST;
810 }
811 kvmppc_set_gpr(vcpu, 3, ret);
812 vcpu->arch.hcall_needed = 0;
813 return RESUME_GUEST;
814 }
815
816 static int kvmppc_hcall_impl_hv(unsigned long cmd)
817 {
818 switch (cmd) {
819 case H_CEDE:
820 case H_PROD:
821 case H_CONFER:
822 case H_REGISTER_VPA:
823 case H_SET_MODE:
824 case H_LOGICAL_CI_LOAD:
825 case H_LOGICAL_CI_STORE:
826 #ifdef CONFIG_KVM_XICS
827 case H_XIRR:
828 case H_CPPR:
829 case H_EOI:
830 case H_IPI:
831 case H_IPOLL:
832 case H_XIRR_X:
833 #endif
834 return 1;
835 }
836
837 /* See if it's in the real-mode table */
838 return kvmppc_hcall_impl_hv_realmode(cmd);
839 }
840
841 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
842 struct kvm_vcpu *vcpu)
843 {
844 u32 last_inst;
845
846 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
847 EMULATE_DONE) {
848 /*
849 * Fetch failed, so return to guest and
850 * try executing it again.
851 */
852 return RESUME_GUEST;
853 }
854
855 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
856 run->exit_reason = KVM_EXIT_DEBUG;
857 run->debug.arch.address = kvmppc_get_pc(vcpu);
858 return RESUME_HOST;
859 } else {
860 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
861 return RESUME_GUEST;
862 }
863 }
864
865 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
866 struct task_struct *tsk)
867 {
868 int r = RESUME_HOST;
869
870 vcpu->stat.sum_exits++;
871
872 /*
873 * This can happen if an interrupt occurs in the last stages
874 * of guest entry or the first stages of guest exit (i.e. after
875 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
876 * and before setting it to KVM_GUEST_MODE_HOST_HV).
877 * That can happen due to a bug, or due to a machine check
878 * occurring at just the wrong time.
879 */
880 if (vcpu->arch.shregs.msr & MSR_HV) {
881 printk(KERN_EMERG "KVM trap in HV mode!\n");
882 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
883 vcpu->arch.trap, kvmppc_get_pc(vcpu),
884 vcpu->arch.shregs.msr);
885 kvmppc_dump_regs(vcpu);
886 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
887 run->hw.hardware_exit_reason = vcpu->arch.trap;
888 return RESUME_HOST;
889 }
890 run->exit_reason = KVM_EXIT_UNKNOWN;
891 run->ready_for_interrupt_injection = 1;
892 switch (vcpu->arch.trap) {
893 /* We're good on these - the host merely wanted to get our attention */
894 case BOOK3S_INTERRUPT_HV_DECREMENTER:
895 vcpu->stat.dec_exits++;
896 r = RESUME_GUEST;
897 break;
898 case BOOK3S_INTERRUPT_EXTERNAL:
899 case BOOK3S_INTERRUPT_H_DOORBELL:
900 vcpu->stat.ext_intr_exits++;
901 r = RESUME_GUEST;
902 break;
903 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
904 case BOOK3S_INTERRUPT_HMI:
905 case BOOK3S_INTERRUPT_PERFMON:
906 r = RESUME_GUEST;
907 break;
908 case BOOK3S_INTERRUPT_MACHINE_CHECK:
909 /*
910 * Deliver a machine check interrupt to the guest.
911 * We have to do this, even if the host has handled the
912 * machine check, because machine checks use SRR0/1 and
913 * the interrupt might have trashed guest state in them.
914 */
915 kvmppc_book3s_queue_irqprio(vcpu,
916 BOOK3S_INTERRUPT_MACHINE_CHECK);
917 r = RESUME_GUEST;
918 break;
919 case BOOK3S_INTERRUPT_PROGRAM:
920 {
921 ulong flags;
922 /*
923 * Normally program interrupts are delivered directly
924 * to the guest by the hardware, but we can get here
925 * as a result of a hypervisor emulation interrupt
926 * (e40) getting turned into a 700 by BML RTAS.
927 */
928 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
929 kvmppc_core_queue_program(vcpu, flags);
930 r = RESUME_GUEST;
931 break;
932 }
933 case BOOK3S_INTERRUPT_SYSCALL:
934 {
935 /* hcall - punt to userspace */
936 int i;
937
938 /* hypercall with MSR_PR has already been handled in rmode,
939 * and never reaches here.
940 */
941
942 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
943 for (i = 0; i < 9; ++i)
944 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
945 run->exit_reason = KVM_EXIT_PAPR_HCALL;
946 vcpu->arch.hcall_needed = 1;
947 r = RESUME_HOST;
948 break;
949 }
950 /*
951 * We get these next two if the guest accesses a page which it thinks
952 * it has mapped but which is not actually present, either because
953 * it is for an emulated I/O device or because the corresonding
954 * host page has been paged out. Any other HDSI/HISI interrupts
955 * have been handled already.
956 */
957 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
958 r = RESUME_PAGE_FAULT;
959 break;
960 case BOOK3S_INTERRUPT_H_INST_STORAGE:
961 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
962 vcpu->arch.fault_dsisr = 0;
963 r = RESUME_PAGE_FAULT;
964 break;
965 /*
966 * This occurs if the guest executes an illegal instruction.
967 * If the guest debug is disabled, generate a program interrupt
968 * to the guest. If guest debug is enabled, we need to check
969 * whether the instruction is a software breakpoint instruction.
970 * Accordingly return to Guest or Host.
971 */
972 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
973 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
974 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
975 swab32(vcpu->arch.emul_inst) :
976 vcpu->arch.emul_inst;
977 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
978 r = kvmppc_emulate_debug_inst(run, vcpu);
979 } else {
980 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
981 r = RESUME_GUEST;
982 }
983 break;
984 /*
985 * This occurs if the guest (kernel or userspace), does something that
986 * is prohibited by HFSCR. We just generate a program interrupt to
987 * the guest.
988 */
989 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
990 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
991 r = RESUME_GUEST;
992 break;
993 default:
994 kvmppc_dump_regs(vcpu);
995 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
996 vcpu->arch.trap, kvmppc_get_pc(vcpu),
997 vcpu->arch.shregs.msr);
998 run->hw.hardware_exit_reason = vcpu->arch.trap;
999 r = RESUME_HOST;
1000 break;
1001 }
1002
1003 return r;
1004 }
1005
1006 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1007 struct kvm_sregs *sregs)
1008 {
1009 int i;
1010
1011 memset(sregs, 0, sizeof(struct kvm_sregs));
1012 sregs->pvr = vcpu->arch.pvr;
1013 for (i = 0; i < vcpu->arch.slb_max; i++) {
1014 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1015 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1016 }
1017
1018 return 0;
1019 }
1020
1021 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1022 struct kvm_sregs *sregs)
1023 {
1024 int i, j;
1025
1026 /* Only accept the same PVR as the host's, since we can't spoof it */
1027 if (sregs->pvr != vcpu->arch.pvr)
1028 return -EINVAL;
1029
1030 j = 0;
1031 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1032 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1033 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1034 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1035 ++j;
1036 }
1037 }
1038 vcpu->arch.slb_max = j;
1039
1040 return 0;
1041 }
1042
1043 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1044 bool preserve_top32)
1045 {
1046 struct kvm *kvm = vcpu->kvm;
1047 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1048 u64 mask;
1049
1050 mutex_lock(&kvm->lock);
1051 spin_lock(&vc->lock);
1052 /*
1053 * If ILE (interrupt little-endian) has changed, update the
1054 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1055 */
1056 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1057 struct kvm_vcpu *vcpu;
1058 int i;
1059
1060 kvm_for_each_vcpu(i, vcpu, kvm) {
1061 if (vcpu->arch.vcore != vc)
1062 continue;
1063 if (new_lpcr & LPCR_ILE)
1064 vcpu->arch.intr_msr |= MSR_LE;
1065 else
1066 vcpu->arch.intr_msr &= ~MSR_LE;
1067 }
1068 }
1069
1070 /*
1071 * Userspace can only modify DPFD (default prefetch depth),
1072 * ILE (interrupt little-endian) and TC (translation control).
1073 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1074 */
1075 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1076 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1077 mask |= LPCR_AIL;
1078
1079 /* Broken 32-bit version of LPCR must not clear top bits */
1080 if (preserve_top32)
1081 mask &= 0xFFFFFFFF;
1082 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1083 spin_unlock(&vc->lock);
1084 mutex_unlock(&kvm->lock);
1085 }
1086
1087 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1088 union kvmppc_one_reg *val)
1089 {
1090 int r = 0;
1091 long int i;
1092
1093 switch (id) {
1094 case KVM_REG_PPC_DEBUG_INST:
1095 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1096 break;
1097 case KVM_REG_PPC_HIOR:
1098 *val = get_reg_val(id, 0);
1099 break;
1100 case KVM_REG_PPC_DABR:
1101 *val = get_reg_val(id, vcpu->arch.dabr);
1102 break;
1103 case KVM_REG_PPC_DABRX:
1104 *val = get_reg_val(id, vcpu->arch.dabrx);
1105 break;
1106 case KVM_REG_PPC_DSCR:
1107 *val = get_reg_val(id, vcpu->arch.dscr);
1108 break;
1109 case KVM_REG_PPC_PURR:
1110 *val = get_reg_val(id, vcpu->arch.purr);
1111 break;
1112 case KVM_REG_PPC_SPURR:
1113 *val = get_reg_val(id, vcpu->arch.spurr);
1114 break;
1115 case KVM_REG_PPC_AMR:
1116 *val = get_reg_val(id, vcpu->arch.amr);
1117 break;
1118 case KVM_REG_PPC_UAMOR:
1119 *val = get_reg_val(id, vcpu->arch.uamor);
1120 break;
1121 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1122 i = id - KVM_REG_PPC_MMCR0;
1123 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1124 break;
1125 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1126 i = id - KVM_REG_PPC_PMC1;
1127 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1128 break;
1129 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1130 i = id - KVM_REG_PPC_SPMC1;
1131 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1132 break;
1133 case KVM_REG_PPC_SIAR:
1134 *val = get_reg_val(id, vcpu->arch.siar);
1135 break;
1136 case KVM_REG_PPC_SDAR:
1137 *val = get_reg_val(id, vcpu->arch.sdar);
1138 break;
1139 case KVM_REG_PPC_SIER:
1140 *val = get_reg_val(id, vcpu->arch.sier);
1141 break;
1142 case KVM_REG_PPC_IAMR:
1143 *val = get_reg_val(id, vcpu->arch.iamr);
1144 break;
1145 case KVM_REG_PPC_PSPB:
1146 *val = get_reg_val(id, vcpu->arch.pspb);
1147 break;
1148 case KVM_REG_PPC_DPDES:
1149 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1150 break;
1151 case KVM_REG_PPC_DAWR:
1152 *val = get_reg_val(id, vcpu->arch.dawr);
1153 break;
1154 case KVM_REG_PPC_DAWRX:
1155 *val = get_reg_val(id, vcpu->arch.dawrx);
1156 break;
1157 case KVM_REG_PPC_CIABR:
1158 *val = get_reg_val(id, vcpu->arch.ciabr);
1159 break;
1160 case KVM_REG_PPC_CSIGR:
1161 *val = get_reg_val(id, vcpu->arch.csigr);
1162 break;
1163 case KVM_REG_PPC_TACR:
1164 *val = get_reg_val(id, vcpu->arch.tacr);
1165 break;
1166 case KVM_REG_PPC_TCSCR:
1167 *val = get_reg_val(id, vcpu->arch.tcscr);
1168 break;
1169 case KVM_REG_PPC_PID:
1170 *val = get_reg_val(id, vcpu->arch.pid);
1171 break;
1172 case KVM_REG_PPC_ACOP:
1173 *val = get_reg_val(id, vcpu->arch.acop);
1174 break;
1175 case KVM_REG_PPC_WORT:
1176 *val = get_reg_val(id, vcpu->arch.wort);
1177 break;
1178 case KVM_REG_PPC_VPA_ADDR:
1179 spin_lock(&vcpu->arch.vpa_update_lock);
1180 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1181 spin_unlock(&vcpu->arch.vpa_update_lock);
1182 break;
1183 case KVM_REG_PPC_VPA_SLB:
1184 spin_lock(&vcpu->arch.vpa_update_lock);
1185 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1186 val->vpaval.length = vcpu->arch.slb_shadow.len;
1187 spin_unlock(&vcpu->arch.vpa_update_lock);
1188 break;
1189 case KVM_REG_PPC_VPA_DTL:
1190 spin_lock(&vcpu->arch.vpa_update_lock);
1191 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1192 val->vpaval.length = vcpu->arch.dtl.len;
1193 spin_unlock(&vcpu->arch.vpa_update_lock);
1194 break;
1195 case KVM_REG_PPC_TB_OFFSET:
1196 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1197 break;
1198 case KVM_REG_PPC_LPCR:
1199 case KVM_REG_PPC_LPCR_64:
1200 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1201 break;
1202 case KVM_REG_PPC_PPR:
1203 *val = get_reg_val(id, vcpu->arch.ppr);
1204 break;
1205 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1206 case KVM_REG_PPC_TFHAR:
1207 *val = get_reg_val(id, vcpu->arch.tfhar);
1208 break;
1209 case KVM_REG_PPC_TFIAR:
1210 *val = get_reg_val(id, vcpu->arch.tfiar);
1211 break;
1212 case KVM_REG_PPC_TEXASR:
1213 *val = get_reg_val(id, vcpu->arch.texasr);
1214 break;
1215 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1216 i = id - KVM_REG_PPC_TM_GPR0;
1217 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1218 break;
1219 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1220 {
1221 int j;
1222 i = id - KVM_REG_PPC_TM_VSR0;
1223 if (i < 32)
1224 for (j = 0; j < TS_FPRWIDTH; j++)
1225 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1226 else {
1227 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1228 val->vval = vcpu->arch.vr_tm.vr[i-32];
1229 else
1230 r = -ENXIO;
1231 }
1232 break;
1233 }
1234 case KVM_REG_PPC_TM_CR:
1235 *val = get_reg_val(id, vcpu->arch.cr_tm);
1236 break;
1237 case KVM_REG_PPC_TM_LR:
1238 *val = get_reg_val(id, vcpu->arch.lr_tm);
1239 break;
1240 case KVM_REG_PPC_TM_CTR:
1241 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1242 break;
1243 case KVM_REG_PPC_TM_FPSCR:
1244 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1245 break;
1246 case KVM_REG_PPC_TM_AMR:
1247 *val = get_reg_val(id, vcpu->arch.amr_tm);
1248 break;
1249 case KVM_REG_PPC_TM_PPR:
1250 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1251 break;
1252 case KVM_REG_PPC_TM_VRSAVE:
1253 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1254 break;
1255 case KVM_REG_PPC_TM_VSCR:
1256 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1257 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1258 else
1259 r = -ENXIO;
1260 break;
1261 case KVM_REG_PPC_TM_DSCR:
1262 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1263 break;
1264 case KVM_REG_PPC_TM_TAR:
1265 *val = get_reg_val(id, vcpu->arch.tar_tm);
1266 break;
1267 #endif
1268 case KVM_REG_PPC_ARCH_COMPAT:
1269 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1270 break;
1271 default:
1272 r = -EINVAL;
1273 break;
1274 }
1275
1276 return r;
1277 }
1278
1279 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1280 union kvmppc_one_reg *val)
1281 {
1282 int r = 0;
1283 long int i;
1284 unsigned long addr, len;
1285
1286 switch (id) {
1287 case KVM_REG_PPC_HIOR:
1288 /* Only allow this to be set to zero */
1289 if (set_reg_val(id, *val))
1290 r = -EINVAL;
1291 break;
1292 case KVM_REG_PPC_DABR:
1293 vcpu->arch.dabr = set_reg_val(id, *val);
1294 break;
1295 case KVM_REG_PPC_DABRX:
1296 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1297 break;
1298 case KVM_REG_PPC_DSCR:
1299 vcpu->arch.dscr = set_reg_val(id, *val);
1300 break;
1301 case KVM_REG_PPC_PURR:
1302 vcpu->arch.purr = set_reg_val(id, *val);
1303 break;
1304 case KVM_REG_PPC_SPURR:
1305 vcpu->arch.spurr = set_reg_val(id, *val);
1306 break;
1307 case KVM_REG_PPC_AMR:
1308 vcpu->arch.amr = set_reg_val(id, *val);
1309 break;
1310 case KVM_REG_PPC_UAMOR:
1311 vcpu->arch.uamor = set_reg_val(id, *val);
1312 break;
1313 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1314 i = id - KVM_REG_PPC_MMCR0;
1315 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1316 break;
1317 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1318 i = id - KVM_REG_PPC_PMC1;
1319 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1320 break;
1321 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1322 i = id - KVM_REG_PPC_SPMC1;
1323 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1324 break;
1325 case KVM_REG_PPC_SIAR:
1326 vcpu->arch.siar = set_reg_val(id, *val);
1327 break;
1328 case KVM_REG_PPC_SDAR:
1329 vcpu->arch.sdar = set_reg_val(id, *val);
1330 break;
1331 case KVM_REG_PPC_SIER:
1332 vcpu->arch.sier = set_reg_val(id, *val);
1333 break;
1334 case KVM_REG_PPC_IAMR:
1335 vcpu->arch.iamr = set_reg_val(id, *val);
1336 break;
1337 case KVM_REG_PPC_PSPB:
1338 vcpu->arch.pspb = set_reg_val(id, *val);
1339 break;
1340 case KVM_REG_PPC_DPDES:
1341 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1342 break;
1343 case KVM_REG_PPC_DAWR:
1344 vcpu->arch.dawr = set_reg_val(id, *val);
1345 break;
1346 case KVM_REG_PPC_DAWRX:
1347 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1348 break;
1349 case KVM_REG_PPC_CIABR:
1350 vcpu->arch.ciabr = set_reg_val(id, *val);
1351 /* Don't allow setting breakpoints in hypervisor code */
1352 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1353 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1354 break;
1355 case KVM_REG_PPC_CSIGR:
1356 vcpu->arch.csigr = set_reg_val(id, *val);
1357 break;
1358 case KVM_REG_PPC_TACR:
1359 vcpu->arch.tacr = set_reg_val(id, *val);
1360 break;
1361 case KVM_REG_PPC_TCSCR:
1362 vcpu->arch.tcscr = set_reg_val(id, *val);
1363 break;
1364 case KVM_REG_PPC_PID:
1365 vcpu->arch.pid = set_reg_val(id, *val);
1366 break;
1367 case KVM_REG_PPC_ACOP:
1368 vcpu->arch.acop = set_reg_val(id, *val);
1369 break;
1370 case KVM_REG_PPC_WORT:
1371 vcpu->arch.wort = set_reg_val(id, *val);
1372 break;
1373 case KVM_REG_PPC_VPA_ADDR:
1374 addr = set_reg_val(id, *val);
1375 r = -EINVAL;
1376 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1377 vcpu->arch.dtl.next_gpa))
1378 break;
1379 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1380 break;
1381 case KVM_REG_PPC_VPA_SLB:
1382 addr = val->vpaval.addr;
1383 len = val->vpaval.length;
1384 r = -EINVAL;
1385 if (addr && !vcpu->arch.vpa.next_gpa)
1386 break;
1387 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1388 break;
1389 case KVM_REG_PPC_VPA_DTL:
1390 addr = val->vpaval.addr;
1391 len = val->vpaval.length;
1392 r = -EINVAL;
1393 if (addr && (len < sizeof(struct dtl_entry) ||
1394 !vcpu->arch.vpa.next_gpa))
1395 break;
1396 len -= len % sizeof(struct dtl_entry);
1397 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1398 break;
1399 case KVM_REG_PPC_TB_OFFSET:
1400 /* round up to multiple of 2^24 */
1401 vcpu->arch.vcore->tb_offset =
1402 ALIGN(set_reg_val(id, *val), 1UL << 24);
1403 break;
1404 case KVM_REG_PPC_LPCR:
1405 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1406 break;
1407 case KVM_REG_PPC_LPCR_64:
1408 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1409 break;
1410 case KVM_REG_PPC_PPR:
1411 vcpu->arch.ppr = set_reg_val(id, *val);
1412 break;
1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1414 case KVM_REG_PPC_TFHAR:
1415 vcpu->arch.tfhar = set_reg_val(id, *val);
1416 break;
1417 case KVM_REG_PPC_TFIAR:
1418 vcpu->arch.tfiar = set_reg_val(id, *val);
1419 break;
1420 case KVM_REG_PPC_TEXASR:
1421 vcpu->arch.texasr = set_reg_val(id, *val);
1422 break;
1423 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1424 i = id - KVM_REG_PPC_TM_GPR0;
1425 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1426 break;
1427 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1428 {
1429 int j;
1430 i = id - KVM_REG_PPC_TM_VSR0;
1431 if (i < 32)
1432 for (j = 0; j < TS_FPRWIDTH; j++)
1433 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1434 else
1435 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1436 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1437 else
1438 r = -ENXIO;
1439 break;
1440 }
1441 case KVM_REG_PPC_TM_CR:
1442 vcpu->arch.cr_tm = set_reg_val(id, *val);
1443 break;
1444 case KVM_REG_PPC_TM_LR:
1445 vcpu->arch.lr_tm = set_reg_val(id, *val);
1446 break;
1447 case KVM_REG_PPC_TM_CTR:
1448 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1449 break;
1450 case KVM_REG_PPC_TM_FPSCR:
1451 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1452 break;
1453 case KVM_REG_PPC_TM_AMR:
1454 vcpu->arch.amr_tm = set_reg_val(id, *val);
1455 break;
1456 case KVM_REG_PPC_TM_PPR:
1457 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1458 break;
1459 case KVM_REG_PPC_TM_VRSAVE:
1460 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1461 break;
1462 case KVM_REG_PPC_TM_VSCR:
1463 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1464 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1465 else
1466 r = - ENXIO;
1467 break;
1468 case KVM_REG_PPC_TM_DSCR:
1469 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1470 break;
1471 case KVM_REG_PPC_TM_TAR:
1472 vcpu->arch.tar_tm = set_reg_val(id, *val);
1473 break;
1474 #endif
1475 case KVM_REG_PPC_ARCH_COMPAT:
1476 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1477 break;
1478 default:
1479 r = -EINVAL;
1480 break;
1481 }
1482
1483 return r;
1484 }
1485
1486 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1487 {
1488 struct kvmppc_vcore *vcore;
1489
1490 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1491
1492 if (vcore == NULL)
1493 return NULL;
1494
1495 INIT_LIST_HEAD(&vcore->runnable_threads);
1496 spin_lock_init(&vcore->lock);
1497 spin_lock_init(&vcore->stoltb_lock);
1498 init_swait_queue_head(&vcore->wq);
1499 vcore->preempt_tb = TB_NIL;
1500 vcore->lpcr = kvm->arch.lpcr;
1501 vcore->first_vcpuid = core * threads_per_subcore;
1502 vcore->kvm = kvm;
1503 INIT_LIST_HEAD(&vcore->preempt_list);
1504
1505 return vcore;
1506 }
1507
1508 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1509 static struct debugfs_timings_element {
1510 const char *name;
1511 size_t offset;
1512 } timings[] = {
1513 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1514 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1515 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1516 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1517 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1518 };
1519
1520 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1521
1522 struct debugfs_timings_state {
1523 struct kvm_vcpu *vcpu;
1524 unsigned int buflen;
1525 char buf[N_TIMINGS * 100];
1526 };
1527
1528 static int debugfs_timings_open(struct inode *inode, struct file *file)
1529 {
1530 struct kvm_vcpu *vcpu = inode->i_private;
1531 struct debugfs_timings_state *p;
1532
1533 p = kzalloc(sizeof(*p), GFP_KERNEL);
1534 if (!p)
1535 return -ENOMEM;
1536
1537 kvm_get_kvm(vcpu->kvm);
1538 p->vcpu = vcpu;
1539 file->private_data = p;
1540
1541 return nonseekable_open(inode, file);
1542 }
1543
1544 static int debugfs_timings_release(struct inode *inode, struct file *file)
1545 {
1546 struct debugfs_timings_state *p = file->private_data;
1547
1548 kvm_put_kvm(p->vcpu->kvm);
1549 kfree(p);
1550 return 0;
1551 }
1552
1553 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1554 size_t len, loff_t *ppos)
1555 {
1556 struct debugfs_timings_state *p = file->private_data;
1557 struct kvm_vcpu *vcpu = p->vcpu;
1558 char *s, *buf_end;
1559 struct kvmhv_tb_accumulator tb;
1560 u64 count;
1561 loff_t pos;
1562 ssize_t n;
1563 int i, loops;
1564 bool ok;
1565
1566 if (!p->buflen) {
1567 s = p->buf;
1568 buf_end = s + sizeof(p->buf);
1569 for (i = 0; i < N_TIMINGS; ++i) {
1570 struct kvmhv_tb_accumulator *acc;
1571
1572 acc = (struct kvmhv_tb_accumulator *)
1573 ((unsigned long)vcpu + timings[i].offset);
1574 ok = false;
1575 for (loops = 0; loops < 1000; ++loops) {
1576 count = acc->seqcount;
1577 if (!(count & 1)) {
1578 smp_rmb();
1579 tb = *acc;
1580 smp_rmb();
1581 if (count == acc->seqcount) {
1582 ok = true;
1583 break;
1584 }
1585 }
1586 udelay(1);
1587 }
1588 if (!ok)
1589 snprintf(s, buf_end - s, "%s: stuck\n",
1590 timings[i].name);
1591 else
1592 snprintf(s, buf_end - s,
1593 "%s: %llu %llu %llu %llu\n",
1594 timings[i].name, count / 2,
1595 tb_to_ns(tb.tb_total),
1596 tb_to_ns(tb.tb_min),
1597 tb_to_ns(tb.tb_max));
1598 s += strlen(s);
1599 }
1600 p->buflen = s - p->buf;
1601 }
1602
1603 pos = *ppos;
1604 if (pos >= p->buflen)
1605 return 0;
1606 if (len > p->buflen - pos)
1607 len = p->buflen - pos;
1608 n = copy_to_user(buf, p->buf + pos, len);
1609 if (n) {
1610 if (n == len)
1611 return -EFAULT;
1612 len -= n;
1613 }
1614 *ppos = pos + len;
1615 return len;
1616 }
1617
1618 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1619 size_t len, loff_t *ppos)
1620 {
1621 return -EACCES;
1622 }
1623
1624 static const struct file_operations debugfs_timings_ops = {
1625 .owner = THIS_MODULE,
1626 .open = debugfs_timings_open,
1627 .release = debugfs_timings_release,
1628 .read = debugfs_timings_read,
1629 .write = debugfs_timings_write,
1630 .llseek = generic_file_llseek,
1631 };
1632
1633 /* Create a debugfs directory for the vcpu */
1634 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1635 {
1636 char buf[16];
1637 struct kvm *kvm = vcpu->kvm;
1638
1639 snprintf(buf, sizeof(buf), "vcpu%u", id);
1640 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1641 return;
1642 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1643 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1644 return;
1645 vcpu->arch.debugfs_timings =
1646 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1647 vcpu, &debugfs_timings_ops);
1648 }
1649
1650 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1651 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1652 {
1653 }
1654 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1655
1656 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1657 unsigned int id)
1658 {
1659 struct kvm_vcpu *vcpu;
1660 int err = -EINVAL;
1661 int core;
1662 struct kvmppc_vcore *vcore;
1663
1664 core = id / threads_per_subcore;
1665 if (core >= KVM_MAX_VCORES)
1666 goto out;
1667
1668 err = -ENOMEM;
1669 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1670 if (!vcpu)
1671 goto out;
1672
1673 err = kvm_vcpu_init(vcpu, kvm, id);
1674 if (err)
1675 goto free_vcpu;
1676
1677 vcpu->arch.shared = &vcpu->arch.shregs;
1678 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1679 /*
1680 * The shared struct is never shared on HV,
1681 * so we can always use host endianness
1682 */
1683 #ifdef __BIG_ENDIAN__
1684 vcpu->arch.shared_big_endian = true;
1685 #else
1686 vcpu->arch.shared_big_endian = false;
1687 #endif
1688 #endif
1689 vcpu->arch.mmcr[0] = MMCR0_FC;
1690 vcpu->arch.ctrl = CTRL_RUNLATCH;
1691 /* default to host PVR, since we can't spoof it */
1692 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1693 spin_lock_init(&vcpu->arch.vpa_update_lock);
1694 spin_lock_init(&vcpu->arch.tbacct_lock);
1695 vcpu->arch.busy_preempt = TB_NIL;
1696 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1697
1698 kvmppc_mmu_book3s_hv_init(vcpu);
1699
1700 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1701
1702 init_waitqueue_head(&vcpu->arch.cpu_run);
1703
1704 mutex_lock(&kvm->lock);
1705 vcore = kvm->arch.vcores[core];
1706 if (!vcore) {
1707 vcore = kvmppc_vcore_create(kvm, core);
1708 kvm->arch.vcores[core] = vcore;
1709 kvm->arch.online_vcores++;
1710 }
1711 mutex_unlock(&kvm->lock);
1712
1713 if (!vcore)
1714 goto free_vcpu;
1715
1716 spin_lock(&vcore->lock);
1717 ++vcore->num_threads;
1718 spin_unlock(&vcore->lock);
1719 vcpu->arch.vcore = vcore;
1720 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1721 vcpu->arch.thread_cpu = -1;
1722
1723 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1724 kvmppc_sanity_check(vcpu);
1725
1726 debugfs_vcpu_init(vcpu, id);
1727
1728 return vcpu;
1729
1730 free_vcpu:
1731 kmem_cache_free(kvm_vcpu_cache, vcpu);
1732 out:
1733 return ERR_PTR(err);
1734 }
1735
1736 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1737 {
1738 if (vpa->pinned_addr)
1739 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1740 vpa->dirty);
1741 }
1742
1743 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1744 {
1745 spin_lock(&vcpu->arch.vpa_update_lock);
1746 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1747 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1748 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1749 spin_unlock(&vcpu->arch.vpa_update_lock);
1750 kvm_vcpu_uninit(vcpu);
1751 kmem_cache_free(kvm_vcpu_cache, vcpu);
1752 }
1753
1754 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1755 {
1756 /* Indicate we want to get back into the guest */
1757 return 1;
1758 }
1759
1760 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1761 {
1762 unsigned long dec_nsec, now;
1763
1764 now = get_tb();
1765 if (now > vcpu->arch.dec_expires) {
1766 /* decrementer has already gone negative */
1767 kvmppc_core_queue_dec(vcpu);
1768 kvmppc_core_prepare_to_enter(vcpu);
1769 return;
1770 }
1771 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1772 / tb_ticks_per_sec;
1773 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1774 HRTIMER_MODE_REL);
1775 vcpu->arch.timer_running = 1;
1776 }
1777
1778 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1779 {
1780 vcpu->arch.ceded = 0;
1781 if (vcpu->arch.timer_running) {
1782 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1783 vcpu->arch.timer_running = 0;
1784 }
1785 }
1786
1787 extern void __kvmppc_vcore_entry(void);
1788
1789 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1790 struct kvm_vcpu *vcpu)
1791 {
1792 u64 now;
1793
1794 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1795 return;
1796 spin_lock_irq(&vcpu->arch.tbacct_lock);
1797 now = mftb();
1798 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1799 vcpu->arch.stolen_logged;
1800 vcpu->arch.busy_preempt = now;
1801 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1802 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1803 --vc->n_runnable;
1804 list_del(&vcpu->arch.run_list);
1805 }
1806
1807 static int kvmppc_grab_hwthread(int cpu)
1808 {
1809 struct paca_struct *tpaca;
1810 long timeout = 10000;
1811
1812 tpaca = &paca[cpu];
1813
1814 /* Ensure the thread won't go into the kernel if it wakes */
1815 tpaca->kvm_hstate.kvm_vcpu = NULL;
1816 tpaca->kvm_hstate.kvm_vcore = NULL;
1817 tpaca->kvm_hstate.napping = 0;
1818 smp_wmb();
1819 tpaca->kvm_hstate.hwthread_req = 1;
1820
1821 /*
1822 * If the thread is already executing in the kernel (e.g. handling
1823 * a stray interrupt), wait for it to get back to nap mode.
1824 * The smp_mb() is to ensure that our setting of hwthread_req
1825 * is visible before we look at hwthread_state, so if this
1826 * races with the code at system_reset_pSeries and the thread
1827 * misses our setting of hwthread_req, we are sure to see its
1828 * setting of hwthread_state, and vice versa.
1829 */
1830 smp_mb();
1831 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1832 if (--timeout <= 0) {
1833 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1834 return -EBUSY;
1835 }
1836 udelay(1);
1837 }
1838 return 0;
1839 }
1840
1841 static void kvmppc_release_hwthread(int cpu)
1842 {
1843 struct paca_struct *tpaca;
1844
1845 tpaca = &paca[cpu];
1846 tpaca->kvm_hstate.hwthread_req = 0;
1847 tpaca->kvm_hstate.kvm_vcpu = NULL;
1848 tpaca->kvm_hstate.kvm_vcore = NULL;
1849 tpaca->kvm_hstate.kvm_split_mode = NULL;
1850 }
1851
1852 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1853 {
1854 int cpu;
1855 struct paca_struct *tpaca;
1856 struct kvmppc_vcore *mvc = vc->master_vcore;
1857
1858 cpu = vc->pcpu;
1859 if (vcpu) {
1860 if (vcpu->arch.timer_running) {
1861 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1862 vcpu->arch.timer_running = 0;
1863 }
1864 cpu += vcpu->arch.ptid;
1865 vcpu->cpu = mvc->pcpu;
1866 vcpu->arch.thread_cpu = cpu;
1867 }
1868 tpaca = &paca[cpu];
1869 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1870 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1871 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1872 smp_wmb();
1873 tpaca->kvm_hstate.kvm_vcore = mvc;
1874 if (cpu != smp_processor_id())
1875 kvmppc_ipi_thread(cpu);
1876 }
1877
1878 static void kvmppc_wait_for_nap(void)
1879 {
1880 int cpu = smp_processor_id();
1881 int i, loops;
1882
1883 for (loops = 0; loops < 1000000; ++loops) {
1884 /*
1885 * Check if all threads are finished.
1886 * We set the vcore pointer when starting a thread
1887 * and the thread clears it when finished, so we look
1888 * for any threads that still have a non-NULL vcore ptr.
1889 */
1890 for (i = 1; i < threads_per_subcore; ++i)
1891 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1892 break;
1893 if (i == threads_per_subcore) {
1894 HMT_medium();
1895 return;
1896 }
1897 HMT_low();
1898 }
1899 HMT_medium();
1900 for (i = 1; i < threads_per_subcore; ++i)
1901 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1902 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1903 }
1904
1905 /*
1906 * Check that we are on thread 0 and that any other threads in
1907 * this core are off-line. Then grab the threads so they can't
1908 * enter the kernel.
1909 */
1910 static int on_primary_thread(void)
1911 {
1912 int cpu = smp_processor_id();
1913 int thr;
1914
1915 /* Are we on a primary subcore? */
1916 if (cpu_thread_in_subcore(cpu))
1917 return 0;
1918
1919 thr = 0;
1920 while (++thr < threads_per_subcore)
1921 if (cpu_online(cpu + thr))
1922 return 0;
1923
1924 /* Grab all hw threads so they can't go into the kernel */
1925 for (thr = 1; thr < threads_per_subcore; ++thr) {
1926 if (kvmppc_grab_hwthread(cpu + thr)) {
1927 /* Couldn't grab one; let the others go */
1928 do {
1929 kvmppc_release_hwthread(cpu + thr);
1930 } while (--thr > 0);
1931 return 0;
1932 }
1933 }
1934 return 1;
1935 }
1936
1937 /*
1938 * A list of virtual cores for each physical CPU.
1939 * These are vcores that could run but their runner VCPU tasks are
1940 * (or may be) preempted.
1941 */
1942 struct preempted_vcore_list {
1943 struct list_head list;
1944 spinlock_t lock;
1945 };
1946
1947 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1948
1949 static void init_vcore_lists(void)
1950 {
1951 int cpu;
1952
1953 for_each_possible_cpu(cpu) {
1954 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1955 spin_lock_init(&lp->lock);
1956 INIT_LIST_HEAD(&lp->list);
1957 }
1958 }
1959
1960 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1961 {
1962 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1963
1964 vc->vcore_state = VCORE_PREEMPT;
1965 vc->pcpu = smp_processor_id();
1966 if (vc->num_threads < threads_per_subcore) {
1967 spin_lock(&lp->lock);
1968 list_add_tail(&vc->preempt_list, &lp->list);
1969 spin_unlock(&lp->lock);
1970 }
1971
1972 /* Start accumulating stolen time */
1973 kvmppc_core_start_stolen(vc);
1974 }
1975
1976 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1977 {
1978 struct preempted_vcore_list *lp;
1979
1980 kvmppc_core_end_stolen(vc);
1981 if (!list_empty(&vc->preempt_list)) {
1982 lp = &per_cpu(preempted_vcores, vc->pcpu);
1983 spin_lock(&lp->lock);
1984 list_del_init(&vc->preempt_list);
1985 spin_unlock(&lp->lock);
1986 }
1987 vc->vcore_state = VCORE_INACTIVE;
1988 }
1989
1990 /*
1991 * This stores information about the virtual cores currently
1992 * assigned to a physical core.
1993 */
1994 struct core_info {
1995 int n_subcores;
1996 int max_subcore_threads;
1997 int total_threads;
1998 int subcore_threads[MAX_SUBCORES];
1999 struct kvm *subcore_vm[MAX_SUBCORES];
2000 struct list_head vcs[MAX_SUBCORES];
2001 };
2002
2003 /*
2004 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2005 * respectively in 2-way micro-threading (split-core) mode.
2006 */
2007 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2008
2009 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2010 {
2011 int sub;
2012
2013 memset(cip, 0, sizeof(*cip));
2014 cip->n_subcores = 1;
2015 cip->max_subcore_threads = vc->num_threads;
2016 cip->total_threads = vc->num_threads;
2017 cip->subcore_threads[0] = vc->num_threads;
2018 cip->subcore_vm[0] = vc->kvm;
2019 for (sub = 0; sub < MAX_SUBCORES; ++sub)
2020 INIT_LIST_HEAD(&cip->vcs[sub]);
2021 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2022 }
2023
2024 static bool subcore_config_ok(int n_subcores, int n_threads)
2025 {
2026 /* Can only dynamically split if unsplit to begin with */
2027 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2028 return false;
2029 if (n_subcores > MAX_SUBCORES)
2030 return false;
2031 if (n_subcores > 1) {
2032 if (!(dynamic_mt_modes & 2))
2033 n_subcores = 4;
2034 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2035 return false;
2036 }
2037
2038 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2039 }
2040
2041 static void init_master_vcore(struct kvmppc_vcore *vc)
2042 {
2043 vc->master_vcore = vc;
2044 vc->entry_exit_map = 0;
2045 vc->in_guest = 0;
2046 vc->napping_threads = 0;
2047 vc->conferring_threads = 0;
2048 }
2049
2050 /*
2051 * See if the existing subcores can be split into 3 (or fewer) subcores
2052 * of at most two threads each, so we can fit in another vcore. This
2053 * assumes there are at most two subcores and at most 6 threads in total.
2054 */
2055 static bool can_split_piggybacked_subcores(struct core_info *cip)
2056 {
2057 int sub, new_sub;
2058 int large_sub = -1;
2059 int thr;
2060 int n_subcores = cip->n_subcores;
2061 struct kvmppc_vcore *vc, *vcnext;
2062 struct kvmppc_vcore *master_vc = NULL;
2063
2064 for (sub = 0; sub < cip->n_subcores; ++sub) {
2065 if (cip->subcore_threads[sub] <= 2)
2066 continue;
2067 if (large_sub >= 0)
2068 return false;
2069 large_sub = sub;
2070 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2071 preempt_list);
2072 if (vc->num_threads > 2)
2073 return false;
2074 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2075 }
2076 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2077 return false;
2078
2079 /*
2080 * Seems feasible, so go through and move vcores to new subcores.
2081 * Note that when we have two or more vcores in one subcore,
2082 * all those vcores must have only one thread each.
2083 */
2084 new_sub = cip->n_subcores;
2085 thr = 0;
2086 sub = large_sub;
2087 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2088 if (thr >= 2) {
2089 list_del(&vc->preempt_list);
2090 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2091 /* vc->num_threads must be 1 */
2092 if (++cip->subcore_threads[new_sub] == 1) {
2093 cip->subcore_vm[new_sub] = vc->kvm;
2094 init_master_vcore(vc);
2095 master_vc = vc;
2096 ++cip->n_subcores;
2097 } else {
2098 vc->master_vcore = master_vc;
2099 ++new_sub;
2100 }
2101 }
2102 thr += vc->num_threads;
2103 }
2104 cip->subcore_threads[large_sub] = 2;
2105 cip->max_subcore_threads = 2;
2106
2107 return true;
2108 }
2109
2110 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2111 {
2112 int n_threads = vc->num_threads;
2113 int sub;
2114
2115 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2116 return false;
2117
2118 if (n_threads < cip->max_subcore_threads)
2119 n_threads = cip->max_subcore_threads;
2120 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2121 cip->max_subcore_threads = n_threads;
2122 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2123 vc->num_threads <= 2) {
2124 /*
2125 * We may be able to fit another subcore in by
2126 * splitting an existing subcore with 3 or 4
2127 * threads into two 2-thread subcores, or one
2128 * with 5 or 6 threads into three subcores.
2129 * We can only do this if those subcores have
2130 * piggybacked virtual cores.
2131 */
2132 if (!can_split_piggybacked_subcores(cip))
2133 return false;
2134 } else {
2135 return false;
2136 }
2137
2138 sub = cip->n_subcores;
2139 ++cip->n_subcores;
2140 cip->total_threads += vc->num_threads;
2141 cip->subcore_threads[sub] = vc->num_threads;
2142 cip->subcore_vm[sub] = vc->kvm;
2143 init_master_vcore(vc);
2144 list_del(&vc->preempt_list);
2145 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2146
2147 return true;
2148 }
2149
2150 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2151 struct core_info *cip, int sub)
2152 {
2153 struct kvmppc_vcore *vc;
2154 int n_thr;
2155
2156 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2157 preempt_list);
2158
2159 /* require same VM and same per-core reg values */
2160 if (pvc->kvm != vc->kvm ||
2161 pvc->tb_offset != vc->tb_offset ||
2162 pvc->pcr != vc->pcr ||
2163 pvc->lpcr != vc->lpcr)
2164 return false;
2165
2166 /* P8 guest with > 1 thread per core would see wrong TIR value */
2167 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2168 (vc->num_threads > 1 || pvc->num_threads > 1))
2169 return false;
2170
2171 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2172 if (n_thr > cip->max_subcore_threads) {
2173 if (!subcore_config_ok(cip->n_subcores, n_thr))
2174 return false;
2175 cip->max_subcore_threads = n_thr;
2176 }
2177
2178 cip->total_threads += pvc->num_threads;
2179 cip->subcore_threads[sub] = n_thr;
2180 pvc->master_vcore = vc;
2181 list_del(&pvc->preempt_list);
2182 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2183
2184 return true;
2185 }
2186
2187 /*
2188 * Work out whether it is possible to piggyback the execution of
2189 * vcore *pvc onto the execution of the other vcores described in *cip.
2190 */
2191 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2192 int target_threads)
2193 {
2194 int sub;
2195
2196 if (cip->total_threads + pvc->num_threads > target_threads)
2197 return false;
2198 for (sub = 0; sub < cip->n_subcores; ++sub)
2199 if (cip->subcore_threads[sub] &&
2200 can_piggyback_subcore(pvc, cip, sub))
2201 return true;
2202
2203 if (can_dynamic_split(pvc, cip))
2204 return true;
2205
2206 return false;
2207 }
2208
2209 static void prepare_threads(struct kvmppc_vcore *vc)
2210 {
2211 struct kvm_vcpu *vcpu, *vnext;
2212
2213 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2214 arch.run_list) {
2215 if (signal_pending(vcpu->arch.run_task))
2216 vcpu->arch.ret = -EINTR;
2217 else if (vcpu->arch.vpa.update_pending ||
2218 vcpu->arch.slb_shadow.update_pending ||
2219 vcpu->arch.dtl.update_pending)
2220 vcpu->arch.ret = RESUME_GUEST;
2221 else
2222 continue;
2223 kvmppc_remove_runnable(vc, vcpu);
2224 wake_up(&vcpu->arch.cpu_run);
2225 }
2226 }
2227
2228 static void collect_piggybacks(struct core_info *cip, int target_threads)
2229 {
2230 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2231 struct kvmppc_vcore *pvc, *vcnext;
2232
2233 spin_lock(&lp->lock);
2234 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2235 if (!spin_trylock(&pvc->lock))
2236 continue;
2237 prepare_threads(pvc);
2238 if (!pvc->n_runnable) {
2239 list_del_init(&pvc->preempt_list);
2240 if (pvc->runner == NULL) {
2241 pvc->vcore_state = VCORE_INACTIVE;
2242 kvmppc_core_end_stolen(pvc);
2243 }
2244 spin_unlock(&pvc->lock);
2245 continue;
2246 }
2247 if (!can_piggyback(pvc, cip, target_threads)) {
2248 spin_unlock(&pvc->lock);
2249 continue;
2250 }
2251 kvmppc_core_end_stolen(pvc);
2252 pvc->vcore_state = VCORE_PIGGYBACK;
2253 if (cip->total_threads >= target_threads)
2254 break;
2255 }
2256 spin_unlock(&lp->lock);
2257 }
2258
2259 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2260 {
2261 int still_running = 0;
2262 u64 now;
2263 long ret;
2264 struct kvm_vcpu *vcpu, *vnext;
2265
2266 spin_lock(&vc->lock);
2267 now = get_tb();
2268 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2269 arch.run_list) {
2270 /* cancel pending dec exception if dec is positive */
2271 if (now < vcpu->arch.dec_expires &&
2272 kvmppc_core_pending_dec(vcpu))
2273 kvmppc_core_dequeue_dec(vcpu);
2274
2275 trace_kvm_guest_exit(vcpu);
2276
2277 ret = RESUME_GUEST;
2278 if (vcpu->arch.trap)
2279 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2280 vcpu->arch.run_task);
2281
2282 vcpu->arch.ret = ret;
2283 vcpu->arch.trap = 0;
2284
2285 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2286 if (vcpu->arch.pending_exceptions)
2287 kvmppc_core_prepare_to_enter(vcpu);
2288 if (vcpu->arch.ceded)
2289 kvmppc_set_timer(vcpu);
2290 else
2291 ++still_running;
2292 } else {
2293 kvmppc_remove_runnable(vc, vcpu);
2294 wake_up(&vcpu->arch.cpu_run);
2295 }
2296 }
2297 list_del_init(&vc->preempt_list);
2298 if (!is_master) {
2299 if (still_running > 0) {
2300 kvmppc_vcore_preempt(vc);
2301 } else if (vc->runner) {
2302 vc->vcore_state = VCORE_PREEMPT;
2303 kvmppc_core_start_stolen(vc);
2304 } else {
2305 vc->vcore_state = VCORE_INACTIVE;
2306 }
2307 if (vc->n_runnable > 0 && vc->runner == NULL) {
2308 /* make sure there's a candidate runner awake */
2309 vcpu = list_first_entry(&vc->runnable_threads,
2310 struct kvm_vcpu, arch.run_list);
2311 wake_up(&vcpu->arch.cpu_run);
2312 }
2313 }
2314 spin_unlock(&vc->lock);
2315 }
2316
2317 /*
2318 * Clear core from the list of active host cores as we are about to
2319 * enter the guest. Only do this if it is the primary thread of the
2320 * core (not if a subcore) that is entering the guest.
2321 */
2322 static inline void kvmppc_clear_host_core(int cpu)
2323 {
2324 int core;
2325
2326 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2327 return;
2328 /*
2329 * Memory barrier can be omitted here as we will do a smp_wmb()
2330 * later in kvmppc_start_thread and we need ensure that state is
2331 * visible to other CPUs only after we enter guest.
2332 */
2333 core = cpu >> threads_shift;
2334 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2335 }
2336
2337 /*
2338 * Advertise this core as an active host core since we exited the guest
2339 * Only need to do this if it is the primary thread of the core that is
2340 * exiting.
2341 */
2342 static inline void kvmppc_set_host_core(int cpu)
2343 {
2344 int core;
2345
2346 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2347 return;
2348
2349 /*
2350 * Memory barrier can be omitted here because we do a spin_unlock
2351 * immediately after this which provides the memory barrier.
2352 */
2353 core = cpu >> threads_shift;
2354 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2355 }
2356
2357 /*
2358 * Run a set of guest threads on a physical core.
2359 * Called with vc->lock held.
2360 */
2361 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2362 {
2363 struct kvm_vcpu *vcpu, *vnext;
2364 int i;
2365 int srcu_idx;
2366 struct core_info core_info;
2367 struct kvmppc_vcore *pvc, *vcnext;
2368 struct kvm_split_mode split_info, *sip;
2369 int split, subcore_size, active;
2370 int sub;
2371 bool thr0_done;
2372 unsigned long cmd_bit, stat_bit;
2373 int pcpu, thr;
2374 int target_threads;
2375
2376 /*
2377 * Remove from the list any threads that have a signal pending
2378 * or need a VPA update done
2379 */
2380 prepare_threads(vc);
2381
2382 /* if the runner is no longer runnable, let the caller pick a new one */
2383 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2384 return;
2385
2386 /*
2387 * Initialize *vc.
2388 */
2389 init_master_vcore(vc);
2390 vc->preempt_tb = TB_NIL;
2391
2392 /*
2393 * Make sure we are running on primary threads, and that secondary
2394 * threads are offline. Also check if the number of threads in this
2395 * guest are greater than the current system threads per guest.
2396 */
2397 if ((threads_per_core > 1) &&
2398 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2399 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2400 arch.run_list) {
2401 vcpu->arch.ret = -EBUSY;
2402 kvmppc_remove_runnable(vc, vcpu);
2403 wake_up(&vcpu->arch.cpu_run);
2404 }
2405 goto out;
2406 }
2407
2408 /*
2409 * See if we could run any other vcores on the physical core
2410 * along with this one.
2411 */
2412 init_core_info(&core_info, vc);
2413 pcpu = smp_processor_id();
2414 target_threads = threads_per_subcore;
2415 if (target_smt_mode && target_smt_mode < target_threads)
2416 target_threads = target_smt_mode;
2417 if (vc->num_threads < target_threads)
2418 collect_piggybacks(&core_info, target_threads);
2419
2420 /* Decide on micro-threading (split-core) mode */
2421 subcore_size = threads_per_subcore;
2422 cmd_bit = stat_bit = 0;
2423 split = core_info.n_subcores;
2424 sip = NULL;
2425 if (split > 1) {
2426 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2427 if (split == 2 && (dynamic_mt_modes & 2)) {
2428 cmd_bit = HID0_POWER8_1TO2LPAR;
2429 stat_bit = HID0_POWER8_2LPARMODE;
2430 } else {
2431 split = 4;
2432 cmd_bit = HID0_POWER8_1TO4LPAR;
2433 stat_bit = HID0_POWER8_4LPARMODE;
2434 }
2435 subcore_size = MAX_SMT_THREADS / split;
2436 sip = &split_info;
2437 memset(&split_info, 0, sizeof(split_info));
2438 split_info.rpr = mfspr(SPRN_RPR);
2439 split_info.pmmar = mfspr(SPRN_PMMAR);
2440 split_info.ldbar = mfspr(SPRN_LDBAR);
2441 split_info.subcore_size = subcore_size;
2442 for (sub = 0; sub < core_info.n_subcores; ++sub)
2443 split_info.master_vcs[sub] =
2444 list_first_entry(&core_info.vcs[sub],
2445 struct kvmppc_vcore, preempt_list);
2446 /* order writes to split_info before kvm_split_mode pointer */
2447 smp_wmb();
2448 }
2449 pcpu = smp_processor_id();
2450 for (thr = 0; thr < threads_per_subcore; ++thr)
2451 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2452
2453 /* Initiate micro-threading (split-core) if required */
2454 if (cmd_bit) {
2455 unsigned long hid0 = mfspr(SPRN_HID0);
2456
2457 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2458 mb();
2459 mtspr(SPRN_HID0, hid0);
2460 isync();
2461 for (;;) {
2462 hid0 = mfspr(SPRN_HID0);
2463 if (hid0 & stat_bit)
2464 break;
2465 cpu_relax();
2466 }
2467 }
2468
2469 kvmppc_clear_host_core(pcpu);
2470
2471 /* Start all the threads */
2472 active = 0;
2473 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2474 thr = subcore_thread_map[sub];
2475 thr0_done = false;
2476 active |= 1 << thr;
2477 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2478 pvc->pcpu = pcpu + thr;
2479 list_for_each_entry(vcpu, &pvc->runnable_threads,
2480 arch.run_list) {
2481 kvmppc_start_thread(vcpu, pvc);
2482 kvmppc_create_dtl_entry(vcpu, pvc);
2483 trace_kvm_guest_enter(vcpu);
2484 if (!vcpu->arch.ptid)
2485 thr0_done = true;
2486 active |= 1 << (thr + vcpu->arch.ptid);
2487 }
2488 /*
2489 * We need to start the first thread of each subcore
2490 * even if it doesn't have a vcpu.
2491 */
2492 if (pvc->master_vcore == pvc && !thr0_done)
2493 kvmppc_start_thread(NULL, pvc);
2494 thr += pvc->num_threads;
2495 }
2496 }
2497
2498 /*
2499 * Ensure that split_info.do_nap is set after setting
2500 * the vcore pointer in the PACA of the secondaries.
2501 */
2502 smp_mb();
2503 if (cmd_bit)
2504 split_info.do_nap = 1; /* ask secondaries to nap when done */
2505
2506 /*
2507 * When doing micro-threading, poke the inactive threads as well.
2508 * This gets them to the nap instruction after kvm_do_nap,
2509 * which reduces the time taken to unsplit later.
2510 */
2511 if (split > 1)
2512 for (thr = 1; thr < threads_per_subcore; ++thr)
2513 if (!(active & (1 << thr)))
2514 kvmppc_ipi_thread(pcpu + thr);
2515
2516 vc->vcore_state = VCORE_RUNNING;
2517 preempt_disable();
2518
2519 trace_kvmppc_run_core(vc, 0);
2520
2521 for (sub = 0; sub < core_info.n_subcores; ++sub)
2522 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2523 spin_unlock(&pvc->lock);
2524
2525 guest_enter();
2526
2527 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2528
2529 __kvmppc_vcore_entry();
2530
2531 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2532
2533 spin_lock(&vc->lock);
2534 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2535 vc->vcore_state = VCORE_EXITING;
2536
2537 /* wait for secondary threads to finish writing their state to memory */
2538 kvmppc_wait_for_nap();
2539
2540 /* Return to whole-core mode if we split the core earlier */
2541 if (split > 1) {
2542 unsigned long hid0 = mfspr(SPRN_HID0);
2543 unsigned long loops = 0;
2544
2545 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2546 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2547 mb();
2548 mtspr(SPRN_HID0, hid0);
2549 isync();
2550 for (;;) {
2551 hid0 = mfspr(SPRN_HID0);
2552 if (!(hid0 & stat_bit))
2553 break;
2554 cpu_relax();
2555 ++loops;
2556 }
2557 split_info.do_nap = 0;
2558 }
2559
2560 /* Let secondaries go back to the offline loop */
2561 for (i = 0; i < threads_per_subcore; ++i) {
2562 kvmppc_release_hwthread(pcpu + i);
2563 if (sip && sip->napped[i])
2564 kvmppc_ipi_thread(pcpu + i);
2565 }
2566
2567 kvmppc_set_host_core(pcpu);
2568
2569 spin_unlock(&vc->lock);
2570
2571 /* make sure updates to secondary vcpu structs are visible now */
2572 smp_mb();
2573 guest_exit();
2574
2575 for (sub = 0; sub < core_info.n_subcores; ++sub)
2576 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2577 preempt_list)
2578 post_guest_process(pvc, pvc == vc);
2579
2580 spin_lock(&vc->lock);
2581 preempt_enable();
2582
2583 out:
2584 vc->vcore_state = VCORE_INACTIVE;
2585 trace_kvmppc_run_core(vc, 1);
2586 }
2587
2588 /*
2589 * Wait for some other vcpu thread to execute us, and
2590 * wake us up when we need to handle something in the host.
2591 */
2592 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2593 struct kvm_vcpu *vcpu, int wait_state)
2594 {
2595 DEFINE_WAIT(wait);
2596
2597 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2598 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2599 spin_unlock(&vc->lock);
2600 schedule();
2601 spin_lock(&vc->lock);
2602 }
2603 finish_wait(&vcpu->arch.cpu_run, &wait);
2604 }
2605
2606 /*
2607 * All the vcpus in this vcore are idle, so wait for a decrementer
2608 * or external interrupt to one of the vcpus. vc->lock is held.
2609 */
2610 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2611 {
2612 struct kvm_vcpu *vcpu;
2613 int do_sleep = 1;
2614 DECLARE_SWAITQUEUE(wait);
2615
2616 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2617
2618 /*
2619 * Check one last time for pending exceptions and ceded state after
2620 * we put ourselves on the wait queue
2621 */
2622 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2623 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2624 do_sleep = 0;
2625 break;
2626 }
2627 }
2628
2629 if (!do_sleep) {
2630 finish_swait(&vc->wq, &wait);
2631 return;
2632 }
2633
2634 vc->vcore_state = VCORE_SLEEPING;
2635 trace_kvmppc_vcore_blocked(vc, 0);
2636 spin_unlock(&vc->lock);
2637 schedule();
2638 finish_swait(&vc->wq, &wait);
2639 spin_lock(&vc->lock);
2640 vc->vcore_state = VCORE_INACTIVE;
2641 trace_kvmppc_vcore_blocked(vc, 1);
2642 }
2643
2644 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2645 {
2646 int n_ceded;
2647 struct kvmppc_vcore *vc;
2648 struct kvm_vcpu *v, *vn;
2649
2650 trace_kvmppc_run_vcpu_enter(vcpu);
2651
2652 kvm_run->exit_reason = 0;
2653 vcpu->arch.ret = RESUME_GUEST;
2654 vcpu->arch.trap = 0;
2655 kvmppc_update_vpas(vcpu);
2656
2657 /*
2658 * Synchronize with other threads in this virtual core
2659 */
2660 vc = vcpu->arch.vcore;
2661 spin_lock(&vc->lock);
2662 vcpu->arch.ceded = 0;
2663 vcpu->arch.run_task = current;
2664 vcpu->arch.kvm_run = kvm_run;
2665 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2666 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2667 vcpu->arch.busy_preempt = TB_NIL;
2668 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2669 ++vc->n_runnable;
2670
2671 /*
2672 * This happens the first time this is called for a vcpu.
2673 * If the vcore is already running, we may be able to start
2674 * this thread straight away and have it join in.
2675 */
2676 if (!signal_pending(current)) {
2677 if (vc->vcore_state == VCORE_PIGGYBACK) {
2678 struct kvmppc_vcore *mvc = vc->master_vcore;
2679 if (spin_trylock(&mvc->lock)) {
2680 if (mvc->vcore_state == VCORE_RUNNING &&
2681 !VCORE_IS_EXITING(mvc)) {
2682 kvmppc_create_dtl_entry(vcpu, vc);
2683 kvmppc_start_thread(vcpu, vc);
2684 trace_kvm_guest_enter(vcpu);
2685 }
2686 spin_unlock(&mvc->lock);
2687 }
2688 } else if (vc->vcore_state == VCORE_RUNNING &&
2689 !VCORE_IS_EXITING(vc)) {
2690 kvmppc_create_dtl_entry(vcpu, vc);
2691 kvmppc_start_thread(vcpu, vc);
2692 trace_kvm_guest_enter(vcpu);
2693 } else if (vc->vcore_state == VCORE_SLEEPING) {
2694 swake_up(&vc->wq);
2695 }
2696
2697 }
2698
2699 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2700 !signal_pending(current)) {
2701 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2702 kvmppc_vcore_end_preempt(vc);
2703
2704 if (vc->vcore_state != VCORE_INACTIVE) {
2705 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2706 continue;
2707 }
2708 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2709 arch.run_list) {
2710 kvmppc_core_prepare_to_enter(v);
2711 if (signal_pending(v->arch.run_task)) {
2712 kvmppc_remove_runnable(vc, v);
2713 v->stat.signal_exits++;
2714 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2715 v->arch.ret = -EINTR;
2716 wake_up(&v->arch.cpu_run);
2717 }
2718 }
2719 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2720 break;
2721 n_ceded = 0;
2722 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2723 if (!v->arch.pending_exceptions)
2724 n_ceded += v->arch.ceded;
2725 else
2726 v->arch.ceded = 0;
2727 }
2728 vc->runner = vcpu;
2729 if (n_ceded == vc->n_runnable) {
2730 kvmppc_vcore_blocked(vc);
2731 } else if (need_resched()) {
2732 kvmppc_vcore_preempt(vc);
2733 /* Let something else run */
2734 cond_resched_lock(&vc->lock);
2735 if (vc->vcore_state == VCORE_PREEMPT)
2736 kvmppc_vcore_end_preempt(vc);
2737 } else {
2738 kvmppc_run_core(vc);
2739 }
2740 vc->runner = NULL;
2741 }
2742
2743 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2744 (vc->vcore_state == VCORE_RUNNING ||
2745 vc->vcore_state == VCORE_EXITING ||
2746 vc->vcore_state == VCORE_PIGGYBACK))
2747 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2748
2749 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2750 kvmppc_vcore_end_preempt(vc);
2751
2752 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2753 kvmppc_remove_runnable(vc, vcpu);
2754 vcpu->stat.signal_exits++;
2755 kvm_run->exit_reason = KVM_EXIT_INTR;
2756 vcpu->arch.ret = -EINTR;
2757 }
2758
2759 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2760 /* Wake up some vcpu to run the core */
2761 v = list_first_entry(&vc->runnable_threads,
2762 struct kvm_vcpu, arch.run_list);
2763 wake_up(&v->arch.cpu_run);
2764 }
2765
2766 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2767 spin_unlock(&vc->lock);
2768 return vcpu->arch.ret;
2769 }
2770
2771 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2772 {
2773 int r;
2774 int srcu_idx;
2775
2776 if (!vcpu->arch.sane) {
2777 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2778 return -EINVAL;
2779 }
2780
2781 kvmppc_core_prepare_to_enter(vcpu);
2782
2783 /* No need to go into the guest when all we'll do is come back out */
2784 if (signal_pending(current)) {
2785 run->exit_reason = KVM_EXIT_INTR;
2786 return -EINTR;
2787 }
2788
2789 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2790 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2791 smp_mb();
2792
2793 /* On the first time here, set up HTAB and VRMA */
2794 if (!vcpu->kvm->arch.hpte_setup_done) {
2795 r = kvmppc_hv_setup_htab_rma(vcpu);
2796 if (r)
2797 goto out;
2798 }
2799
2800 flush_all_to_thread(current);
2801
2802 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2803 vcpu->arch.pgdir = current->mm->pgd;
2804 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2805
2806 do {
2807 r = kvmppc_run_vcpu(run, vcpu);
2808
2809 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2810 !(vcpu->arch.shregs.msr & MSR_PR)) {
2811 trace_kvm_hcall_enter(vcpu);
2812 r = kvmppc_pseries_do_hcall(vcpu);
2813 trace_kvm_hcall_exit(vcpu, r);
2814 kvmppc_core_prepare_to_enter(vcpu);
2815 } else if (r == RESUME_PAGE_FAULT) {
2816 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2817 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2818 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2819 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2820 }
2821 } while (is_kvmppc_resume_guest(r));
2822
2823 out:
2824 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2825 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2826 return r;
2827 }
2828
2829 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2830 int linux_psize)
2831 {
2832 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2833
2834 if (!def->shift)
2835 return;
2836 (*sps)->page_shift = def->shift;
2837 (*sps)->slb_enc = def->sllp;
2838 (*sps)->enc[0].page_shift = def->shift;
2839 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2840 /*
2841 * Add 16MB MPSS support if host supports it
2842 */
2843 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2844 (*sps)->enc[1].page_shift = 24;
2845 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2846 }
2847 (*sps)++;
2848 }
2849
2850 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2851 struct kvm_ppc_smmu_info *info)
2852 {
2853 struct kvm_ppc_one_seg_page_size *sps;
2854
2855 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2856 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2857 info->flags |= KVM_PPC_1T_SEGMENTS;
2858 info->slb_size = mmu_slb_size;
2859
2860 /* We only support these sizes for now, and no muti-size segments */
2861 sps = &info->sps[0];
2862 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2863 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2864 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2865
2866 return 0;
2867 }
2868
2869 /*
2870 * Get (and clear) the dirty memory log for a memory slot.
2871 */
2872 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2873 struct kvm_dirty_log *log)
2874 {
2875 struct kvm_memslots *slots;
2876 struct kvm_memory_slot *memslot;
2877 int r;
2878 unsigned long n;
2879
2880 mutex_lock(&kvm->slots_lock);
2881
2882 r = -EINVAL;
2883 if (log->slot >= KVM_USER_MEM_SLOTS)
2884 goto out;
2885
2886 slots = kvm_memslots(kvm);
2887 memslot = id_to_memslot(slots, log->slot);
2888 r = -ENOENT;
2889 if (!memslot->dirty_bitmap)
2890 goto out;
2891
2892 n = kvm_dirty_bitmap_bytes(memslot);
2893 memset(memslot->dirty_bitmap, 0, n);
2894
2895 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2896 if (r)
2897 goto out;
2898
2899 r = -EFAULT;
2900 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2901 goto out;
2902
2903 r = 0;
2904 out:
2905 mutex_unlock(&kvm->slots_lock);
2906 return r;
2907 }
2908
2909 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2910 struct kvm_memory_slot *dont)
2911 {
2912 if (!dont || free->arch.rmap != dont->arch.rmap) {
2913 vfree(free->arch.rmap);
2914 free->arch.rmap = NULL;
2915 }
2916 }
2917
2918 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2919 unsigned long npages)
2920 {
2921 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2922 if (!slot->arch.rmap)
2923 return -ENOMEM;
2924
2925 return 0;
2926 }
2927
2928 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2929 struct kvm_memory_slot *memslot,
2930 const struct kvm_userspace_memory_region *mem)
2931 {
2932 return 0;
2933 }
2934
2935 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2936 const struct kvm_userspace_memory_region *mem,
2937 const struct kvm_memory_slot *old,
2938 const struct kvm_memory_slot *new)
2939 {
2940 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2941 struct kvm_memslots *slots;
2942 struct kvm_memory_slot *memslot;
2943
2944 if (npages && old->npages) {
2945 /*
2946 * If modifying a memslot, reset all the rmap dirty bits.
2947 * If this is a new memslot, we don't need to do anything
2948 * since the rmap array starts out as all zeroes,
2949 * i.e. no pages are dirty.
2950 */
2951 slots = kvm_memslots(kvm);
2952 memslot = id_to_memslot(slots, mem->slot);
2953 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2954 }
2955 }
2956
2957 /*
2958 * Update LPCR values in kvm->arch and in vcores.
2959 * Caller must hold kvm->lock.
2960 */
2961 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2962 {
2963 long int i;
2964 u32 cores_done = 0;
2965
2966 if ((kvm->arch.lpcr & mask) == lpcr)
2967 return;
2968
2969 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2970
2971 for (i = 0; i < KVM_MAX_VCORES; ++i) {
2972 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2973 if (!vc)
2974 continue;
2975 spin_lock(&vc->lock);
2976 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2977 spin_unlock(&vc->lock);
2978 if (++cores_done >= kvm->arch.online_vcores)
2979 break;
2980 }
2981 }
2982
2983 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2984 {
2985 return;
2986 }
2987
2988 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2989 {
2990 int err = 0;
2991 struct kvm *kvm = vcpu->kvm;
2992 unsigned long hva;
2993 struct kvm_memory_slot *memslot;
2994 struct vm_area_struct *vma;
2995 unsigned long lpcr = 0, senc;
2996 unsigned long psize, porder;
2997 int srcu_idx;
2998
2999 mutex_lock(&kvm->lock);
3000 if (kvm->arch.hpte_setup_done)
3001 goto out; /* another vcpu beat us to it */
3002
3003 /* Allocate hashed page table (if not done already) and reset it */
3004 if (!kvm->arch.hpt_virt) {
3005 err = kvmppc_alloc_hpt(kvm, NULL);
3006 if (err) {
3007 pr_err("KVM: Couldn't alloc HPT\n");
3008 goto out;
3009 }
3010 }
3011
3012 /* Look up the memslot for guest physical address 0 */
3013 srcu_idx = srcu_read_lock(&kvm->srcu);
3014 memslot = gfn_to_memslot(kvm, 0);
3015
3016 /* We must have some memory at 0 by now */
3017 err = -EINVAL;
3018 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3019 goto out_srcu;
3020
3021 /* Look up the VMA for the start of this memory slot */
3022 hva = memslot->userspace_addr;
3023 down_read(&current->mm->mmap_sem);
3024 vma = find_vma(current->mm, hva);
3025 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3026 goto up_out;
3027
3028 psize = vma_kernel_pagesize(vma);
3029 porder = __ilog2(psize);
3030
3031 up_read(&current->mm->mmap_sem);
3032
3033 /* We can handle 4k, 64k or 16M pages in the VRMA */
3034 err = -EINVAL;
3035 if (!(psize == 0x1000 || psize == 0x10000 ||
3036 psize == 0x1000000))
3037 goto out_srcu;
3038
3039 /* Update VRMASD field in the LPCR */
3040 senc = slb_pgsize_encoding(psize);
3041 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3042 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3043 /* the -4 is to account for senc values starting at 0x10 */
3044 lpcr = senc << (LPCR_VRMASD_SH - 4);
3045
3046 /* Create HPTEs in the hash page table for the VRMA */
3047 kvmppc_map_vrma(vcpu, memslot, porder);
3048
3049 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3050
3051 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3052 smp_wmb();
3053 kvm->arch.hpte_setup_done = 1;
3054 err = 0;
3055 out_srcu:
3056 srcu_read_unlock(&kvm->srcu, srcu_idx);
3057 out:
3058 mutex_unlock(&kvm->lock);
3059 return err;
3060
3061 up_out:
3062 up_read(&current->mm->mmap_sem);
3063 goto out_srcu;
3064 }
3065
3066 #ifdef CONFIG_KVM_XICS
3067 static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
3068 void *hcpu)
3069 {
3070 unsigned long cpu = (long)hcpu;
3071
3072 switch (action) {
3073 case CPU_UP_PREPARE:
3074 case CPU_UP_PREPARE_FROZEN:
3075 kvmppc_set_host_core(cpu);
3076 break;
3077
3078 #ifdef CONFIG_HOTPLUG_CPU
3079 case CPU_DEAD:
3080 case CPU_DEAD_FROZEN:
3081 case CPU_UP_CANCELED:
3082 case CPU_UP_CANCELED_FROZEN:
3083 kvmppc_clear_host_core(cpu);
3084 break;
3085 #endif
3086 default:
3087 break;
3088 }
3089
3090 return NOTIFY_OK;
3091 }
3092
3093 static struct notifier_block kvmppc_cpu_notifier = {
3094 .notifier_call = kvmppc_cpu_notify,
3095 };
3096
3097 /*
3098 * Allocate a per-core structure for managing state about which cores are
3099 * running in the host versus the guest and for exchanging data between
3100 * real mode KVM and CPU running in the host.
3101 * This is only done for the first VM.
3102 * The allocated structure stays even if all VMs have stopped.
3103 * It is only freed when the kvm-hv module is unloaded.
3104 * It's OK for this routine to fail, we just don't support host
3105 * core operations like redirecting H_IPI wakeups.
3106 */
3107 void kvmppc_alloc_host_rm_ops(void)
3108 {
3109 struct kvmppc_host_rm_ops *ops;
3110 unsigned long l_ops;
3111 int cpu, core;
3112 int size;
3113
3114 /* Not the first time here ? */
3115 if (kvmppc_host_rm_ops_hv != NULL)
3116 return;
3117
3118 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3119 if (!ops)
3120 return;
3121
3122 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3123 ops->rm_core = kzalloc(size, GFP_KERNEL);
3124
3125 if (!ops->rm_core) {
3126 kfree(ops);
3127 return;
3128 }
3129
3130 get_online_cpus();
3131
3132 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3133 if (!cpu_online(cpu))
3134 continue;
3135
3136 core = cpu >> threads_shift;
3137 ops->rm_core[core].rm_state.in_host = 1;
3138 }
3139
3140 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3141
3142 /*
3143 * Make the contents of the kvmppc_host_rm_ops structure visible
3144 * to other CPUs before we assign it to the global variable.
3145 * Do an atomic assignment (no locks used here), but if someone
3146 * beats us to it, just free our copy and return.
3147 */
3148 smp_wmb();
3149 l_ops = (unsigned long) ops;
3150
3151 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3152 put_online_cpus();
3153 kfree(ops->rm_core);
3154 kfree(ops);
3155 return;
3156 }
3157
3158 register_cpu_notifier(&kvmppc_cpu_notifier);
3159
3160 put_online_cpus();
3161 }
3162
3163 void kvmppc_free_host_rm_ops(void)
3164 {
3165 if (kvmppc_host_rm_ops_hv) {
3166 unregister_cpu_notifier(&kvmppc_cpu_notifier);
3167 kfree(kvmppc_host_rm_ops_hv->rm_core);
3168 kfree(kvmppc_host_rm_ops_hv);
3169 kvmppc_host_rm_ops_hv = NULL;
3170 }
3171 }
3172 #endif
3173
3174 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3175 {
3176 unsigned long lpcr, lpid;
3177 char buf[32];
3178
3179 /* Allocate the guest's logical partition ID */
3180
3181 lpid = kvmppc_alloc_lpid();
3182 if ((long)lpid < 0)
3183 return -ENOMEM;
3184 kvm->arch.lpid = lpid;
3185
3186 kvmppc_alloc_host_rm_ops();
3187
3188 /*
3189 * Since we don't flush the TLB when tearing down a VM,
3190 * and this lpid might have previously been used,
3191 * make sure we flush on each core before running the new VM.
3192 */
3193 cpumask_setall(&kvm->arch.need_tlb_flush);
3194
3195 /* Start out with the default set of hcalls enabled */
3196 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3197 sizeof(kvm->arch.enabled_hcalls));
3198
3199 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3200
3201 /* Init LPCR for virtual RMA mode */
3202 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3203 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3204 lpcr &= LPCR_PECE | LPCR_LPES;
3205 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3206 LPCR_VPM0 | LPCR_VPM1;
3207 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3208 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3209 /* On POWER8 turn on online bit to enable PURR/SPURR */
3210 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3211 lpcr |= LPCR_ONL;
3212 kvm->arch.lpcr = lpcr;
3213
3214 /*
3215 * Track that we now have a HV mode VM active. This blocks secondary
3216 * CPU threads from coming online.
3217 */
3218 kvm_hv_vm_activated();
3219
3220 /*
3221 * Create a debugfs directory for the VM
3222 */
3223 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3224 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3225 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3226 kvmppc_mmu_debugfs_init(kvm);
3227
3228 return 0;
3229 }
3230
3231 static void kvmppc_free_vcores(struct kvm *kvm)
3232 {
3233 long int i;
3234
3235 for (i = 0; i < KVM_MAX_VCORES; ++i)
3236 kfree(kvm->arch.vcores[i]);
3237 kvm->arch.online_vcores = 0;
3238 }
3239
3240 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3241 {
3242 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3243
3244 kvm_hv_vm_deactivated();
3245
3246 kvmppc_free_vcores(kvm);
3247
3248 kvmppc_free_hpt(kvm);
3249 }
3250
3251 /* We don't need to emulate any privileged instructions or dcbz */
3252 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3253 unsigned int inst, int *advance)
3254 {
3255 return EMULATE_FAIL;
3256 }
3257
3258 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3259 ulong spr_val)
3260 {
3261 return EMULATE_FAIL;
3262 }
3263
3264 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3265 ulong *spr_val)
3266 {
3267 return EMULATE_FAIL;
3268 }
3269
3270 static int kvmppc_core_check_processor_compat_hv(void)
3271 {
3272 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3273 !cpu_has_feature(CPU_FTR_ARCH_206))
3274 return -EIO;
3275 /*
3276 * Disable KVM for Power9, untill the required bits merged.
3277 */
3278 if (cpu_has_feature(CPU_FTR_ARCH_300))
3279 return -EIO;
3280
3281 return 0;
3282 }
3283
3284 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3285 unsigned int ioctl, unsigned long arg)
3286 {
3287 struct kvm *kvm __maybe_unused = filp->private_data;
3288 void __user *argp = (void __user *)arg;
3289 long r;
3290
3291 switch (ioctl) {
3292
3293 case KVM_PPC_ALLOCATE_HTAB: {
3294 u32 htab_order;
3295
3296 r = -EFAULT;
3297 if (get_user(htab_order, (u32 __user *)argp))
3298 break;
3299 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3300 if (r)
3301 break;
3302 r = -EFAULT;
3303 if (put_user(htab_order, (u32 __user *)argp))
3304 break;
3305 r = 0;
3306 break;
3307 }
3308
3309 case KVM_PPC_GET_HTAB_FD: {
3310 struct kvm_get_htab_fd ghf;
3311
3312 r = -EFAULT;
3313 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3314 break;
3315 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3316 break;
3317 }
3318
3319 default:
3320 r = -ENOTTY;
3321 }
3322
3323 return r;
3324 }
3325
3326 /*
3327 * List of hcall numbers to enable by default.
3328 * For compatibility with old userspace, we enable by default
3329 * all hcalls that were implemented before the hcall-enabling
3330 * facility was added. Note this list should not include H_RTAS.
3331 */
3332 static unsigned int default_hcall_list[] = {
3333 H_REMOVE,
3334 H_ENTER,
3335 H_READ,
3336 H_PROTECT,
3337 H_BULK_REMOVE,
3338 H_GET_TCE,
3339 H_PUT_TCE,
3340 H_SET_DABR,
3341 H_SET_XDABR,
3342 H_CEDE,
3343 H_PROD,
3344 H_CONFER,
3345 H_REGISTER_VPA,
3346 #ifdef CONFIG_KVM_XICS
3347 H_EOI,
3348 H_CPPR,
3349 H_IPI,
3350 H_IPOLL,
3351 H_XIRR,
3352 H_XIRR_X,
3353 #endif
3354 0
3355 };
3356
3357 static void init_default_hcalls(void)
3358 {
3359 int i;
3360 unsigned int hcall;
3361
3362 for (i = 0; default_hcall_list[i]; ++i) {
3363 hcall = default_hcall_list[i];
3364 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3365 __set_bit(hcall / 4, default_enabled_hcalls);
3366 }
3367 }
3368
3369 static struct kvmppc_ops kvm_ops_hv = {
3370 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3371 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3372 .get_one_reg = kvmppc_get_one_reg_hv,
3373 .set_one_reg = kvmppc_set_one_reg_hv,
3374 .vcpu_load = kvmppc_core_vcpu_load_hv,
3375 .vcpu_put = kvmppc_core_vcpu_put_hv,
3376 .set_msr = kvmppc_set_msr_hv,
3377 .vcpu_run = kvmppc_vcpu_run_hv,
3378 .vcpu_create = kvmppc_core_vcpu_create_hv,
3379 .vcpu_free = kvmppc_core_vcpu_free_hv,
3380 .check_requests = kvmppc_core_check_requests_hv,
3381 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3382 .flush_memslot = kvmppc_core_flush_memslot_hv,
3383 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3384 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3385 .unmap_hva = kvm_unmap_hva_hv,
3386 .unmap_hva_range = kvm_unmap_hva_range_hv,
3387 .age_hva = kvm_age_hva_hv,
3388 .test_age_hva = kvm_test_age_hva_hv,
3389 .set_spte_hva = kvm_set_spte_hva_hv,
3390 .mmu_destroy = kvmppc_mmu_destroy_hv,
3391 .free_memslot = kvmppc_core_free_memslot_hv,
3392 .create_memslot = kvmppc_core_create_memslot_hv,
3393 .init_vm = kvmppc_core_init_vm_hv,
3394 .destroy_vm = kvmppc_core_destroy_vm_hv,
3395 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3396 .emulate_op = kvmppc_core_emulate_op_hv,
3397 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3398 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3399 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3400 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3401 .hcall_implemented = kvmppc_hcall_impl_hv,
3402 };
3403
3404 static int kvmppc_book3s_init_hv(void)
3405 {
3406 int r;
3407 /*
3408 * FIXME!! Do we need to check on all cpus ?
3409 */
3410 r = kvmppc_core_check_processor_compat_hv();
3411 if (r < 0)
3412 return -ENODEV;
3413
3414 kvm_ops_hv.owner = THIS_MODULE;
3415 kvmppc_hv_ops = &kvm_ops_hv;
3416
3417 init_default_hcalls();
3418
3419 init_vcore_lists();
3420
3421 r = kvmppc_mmu_hv_init();
3422 return r;
3423 }
3424
3425 static void kvmppc_book3s_exit_hv(void)
3426 {
3427 kvmppc_free_host_rm_ops();
3428 kvmppc_hv_ops = NULL;
3429 }
3430
3431 module_init(kvmppc_book3s_init_hv);
3432 module_exit(kvmppc_book3s_exit_hv);
3433 MODULE_LICENSE("GPL");
3434 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3435 MODULE_ALIAS("devname:kvm");