]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Revert "KVM: PPC: Book3S HV: POWER9 does not require secondary thread management"
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/disassemble.h>
51 #include <asm/cputable.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <linux/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/kvm_ppc.h>
57 #include <asm/kvm_book3s.h>
58 #include <asm/mmu_context.h>
59 #include <asm/lppaca.h>
60 #include <asm/processor.h>
61 #include <asm/cputhreads.h>
62 #include <asm/page.h>
63 #include <asm/hvcall.h>
64 #include <asm/switch_to.h>
65 #include <asm/smp.h>
66 #include <asm/dbell.h>
67 #include <asm/hmi.h>
68 #include <asm/pnv-pci.h>
69 #include <asm/mmu.h>
70 #include <asm/opal.h>
71 #include <asm/xics.h>
72 #include <asm/xive.h>
73
74 #include "book3s.h"
75
76 #define CREATE_TRACE_POINTS
77 #include "trace_hv.h"
78
79 /* #define EXIT_DEBUG */
80 /* #define EXIT_DEBUG_SIMPLE */
81 /* #define EXIT_DEBUG_INT */
82
83 /* Used to indicate that a guest page fault needs to be handled */
84 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
85 /* Used to indicate that a guest passthrough interrupt needs to be handled */
86 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
87
88 /* Used as a "null" value for timebase values */
89 #define TB_NIL (~(u64)0)
90
91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
92
93 static int dynamic_mt_modes = 6;
94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 static int target_smt_mode;
97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
99
100 #ifdef CONFIG_KVM_XICS
101 static struct kernel_param_ops module_param_ops = {
102 .set = param_set_int,
103 .get = param_get_int,
104 };
105
106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
107 S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
109
110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
111 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
113 #endif
114
115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
117
118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
119 int *ip)
120 {
121 int i = *ip;
122 struct kvm_vcpu *vcpu;
123
124 while (++i < MAX_SMT_THREADS) {
125 vcpu = READ_ONCE(vc->runnable_threads[i]);
126 if (vcpu) {
127 *ip = i;
128 return vcpu;
129 }
130 }
131 return NULL;
132 }
133
134 /* Used to traverse the list of runnable threads for a given vcore */
135 #define for_each_runnable_thread(i, vcpu, vc) \
136 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
137
138 static bool kvmppc_ipi_thread(int cpu)
139 {
140 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
141
142 /* On POWER9 we can use msgsnd to IPI any cpu */
143 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144 msg |= get_hard_smp_processor_id(cpu);
145 smp_mb();
146 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
147 return true;
148 }
149
150 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
151 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
152 preempt_disable();
153 if (cpu_first_thread_sibling(cpu) ==
154 cpu_first_thread_sibling(smp_processor_id())) {
155 msg |= cpu_thread_in_core(cpu);
156 smp_mb();
157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158 preempt_enable();
159 return true;
160 }
161 preempt_enable();
162 }
163
164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 if (cpu >= 0 && cpu < nr_cpu_ids) {
166 if (paca[cpu].kvm_hstate.xics_phys) {
167 xics_wake_cpu(cpu);
168 return true;
169 }
170 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
171 return true;
172 }
173 #endif
174
175 return false;
176 }
177
178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
179 {
180 int cpu;
181 struct swait_queue_head *wqp;
182
183 wqp = kvm_arch_vcpu_wq(vcpu);
184 if (swq_has_sleeper(wqp)) {
185 swake_up(wqp);
186 ++vcpu->stat.halt_wakeup;
187 }
188
189 cpu = READ_ONCE(vcpu->arch.thread_cpu);
190 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
191 return;
192
193 /* CPU points to the first thread of the core */
194 cpu = vcpu->cpu;
195 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196 smp_send_reschedule(cpu);
197 }
198
199 /*
200 * We use the vcpu_load/put functions to measure stolen time.
201 * Stolen time is counted as time when either the vcpu is able to
202 * run as part of a virtual core, but the task running the vcore
203 * is preempted or sleeping, or when the vcpu needs something done
204 * in the kernel by the task running the vcpu, but that task is
205 * preempted or sleeping. Those two things have to be counted
206 * separately, since one of the vcpu tasks will take on the job
207 * of running the core, and the other vcpu tasks in the vcore will
208 * sleep waiting for it to do that, but that sleep shouldn't count
209 * as stolen time.
210 *
211 * Hence we accumulate stolen time when the vcpu can run as part of
212 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213 * needs its task to do other things in the kernel (for example,
214 * service a page fault) in busy_stolen. We don't accumulate
215 * stolen time for a vcore when it is inactive, or for a vcpu
216 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
217 * a misnomer; it means that the vcpu task is not executing in
218 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219 * the kernel. We don't have any way of dividing up that time
220 * between time that the vcpu is genuinely stopped, time that
221 * the task is actively working on behalf of the vcpu, and time
222 * that the task is preempted, so we don't count any of it as
223 * stolen.
224 *
225 * Updates to busy_stolen are protected by arch.tbacct_lock;
226 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227 * lock. The stolen times are measured in units of timebase ticks.
228 * (Note that the != TB_NIL checks below are purely defensive;
229 * they should never fail.)
230 */
231
232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
233 {
234 unsigned long flags;
235
236 spin_lock_irqsave(&vc->stoltb_lock, flags);
237 vc->preempt_tb = mftb();
238 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
239 }
240
241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(&vc->stoltb_lock, flags);
246 if (vc->preempt_tb != TB_NIL) {
247 vc->stolen_tb += mftb() - vc->preempt_tb;
248 vc->preempt_tb = TB_NIL;
249 }
250 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
251 }
252
253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
254 {
255 struct kvmppc_vcore *vc = vcpu->arch.vcore;
256 unsigned long flags;
257
258 /*
259 * We can test vc->runner without taking the vcore lock,
260 * because only this task ever sets vc->runner to this
261 * vcpu, and once it is set to this vcpu, only this task
262 * ever sets it to NULL.
263 */
264 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265 kvmppc_core_end_stolen(vc);
266
267 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269 vcpu->arch.busy_preempt != TB_NIL) {
270 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271 vcpu->arch.busy_preempt = TB_NIL;
272 }
273 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
274 }
275
276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
277 {
278 struct kvmppc_vcore *vc = vcpu->arch.vcore;
279 unsigned long flags;
280
281 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282 kvmppc_core_start_stolen(vc);
283
284 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286 vcpu->arch.busy_preempt = mftb();
287 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
288 }
289
290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
291 {
292 /*
293 * Check for illegal transactional state bit combination
294 * and if we find it, force the TS field to a safe state.
295 */
296 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
297 msr &= ~MSR_TS_MASK;
298 vcpu->arch.shregs.msr = msr;
299 kvmppc_end_cede(vcpu);
300 }
301
302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
303 {
304 vcpu->arch.pvr = pvr;
305 }
306
307 /* Dummy value used in computing PCR value below */
308 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
309
310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
311 {
312 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313 struct kvmppc_vcore *vc = vcpu->arch.vcore;
314
315 /* We can (emulate) our own architecture version and anything older */
316 if (cpu_has_feature(CPU_FTR_ARCH_300))
317 host_pcr_bit = PCR_ARCH_300;
318 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319 host_pcr_bit = PCR_ARCH_207;
320 else if (cpu_has_feature(CPU_FTR_ARCH_206))
321 host_pcr_bit = PCR_ARCH_206;
322 else
323 host_pcr_bit = PCR_ARCH_205;
324
325 /* Determine lowest PCR bit needed to run guest in given PVR level */
326 guest_pcr_bit = host_pcr_bit;
327 if (arch_compat) {
328 switch (arch_compat) {
329 case PVR_ARCH_205:
330 guest_pcr_bit = PCR_ARCH_205;
331 break;
332 case PVR_ARCH_206:
333 case PVR_ARCH_206p:
334 guest_pcr_bit = PCR_ARCH_206;
335 break;
336 case PVR_ARCH_207:
337 guest_pcr_bit = PCR_ARCH_207;
338 break;
339 case PVR_ARCH_300:
340 guest_pcr_bit = PCR_ARCH_300;
341 break;
342 default:
343 return -EINVAL;
344 }
345 }
346
347 /* Check requested PCR bits don't exceed our capabilities */
348 if (guest_pcr_bit > host_pcr_bit)
349 return -EINVAL;
350
351 spin_lock(&vc->lock);
352 vc->arch_compat = arch_compat;
353 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354 vc->pcr = host_pcr_bit - guest_pcr_bit;
355 spin_unlock(&vc->lock);
356
357 return 0;
358 }
359
360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
361 {
362 int r;
363
364 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
366 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367 for (r = 0; r < 16; ++r)
368 pr_err("r%2d = %.16lx r%d = %.16lx\n",
369 r, kvmppc_get_gpr(vcpu, r),
370 r+16, kvmppc_get_gpr(vcpu, r+16));
371 pr_err("ctr = %.16lx lr = %.16lx\n",
372 vcpu->arch.ctr, vcpu->arch.lr);
373 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
380 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382 pr_err("fault dar = %.16lx dsisr = %.8x\n",
383 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385 for (r = 0; r < vcpu->arch.slb_max; ++r)
386 pr_err(" ESID = %.16llx VSID = %.16llx\n",
387 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390 vcpu->arch.last_inst);
391 }
392
393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
394 {
395 struct kvm_vcpu *ret;
396
397 mutex_lock(&kvm->lock);
398 ret = kvm_get_vcpu_by_id(kvm, id);
399 mutex_unlock(&kvm->lock);
400 return ret;
401 }
402
403 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
404 {
405 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
406 vpa->yield_count = cpu_to_be32(1);
407 }
408
409 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
410 unsigned long addr, unsigned long len)
411 {
412 /* check address is cacheline aligned */
413 if (addr & (L1_CACHE_BYTES - 1))
414 return -EINVAL;
415 spin_lock(&vcpu->arch.vpa_update_lock);
416 if (v->next_gpa != addr || v->len != len) {
417 v->next_gpa = addr;
418 v->len = addr ? len : 0;
419 v->update_pending = 1;
420 }
421 spin_unlock(&vcpu->arch.vpa_update_lock);
422 return 0;
423 }
424
425 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
426 struct reg_vpa {
427 u32 dummy;
428 union {
429 __be16 hword;
430 __be32 word;
431 } length;
432 };
433
434 static int vpa_is_registered(struct kvmppc_vpa *vpap)
435 {
436 if (vpap->update_pending)
437 return vpap->next_gpa != 0;
438 return vpap->pinned_addr != NULL;
439 }
440
441 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
442 unsigned long flags,
443 unsigned long vcpuid, unsigned long vpa)
444 {
445 struct kvm *kvm = vcpu->kvm;
446 unsigned long len, nb;
447 void *va;
448 struct kvm_vcpu *tvcpu;
449 int err;
450 int subfunc;
451 struct kvmppc_vpa *vpap;
452
453 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
454 if (!tvcpu)
455 return H_PARAMETER;
456
457 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
458 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
459 subfunc == H_VPA_REG_SLB) {
460 /* Registering new area - address must be cache-line aligned */
461 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
462 return H_PARAMETER;
463
464 /* convert logical addr to kernel addr and read length */
465 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
466 if (va == NULL)
467 return H_PARAMETER;
468 if (subfunc == H_VPA_REG_VPA)
469 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
470 else
471 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
472 kvmppc_unpin_guest_page(kvm, va, vpa, false);
473
474 /* Check length */
475 if (len > nb || len < sizeof(struct reg_vpa))
476 return H_PARAMETER;
477 } else {
478 vpa = 0;
479 len = 0;
480 }
481
482 err = H_PARAMETER;
483 vpap = NULL;
484 spin_lock(&tvcpu->arch.vpa_update_lock);
485
486 switch (subfunc) {
487 case H_VPA_REG_VPA: /* register VPA */
488 /*
489 * The size of our lppaca is 1kB because of the way we align
490 * it for the guest to avoid crossing a 4kB boundary. We only
491 * use 640 bytes of the structure though, so we should accept
492 * clients that set a size of 640.
493 */
494 if (len < 640)
495 break;
496 vpap = &tvcpu->arch.vpa;
497 err = 0;
498 break;
499
500 case H_VPA_REG_DTL: /* register DTL */
501 if (len < sizeof(struct dtl_entry))
502 break;
503 len -= len % sizeof(struct dtl_entry);
504
505 /* Check that they have previously registered a VPA */
506 err = H_RESOURCE;
507 if (!vpa_is_registered(&tvcpu->arch.vpa))
508 break;
509
510 vpap = &tvcpu->arch.dtl;
511 err = 0;
512 break;
513
514 case H_VPA_REG_SLB: /* register SLB shadow buffer */
515 /* Check that they have previously registered a VPA */
516 err = H_RESOURCE;
517 if (!vpa_is_registered(&tvcpu->arch.vpa))
518 break;
519
520 vpap = &tvcpu->arch.slb_shadow;
521 err = 0;
522 break;
523
524 case H_VPA_DEREG_VPA: /* deregister VPA */
525 /* Check they don't still have a DTL or SLB buf registered */
526 err = H_RESOURCE;
527 if (vpa_is_registered(&tvcpu->arch.dtl) ||
528 vpa_is_registered(&tvcpu->arch.slb_shadow))
529 break;
530
531 vpap = &tvcpu->arch.vpa;
532 err = 0;
533 break;
534
535 case H_VPA_DEREG_DTL: /* deregister DTL */
536 vpap = &tvcpu->arch.dtl;
537 err = 0;
538 break;
539
540 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
541 vpap = &tvcpu->arch.slb_shadow;
542 err = 0;
543 break;
544 }
545
546 if (vpap) {
547 vpap->next_gpa = vpa;
548 vpap->len = len;
549 vpap->update_pending = 1;
550 }
551
552 spin_unlock(&tvcpu->arch.vpa_update_lock);
553
554 return err;
555 }
556
557 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
558 {
559 struct kvm *kvm = vcpu->kvm;
560 void *va;
561 unsigned long nb;
562 unsigned long gpa;
563
564 /*
565 * We need to pin the page pointed to by vpap->next_gpa,
566 * but we can't call kvmppc_pin_guest_page under the lock
567 * as it does get_user_pages() and down_read(). So we
568 * have to drop the lock, pin the page, then get the lock
569 * again and check that a new area didn't get registered
570 * in the meantime.
571 */
572 for (;;) {
573 gpa = vpap->next_gpa;
574 spin_unlock(&vcpu->arch.vpa_update_lock);
575 va = NULL;
576 nb = 0;
577 if (gpa)
578 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
579 spin_lock(&vcpu->arch.vpa_update_lock);
580 if (gpa == vpap->next_gpa)
581 break;
582 /* sigh... unpin that one and try again */
583 if (va)
584 kvmppc_unpin_guest_page(kvm, va, gpa, false);
585 }
586
587 vpap->update_pending = 0;
588 if (va && nb < vpap->len) {
589 /*
590 * If it's now too short, it must be that userspace
591 * has changed the mappings underlying guest memory,
592 * so unregister the region.
593 */
594 kvmppc_unpin_guest_page(kvm, va, gpa, false);
595 va = NULL;
596 }
597 if (vpap->pinned_addr)
598 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
599 vpap->dirty);
600 vpap->gpa = gpa;
601 vpap->pinned_addr = va;
602 vpap->dirty = false;
603 if (va)
604 vpap->pinned_end = va + vpap->len;
605 }
606
607 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
608 {
609 if (!(vcpu->arch.vpa.update_pending ||
610 vcpu->arch.slb_shadow.update_pending ||
611 vcpu->arch.dtl.update_pending))
612 return;
613
614 spin_lock(&vcpu->arch.vpa_update_lock);
615 if (vcpu->arch.vpa.update_pending) {
616 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
617 if (vcpu->arch.vpa.pinned_addr)
618 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
619 }
620 if (vcpu->arch.dtl.update_pending) {
621 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
622 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
623 vcpu->arch.dtl_index = 0;
624 }
625 if (vcpu->arch.slb_shadow.update_pending)
626 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
627 spin_unlock(&vcpu->arch.vpa_update_lock);
628 }
629
630 /*
631 * Return the accumulated stolen time for the vcore up until `now'.
632 * The caller should hold the vcore lock.
633 */
634 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
635 {
636 u64 p;
637 unsigned long flags;
638
639 spin_lock_irqsave(&vc->stoltb_lock, flags);
640 p = vc->stolen_tb;
641 if (vc->vcore_state != VCORE_INACTIVE &&
642 vc->preempt_tb != TB_NIL)
643 p += now - vc->preempt_tb;
644 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
645 return p;
646 }
647
648 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
649 struct kvmppc_vcore *vc)
650 {
651 struct dtl_entry *dt;
652 struct lppaca *vpa;
653 unsigned long stolen;
654 unsigned long core_stolen;
655 u64 now;
656 unsigned long flags;
657
658 dt = vcpu->arch.dtl_ptr;
659 vpa = vcpu->arch.vpa.pinned_addr;
660 now = mftb();
661 core_stolen = vcore_stolen_time(vc, now);
662 stolen = core_stolen - vcpu->arch.stolen_logged;
663 vcpu->arch.stolen_logged = core_stolen;
664 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
665 stolen += vcpu->arch.busy_stolen;
666 vcpu->arch.busy_stolen = 0;
667 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
668 if (!dt || !vpa)
669 return;
670 memset(dt, 0, sizeof(struct dtl_entry));
671 dt->dispatch_reason = 7;
672 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
673 dt->timebase = cpu_to_be64(now + vc->tb_offset);
674 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
675 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
676 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
677 ++dt;
678 if (dt == vcpu->arch.dtl.pinned_end)
679 dt = vcpu->arch.dtl.pinned_addr;
680 vcpu->arch.dtl_ptr = dt;
681 /* order writing *dt vs. writing vpa->dtl_idx */
682 smp_wmb();
683 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
684 vcpu->arch.dtl.dirty = true;
685 }
686
687 /* See if there is a doorbell interrupt pending for a vcpu */
688 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
689 {
690 int thr;
691 struct kvmppc_vcore *vc;
692
693 if (vcpu->arch.doorbell_request)
694 return true;
695 /*
696 * Ensure that the read of vcore->dpdes comes after the read
697 * of vcpu->doorbell_request. This barrier matches the
698 * lwsync in book3s_hv_rmhandlers.S just before the
699 * fast_guest_return label.
700 */
701 smp_rmb();
702 vc = vcpu->arch.vcore;
703 thr = vcpu->vcpu_id - vc->first_vcpuid;
704 return !!(vc->dpdes & (1 << thr));
705 }
706
707 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
708 {
709 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
710 return true;
711 if ((!vcpu->arch.vcore->arch_compat) &&
712 cpu_has_feature(CPU_FTR_ARCH_207S))
713 return true;
714 return false;
715 }
716
717 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
718 unsigned long resource, unsigned long value1,
719 unsigned long value2)
720 {
721 switch (resource) {
722 case H_SET_MODE_RESOURCE_SET_CIABR:
723 if (!kvmppc_power8_compatible(vcpu))
724 return H_P2;
725 if (value2)
726 return H_P4;
727 if (mflags)
728 return H_UNSUPPORTED_FLAG_START;
729 /* Guests can't breakpoint the hypervisor */
730 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
731 return H_P3;
732 vcpu->arch.ciabr = value1;
733 return H_SUCCESS;
734 case H_SET_MODE_RESOURCE_SET_DAWR:
735 if (!kvmppc_power8_compatible(vcpu))
736 return H_P2;
737 if (mflags)
738 return H_UNSUPPORTED_FLAG_START;
739 if (value2 & DABRX_HYP)
740 return H_P4;
741 vcpu->arch.dawr = value1;
742 vcpu->arch.dawrx = value2;
743 return H_SUCCESS;
744 default:
745 return H_TOO_HARD;
746 }
747 }
748
749 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
750 {
751 struct kvmppc_vcore *vcore = target->arch.vcore;
752
753 /*
754 * We expect to have been called by the real mode handler
755 * (kvmppc_rm_h_confer()) which would have directly returned
756 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
757 * have useful work to do and should not confer) so we don't
758 * recheck that here.
759 */
760
761 spin_lock(&vcore->lock);
762 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
763 vcore->vcore_state != VCORE_INACTIVE &&
764 vcore->runner)
765 target = vcore->runner;
766 spin_unlock(&vcore->lock);
767
768 return kvm_vcpu_yield_to(target);
769 }
770
771 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
772 {
773 int yield_count = 0;
774 struct lppaca *lppaca;
775
776 spin_lock(&vcpu->arch.vpa_update_lock);
777 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
778 if (lppaca)
779 yield_count = be32_to_cpu(lppaca->yield_count);
780 spin_unlock(&vcpu->arch.vpa_update_lock);
781 return yield_count;
782 }
783
784 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
785 {
786 unsigned long req = kvmppc_get_gpr(vcpu, 3);
787 unsigned long target, ret = H_SUCCESS;
788 int yield_count;
789 struct kvm_vcpu *tvcpu;
790 int idx, rc;
791
792 if (req <= MAX_HCALL_OPCODE &&
793 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
794 return RESUME_HOST;
795
796 switch (req) {
797 case H_CEDE:
798 break;
799 case H_PROD:
800 target = kvmppc_get_gpr(vcpu, 4);
801 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
802 if (!tvcpu) {
803 ret = H_PARAMETER;
804 break;
805 }
806 tvcpu->arch.prodded = 1;
807 smp_mb();
808 if (tvcpu->arch.ceded)
809 kvmppc_fast_vcpu_kick_hv(tvcpu);
810 break;
811 case H_CONFER:
812 target = kvmppc_get_gpr(vcpu, 4);
813 if (target == -1)
814 break;
815 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
816 if (!tvcpu) {
817 ret = H_PARAMETER;
818 break;
819 }
820 yield_count = kvmppc_get_gpr(vcpu, 5);
821 if (kvmppc_get_yield_count(tvcpu) != yield_count)
822 break;
823 kvm_arch_vcpu_yield_to(tvcpu);
824 break;
825 case H_REGISTER_VPA:
826 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
827 kvmppc_get_gpr(vcpu, 5),
828 kvmppc_get_gpr(vcpu, 6));
829 break;
830 case H_RTAS:
831 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
832 return RESUME_HOST;
833
834 idx = srcu_read_lock(&vcpu->kvm->srcu);
835 rc = kvmppc_rtas_hcall(vcpu);
836 srcu_read_unlock(&vcpu->kvm->srcu, idx);
837
838 if (rc == -ENOENT)
839 return RESUME_HOST;
840 else if (rc == 0)
841 break;
842
843 /* Send the error out to userspace via KVM_RUN */
844 return rc;
845 case H_LOGICAL_CI_LOAD:
846 ret = kvmppc_h_logical_ci_load(vcpu);
847 if (ret == H_TOO_HARD)
848 return RESUME_HOST;
849 break;
850 case H_LOGICAL_CI_STORE:
851 ret = kvmppc_h_logical_ci_store(vcpu);
852 if (ret == H_TOO_HARD)
853 return RESUME_HOST;
854 break;
855 case H_SET_MODE:
856 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
857 kvmppc_get_gpr(vcpu, 5),
858 kvmppc_get_gpr(vcpu, 6),
859 kvmppc_get_gpr(vcpu, 7));
860 if (ret == H_TOO_HARD)
861 return RESUME_HOST;
862 break;
863 case H_XIRR:
864 case H_CPPR:
865 case H_EOI:
866 case H_IPI:
867 case H_IPOLL:
868 case H_XIRR_X:
869 if (kvmppc_xics_enabled(vcpu)) {
870 if (xive_enabled()) {
871 ret = H_NOT_AVAILABLE;
872 return RESUME_GUEST;
873 }
874 ret = kvmppc_xics_hcall(vcpu, req);
875 break;
876 }
877 return RESUME_HOST;
878 case H_PUT_TCE:
879 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
880 kvmppc_get_gpr(vcpu, 5),
881 kvmppc_get_gpr(vcpu, 6));
882 if (ret == H_TOO_HARD)
883 return RESUME_HOST;
884 break;
885 case H_PUT_TCE_INDIRECT:
886 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
887 kvmppc_get_gpr(vcpu, 5),
888 kvmppc_get_gpr(vcpu, 6),
889 kvmppc_get_gpr(vcpu, 7));
890 if (ret == H_TOO_HARD)
891 return RESUME_HOST;
892 break;
893 case H_STUFF_TCE:
894 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
895 kvmppc_get_gpr(vcpu, 5),
896 kvmppc_get_gpr(vcpu, 6),
897 kvmppc_get_gpr(vcpu, 7));
898 if (ret == H_TOO_HARD)
899 return RESUME_HOST;
900 break;
901 default:
902 return RESUME_HOST;
903 }
904 kvmppc_set_gpr(vcpu, 3, ret);
905 vcpu->arch.hcall_needed = 0;
906 return RESUME_GUEST;
907 }
908
909 static int kvmppc_hcall_impl_hv(unsigned long cmd)
910 {
911 switch (cmd) {
912 case H_CEDE:
913 case H_PROD:
914 case H_CONFER:
915 case H_REGISTER_VPA:
916 case H_SET_MODE:
917 case H_LOGICAL_CI_LOAD:
918 case H_LOGICAL_CI_STORE:
919 #ifdef CONFIG_KVM_XICS
920 case H_XIRR:
921 case H_CPPR:
922 case H_EOI:
923 case H_IPI:
924 case H_IPOLL:
925 case H_XIRR_X:
926 #endif
927 return 1;
928 }
929
930 /* See if it's in the real-mode table */
931 return kvmppc_hcall_impl_hv_realmode(cmd);
932 }
933
934 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
935 struct kvm_vcpu *vcpu)
936 {
937 u32 last_inst;
938
939 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
940 EMULATE_DONE) {
941 /*
942 * Fetch failed, so return to guest and
943 * try executing it again.
944 */
945 return RESUME_GUEST;
946 }
947
948 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
949 run->exit_reason = KVM_EXIT_DEBUG;
950 run->debug.arch.address = kvmppc_get_pc(vcpu);
951 return RESUME_HOST;
952 } else {
953 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
954 return RESUME_GUEST;
955 }
956 }
957
958 static void do_nothing(void *x)
959 {
960 }
961
962 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
963 {
964 int thr, cpu, pcpu, nthreads;
965 struct kvm_vcpu *v;
966 unsigned long dpdes;
967
968 nthreads = vcpu->kvm->arch.emul_smt_mode;
969 dpdes = 0;
970 cpu = vcpu->vcpu_id & ~(nthreads - 1);
971 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
972 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
973 if (!v)
974 continue;
975 /*
976 * If the vcpu is currently running on a physical cpu thread,
977 * interrupt it in order to pull it out of the guest briefly,
978 * which will update its vcore->dpdes value.
979 */
980 pcpu = READ_ONCE(v->cpu);
981 if (pcpu >= 0)
982 smp_call_function_single(pcpu, do_nothing, NULL, 1);
983 if (kvmppc_doorbell_pending(v))
984 dpdes |= 1 << thr;
985 }
986 return dpdes;
987 }
988
989 /*
990 * On POWER9, emulate doorbell-related instructions in order to
991 * give the guest the illusion of running on a multi-threaded core.
992 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
993 * and mfspr DPDES.
994 */
995 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
996 {
997 u32 inst, rb, thr;
998 unsigned long arg;
999 struct kvm *kvm = vcpu->kvm;
1000 struct kvm_vcpu *tvcpu;
1001
1002 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1003 return EMULATE_FAIL;
1004 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1005 return RESUME_GUEST;
1006 if (get_op(inst) != 31)
1007 return EMULATE_FAIL;
1008 rb = get_rb(inst);
1009 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1010 switch (get_xop(inst)) {
1011 case OP_31_XOP_MSGSNDP:
1012 arg = kvmppc_get_gpr(vcpu, rb);
1013 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1014 break;
1015 arg &= 0x3f;
1016 if (arg >= kvm->arch.emul_smt_mode)
1017 break;
1018 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1019 if (!tvcpu)
1020 break;
1021 if (!tvcpu->arch.doorbell_request) {
1022 tvcpu->arch.doorbell_request = 1;
1023 kvmppc_fast_vcpu_kick_hv(tvcpu);
1024 }
1025 break;
1026 case OP_31_XOP_MSGCLRP:
1027 arg = kvmppc_get_gpr(vcpu, rb);
1028 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1029 break;
1030 vcpu->arch.vcore->dpdes = 0;
1031 vcpu->arch.doorbell_request = 0;
1032 break;
1033 case OP_31_XOP_MFSPR:
1034 switch (get_sprn(inst)) {
1035 case SPRN_TIR:
1036 arg = thr;
1037 break;
1038 case SPRN_DPDES:
1039 arg = kvmppc_read_dpdes(vcpu);
1040 break;
1041 default:
1042 return EMULATE_FAIL;
1043 }
1044 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1045 break;
1046 default:
1047 return EMULATE_FAIL;
1048 }
1049 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1050 return RESUME_GUEST;
1051 }
1052
1053 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1054 struct task_struct *tsk)
1055 {
1056 int r = RESUME_HOST;
1057
1058 vcpu->stat.sum_exits++;
1059
1060 /*
1061 * This can happen if an interrupt occurs in the last stages
1062 * of guest entry or the first stages of guest exit (i.e. after
1063 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1064 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1065 * That can happen due to a bug, or due to a machine check
1066 * occurring at just the wrong time.
1067 */
1068 if (vcpu->arch.shregs.msr & MSR_HV) {
1069 printk(KERN_EMERG "KVM trap in HV mode!\n");
1070 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1071 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1072 vcpu->arch.shregs.msr);
1073 kvmppc_dump_regs(vcpu);
1074 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1075 run->hw.hardware_exit_reason = vcpu->arch.trap;
1076 return RESUME_HOST;
1077 }
1078 run->exit_reason = KVM_EXIT_UNKNOWN;
1079 run->ready_for_interrupt_injection = 1;
1080 switch (vcpu->arch.trap) {
1081 /* We're good on these - the host merely wanted to get our attention */
1082 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1083 vcpu->stat.dec_exits++;
1084 r = RESUME_GUEST;
1085 break;
1086 case BOOK3S_INTERRUPT_EXTERNAL:
1087 case BOOK3S_INTERRUPT_H_DOORBELL:
1088 case BOOK3S_INTERRUPT_H_VIRT:
1089 vcpu->stat.ext_intr_exits++;
1090 r = RESUME_GUEST;
1091 break;
1092 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1093 case BOOK3S_INTERRUPT_HMI:
1094 case BOOK3S_INTERRUPT_PERFMON:
1095 r = RESUME_GUEST;
1096 break;
1097 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1098 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1099 run->exit_reason = KVM_EXIT_NMI;
1100 run->hw.hardware_exit_reason = vcpu->arch.trap;
1101 /* Clear out the old NMI status from run->flags */
1102 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1103 /* Now set the NMI status */
1104 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1105 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1106 else
1107 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1108
1109 r = RESUME_HOST;
1110 /* Print the MCE event to host console. */
1111 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1112 break;
1113 case BOOK3S_INTERRUPT_PROGRAM:
1114 {
1115 ulong flags;
1116 /*
1117 * Normally program interrupts are delivered directly
1118 * to the guest by the hardware, but we can get here
1119 * as a result of a hypervisor emulation interrupt
1120 * (e40) getting turned into a 700 by BML RTAS.
1121 */
1122 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1123 kvmppc_core_queue_program(vcpu, flags);
1124 r = RESUME_GUEST;
1125 break;
1126 }
1127 case BOOK3S_INTERRUPT_SYSCALL:
1128 {
1129 /* hcall - punt to userspace */
1130 int i;
1131
1132 /* hypercall with MSR_PR has already been handled in rmode,
1133 * and never reaches here.
1134 */
1135
1136 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1137 for (i = 0; i < 9; ++i)
1138 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1139 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1140 vcpu->arch.hcall_needed = 1;
1141 r = RESUME_HOST;
1142 break;
1143 }
1144 /*
1145 * We get these next two if the guest accesses a page which it thinks
1146 * it has mapped but which is not actually present, either because
1147 * it is for an emulated I/O device or because the corresonding
1148 * host page has been paged out. Any other HDSI/HISI interrupts
1149 * have been handled already.
1150 */
1151 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1152 r = RESUME_PAGE_FAULT;
1153 break;
1154 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1155 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1156 vcpu->arch.fault_dsisr = 0;
1157 r = RESUME_PAGE_FAULT;
1158 break;
1159 /*
1160 * This occurs if the guest executes an illegal instruction.
1161 * If the guest debug is disabled, generate a program interrupt
1162 * to the guest. If guest debug is enabled, we need to check
1163 * whether the instruction is a software breakpoint instruction.
1164 * Accordingly return to Guest or Host.
1165 */
1166 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1167 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1168 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1169 swab32(vcpu->arch.emul_inst) :
1170 vcpu->arch.emul_inst;
1171 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1172 r = kvmppc_emulate_debug_inst(run, vcpu);
1173 } else {
1174 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1175 r = RESUME_GUEST;
1176 }
1177 break;
1178 /*
1179 * This occurs if the guest (kernel or userspace), does something that
1180 * is prohibited by HFSCR.
1181 * On POWER9, this could be a doorbell instruction that we need
1182 * to emulate.
1183 * Otherwise, we just generate a program interrupt to the guest.
1184 */
1185 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1186 r = EMULATE_FAIL;
1187 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1188 r = kvmppc_emulate_doorbell_instr(vcpu);
1189 if (r == EMULATE_FAIL) {
1190 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1191 r = RESUME_GUEST;
1192 }
1193 break;
1194 case BOOK3S_INTERRUPT_HV_RM_HARD:
1195 r = RESUME_PASSTHROUGH;
1196 break;
1197 default:
1198 kvmppc_dump_regs(vcpu);
1199 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1200 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1201 vcpu->arch.shregs.msr);
1202 run->hw.hardware_exit_reason = vcpu->arch.trap;
1203 r = RESUME_HOST;
1204 break;
1205 }
1206
1207 return r;
1208 }
1209
1210 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1211 struct kvm_sregs *sregs)
1212 {
1213 int i;
1214
1215 memset(sregs, 0, sizeof(struct kvm_sregs));
1216 sregs->pvr = vcpu->arch.pvr;
1217 for (i = 0; i < vcpu->arch.slb_max; i++) {
1218 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1219 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1220 }
1221
1222 return 0;
1223 }
1224
1225 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1226 struct kvm_sregs *sregs)
1227 {
1228 int i, j;
1229
1230 /* Only accept the same PVR as the host's, since we can't spoof it */
1231 if (sregs->pvr != vcpu->arch.pvr)
1232 return -EINVAL;
1233
1234 j = 0;
1235 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1236 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1237 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1238 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1239 ++j;
1240 }
1241 }
1242 vcpu->arch.slb_max = j;
1243
1244 return 0;
1245 }
1246
1247 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1248 bool preserve_top32)
1249 {
1250 struct kvm *kvm = vcpu->kvm;
1251 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1252 u64 mask;
1253
1254 mutex_lock(&kvm->lock);
1255 spin_lock(&vc->lock);
1256 /*
1257 * If ILE (interrupt little-endian) has changed, update the
1258 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1259 */
1260 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1261 struct kvm_vcpu *vcpu;
1262 int i;
1263
1264 kvm_for_each_vcpu(i, vcpu, kvm) {
1265 if (vcpu->arch.vcore != vc)
1266 continue;
1267 if (new_lpcr & LPCR_ILE)
1268 vcpu->arch.intr_msr |= MSR_LE;
1269 else
1270 vcpu->arch.intr_msr &= ~MSR_LE;
1271 }
1272 }
1273
1274 /*
1275 * Userspace can only modify DPFD (default prefetch depth),
1276 * ILE (interrupt little-endian) and TC (translation control).
1277 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1278 */
1279 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1280 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1281 mask |= LPCR_AIL;
1282 /*
1283 * On POWER9, allow userspace to enable large decrementer for the
1284 * guest, whether or not the host has it enabled.
1285 */
1286 if (cpu_has_feature(CPU_FTR_ARCH_300))
1287 mask |= LPCR_LD;
1288
1289 /* Broken 32-bit version of LPCR must not clear top bits */
1290 if (preserve_top32)
1291 mask &= 0xFFFFFFFF;
1292 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1293 spin_unlock(&vc->lock);
1294 mutex_unlock(&kvm->lock);
1295 }
1296
1297 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1298 union kvmppc_one_reg *val)
1299 {
1300 int r = 0;
1301 long int i;
1302
1303 switch (id) {
1304 case KVM_REG_PPC_DEBUG_INST:
1305 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1306 break;
1307 case KVM_REG_PPC_HIOR:
1308 *val = get_reg_val(id, 0);
1309 break;
1310 case KVM_REG_PPC_DABR:
1311 *val = get_reg_val(id, vcpu->arch.dabr);
1312 break;
1313 case KVM_REG_PPC_DABRX:
1314 *val = get_reg_val(id, vcpu->arch.dabrx);
1315 break;
1316 case KVM_REG_PPC_DSCR:
1317 *val = get_reg_val(id, vcpu->arch.dscr);
1318 break;
1319 case KVM_REG_PPC_PURR:
1320 *val = get_reg_val(id, vcpu->arch.purr);
1321 break;
1322 case KVM_REG_PPC_SPURR:
1323 *val = get_reg_val(id, vcpu->arch.spurr);
1324 break;
1325 case KVM_REG_PPC_AMR:
1326 *val = get_reg_val(id, vcpu->arch.amr);
1327 break;
1328 case KVM_REG_PPC_UAMOR:
1329 *val = get_reg_val(id, vcpu->arch.uamor);
1330 break;
1331 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1332 i = id - KVM_REG_PPC_MMCR0;
1333 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1334 break;
1335 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1336 i = id - KVM_REG_PPC_PMC1;
1337 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1338 break;
1339 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1340 i = id - KVM_REG_PPC_SPMC1;
1341 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1342 break;
1343 case KVM_REG_PPC_SIAR:
1344 *val = get_reg_val(id, vcpu->arch.siar);
1345 break;
1346 case KVM_REG_PPC_SDAR:
1347 *val = get_reg_val(id, vcpu->arch.sdar);
1348 break;
1349 case KVM_REG_PPC_SIER:
1350 *val = get_reg_val(id, vcpu->arch.sier);
1351 break;
1352 case KVM_REG_PPC_IAMR:
1353 *val = get_reg_val(id, vcpu->arch.iamr);
1354 break;
1355 case KVM_REG_PPC_PSPB:
1356 *val = get_reg_val(id, vcpu->arch.pspb);
1357 break;
1358 case KVM_REG_PPC_DPDES:
1359 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1360 break;
1361 case KVM_REG_PPC_VTB:
1362 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1363 break;
1364 case KVM_REG_PPC_DAWR:
1365 *val = get_reg_val(id, vcpu->arch.dawr);
1366 break;
1367 case KVM_REG_PPC_DAWRX:
1368 *val = get_reg_val(id, vcpu->arch.dawrx);
1369 break;
1370 case KVM_REG_PPC_CIABR:
1371 *val = get_reg_val(id, vcpu->arch.ciabr);
1372 break;
1373 case KVM_REG_PPC_CSIGR:
1374 *val = get_reg_val(id, vcpu->arch.csigr);
1375 break;
1376 case KVM_REG_PPC_TACR:
1377 *val = get_reg_val(id, vcpu->arch.tacr);
1378 break;
1379 case KVM_REG_PPC_TCSCR:
1380 *val = get_reg_val(id, vcpu->arch.tcscr);
1381 break;
1382 case KVM_REG_PPC_PID:
1383 *val = get_reg_val(id, vcpu->arch.pid);
1384 break;
1385 case KVM_REG_PPC_ACOP:
1386 *val = get_reg_val(id, vcpu->arch.acop);
1387 break;
1388 case KVM_REG_PPC_WORT:
1389 *val = get_reg_val(id, vcpu->arch.wort);
1390 break;
1391 case KVM_REG_PPC_TIDR:
1392 *val = get_reg_val(id, vcpu->arch.tid);
1393 break;
1394 case KVM_REG_PPC_PSSCR:
1395 *val = get_reg_val(id, vcpu->arch.psscr);
1396 break;
1397 case KVM_REG_PPC_VPA_ADDR:
1398 spin_lock(&vcpu->arch.vpa_update_lock);
1399 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1400 spin_unlock(&vcpu->arch.vpa_update_lock);
1401 break;
1402 case KVM_REG_PPC_VPA_SLB:
1403 spin_lock(&vcpu->arch.vpa_update_lock);
1404 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1405 val->vpaval.length = vcpu->arch.slb_shadow.len;
1406 spin_unlock(&vcpu->arch.vpa_update_lock);
1407 break;
1408 case KVM_REG_PPC_VPA_DTL:
1409 spin_lock(&vcpu->arch.vpa_update_lock);
1410 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1411 val->vpaval.length = vcpu->arch.dtl.len;
1412 spin_unlock(&vcpu->arch.vpa_update_lock);
1413 break;
1414 case KVM_REG_PPC_TB_OFFSET:
1415 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1416 break;
1417 case KVM_REG_PPC_LPCR:
1418 case KVM_REG_PPC_LPCR_64:
1419 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1420 break;
1421 case KVM_REG_PPC_PPR:
1422 *val = get_reg_val(id, vcpu->arch.ppr);
1423 break;
1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425 case KVM_REG_PPC_TFHAR:
1426 *val = get_reg_val(id, vcpu->arch.tfhar);
1427 break;
1428 case KVM_REG_PPC_TFIAR:
1429 *val = get_reg_val(id, vcpu->arch.tfiar);
1430 break;
1431 case KVM_REG_PPC_TEXASR:
1432 *val = get_reg_val(id, vcpu->arch.texasr);
1433 break;
1434 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1435 i = id - KVM_REG_PPC_TM_GPR0;
1436 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1437 break;
1438 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1439 {
1440 int j;
1441 i = id - KVM_REG_PPC_TM_VSR0;
1442 if (i < 32)
1443 for (j = 0; j < TS_FPRWIDTH; j++)
1444 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1445 else {
1446 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1447 val->vval = vcpu->arch.vr_tm.vr[i-32];
1448 else
1449 r = -ENXIO;
1450 }
1451 break;
1452 }
1453 case KVM_REG_PPC_TM_CR:
1454 *val = get_reg_val(id, vcpu->arch.cr_tm);
1455 break;
1456 case KVM_REG_PPC_TM_XER:
1457 *val = get_reg_val(id, vcpu->arch.xer_tm);
1458 break;
1459 case KVM_REG_PPC_TM_LR:
1460 *val = get_reg_val(id, vcpu->arch.lr_tm);
1461 break;
1462 case KVM_REG_PPC_TM_CTR:
1463 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1464 break;
1465 case KVM_REG_PPC_TM_FPSCR:
1466 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1467 break;
1468 case KVM_REG_PPC_TM_AMR:
1469 *val = get_reg_val(id, vcpu->arch.amr_tm);
1470 break;
1471 case KVM_REG_PPC_TM_PPR:
1472 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1473 break;
1474 case KVM_REG_PPC_TM_VRSAVE:
1475 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1476 break;
1477 case KVM_REG_PPC_TM_VSCR:
1478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1479 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1480 else
1481 r = -ENXIO;
1482 break;
1483 case KVM_REG_PPC_TM_DSCR:
1484 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1485 break;
1486 case KVM_REG_PPC_TM_TAR:
1487 *val = get_reg_val(id, vcpu->arch.tar_tm);
1488 break;
1489 #endif
1490 case KVM_REG_PPC_ARCH_COMPAT:
1491 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1492 break;
1493 default:
1494 r = -EINVAL;
1495 break;
1496 }
1497
1498 return r;
1499 }
1500
1501 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1502 union kvmppc_one_reg *val)
1503 {
1504 int r = 0;
1505 long int i;
1506 unsigned long addr, len;
1507
1508 switch (id) {
1509 case KVM_REG_PPC_HIOR:
1510 /* Only allow this to be set to zero */
1511 if (set_reg_val(id, *val))
1512 r = -EINVAL;
1513 break;
1514 case KVM_REG_PPC_DABR:
1515 vcpu->arch.dabr = set_reg_val(id, *val);
1516 break;
1517 case KVM_REG_PPC_DABRX:
1518 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1519 break;
1520 case KVM_REG_PPC_DSCR:
1521 vcpu->arch.dscr = set_reg_val(id, *val);
1522 break;
1523 case KVM_REG_PPC_PURR:
1524 vcpu->arch.purr = set_reg_val(id, *val);
1525 break;
1526 case KVM_REG_PPC_SPURR:
1527 vcpu->arch.spurr = set_reg_val(id, *val);
1528 break;
1529 case KVM_REG_PPC_AMR:
1530 vcpu->arch.amr = set_reg_val(id, *val);
1531 break;
1532 case KVM_REG_PPC_UAMOR:
1533 vcpu->arch.uamor = set_reg_val(id, *val);
1534 break;
1535 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1536 i = id - KVM_REG_PPC_MMCR0;
1537 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1538 break;
1539 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1540 i = id - KVM_REG_PPC_PMC1;
1541 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1542 break;
1543 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1544 i = id - KVM_REG_PPC_SPMC1;
1545 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1546 break;
1547 case KVM_REG_PPC_SIAR:
1548 vcpu->arch.siar = set_reg_val(id, *val);
1549 break;
1550 case KVM_REG_PPC_SDAR:
1551 vcpu->arch.sdar = set_reg_val(id, *val);
1552 break;
1553 case KVM_REG_PPC_SIER:
1554 vcpu->arch.sier = set_reg_val(id, *val);
1555 break;
1556 case KVM_REG_PPC_IAMR:
1557 vcpu->arch.iamr = set_reg_val(id, *val);
1558 break;
1559 case KVM_REG_PPC_PSPB:
1560 vcpu->arch.pspb = set_reg_val(id, *val);
1561 break;
1562 case KVM_REG_PPC_DPDES:
1563 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1564 break;
1565 case KVM_REG_PPC_VTB:
1566 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1567 break;
1568 case KVM_REG_PPC_DAWR:
1569 vcpu->arch.dawr = set_reg_val(id, *val);
1570 break;
1571 case KVM_REG_PPC_DAWRX:
1572 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1573 break;
1574 case KVM_REG_PPC_CIABR:
1575 vcpu->arch.ciabr = set_reg_val(id, *val);
1576 /* Don't allow setting breakpoints in hypervisor code */
1577 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1578 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1579 break;
1580 case KVM_REG_PPC_CSIGR:
1581 vcpu->arch.csigr = set_reg_val(id, *val);
1582 break;
1583 case KVM_REG_PPC_TACR:
1584 vcpu->arch.tacr = set_reg_val(id, *val);
1585 break;
1586 case KVM_REG_PPC_TCSCR:
1587 vcpu->arch.tcscr = set_reg_val(id, *val);
1588 break;
1589 case KVM_REG_PPC_PID:
1590 vcpu->arch.pid = set_reg_val(id, *val);
1591 break;
1592 case KVM_REG_PPC_ACOP:
1593 vcpu->arch.acop = set_reg_val(id, *val);
1594 break;
1595 case KVM_REG_PPC_WORT:
1596 vcpu->arch.wort = set_reg_val(id, *val);
1597 break;
1598 case KVM_REG_PPC_TIDR:
1599 vcpu->arch.tid = set_reg_val(id, *val);
1600 break;
1601 case KVM_REG_PPC_PSSCR:
1602 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1603 break;
1604 case KVM_REG_PPC_VPA_ADDR:
1605 addr = set_reg_val(id, *val);
1606 r = -EINVAL;
1607 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1608 vcpu->arch.dtl.next_gpa))
1609 break;
1610 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1611 break;
1612 case KVM_REG_PPC_VPA_SLB:
1613 addr = val->vpaval.addr;
1614 len = val->vpaval.length;
1615 r = -EINVAL;
1616 if (addr && !vcpu->arch.vpa.next_gpa)
1617 break;
1618 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1619 break;
1620 case KVM_REG_PPC_VPA_DTL:
1621 addr = val->vpaval.addr;
1622 len = val->vpaval.length;
1623 r = -EINVAL;
1624 if (addr && (len < sizeof(struct dtl_entry) ||
1625 !vcpu->arch.vpa.next_gpa))
1626 break;
1627 len -= len % sizeof(struct dtl_entry);
1628 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1629 break;
1630 case KVM_REG_PPC_TB_OFFSET:
1631 /*
1632 * POWER9 DD1 has an erratum where writing TBU40 causes
1633 * the timebase to lose ticks. So we don't let the
1634 * timebase offset be changed on P9 DD1. (It is
1635 * initialized to zero.)
1636 */
1637 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1638 break;
1639 /* round up to multiple of 2^24 */
1640 vcpu->arch.vcore->tb_offset =
1641 ALIGN(set_reg_val(id, *val), 1UL << 24);
1642 break;
1643 case KVM_REG_PPC_LPCR:
1644 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1645 break;
1646 case KVM_REG_PPC_LPCR_64:
1647 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1648 break;
1649 case KVM_REG_PPC_PPR:
1650 vcpu->arch.ppr = set_reg_val(id, *val);
1651 break;
1652 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1653 case KVM_REG_PPC_TFHAR:
1654 vcpu->arch.tfhar = set_reg_val(id, *val);
1655 break;
1656 case KVM_REG_PPC_TFIAR:
1657 vcpu->arch.tfiar = set_reg_val(id, *val);
1658 break;
1659 case KVM_REG_PPC_TEXASR:
1660 vcpu->arch.texasr = set_reg_val(id, *val);
1661 break;
1662 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1663 i = id - KVM_REG_PPC_TM_GPR0;
1664 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1665 break;
1666 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1667 {
1668 int j;
1669 i = id - KVM_REG_PPC_TM_VSR0;
1670 if (i < 32)
1671 for (j = 0; j < TS_FPRWIDTH; j++)
1672 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1673 else
1674 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1675 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1676 else
1677 r = -ENXIO;
1678 break;
1679 }
1680 case KVM_REG_PPC_TM_CR:
1681 vcpu->arch.cr_tm = set_reg_val(id, *val);
1682 break;
1683 case KVM_REG_PPC_TM_XER:
1684 vcpu->arch.xer_tm = set_reg_val(id, *val);
1685 break;
1686 case KVM_REG_PPC_TM_LR:
1687 vcpu->arch.lr_tm = set_reg_val(id, *val);
1688 break;
1689 case KVM_REG_PPC_TM_CTR:
1690 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1691 break;
1692 case KVM_REG_PPC_TM_FPSCR:
1693 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1694 break;
1695 case KVM_REG_PPC_TM_AMR:
1696 vcpu->arch.amr_tm = set_reg_val(id, *val);
1697 break;
1698 case KVM_REG_PPC_TM_PPR:
1699 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1700 break;
1701 case KVM_REG_PPC_TM_VRSAVE:
1702 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1703 break;
1704 case KVM_REG_PPC_TM_VSCR:
1705 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1706 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1707 else
1708 r = - ENXIO;
1709 break;
1710 case KVM_REG_PPC_TM_DSCR:
1711 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1712 break;
1713 case KVM_REG_PPC_TM_TAR:
1714 vcpu->arch.tar_tm = set_reg_val(id, *val);
1715 break;
1716 #endif
1717 case KVM_REG_PPC_ARCH_COMPAT:
1718 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1719 break;
1720 default:
1721 r = -EINVAL;
1722 break;
1723 }
1724
1725 return r;
1726 }
1727
1728 /*
1729 * On POWER9, threads are independent and can be in different partitions.
1730 * Therefore we consider each thread to be a subcore.
1731 * There is a restriction that all threads have to be in the same
1732 * MMU mode (radix or HPT), unfortunately, but since we only support
1733 * HPT guests on a HPT host so far, that isn't an impediment yet.
1734 */
1735 static int threads_per_vcore(void)
1736 {
1737 if (cpu_has_feature(CPU_FTR_ARCH_300))
1738 return 1;
1739 return threads_per_subcore;
1740 }
1741
1742 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1743 {
1744 struct kvmppc_vcore *vcore;
1745
1746 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1747
1748 if (vcore == NULL)
1749 return NULL;
1750
1751 spin_lock_init(&vcore->lock);
1752 spin_lock_init(&vcore->stoltb_lock);
1753 init_swait_queue_head(&vcore->wq);
1754 vcore->preempt_tb = TB_NIL;
1755 vcore->lpcr = kvm->arch.lpcr;
1756 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1757 vcore->kvm = kvm;
1758 INIT_LIST_HEAD(&vcore->preempt_list);
1759
1760 return vcore;
1761 }
1762
1763 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1764 static struct debugfs_timings_element {
1765 const char *name;
1766 size_t offset;
1767 } timings[] = {
1768 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1769 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1770 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1771 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1772 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1773 };
1774
1775 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1776
1777 struct debugfs_timings_state {
1778 struct kvm_vcpu *vcpu;
1779 unsigned int buflen;
1780 char buf[N_TIMINGS * 100];
1781 };
1782
1783 static int debugfs_timings_open(struct inode *inode, struct file *file)
1784 {
1785 struct kvm_vcpu *vcpu = inode->i_private;
1786 struct debugfs_timings_state *p;
1787
1788 p = kzalloc(sizeof(*p), GFP_KERNEL);
1789 if (!p)
1790 return -ENOMEM;
1791
1792 kvm_get_kvm(vcpu->kvm);
1793 p->vcpu = vcpu;
1794 file->private_data = p;
1795
1796 return nonseekable_open(inode, file);
1797 }
1798
1799 static int debugfs_timings_release(struct inode *inode, struct file *file)
1800 {
1801 struct debugfs_timings_state *p = file->private_data;
1802
1803 kvm_put_kvm(p->vcpu->kvm);
1804 kfree(p);
1805 return 0;
1806 }
1807
1808 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1809 size_t len, loff_t *ppos)
1810 {
1811 struct debugfs_timings_state *p = file->private_data;
1812 struct kvm_vcpu *vcpu = p->vcpu;
1813 char *s, *buf_end;
1814 struct kvmhv_tb_accumulator tb;
1815 u64 count;
1816 loff_t pos;
1817 ssize_t n;
1818 int i, loops;
1819 bool ok;
1820
1821 if (!p->buflen) {
1822 s = p->buf;
1823 buf_end = s + sizeof(p->buf);
1824 for (i = 0; i < N_TIMINGS; ++i) {
1825 struct kvmhv_tb_accumulator *acc;
1826
1827 acc = (struct kvmhv_tb_accumulator *)
1828 ((unsigned long)vcpu + timings[i].offset);
1829 ok = false;
1830 for (loops = 0; loops < 1000; ++loops) {
1831 count = acc->seqcount;
1832 if (!(count & 1)) {
1833 smp_rmb();
1834 tb = *acc;
1835 smp_rmb();
1836 if (count == acc->seqcount) {
1837 ok = true;
1838 break;
1839 }
1840 }
1841 udelay(1);
1842 }
1843 if (!ok)
1844 snprintf(s, buf_end - s, "%s: stuck\n",
1845 timings[i].name);
1846 else
1847 snprintf(s, buf_end - s,
1848 "%s: %llu %llu %llu %llu\n",
1849 timings[i].name, count / 2,
1850 tb_to_ns(tb.tb_total),
1851 tb_to_ns(tb.tb_min),
1852 tb_to_ns(tb.tb_max));
1853 s += strlen(s);
1854 }
1855 p->buflen = s - p->buf;
1856 }
1857
1858 pos = *ppos;
1859 if (pos >= p->buflen)
1860 return 0;
1861 if (len > p->buflen - pos)
1862 len = p->buflen - pos;
1863 n = copy_to_user(buf, p->buf + pos, len);
1864 if (n) {
1865 if (n == len)
1866 return -EFAULT;
1867 len -= n;
1868 }
1869 *ppos = pos + len;
1870 return len;
1871 }
1872
1873 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1874 size_t len, loff_t *ppos)
1875 {
1876 return -EACCES;
1877 }
1878
1879 static const struct file_operations debugfs_timings_ops = {
1880 .owner = THIS_MODULE,
1881 .open = debugfs_timings_open,
1882 .release = debugfs_timings_release,
1883 .read = debugfs_timings_read,
1884 .write = debugfs_timings_write,
1885 .llseek = generic_file_llseek,
1886 };
1887
1888 /* Create a debugfs directory for the vcpu */
1889 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1890 {
1891 char buf[16];
1892 struct kvm *kvm = vcpu->kvm;
1893
1894 snprintf(buf, sizeof(buf), "vcpu%u", id);
1895 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1896 return;
1897 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1898 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1899 return;
1900 vcpu->arch.debugfs_timings =
1901 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1902 vcpu, &debugfs_timings_ops);
1903 }
1904
1905 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1906 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1907 {
1908 }
1909 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1910
1911 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1912 unsigned int id)
1913 {
1914 struct kvm_vcpu *vcpu;
1915 int err;
1916 int core;
1917 struct kvmppc_vcore *vcore;
1918
1919 err = -ENOMEM;
1920 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1921 if (!vcpu)
1922 goto out;
1923
1924 err = kvm_vcpu_init(vcpu, kvm, id);
1925 if (err)
1926 goto free_vcpu;
1927
1928 vcpu->arch.shared = &vcpu->arch.shregs;
1929 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1930 /*
1931 * The shared struct is never shared on HV,
1932 * so we can always use host endianness
1933 */
1934 #ifdef __BIG_ENDIAN__
1935 vcpu->arch.shared_big_endian = true;
1936 #else
1937 vcpu->arch.shared_big_endian = false;
1938 #endif
1939 #endif
1940 vcpu->arch.mmcr[0] = MMCR0_FC;
1941 vcpu->arch.ctrl = CTRL_RUNLATCH;
1942 /* default to host PVR, since we can't spoof it */
1943 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1944 spin_lock_init(&vcpu->arch.vpa_update_lock);
1945 spin_lock_init(&vcpu->arch.tbacct_lock);
1946 vcpu->arch.busy_preempt = TB_NIL;
1947 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1948
1949 /*
1950 * Set the default HFSCR for the guest from the host value.
1951 * This value is only used on POWER9.
1952 * On POWER9 DD1, TM doesn't work, so we make sure to
1953 * prevent the guest from using it.
1954 * On POWER9, we want to virtualize the doorbell facility, so we
1955 * turn off the HFSCR bit, which causes those instructions to trap.
1956 */
1957 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1958 if (!cpu_has_feature(CPU_FTR_TM))
1959 vcpu->arch.hfscr &= ~HFSCR_TM;
1960 if (cpu_has_feature(CPU_FTR_ARCH_300))
1961 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1962
1963 kvmppc_mmu_book3s_hv_init(vcpu);
1964
1965 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1966
1967 init_waitqueue_head(&vcpu->arch.cpu_run);
1968
1969 mutex_lock(&kvm->lock);
1970 vcore = NULL;
1971 err = -EINVAL;
1972 core = id / kvm->arch.smt_mode;
1973 if (core < KVM_MAX_VCORES) {
1974 vcore = kvm->arch.vcores[core];
1975 if (!vcore) {
1976 err = -ENOMEM;
1977 vcore = kvmppc_vcore_create(kvm, core);
1978 kvm->arch.vcores[core] = vcore;
1979 kvm->arch.online_vcores++;
1980 }
1981 }
1982 mutex_unlock(&kvm->lock);
1983
1984 if (!vcore)
1985 goto free_vcpu;
1986
1987 spin_lock(&vcore->lock);
1988 ++vcore->num_threads;
1989 spin_unlock(&vcore->lock);
1990 vcpu->arch.vcore = vcore;
1991 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1992 vcpu->arch.thread_cpu = -1;
1993 vcpu->arch.prev_cpu = -1;
1994
1995 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1996 kvmppc_sanity_check(vcpu);
1997
1998 debugfs_vcpu_init(vcpu, id);
1999
2000 return vcpu;
2001
2002 free_vcpu:
2003 kmem_cache_free(kvm_vcpu_cache, vcpu);
2004 out:
2005 return ERR_PTR(err);
2006 }
2007
2008 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2009 unsigned long flags)
2010 {
2011 int err;
2012 int esmt = 0;
2013
2014 if (flags)
2015 return -EINVAL;
2016 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2017 return -EINVAL;
2018 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2019 /*
2020 * On POWER8 (or POWER7), the threading mode is "strict",
2021 * so we pack smt_mode vcpus per vcore.
2022 */
2023 if (smt_mode > threads_per_subcore)
2024 return -EINVAL;
2025 } else {
2026 /*
2027 * On POWER9, the threading mode is "loose",
2028 * so each vcpu gets its own vcore.
2029 */
2030 esmt = smt_mode;
2031 smt_mode = 1;
2032 }
2033 mutex_lock(&kvm->lock);
2034 err = -EBUSY;
2035 if (!kvm->arch.online_vcores) {
2036 kvm->arch.smt_mode = smt_mode;
2037 kvm->arch.emul_smt_mode = esmt;
2038 err = 0;
2039 }
2040 mutex_unlock(&kvm->lock);
2041
2042 return err;
2043 }
2044
2045 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2046 {
2047 if (vpa->pinned_addr)
2048 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2049 vpa->dirty);
2050 }
2051
2052 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2053 {
2054 spin_lock(&vcpu->arch.vpa_update_lock);
2055 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2056 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2057 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2058 spin_unlock(&vcpu->arch.vpa_update_lock);
2059 kvm_vcpu_uninit(vcpu);
2060 kmem_cache_free(kvm_vcpu_cache, vcpu);
2061 }
2062
2063 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2064 {
2065 /* Indicate we want to get back into the guest */
2066 return 1;
2067 }
2068
2069 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2070 {
2071 unsigned long dec_nsec, now;
2072
2073 now = get_tb();
2074 if (now > vcpu->arch.dec_expires) {
2075 /* decrementer has already gone negative */
2076 kvmppc_core_queue_dec(vcpu);
2077 kvmppc_core_prepare_to_enter(vcpu);
2078 return;
2079 }
2080 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2081 / tb_ticks_per_sec;
2082 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2083 vcpu->arch.timer_running = 1;
2084 }
2085
2086 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2087 {
2088 vcpu->arch.ceded = 0;
2089 if (vcpu->arch.timer_running) {
2090 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2091 vcpu->arch.timer_running = 0;
2092 }
2093 }
2094
2095 extern int __kvmppc_vcore_entry(void);
2096
2097 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2098 struct kvm_vcpu *vcpu)
2099 {
2100 u64 now;
2101
2102 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2103 return;
2104 spin_lock_irq(&vcpu->arch.tbacct_lock);
2105 now = mftb();
2106 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2107 vcpu->arch.stolen_logged;
2108 vcpu->arch.busy_preempt = now;
2109 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2110 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2111 --vc->n_runnable;
2112 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2113 }
2114
2115 static int kvmppc_grab_hwthread(int cpu)
2116 {
2117 struct paca_struct *tpaca;
2118 long timeout = 10000;
2119
2120 tpaca = &paca[cpu];
2121
2122 /* Ensure the thread won't go into the kernel if it wakes */
2123 tpaca->kvm_hstate.kvm_vcpu = NULL;
2124 tpaca->kvm_hstate.kvm_vcore = NULL;
2125 tpaca->kvm_hstate.napping = 0;
2126 smp_wmb();
2127 tpaca->kvm_hstate.hwthread_req = 1;
2128
2129 /*
2130 * If the thread is already executing in the kernel (e.g. handling
2131 * a stray interrupt), wait for it to get back to nap mode.
2132 * The smp_mb() is to ensure that our setting of hwthread_req
2133 * is visible before we look at hwthread_state, so if this
2134 * races with the code at system_reset_pSeries and the thread
2135 * misses our setting of hwthread_req, we are sure to see its
2136 * setting of hwthread_state, and vice versa.
2137 */
2138 smp_mb();
2139 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2140 if (--timeout <= 0) {
2141 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2142 return -EBUSY;
2143 }
2144 udelay(1);
2145 }
2146 return 0;
2147 }
2148
2149 static void kvmppc_release_hwthread(int cpu)
2150 {
2151 struct paca_struct *tpaca;
2152
2153 tpaca = &paca[cpu];
2154 tpaca->kvm_hstate.hwthread_req = 0;
2155 tpaca->kvm_hstate.kvm_vcpu = NULL;
2156 tpaca->kvm_hstate.kvm_vcore = NULL;
2157 tpaca->kvm_hstate.kvm_split_mode = NULL;
2158 }
2159
2160 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2161 {
2162 int i;
2163
2164 cpu = cpu_first_thread_sibling(cpu);
2165 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2166 /*
2167 * Make sure setting of bit in need_tlb_flush precedes
2168 * testing of cpu_in_guest bits. The matching barrier on
2169 * the other side is the first smp_mb() in kvmppc_run_core().
2170 */
2171 smp_mb();
2172 for (i = 0; i < threads_per_core; ++i)
2173 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2174 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2175 }
2176
2177 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2178 {
2179 struct kvm *kvm = vcpu->kvm;
2180
2181 /*
2182 * With radix, the guest can do TLB invalidations itself,
2183 * and it could choose to use the local form (tlbiel) if
2184 * it is invalidating a translation that has only ever been
2185 * used on one vcpu. However, that doesn't mean it has
2186 * only ever been used on one physical cpu, since vcpus
2187 * can move around between pcpus. To cope with this, when
2188 * a vcpu moves from one pcpu to another, we need to tell
2189 * any vcpus running on the same core as this vcpu previously
2190 * ran to flush the TLB. The TLB is shared between threads,
2191 * so we use a single bit in .need_tlb_flush for all 4 threads.
2192 */
2193 if (vcpu->arch.prev_cpu != pcpu) {
2194 if (vcpu->arch.prev_cpu >= 0 &&
2195 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2196 cpu_first_thread_sibling(pcpu))
2197 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2198 vcpu->arch.prev_cpu = pcpu;
2199 }
2200 }
2201
2202 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2203 {
2204 int cpu;
2205 struct paca_struct *tpaca;
2206 struct kvm *kvm = vc->kvm;
2207
2208 cpu = vc->pcpu;
2209 if (vcpu) {
2210 if (vcpu->arch.timer_running) {
2211 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2212 vcpu->arch.timer_running = 0;
2213 }
2214 cpu += vcpu->arch.ptid;
2215 vcpu->cpu = vc->pcpu;
2216 vcpu->arch.thread_cpu = cpu;
2217 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2218 }
2219 tpaca = &paca[cpu];
2220 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2221 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2222 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2223 smp_wmb();
2224 tpaca->kvm_hstate.kvm_vcore = vc;
2225 if (cpu != smp_processor_id())
2226 kvmppc_ipi_thread(cpu);
2227 }
2228
2229 static void kvmppc_wait_for_nap(void)
2230 {
2231 int cpu = smp_processor_id();
2232 int i, loops;
2233 int n_threads = threads_per_vcore();
2234
2235 if (n_threads <= 1)
2236 return;
2237 for (loops = 0; loops < 1000000; ++loops) {
2238 /*
2239 * Check if all threads are finished.
2240 * We set the vcore pointer when starting a thread
2241 * and the thread clears it when finished, so we look
2242 * for any threads that still have a non-NULL vcore ptr.
2243 */
2244 for (i = 1; i < n_threads; ++i)
2245 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2246 break;
2247 if (i == n_threads) {
2248 HMT_medium();
2249 return;
2250 }
2251 HMT_low();
2252 }
2253 HMT_medium();
2254 for (i = 1; i < n_threads; ++i)
2255 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2256 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2257 }
2258
2259 /*
2260 * Check that we are on thread 0 and that any other threads in
2261 * this core are off-line. Then grab the threads so they can't
2262 * enter the kernel.
2263 */
2264 static int on_primary_thread(void)
2265 {
2266 int cpu = smp_processor_id();
2267 int thr;
2268
2269 /* Are we on a primary subcore? */
2270 if (cpu_thread_in_subcore(cpu))
2271 return 0;
2272
2273 thr = 0;
2274 while (++thr < threads_per_subcore)
2275 if (cpu_online(cpu + thr))
2276 return 0;
2277
2278 /* Grab all hw threads so they can't go into the kernel */
2279 for (thr = 1; thr < threads_per_subcore; ++thr) {
2280 if (kvmppc_grab_hwthread(cpu + thr)) {
2281 /* Couldn't grab one; let the others go */
2282 do {
2283 kvmppc_release_hwthread(cpu + thr);
2284 } while (--thr > 0);
2285 return 0;
2286 }
2287 }
2288 return 1;
2289 }
2290
2291 /*
2292 * A list of virtual cores for each physical CPU.
2293 * These are vcores that could run but their runner VCPU tasks are
2294 * (or may be) preempted.
2295 */
2296 struct preempted_vcore_list {
2297 struct list_head list;
2298 spinlock_t lock;
2299 };
2300
2301 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2302
2303 static void init_vcore_lists(void)
2304 {
2305 int cpu;
2306
2307 for_each_possible_cpu(cpu) {
2308 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2309 spin_lock_init(&lp->lock);
2310 INIT_LIST_HEAD(&lp->list);
2311 }
2312 }
2313
2314 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2315 {
2316 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2317
2318 vc->vcore_state = VCORE_PREEMPT;
2319 vc->pcpu = smp_processor_id();
2320 if (vc->num_threads < threads_per_vcore()) {
2321 spin_lock(&lp->lock);
2322 list_add_tail(&vc->preempt_list, &lp->list);
2323 spin_unlock(&lp->lock);
2324 }
2325
2326 /* Start accumulating stolen time */
2327 kvmppc_core_start_stolen(vc);
2328 }
2329
2330 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2331 {
2332 struct preempted_vcore_list *lp;
2333
2334 kvmppc_core_end_stolen(vc);
2335 if (!list_empty(&vc->preempt_list)) {
2336 lp = &per_cpu(preempted_vcores, vc->pcpu);
2337 spin_lock(&lp->lock);
2338 list_del_init(&vc->preempt_list);
2339 spin_unlock(&lp->lock);
2340 }
2341 vc->vcore_state = VCORE_INACTIVE;
2342 }
2343
2344 /*
2345 * This stores information about the virtual cores currently
2346 * assigned to a physical core.
2347 */
2348 struct core_info {
2349 int n_subcores;
2350 int max_subcore_threads;
2351 int total_threads;
2352 int subcore_threads[MAX_SUBCORES];
2353 struct kvmppc_vcore *vc[MAX_SUBCORES];
2354 };
2355
2356 /*
2357 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2358 * respectively in 2-way micro-threading (split-core) mode.
2359 */
2360 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2361
2362 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2363 {
2364 memset(cip, 0, sizeof(*cip));
2365 cip->n_subcores = 1;
2366 cip->max_subcore_threads = vc->num_threads;
2367 cip->total_threads = vc->num_threads;
2368 cip->subcore_threads[0] = vc->num_threads;
2369 cip->vc[0] = vc;
2370 }
2371
2372 static bool subcore_config_ok(int n_subcores, int n_threads)
2373 {
2374 /* Can only dynamically split if unsplit to begin with */
2375 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2376 return false;
2377 if (n_subcores > MAX_SUBCORES)
2378 return false;
2379 if (n_subcores > 1) {
2380 if (!(dynamic_mt_modes & 2))
2381 n_subcores = 4;
2382 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2383 return false;
2384 }
2385
2386 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2387 }
2388
2389 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2390 {
2391 vc->entry_exit_map = 0;
2392 vc->in_guest = 0;
2393 vc->napping_threads = 0;
2394 vc->conferring_threads = 0;
2395 }
2396
2397 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2398 {
2399 int n_threads = vc->num_threads;
2400 int sub;
2401
2402 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2403 return false;
2404
2405 if (n_threads < cip->max_subcore_threads)
2406 n_threads = cip->max_subcore_threads;
2407 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2408 return false;
2409 cip->max_subcore_threads = n_threads;
2410
2411 sub = cip->n_subcores;
2412 ++cip->n_subcores;
2413 cip->total_threads += vc->num_threads;
2414 cip->subcore_threads[sub] = vc->num_threads;
2415 cip->vc[sub] = vc;
2416 init_vcore_to_run(vc);
2417 list_del_init(&vc->preempt_list);
2418
2419 return true;
2420 }
2421
2422 /*
2423 * Work out whether it is possible to piggyback the execution of
2424 * vcore *pvc onto the execution of the other vcores described in *cip.
2425 */
2426 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2427 int target_threads)
2428 {
2429 if (cip->total_threads + pvc->num_threads > target_threads)
2430 return false;
2431
2432 return can_dynamic_split(pvc, cip);
2433 }
2434
2435 static void prepare_threads(struct kvmppc_vcore *vc)
2436 {
2437 int i;
2438 struct kvm_vcpu *vcpu;
2439
2440 for_each_runnable_thread(i, vcpu, vc) {
2441 if (signal_pending(vcpu->arch.run_task))
2442 vcpu->arch.ret = -EINTR;
2443 else if (vcpu->arch.vpa.update_pending ||
2444 vcpu->arch.slb_shadow.update_pending ||
2445 vcpu->arch.dtl.update_pending)
2446 vcpu->arch.ret = RESUME_GUEST;
2447 else
2448 continue;
2449 kvmppc_remove_runnable(vc, vcpu);
2450 wake_up(&vcpu->arch.cpu_run);
2451 }
2452 }
2453
2454 static void collect_piggybacks(struct core_info *cip, int target_threads)
2455 {
2456 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2457 struct kvmppc_vcore *pvc, *vcnext;
2458
2459 spin_lock(&lp->lock);
2460 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2461 if (!spin_trylock(&pvc->lock))
2462 continue;
2463 prepare_threads(pvc);
2464 if (!pvc->n_runnable) {
2465 list_del_init(&pvc->preempt_list);
2466 if (pvc->runner == NULL) {
2467 pvc->vcore_state = VCORE_INACTIVE;
2468 kvmppc_core_end_stolen(pvc);
2469 }
2470 spin_unlock(&pvc->lock);
2471 continue;
2472 }
2473 if (!can_piggyback(pvc, cip, target_threads)) {
2474 spin_unlock(&pvc->lock);
2475 continue;
2476 }
2477 kvmppc_core_end_stolen(pvc);
2478 pvc->vcore_state = VCORE_PIGGYBACK;
2479 if (cip->total_threads >= target_threads)
2480 break;
2481 }
2482 spin_unlock(&lp->lock);
2483 }
2484
2485 static bool recheck_signals(struct core_info *cip)
2486 {
2487 int sub, i;
2488 struct kvm_vcpu *vcpu;
2489
2490 for (sub = 0; sub < cip->n_subcores; ++sub)
2491 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2492 if (signal_pending(vcpu->arch.run_task))
2493 return true;
2494 return false;
2495 }
2496
2497 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2498 {
2499 int still_running = 0, i;
2500 u64 now;
2501 long ret;
2502 struct kvm_vcpu *vcpu;
2503
2504 spin_lock(&vc->lock);
2505 now = get_tb();
2506 for_each_runnable_thread(i, vcpu, vc) {
2507 /* cancel pending dec exception if dec is positive */
2508 if (now < vcpu->arch.dec_expires &&
2509 kvmppc_core_pending_dec(vcpu))
2510 kvmppc_core_dequeue_dec(vcpu);
2511
2512 trace_kvm_guest_exit(vcpu);
2513
2514 ret = RESUME_GUEST;
2515 if (vcpu->arch.trap)
2516 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2517 vcpu->arch.run_task);
2518
2519 vcpu->arch.ret = ret;
2520 vcpu->arch.trap = 0;
2521
2522 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2523 if (vcpu->arch.pending_exceptions)
2524 kvmppc_core_prepare_to_enter(vcpu);
2525 if (vcpu->arch.ceded)
2526 kvmppc_set_timer(vcpu);
2527 else
2528 ++still_running;
2529 } else {
2530 kvmppc_remove_runnable(vc, vcpu);
2531 wake_up(&vcpu->arch.cpu_run);
2532 }
2533 }
2534 if (!is_master) {
2535 if (still_running > 0) {
2536 kvmppc_vcore_preempt(vc);
2537 } else if (vc->runner) {
2538 vc->vcore_state = VCORE_PREEMPT;
2539 kvmppc_core_start_stolen(vc);
2540 } else {
2541 vc->vcore_state = VCORE_INACTIVE;
2542 }
2543 if (vc->n_runnable > 0 && vc->runner == NULL) {
2544 /* make sure there's a candidate runner awake */
2545 i = -1;
2546 vcpu = next_runnable_thread(vc, &i);
2547 wake_up(&vcpu->arch.cpu_run);
2548 }
2549 }
2550 spin_unlock(&vc->lock);
2551 }
2552
2553 /*
2554 * Clear core from the list of active host cores as we are about to
2555 * enter the guest. Only do this if it is the primary thread of the
2556 * core (not if a subcore) that is entering the guest.
2557 */
2558 static inline int kvmppc_clear_host_core(unsigned int cpu)
2559 {
2560 int core;
2561
2562 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2563 return 0;
2564 /*
2565 * Memory barrier can be omitted here as we will do a smp_wmb()
2566 * later in kvmppc_start_thread and we need ensure that state is
2567 * visible to other CPUs only after we enter guest.
2568 */
2569 core = cpu >> threads_shift;
2570 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2571 return 0;
2572 }
2573
2574 /*
2575 * Advertise this core as an active host core since we exited the guest
2576 * Only need to do this if it is the primary thread of the core that is
2577 * exiting.
2578 */
2579 static inline int kvmppc_set_host_core(unsigned int cpu)
2580 {
2581 int core;
2582
2583 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2584 return 0;
2585
2586 /*
2587 * Memory barrier can be omitted here because we do a spin_unlock
2588 * immediately after this which provides the memory barrier.
2589 */
2590 core = cpu >> threads_shift;
2591 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2592 return 0;
2593 }
2594
2595 static void set_irq_happened(int trap)
2596 {
2597 switch (trap) {
2598 case BOOK3S_INTERRUPT_EXTERNAL:
2599 local_paca->irq_happened |= PACA_IRQ_EE;
2600 break;
2601 case BOOK3S_INTERRUPT_H_DOORBELL:
2602 local_paca->irq_happened |= PACA_IRQ_DBELL;
2603 break;
2604 case BOOK3S_INTERRUPT_HMI:
2605 local_paca->irq_happened |= PACA_IRQ_HMI;
2606 break;
2607 }
2608 }
2609
2610 /*
2611 * Run a set of guest threads on a physical core.
2612 * Called with vc->lock held.
2613 */
2614 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2615 {
2616 struct kvm_vcpu *vcpu;
2617 int i;
2618 int srcu_idx;
2619 struct core_info core_info;
2620 struct kvmppc_vcore *pvc;
2621 struct kvm_split_mode split_info, *sip;
2622 int split, subcore_size, active;
2623 int sub;
2624 bool thr0_done;
2625 unsigned long cmd_bit, stat_bit;
2626 int pcpu, thr;
2627 int target_threads;
2628 int controlled_threads;
2629 int trap;
2630
2631 /*
2632 * Remove from the list any threads that have a signal pending
2633 * or need a VPA update done
2634 */
2635 prepare_threads(vc);
2636
2637 /* if the runner is no longer runnable, let the caller pick a new one */
2638 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2639 return;
2640
2641 /*
2642 * Initialize *vc.
2643 */
2644 init_vcore_to_run(vc);
2645 vc->preempt_tb = TB_NIL;
2646
2647 /*
2648 * Number of threads that we will be controlling: the same as
2649 * the number of threads per subcore, except on POWER9,
2650 * where it's 1 because the threads are (mostly) independent.
2651 */
2652 controlled_threads = threads_per_vcore();
2653
2654 /*
2655 * Make sure we are running on primary threads, and that secondary
2656 * threads are offline. Also check if the number of threads in this
2657 * guest are greater than the current system threads per guest.
2658 */
2659 if ((controlled_threads > 1) &&
2660 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2661 for_each_runnable_thread(i, vcpu, vc) {
2662 vcpu->arch.ret = -EBUSY;
2663 kvmppc_remove_runnable(vc, vcpu);
2664 wake_up(&vcpu->arch.cpu_run);
2665 }
2666 goto out;
2667 }
2668
2669 /*
2670 * See if we could run any other vcores on the physical core
2671 * along with this one.
2672 */
2673 init_core_info(&core_info, vc);
2674 pcpu = smp_processor_id();
2675 target_threads = controlled_threads;
2676 if (target_smt_mode && target_smt_mode < target_threads)
2677 target_threads = target_smt_mode;
2678 if (vc->num_threads < target_threads)
2679 collect_piggybacks(&core_info, target_threads);
2680
2681 /*
2682 * On radix, arrange for TLB flushing if necessary.
2683 * This has to be done before disabling interrupts since
2684 * it uses smp_call_function().
2685 */
2686 pcpu = smp_processor_id();
2687 if (kvm_is_radix(vc->kvm)) {
2688 for (sub = 0; sub < core_info.n_subcores; ++sub)
2689 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2690 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2691 }
2692
2693 /*
2694 * Hard-disable interrupts, and check resched flag and signals.
2695 * If we need to reschedule or deliver a signal, clean up
2696 * and return without going into the guest(s).
2697 */
2698 local_irq_disable();
2699 hard_irq_disable();
2700 if (lazy_irq_pending() || need_resched() ||
2701 recheck_signals(&core_info)) {
2702 local_irq_enable();
2703 vc->vcore_state = VCORE_INACTIVE;
2704 /* Unlock all except the primary vcore */
2705 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2706 pvc = core_info.vc[sub];
2707 /* Put back on to the preempted vcores list */
2708 kvmppc_vcore_preempt(pvc);
2709 spin_unlock(&pvc->lock);
2710 }
2711 for (i = 0; i < controlled_threads; ++i)
2712 kvmppc_release_hwthread(pcpu + i);
2713 return;
2714 }
2715
2716 kvmppc_clear_host_core(pcpu);
2717
2718 /* Decide on micro-threading (split-core) mode */
2719 subcore_size = threads_per_subcore;
2720 cmd_bit = stat_bit = 0;
2721 split = core_info.n_subcores;
2722 sip = NULL;
2723 if (split > 1) {
2724 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2725 if (split == 2 && (dynamic_mt_modes & 2)) {
2726 cmd_bit = HID0_POWER8_1TO2LPAR;
2727 stat_bit = HID0_POWER8_2LPARMODE;
2728 } else {
2729 split = 4;
2730 cmd_bit = HID0_POWER8_1TO4LPAR;
2731 stat_bit = HID0_POWER8_4LPARMODE;
2732 }
2733 subcore_size = MAX_SMT_THREADS / split;
2734 sip = &split_info;
2735 memset(&split_info, 0, sizeof(split_info));
2736 split_info.rpr = mfspr(SPRN_RPR);
2737 split_info.pmmar = mfspr(SPRN_PMMAR);
2738 split_info.ldbar = mfspr(SPRN_LDBAR);
2739 split_info.subcore_size = subcore_size;
2740 for (sub = 0; sub < core_info.n_subcores; ++sub)
2741 split_info.vc[sub] = core_info.vc[sub];
2742 /* order writes to split_info before kvm_split_mode pointer */
2743 smp_wmb();
2744 }
2745 for (thr = 0; thr < controlled_threads; ++thr)
2746 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2747
2748 /* Initiate micro-threading (split-core) if required */
2749 if (cmd_bit) {
2750 unsigned long hid0 = mfspr(SPRN_HID0);
2751
2752 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2753 mb();
2754 mtspr(SPRN_HID0, hid0);
2755 isync();
2756 for (;;) {
2757 hid0 = mfspr(SPRN_HID0);
2758 if (hid0 & stat_bit)
2759 break;
2760 cpu_relax();
2761 }
2762 }
2763
2764 /* Start all the threads */
2765 active = 0;
2766 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2767 thr = subcore_thread_map[sub];
2768 thr0_done = false;
2769 active |= 1 << thr;
2770 pvc = core_info.vc[sub];
2771 pvc->pcpu = pcpu + thr;
2772 for_each_runnable_thread(i, vcpu, pvc) {
2773 kvmppc_start_thread(vcpu, pvc);
2774 kvmppc_create_dtl_entry(vcpu, pvc);
2775 trace_kvm_guest_enter(vcpu);
2776 if (!vcpu->arch.ptid)
2777 thr0_done = true;
2778 active |= 1 << (thr + vcpu->arch.ptid);
2779 }
2780 /*
2781 * We need to start the first thread of each subcore
2782 * even if it doesn't have a vcpu.
2783 */
2784 if (!thr0_done)
2785 kvmppc_start_thread(NULL, pvc);
2786 thr += pvc->num_threads;
2787 }
2788
2789 /*
2790 * Ensure that split_info.do_nap is set after setting
2791 * the vcore pointer in the PACA of the secondaries.
2792 */
2793 smp_mb();
2794 if (cmd_bit)
2795 split_info.do_nap = 1; /* ask secondaries to nap when done */
2796
2797 /*
2798 * When doing micro-threading, poke the inactive threads as well.
2799 * This gets them to the nap instruction after kvm_do_nap,
2800 * which reduces the time taken to unsplit later.
2801 */
2802 if (split > 1)
2803 for (thr = 1; thr < threads_per_subcore; ++thr)
2804 if (!(active & (1 << thr)))
2805 kvmppc_ipi_thread(pcpu + thr);
2806
2807 vc->vcore_state = VCORE_RUNNING;
2808 preempt_disable();
2809
2810 trace_kvmppc_run_core(vc, 0);
2811
2812 for (sub = 0; sub < core_info.n_subcores; ++sub)
2813 spin_unlock(&core_info.vc[sub]->lock);
2814
2815 /*
2816 * Interrupts will be enabled once we get into the guest,
2817 * so tell lockdep that we're about to enable interrupts.
2818 */
2819 trace_hardirqs_on();
2820
2821 guest_enter();
2822
2823 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2824
2825 trap = __kvmppc_vcore_entry();
2826
2827 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2828
2829 guest_exit();
2830
2831 trace_hardirqs_off();
2832 set_irq_happened(trap);
2833
2834 spin_lock(&vc->lock);
2835 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2836 vc->vcore_state = VCORE_EXITING;
2837
2838 /* wait for secondary threads to finish writing their state to memory */
2839 kvmppc_wait_for_nap();
2840
2841 /* Return to whole-core mode if we split the core earlier */
2842 if (split > 1) {
2843 unsigned long hid0 = mfspr(SPRN_HID0);
2844 unsigned long loops = 0;
2845
2846 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2847 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2848 mb();
2849 mtspr(SPRN_HID0, hid0);
2850 isync();
2851 for (;;) {
2852 hid0 = mfspr(SPRN_HID0);
2853 if (!(hid0 & stat_bit))
2854 break;
2855 cpu_relax();
2856 ++loops;
2857 }
2858 split_info.do_nap = 0;
2859 }
2860
2861 kvmppc_set_host_core(pcpu);
2862
2863 local_irq_enable();
2864
2865 /* Let secondaries go back to the offline loop */
2866 for (i = 0; i < controlled_threads; ++i) {
2867 kvmppc_release_hwthread(pcpu + i);
2868 if (sip && sip->napped[i])
2869 kvmppc_ipi_thread(pcpu + i);
2870 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2871 }
2872
2873 spin_unlock(&vc->lock);
2874
2875 /* make sure updates to secondary vcpu structs are visible now */
2876 smp_mb();
2877
2878 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2879 pvc = core_info.vc[sub];
2880 post_guest_process(pvc, pvc == vc);
2881 }
2882
2883 spin_lock(&vc->lock);
2884 preempt_enable();
2885
2886 out:
2887 vc->vcore_state = VCORE_INACTIVE;
2888 trace_kvmppc_run_core(vc, 1);
2889 }
2890
2891 /*
2892 * Wait for some other vcpu thread to execute us, and
2893 * wake us up when we need to handle something in the host.
2894 */
2895 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2896 struct kvm_vcpu *vcpu, int wait_state)
2897 {
2898 DEFINE_WAIT(wait);
2899
2900 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2901 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2902 spin_unlock(&vc->lock);
2903 schedule();
2904 spin_lock(&vc->lock);
2905 }
2906 finish_wait(&vcpu->arch.cpu_run, &wait);
2907 }
2908
2909 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2910 {
2911 /* 10us base */
2912 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2913 vc->halt_poll_ns = 10000;
2914 else
2915 vc->halt_poll_ns *= halt_poll_ns_grow;
2916 }
2917
2918 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2919 {
2920 if (halt_poll_ns_shrink == 0)
2921 vc->halt_poll_ns = 0;
2922 else
2923 vc->halt_poll_ns /= halt_poll_ns_shrink;
2924 }
2925
2926 #ifdef CONFIG_KVM_XICS
2927 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2928 {
2929 if (!xive_enabled())
2930 return false;
2931 return vcpu->arch.xive_saved_state.pipr <
2932 vcpu->arch.xive_saved_state.cppr;
2933 }
2934 #else
2935 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2936 {
2937 return false;
2938 }
2939 #endif /* CONFIG_KVM_XICS */
2940
2941 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2942 {
2943 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2944 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2945 return true;
2946
2947 return false;
2948 }
2949
2950 /*
2951 * Check to see if any of the runnable vcpus on the vcore have pending
2952 * exceptions or are no longer ceded
2953 */
2954 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2955 {
2956 struct kvm_vcpu *vcpu;
2957 int i;
2958
2959 for_each_runnable_thread(i, vcpu, vc) {
2960 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2961 return 1;
2962 }
2963
2964 return 0;
2965 }
2966
2967 /*
2968 * All the vcpus in this vcore are idle, so wait for a decrementer
2969 * or external interrupt to one of the vcpus. vc->lock is held.
2970 */
2971 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2972 {
2973 ktime_t cur, start_poll, start_wait;
2974 int do_sleep = 1;
2975 u64 block_ns;
2976 DECLARE_SWAITQUEUE(wait);
2977
2978 /* Poll for pending exceptions and ceded state */
2979 cur = start_poll = ktime_get();
2980 if (vc->halt_poll_ns) {
2981 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2982 ++vc->runner->stat.halt_attempted_poll;
2983
2984 vc->vcore_state = VCORE_POLLING;
2985 spin_unlock(&vc->lock);
2986
2987 do {
2988 if (kvmppc_vcore_check_block(vc)) {
2989 do_sleep = 0;
2990 break;
2991 }
2992 cur = ktime_get();
2993 } while (single_task_running() && ktime_before(cur, stop));
2994
2995 spin_lock(&vc->lock);
2996 vc->vcore_state = VCORE_INACTIVE;
2997
2998 if (!do_sleep) {
2999 ++vc->runner->stat.halt_successful_poll;
3000 goto out;
3001 }
3002 }
3003
3004 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3005
3006 if (kvmppc_vcore_check_block(vc)) {
3007 finish_swait(&vc->wq, &wait);
3008 do_sleep = 0;
3009 /* If we polled, count this as a successful poll */
3010 if (vc->halt_poll_ns)
3011 ++vc->runner->stat.halt_successful_poll;
3012 goto out;
3013 }
3014
3015 start_wait = ktime_get();
3016
3017 vc->vcore_state = VCORE_SLEEPING;
3018 trace_kvmppc_vcore_blocked(vc, 0);
3019 spin_unlock(&vc->lock);
3020 schedule();
3021 finish_swait(&vc->wq, &wait);
3022 spin_lock(&vc->lock);
3023 vc->vcore_state = VCORE_INACTIVE;
3024 trace_kvmppc_vcore_blocked(vc, 1);
3025 ++vc->runner->stat.halt_successful_wait;
3026
3027 cur = ktime_get();
3028
3029 out:
3030 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3031
3032 /* Attribute wait time */
3033 if (do_sleep) {
3034 vc->runner->stat.halt_wait_ns +=
3035 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3036 /* Attribute failed poll time */
3037 if (vc->halt_poll_ns)
3038 vc->runner->stat.halt_poll_fail_ns +=
3039 ktime_to_ns(start_wait) -
3040 ktime_to_ns(start_poll);
3041 } else {
3042 /* Attribute successful poll time */
3043 if (vc->halt_poll_ns)
3044 vc->runner->stat.halt_poll_success_ns +=
3045 ktime_to_ns(cur) -
3046 ktime_to_ns(start_poll);
3047 }
3048
3049 /* Adjust poll time */
3050 if (halt_poll_ns) {
3051 if (block_ns <= vc->halt_poll_ns)
3052 ;
3053 /* We slept and blocked for longer than the max halt time */
3054 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3055 shrink_halt_poll_ns(vc);
3056 /* We slept and our poll time is too small */
3057 else if (vc->halt_poll_ns < halt_poll_ns &&
3058 block_ns < halt_poll_ns)
3059 grow_halt_poll_ns(vc);
3060 if (vc->halt_poll_ns > halt_poll_ns)
3061 vc->halt_poll_ns = halt_poll_ns;
3062 } else
3063 vc->halt_poll_ns = 0;
3064
3065 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3066 }
3067
3068 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3069 {
3070 int n_ceded, i;
3071 struct kvmppc_vcore *vc;
3072 struct kvm_vcpu *v;
3073
3074 trace_kvmppc_run_vcpu_enter(vcpu);
3075
3076 kvm_run->exit_reason = 0;
3077 vcpu->arch.ret = RESUME_GUEST;
3078 vcpu->arch.trap = 0;
3079 kvmppc_update_vpas(vcpu);
3080
3081 /*
3082 * Synchronize with other threads in this virtual core
3083 */
3084 vc = vcpu->arch.vcore;
3085 spin_lock(&vc->lock);
3086 vcpu->arch.ceded = 0;
3087 vcpu->arch.run_task = current;
3088 vcpu->arch.kvm_run = kvm_run;
3089 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3090 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3091 vcpu->arch.busy_preempt = TB_NIL;
3092 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3093 ++vc->n_runnable;
3094
3095 /*
3096 * This happens the first time this is called for a vcpu.
3097 * If the vcore is already running, we may be able to start
3098 * this thread straight away and have it join in.
3099 */
3100 if (!signal_pending(current)) {
3101 if (vc->vcore_state == VCORE_PIGGYBACK) {
3102 if (spin_trylock(&vc->lock)) {
3103 if (vc->vcore_state == VCORE_RUNNING &&
3104 !VCORE_IS_EXITING(vc)) {
3105 kvmppc_create_dtl_entry(vcpu, vc);
3106 kvmppc_start_thread(vcpu, vc);
3107 trace_kvm_guest_enter(vcpu);
3108 }
3109 spin_unlock(&vc->lock);
3110 }
3111 } else if (vc->vcore_state == VCORE_RUNNING &&
3112 !VCORE_IS_EXITING(vc)) {
3113 kvmppc_create_dtl_entry(vcpu, vc);
3114 kvmppc_start_thread(vcpu, vc);
3115 trace_kvm_guest_enter(vcpu);
3116 } else if (vc->vcore_state == VCORE_SLEEPING) {
3117 swake_up(&vc->wq);
3118 }
3119
3120 }
3121
3122 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3123 !signal_pending(current)) {
3124 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3125 kvmppc_vcore_end_preempt(vc);
3126
3127 if (vc->vcore_state != VCORE_INACTIVE) {
3128 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3129 continue;
3130 }
3131 for_each_runnable_thread(i, v, vc) {
3132 kvmppc_core_prepare_to_enter(v);
3133 if (signal_pending(v->arch.run_task)) {
3134 kvmppc_remove_runnable(vc, v);
3135 v->stat.signal_exits++;
3136 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3137 v->arch.ret = -EINTR;
3138 wake_up(&v->arch.cpu_run);
3139 }
3140 }
3141 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3142 break;
3143 n_ceded = 0;
3144 for_each_runnable_thread(i, v, vc) {
3145 if (!kvmppc_vcpu_woken(v))
3146 n_ceded += v->arch.ceded;
3147 else
3148 v->arch.ceded = 0;
3149 }
3150 vc->runner = vcpu;
3151 if (n_ceded == vc->n_runnable) {
3152 kvmppc_vcore_blocked(vc);
3153 } else if (need_resched()) {
3154 kvmppc_vcore_preempt(vc);
3155 /* Let something else run */
3156 cond_resched_lock(&vc->lock);
3157 if (vc->vcore_state == VCORE_PREEMPT)
3158 kvmppc_vcore_end_preempt(vc);
3159 } else {
3160 kvmppc_run_core(vc);
3161 }
3162 vc->runner = NULL;
3163 }
3164
3165 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3166 (vc->vcore_state == VCORE_RUNNING ||
3167 vc->vcore_state == VCORE_EXITING ||
3168 vc->vcore_state == VCORE_PIGGYBACK))
3169 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3170
3171 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3172 kvmppc_vcore_end_preempt(vc);
3173
3174 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3175 kvmppc_remove_runnable(vc, vcpu);
3176 vcpu->stat.signal_exits++;
3177 kvm_run->exit_reason = KVM_EXIT_INTR;
3178 vcpu->arch.ret = -EINTR;
3179 }
3180
3181 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3182 /* Wake up some vcpu to run the core */
3183 i = -1;
3184 v = next_runnable_thread(vc, &i);
3185 wake_up(&v->arch.cpu_run);
3186 }
3187
3188 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3189 spin_unlock(&vc->lock);
3190 return vcpu->arch.ret;
3191 }
3192
3193 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3194 {
3195 int r;
3196 int srcu_idx;
3197 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3198 unsigned long user_tar = 0;
3199 unsigned int user_vrsave;
3200
3201 if (!vcpu->arch.sane) {
3202 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3203 return -EINVAL;
3204 }
3205
3206 /*
3207 * Don't allow entry with a suspended transaction, because
3208 * the guest entry/exit code will lose it.
3209 * If the guest has TM enabled, save away their TM-related SPRs
3210 * (they will get restored by the TM unavailable interrupt).
3211 */
3212 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3213 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3214 (current->thread.regs->msr & MSR_TM)) {
3215 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3216 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3217 run->fail_entry.hardware_entry_failure_reason = 0;
3218 return -EINVAL;
3219 }
3220 /* Enable TM so we can read the TM SPRs */
3221 mtmsr(mfmsr() | MSR_TM);
3222 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3223 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3224 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3225 current->thread.regs->msr &= ~MSR_TM;
3226 }
3227 #endif
3228
3229 kvmppc_core_prepare_to_enter(vcpu);
3230
3231 /* No need to go into the guest when all we'll do is come back out */
3232 if (signal_pending(current)) {
3233 run->exit_reason = KVM_EXIT_INTR;
3234 return -EINTR;
3235 }
3236
3237 atomic_inc(&vcpu->kvm->arch.vcpus_running);
3238 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3239 smp_mb();
3240
3241 /* On the first time here, set up HTAB and VRMA */
3242 if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
3243 r = kvmppc_hv_setup_htab_rma(vcpu);
3244 if (r)
3245 goto out;
3246 }
3247
3248 flush_all_to_thread(current);
3249
3250 /* Save userspace EBB and other register values */
3251 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3252 ebb_regs[0] = mfspr(SPRN_EBBHR);
3253 ebb_regs[1] = mfspr(SPRN_EBBRR);
3254 ebb_regs[2] = mfspr(SPRN_BESCR);
3255 user_tar = mfspr(SPRN_TAR);
3256 }
3257 user_vrsave = mfspr(SPRN_VRSAVE);
3258
3259 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3260 vcpu->arch.pgdir = current->mm->pgd;
3261 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3262
3263 do {
3264 r = kvmppc_run_vcpu(run, vcpu);
3265
3266 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3267 !(vcpu->arch.shregs.msr & MSR_PR)) {
3268 trace_kvm_hcall_enter(vcpu);
3269 r = kvmppc_pseries_do_hcall(vcpu);
3270 trace_kvm_hcall_exit(vcpu, r);
3271 kvmppc_core_prepare_to_enter(vcpu);
3272 } else if (r == RESUME_PAGE_FAULT) {
3273 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3274 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3275 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3276 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3277 } else if (r == RESUME_PASSTHROUGH) {
3278 if (WARN_ON(xive_enabled()))
3279 r = H_SUCCESS;
3280 else
3281 r = kvmppc_xics_rm_complete(vcpu, 0);
3282 }
3283 } while (is_kvmppc_resume_guest(r));
3284
3285 /* Restore userspace EBB and other register values */
3286 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3287 mtspr(SPRN_EBBHR, ebb_regs[0]);
3288 mtspr(SPRN_EBBRR, ebb_regs[1]);
3289 mtspr(SPRN_BESCR, ebb_regs[2]);
3290 mtspr(SPRN_TAR, user_tar);
3291 mtspr(SPRN_FSCR, current->thread.fscr);
3292 }
3293 mtspr(SPRN_VRSAVE, user_vrsave);
3294
3295 out:
3296 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3297 atomic_dec(&vcpu->kvm->arch.vcpus_running);
3298 return r;
3299 }
3300
3301 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3302 int linux_psize)
3303 {
3304 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3305
3306 if (!def->shift)
3307 return;
3308 (*sps)->page_shift = def->shift;
3309 (*sps)->slb_enc = def->sllp;
3310 (*sps)->enc[0].page_shift = def->shift;
3311 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
3312 /*
3313 * Add 16MB MPSS support if host supports it
3314 */
3315 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3316 (*sps)->enc[1].page_shift = 24;
3317 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3318 }
3319 (*sps)++;
3320 }
3321
3322 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3323 struct kvm_ppc_smmu_info *info)
3324 {
3325 struct kvm_ppc_one_seg_page_size *sps;
3326
3327 /*
3328 * Since we don't yet support HPT guests on a radix host,
3329 * return an error if the host uses radix.
3330 */
3331 if (radix_enabled())
3332 return -EINVAL;
3333
3334 /*
3335 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3336 * POWER7 doesn't support keys for instruction accesses,
3337 * POWER8 and POWER9 do.
3338 */
3339 info->data_keys = 32;
3340 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3341
3342 info->flags = KVM_PPC_PAGE_SIZES_REAL;
3343 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3344 info->flags |= KVM_PPC_1T_SEGMENTS;
3345 info->slb_size = mmu_slb_size;
3346
3347 /* We only support these sizes for now, and no muti-size segments */
3348 sps = &info->sps[0];
3349 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3350 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3351 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3352
3353 return 0;
3354 }
3355
3356 /*
3357 * Get (and clear) the dirty memory log for a memory slot.
3358 */
3359 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3360 struct kvm_dirty_log *log)
3361 {
3362 struct kvm_memslots *slots;
3363 struct kvm_memory_slot *memslot;
3364 int i, r;
3365 unsigned long n;
3366 unsigned long *buf;
3367 struct kvm_vcpu *vcpu;
3368
3369 mutex_lock(&kvm->slots_lock);
3370
3371 r = -EINVAL;
3372 if (log->slot >= KVM_USER_MEM_SLOTS)
3373 goto out;
3374
3375 slots = kvm_memslots(kvm);
3376 memslot = id_to_memslot(slots, log->slot);
3377 r = -ENOENT;
3378 if (!memslot->dirty_bitmap)
3379 goto out;
3380
3381 /*
3382 * Use second half of bitmap area because radix accumulates
3383 * bits in the first half.
3384 */
3385 n = kvm_dirty_bitmap_bytes(memslot);
3386 buf = memslot->dirty_bitmap + n / sizeof(long);
3387 memset(buf, 0, n);
3388
3389 if (kvm_is_radix(kvm))
3390 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3391 else
3392 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3393 if (r)
3394 goto out;
3395
3396 /* Harvest dirty bits from VPA and DTL updates */
3397 /* Note: we never modify the SLB shadow buffer areas */
3398 kvm_for_each_vcpu(i, vcpu, kvm) {
3399 spin_lock(&vcpu->arch.vpa_update_lock);
3400 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3401 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3402 spin_unlock(&vcpu->arch.vpa_update_lock);
3403 }
3404
3405 r = -EFAULT;
3406 if (copy_to_user(log->dirty_bitmap, buf, n))
3407 goto out;
3408
3409 r = 0;
3410 out:
3411 mutex_unlock(&kvm->slots_lock);
3412 return r;
3413 }
3414
3415 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3416 struct kvm_memory_slot *dont)
3417 {
3418 if (!dont || free->arch.rmap != dont->arch.rmap) {
3419 vfree(free->arch.rmap);
3420 free->arch.rmap = NULL;
3421 }
3422 }
3423
3424 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3425 unsigned long npages)
3426 {
3427 /*
3428 * For now, if radix_enabled() then we only support radix guests,
3429 * and in that case we don't need the rmap array.
3430 */
3431 if (radix_enabled()) {
3432 slot->arch.rmap = NULL;
3433 return 0;
3434 }
3435
3436 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3437 if (!slot->arch.rmap)
3438 return -ENOMEM;
3439
3440 return 0;
3441 }
3442
3443 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3444 struct kvm_memory_slot *memslot,
3445 const struct kvm_userspace_memory_region *mem)
3446 {
3447 return 0;
3448 }
3449
3450 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3451 const struct kvm_userspace_memory_region *mem,
3452 const struct kvm_memory_slot *old,
3453 const struct kvm_memory_slot *new)
3454 {
3455 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3456 struct kvm_memslots *slots;
3457 struct kvm_memory_slot *memslot;
3458
3459 /*
3460 * If we are making a new memslot, it might make
3461 * some address that was previously cached as emulated
3462 * MMIO be no longer emulated MMIO, so invalidate
3463 * all the caches of emulated MMIO translations.
3464 */
3465 if (npages)
3466 atomic64_inc(&kvm->arch.mmio_update);
3467
3468 if (npages && old->npages && !kvm_is_radix(kvm)) {
3469 /*
3470 * If modifying a memslot, reset all the rmap dirty bits.
3471 * If this is a new memslot, we don't need to do anything
3472 * since the rmap array starts out as all zeroes,
3473 * i.e. no pages are dirty.
3474 */
3475 slots = kvm_memslots(kvm);
3476 memslot = id_to_memslot(slots, mem->slot);
3477 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3478 }
3479 }
3480
3481 /*
3482 * Update LPCR values in kvm->arch and in vcores.
3483 * Caller must hold kvm->lock.
3484 */
3485 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3486 {
3487 long int i;
3488 u32 cores_done = 0;
3489
3490 if ((kvm->arch.lpcr & mask) == lpcr)
3491 return;
3492
3493 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3494
3495 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3496 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3497 if (!vc)
3498 continue;
3499 spin_lock(&vc->lock);
3500 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3501 spin_unlock(&vc->lock);
3502 if (++cores_done >= kvm->arch.online_vcores)
3503 break;
3504 }
3505 }
3506
3507 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3508 {
3509 return;
3510 }
3511
3512 static void kvmppc_setup_partition_table(struct kvm *kvm)
3513 {
3514 unsigned long dw0, dw1;
3515
3516 if (!kvm_is_radix(kvm)) {
3517 /* PS field - page size for VRMA */
3518 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3519 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3520 /* HTABSIZE and HTABORG fields */
3521 dw0 |= kvm->arch.sdr1;
3522
3523 /* Second dword as set by userspace */
3524 dw1 = kvm->arch.process_table;
3525 } else {
3526 dw0 = PATB_HR | radix__get_tree_size() |
3527 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3528 dw1 = PATB_GR | kvm->arch.process_table;
3529 }
3530
3531 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3532 }
3533
3534 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3535 {
3536 int err = 0;
3537 struct kvm *kvm = vcpu->kvm;
3538 unsigned long hva;
3539 struct kvm_memory_slot *memslot;
3540 struct vm_area_struct *vma;
3541 unsigned long lpcr = 0, senc;
3542 unsigned long psize, porder;
3543 int srcu_idx;
3544
3545 mutex_lock(&kvm->lock);
3546 if (kvm->arch.hpte_setup_done)
3547 goto out; /* another vcpu beat us to it */
3548
3549 /* Allocate hashed page table (if not done already) and reset it */
3550 if (!kvm->arch.hpt.virt) {
3551 int order = KVM_DEFAULT_HPT_ORDER;
3552 struct kvm_hpt_info info;
3553
3554 err = kvmppc_allocate_hpt(&info, order);
3555 /* If we get here, it means userspace didn't specify a
3556 * size explicitly. So, try successively smaller
3557 * sizes if the default failed. */
3558 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3559 err = kvmppc_allocate_hpt(&info, order);
3560
3561 if (err < 0) {
3562 pr_err("KVM: Couldn't alloc HPT\n");
3563 goto out;
3564 }
3565
3566 kvmppc_set_hpt(kvm, &info);
3567 }
3568
3569 /* Look up the memslot for guest physical address 0 */
3570 srcu_idx = srcu_read_lock(&kvm->srcu);
3571 memslot = gfn_to_memslot(kvm, 0);
3572
3573 /* We must have some memory at 0 by now */
3574 err = -EINVAL;
3575 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3576 goto out_srcu;
3577
3578 /* Look up the VMA for the start of this memory slot */
3579 hva = memslot->userspace_addr;
3580 down_read(&current->mm->mmap_sem);
3581 vma = find_vma(current->mm, hva);
3582 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3583 goto up_out;
3584
3585 psize = vma_kernel_pagesize(vma);
3586 porder = __ilog2(psize);
3587
3588 up_read(&current->mm->mmap_sem);
3589
3590 /* We can handle 4k, 64k or 16M pages in the VRMA */
3591 err = -EINVAL;
3592 if (!(psize == 0x1000 || psize == 0x10000 ||
3593 psize == 0x1000000))
3594 goto out_srcu;
3595
3596 senc = slb_pgsize_encoding(psize);
3597 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3598 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3599 /* Create HPTEs in the hash page table for the VRMA */
3600 kvmppc_map_vrma(vcpu, memslot, porder);
3601
3602 /* Update VRMASD field in the LPCR */
3603 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3604 /* the -4 is to account for senc values starting at 0x10 */
3605 lpcr = senc << (LPCR_VRMASD_SH - 4);
3606 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3607 } else {
3608 kvmppc_setup_partition_table(kvm);
3609 }
3610
3611 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3612 smp_wmb();
3613 kvm->arch.hpte_setup_done = 1;
3614 err = 0;
3615 out_srcu:
3616 srcu_read_unlock(&kvm->srcu, srcu_idx);
3617 out:
3618 mutex_unlock(&kvm->lock);
3619 return err;
3620
3621 up_out:
3622 up_read(&current->mm->mmap_sem);
3623 goto out_srcu;
3624 }
3625
3626 #ifdef CONFIG_KVM_XICS
3627 /*
3628 * Allocate a per-core structure for managing state about which cores are
3629 * running in the host versus the guest and for exchanging data between
3630 * real mode KVM and CPU running in the host.
3631 * This is only done for the first VM.
3632 * The allocated structure stays even if all VMs have stopped.
3633 * It is only freed when the kvm-hv module is unloaded.
3634 * It's OK for this routine to fail, we just don't support host
3635 * core operations like redirecting H_IPI wakeups.
3636 */
3637 void kvmppc_alloc_host_rm_ops(void)
3638 {
3639 struct kvmppc_host_rm_ops *ops;
3640 unsigned long l_ops;
3641 int cpu, core;
3642 int size;
3643
3644 /* Not the first time here ? */
3645 if (kvmppc_host_rm_ops_hv != NULL)
3646 return;
3647
3648 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3649 if (!ops)
3650 return;
3651
3652 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3653 ops->rm_core = kzalloc(size, GFP_KERNEL);
3654
3655 if (!ops->rm_core) {
3656 kfree(ops);
3657 return;
3658 }
3659
3660 cpus_read_lock();
3661
3662 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3663 if (!cpu_online(cpu))
3664 continue;
3665
3666 core = cpu >> threads_shift;
3667 ops->rm_core[core].rm_state.in_host = 1;
3668 }
3669
3670 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3671
3672 /*
3673 * Make the contents of the kvmppc_host_rm_ops structure visible
3674 * to other CPUs before we assign it to the global variable.
3675 * Do an atomic assignment (no locks used here), but if someone
3676 * beats us to it, just free our copy and return.
3677 */
3678 smp_wmb();
3679 l_ops = (unsigned long) ops;
3680
3681 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3682 cpus_read_unlock();
3683 kfree(ops->rm_core);
3684 kfree(ops);
3685 return;
3686 }
3687
3688 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3689 "ppc/kvm_book3s:prepare",
3690 kvmppc_set_host_core,
3691 kvmppc_clear_host_core);
3692 cpus_read_unlock();
3693 }
3694
3695 void kvmppc_free_host_rm_ops(void)
3696 {
3697 if (kvmppc_host_rm_ops_hv) {
3698 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3699 kfree(kvmppc_host_rm_ops_hv->rm_core);
3700 kfree(kvmppc_host_rm_ops_hv);
3701 kvmppc_host_rm_ops_hv = NULL;
3702 }
3703 }
3704 #endif
3705
3706 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3707 {
3708 unsigned long lpcr, lpid;
3709 char buf[32];
3710 int ret;
3711
3712 /* Allocate the guest's logical partition ID */
3713
3714 lpid = kvmppc_alloc_lpid();
3715 if ((long)lpid < 0)
3716 return -ENOMEM;
3717 kvm->arch.lpid = lpid;
3718
3719 kvmppc_alloc_host_rm_ops();
3720
3721 /*
3722 * Since we don't flush the TLB when tearing down a VM,
3723 * and this lpid might have previously been used,
3724 * make sure we flush on each core before running the new VM.
3725 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3726 * does this flush for us.
3727 */
3728 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3729 cpumask_setall(&kvm->arch.need_tlb_flush);
3730
3731 /* Start out with the default set of hcalls enabled */
3732 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3733 sizeof(kvm->arch.enabled_hcalls));
3734
3735 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3736 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3737
3738 /* Init LPCR for virtual RMA mode */
3739 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3740 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3741 lpcr &= LPCR_PECE | LPCR_LPES;
3742 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3743 LPCR_VPM0 | LPCR_VPM1;
3744 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3745 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3746 /* On POWER8 turn on online bit to enable PURR/SPURR */
3747 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3748 lpcr |= LPCR_ONL;
3749 /*
3750 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3751 * Set HVICE bit to enable hypervisor virtualization interrupts.
3752 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3753 * be unnecessary but better safe than sorry in case we re-enable
3754 * EE in HV mode with this LPCR still set)
3755 */
3756 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3757 lpcr &= ~LPCR_VPM0;
3758 lpcr |= LPCR_HVICE | LPCR_HEIC;
3759
3760 /*
3761 * If xive is enabled, we route 0x500 interrupts directly
3762 * to the guest.
3763 */
3764 if (xive_enabled())
3765 lpcr |= LPCR_LPES;
3766 }
3767
3768 /*
3769 * For now, if the host uses radix, the guest must be radix.
3770 */
3771 if (radix_enabled()) {
3772 kvm->arch.radix = 1;
3773 lpcr &= ~LPCR_VPM1;
3774 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3775 ret = kvmppc_init_vm_radix(kvm);
3776 if (ret) {
3777 kvmppc_free_lpid(kvm->arch.lpid);
3778 return ret;
3779 }
3780 kvmppc_setup_partition_table(kvm);
3781 }
3782
3783 kvm->arch.lpcr = lpcr;
3784
3785 /* Initialization for future HPT resizes */
3786 kvm->arch.resize_hpt = NULL;
3787
3788 /*
3789 * Work out how many sets the TLB has, for the use of
3790 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3791 */
3792 if (kvm_is_radix(kvm))
3793 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3794 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3795 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3796 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3797 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3798 else
3799 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3800
3801 /*
3802 * Track that we now have a HV mode VM active. This blocks secondary
3803 * CPU threads from coming online.
3804 * On POWER9, we only need to do this for HPT guests on a radix
3805 * host, which is not yet supported.
3806 */
3807 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3808 kvm_hv_vm_activated();
3809
3810 /*
3811 * Initialize smt_mode depending on processor.
3812 * POWER8 and earlier have to use "strict" threading, where
3813 * all vCPUs in a vcore have to run on the same (sub)core,
3814 * whereas on POWER9 the threads can each run a different
3815 * guest.
3816 */
3817 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3818 kvm->arch.smt_mode = threads_per_subcore;
3819 else
3820 kvm->arch.smt_mode = 1;
3821 kvm->arch.emul_smt_mode = 1;
3822
3823 /*
3824 * Create a debugfs directory for the VM
3825 */
3826 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3827 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3828 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3829 kvmppc_mmu_debugfs_init(kvm);
3830
3831 return 0;
3832 }
3833
3834 static void kvmppc_free_vcores(struct kvm *kvm)
3835 {
3836 long int i;
3837
3838 for (i = 0; i < KVM_MAX_VCORES; ++i)
3839 kfree(kvm->arch.vcores[i]);
3840 kvm->arch.online_vcores = 0;
3841 }
3842
3843 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3844 {
3845 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3846
3847 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3848 kvm_hv_vm_deactivated();
3849
3850 kvmppc_free_vcores(kvm);
3851
3852 kvmppc_free_lpid(kvm->arch.lpid);
3853
3854 if (kvm_is_radix(kvm))
3855 kvmppc_free_radix(kvm);
3856 else
3857 kvmppc_free_hpt(&kvm->arch.hpt);
3858
3859 kvmppc_free_pimap(kvm);
3860 }
3861
3862 /* We don't need to emulate any privileged instructions or dcbz */
3863 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3864 unsigned int inst, int *advance)
3865 {
3866 return EMULATE_FAIL;
3867 }
3868
3869 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3870 ulong spr_val)
3871 {
3872 return EMULATE_FAIL;
3873 }
3874
3875 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3876 ulong *spr_val)
3877 {
3878 return EMULATE_FAIL;
3879 }
3880
3881 static int kvmppc_core_check_processor_compat_hv(void)
3882 {
3883 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3884 !cpu_has_feature(CPU_FTR_ARCH_206))
3885 return -EIO;
3886
3887 return 0;
3888 }
3889
3890 #ifdef CONFIG_KVM_XICS
3891
3892 void kvmppc_free_pimap(struct kvm *kvm)
3893 {
3894 kfree(kvm->arch.pimap);
3895 }
3896
3897 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3898 {
3899 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3900 }
3901
3902 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3903 {
3904 struct irq_desc *desc;
3905 struct kvmppc_irq_map *irq_map;
3906 struct kvmppc_passthru_irqmap *pimap;
3907 struct irq_chip *chip;
3908 int i, rc = 0;
3909
3910 if (!kvm_irq_bypass)
3911 return 1;
3912
3913 desc = irq_to_desc(host_irq);
3914 if (!desc)
3915 return -EIO;
3916
3917 mutex_lock(&kvm->lock);
3918
3919 pimap = kvm->arch.pimap;
3920 if (pimap == NULL) {
3921 /* First call, allocate structure to hold IRQ map */
3922 pimap = kvmppc_alloc_pimap();
3923 if (pimap == NULL) {
3924 mutex_unlock(&kvm->lock);
3925 return -ENOMEM;
3926 }
3927 kvm->arch.pimap = pimap;
3928 }
3929
3930 /*
3931 * For now, we only support interrupts for which the EOI operation
3932 * is an OPAL call followed by a write to XIRR, since that's
3933 * what our real-mode EOI code does, or a XIVE interrupt
3934 */
3935 chip = irq_data_get_irq_chip(&desc->irq_data);
3936 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3937 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3938 host_irq, guest_gsi);
3939 mutex_unlock(&kvm->lock);
3940 return -ENOENT;
3941 }
3942
3943 /*
3944 * See if we already have an entry for this guest IRQ number.
3945 * If it's mapped to a hardware IRQ number, that's an error,
3946 * otherwise re-use this entry.
3947 */
3948 for (i = 0; i < pimap->n_mapped; i++) {
3949 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3950 if (pimap->mapped[i].r_hwirq) {
3951 mutex_unlock(&kvm->lock);
3952 return -EINVAL;
3953 }
3954 break;
3955 }
3956 }
3957
3958 if (i == KVMPPC_PIRQ_MAPPED) {
3959 mutex_unlock(&kvm->lock);
3960 return -EAGAIN; /* table is full */
3961 }
3962
3963 irq_map = &pimap->mapped[i];
3964
3965 irq_map->v_hwirq = guest_gsi;
3966 irq_map->desc = desc;
3967
3968 /*
3969 * Order the above two stores before the next to serialize with
3970 * the KVM real mode handler.
3971 */
3972 smp_wmb();
3973 irq_map->r_hwirq = desc->irq_data.hwirq;
3974
3975 if (i == pimap->n_mapped)
3976 pimap->n_mapped++;
3977
3978 if (xive_enabled())
3979 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3980 else
3981 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3982 if (rc)
3983 irq_map->r_hwirq = 0;
3984
3985 mutex_unlock(&kvm->lock);
3986
3987 return 0;
3988 }
3989
3990 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3991 {
3992 struct irq_desc *desc;
3993 struct kvmppc_passthru_irqmap *pimap;
3994 int i, rc = 0;
3995
3996 if (!kvm_irq_bypass)
3997 return 0;
3998
3999 desc = irq_to_desc(host_irq);
4000 if (!desc)
4001 return -EIO;
4002
4003 mutex_lock(&kvm->lock);
4004 if (!kvm->arch.pimap)
4005 goto unlock;
4006
4007 pimap = kvm->arch.pimap;
4008
4009 for (i = 0; i < pimap->n_mapped; i++) {
4010 if (guest_gsi == pimap->mapped[i].v_hwirq)
4011 break;
4012 }
4013
4014 if (i == pimap->n_mapped) {
4015 mutex_unlock(&kvm->lock);
4016 return -ENODEV;
4017 }
4018
4019 if (xive_enabled())
4020 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4021 else
4022 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4023
4024 /* invalidate the entry (what do do on error from the above ?) */
4025 pimap->mapped[i].r_hwirq = 0;
4026
4027 /*
4028 * We don't free this structure even when the count goes to
4029 * zero. The structure is freed when we destroy the VM.
4030 */
4031 unlock:
4032 mutex_unlock(&kvm->lock);
4033 return rc;
4034 }
4035
4036 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4037 struct irq_bypass_producer *prod)
4038 {
4039 int ret = 0;
4040 struct kvm_kernel_irqfd *irqfd =
4041 container_of(cons, struct kvm_kernel_irqfd, consumer);
4042
4043 irqfd->producer = prod;
4044
4045 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4046 if (ret)
4047 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4048 prod->irq, irqfd->gsi, ret);
4049
4050 return ret;
4051 }
4052
4053 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4054 struct irq_bypass_producer *prod)
4055 {
4056 int ret;
4057 struct kvm_kernel_irqfd *irqfd =
4058 container_of(cons, struct kvm_kernel_irqfd, consumer);
4059
4060 irqfd->producer = NULL;
4061
4062 /*
4063 * When producer of consumer is unregistered, we change back to
4064 * default external interrupt handling mode - KVM real mode
4065 * will switch back to host.
4066 */
4067 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4068 if (ret)
4069 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4070 prod->irq, irqfd->gsi, ret);
4071 }
4072 #endif
4073
4074 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4075 unsigned int ioctl, unsigned long arg)
4076 {
4077 struct kvm *kvm __maybe_unused = filp->private_data;
4078 void __user *argp = (void __user *)arg;
4079 long r;
4080
4081 switch (ioctl) {
4082
4083 case KVM_PPC_ALLOCATE_HTAB: {
4084 u32 htab_order;
4085
4086 r = -EFAULT;
4087 if (get_user(htab_order, (u32 __user *)argp))
4088 break;
4089 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4090 if (r)
4091 break;
4092 r = 0;
4093 break;
4094 }
4095
4096 case KVM_PPC_GET_HTAB_FD: {
4097 struct kvm_get_htab_fd ghf;
4098
4099 r = -EFAULT;
4100 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4101 break;
4102 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4103 break;
4104 }
4105
4106 case KVM_PPC_RESIZE_HPT_PREPARE: {
4107 struct kvm_ppc_resize_hpt rhpt;
4108
4109 r = -EFAULT;
4110 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4111 break;
4112
4113 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4114 break;
4115 }
4116
4117 case KVM_PPC_RESIZE_HPT_COMMIT: {
4118 struct kvm_ppc_resize_hpt rhpt;
4119
4120 r = -EFAULT;
4121 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4122 break;
4123
4124 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4125 break;
4126 }
4127
4128 default:
4129 r = -ENOTTY;
4130 }
4131
4132 return r;
4133 }
4134
4135 /*
4136 * List of hcall numbers to enable by default.
4137 * For compatibility with old userspace, we enable by default
4138 * all hcalls that were implemented before the hcall-enabling
4139 * facility was added. Note this list should not include H_RTAS.
4140 */
4141 static unsigned int default_hcall_list[] = {
4142 H_REMOVE,
4143 H_ENTER,
4144 H_READ,
4145 H_PROTECT,
4146 H_BULK_REMOVE,
4147 H_GET_TCE,
4148 H_PUT_TCE,
4149 H_SET_DABR,
4150 H_SET_XDABR,
4151 H_CEDE,
4152 H_PROD,
4153 H_CONFER,
4154 H_REGISTER_VPA,
4155 #ifdef CONFIG_KVM_XICS
4156 H_EOI,
4157 H_CPPR,
4158 H_IPI,
4159 H_IPOLL,
4160 H_XIRR,
4161 H_XIRR_X,
4162 #endif
4163 0
4164 };
4165
4166 static void init_default_hcalls(void)
4167 {
4168 int i;
4169 unsigned int hcall;
4170
4171 for (i = 0; default_hcall_list[i]; ++i) {
4172 hcall = default_hcall_list[i];
4173 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4174 __set_bit(hcall / 4, default_enabled_hcalls);
4175 }
4176 }
4177
4178 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4179 {
4180 unsigned long lpcr;
4181 int radix;
4182
4183 /* If not on a POWER9, reject it */
4184 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4185 return -ENODEV;
4186
4187 /* If any unknown flags set, reject it */
4188 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4189 return -EINVAL;
4190
4191 /* We can't change a guest to/from radix yet */
4192 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4193 if (radix != kvm_is_radix(kvm))
4194 return -EINVAL;
4195
4196 /* GR (guest radix) bit in process_table field must match */
4197 if (!!(cfg->process_table & PATB_GR) != radix)
4198 return -EINVAL;
4199
4200 /* Process table size field must be reasonable, i.e. <= 24 */
4201 if ((cfg->process_table & PRTS_MASK) > 24)
4202 return -EINVAL;
4203
4204 mutex_lock(&kvm->lock);
4205 kvm->arch.process_table = cfg->process_table;
4206 kvmppc_setup_partition_table(kvm);
4207
4208 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4209 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4210 mutex_unlock(&kvm->lock);
4211
4212 return 0;
4213 }
4214
4215 static struct kvmppc_ops kvm_ops_hv = {
4216 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4217 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4218 .get_one_reg = kvmppc_get_one_reg_hv,
4219 .set_one_reg = kvmppc_set_one_reg_hv,
4220 .vcpu_load = kvmppc_core_vcpu_load_hv,
4221 .vcpu_put = kvmppc_core_vcpu_put_hv,
4222 .set_msr = kvmppc_set_msr_hv,
4223 .vcpu_run = kvmppc_vcpu_run_hv,
4224 .vcpu_create = kvmppc_core_vcpu_create_hv,
4225 .vcpu_free = kvmppc_core_vcpu_free_hv,
4226 .check_requests = kvmppc_core_check_requests_hv,
4227 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4228 .flush_memslot = kvmppc_core_flush_memslot_hv,
4229 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4230 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4231 .unmap_hva = kvm_unmap_hva_hv,
4232 .unmap_hva_range = kvm_unmap_hva_range_hv,
4233 .age_hva = kvm_age_hva_hv,
4234 .test_age_hva = kvm_test_age_hva_hv,
4235 .set_spte_hva = kvm_set_spte_hva_hv,
4236 .mmu_destroy = kvmppc_mmu_destroy_hv,
4237 .free_memslot = kvmppc_core_free_memslot_hv,
4238 .create_memslot = kvmppc_core_create_memslot_hv,
4239 .init_vm = kvmppc_core_init_vm_hv,
4240 .destroy_vm = kvmppc_core_destroy_vm_hv,
4241 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4242 .emulate_op = kvmppc_core_emulate_op_hv,
4243 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4244 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4245 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4246 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4247 .hcall_implemented = kvmppc_hcall_impl_hv,
4248 #ifdef CONFIG_KVM_XICS
4249 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4250 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4251 #endif
4252 .configure_mmu = kvmhv_configure_mmu,
4253 .get_rmmu_info = kvmhv_get_rmmu_info,
4254 .set_smt_mode = kvmhv_set_smt_mode,
4255 };
4256
4257 static int kvm_init_subcore_bitmap(void)
4258 {
4259 int i, j;
4260 int nr_cores = cpu_nr_cores();
4261 struct sibling_subcore_state *sibling_subcore_state;
4262
4263 for (i = 0; i < nr_cores; i++) {
4264 int first_cpu = i * threads_per_core;
4265 int node = cpu_to_node(first_cpu);
4266
4267 /* Ignore if it is already allocated. */
4268 if (paca[first_cpu].sibling_subcore_state)
4269 continue;
4270
4271 sibling_subcore_state =
4272 kmalloc_node(sizeof(struct sibling_subcore_state),
4273 GFP_KERNEL, node);
4274 if (!sibling_subcore_state)
4275 return -ENOMEM;
4276
4277 memset(sibling_subcore_state, 0,
4278 sizeof(struct sibling_subcore_state));
4279
4280 for (j = 0; j < threads_per_core; j++) {
4281 int cpu = first_cpu + j;
4282
4283 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4284 }
4285 }
4286 return 0;
4287 }
4288
4289 static int kvmppc_radix_possible(void)
4290 {
4291 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4292 }
4293
4294 static int kvmppc_book3s_init_hv(void)
4295 {
4296 int r;
4297 /*
4298 * FIXME!! Do we need to check on all cpus ?
4299 */
4300 r = kvmppc_core_check_processor_compat_hv();
4301 if (r < 0)
4302 return -ENODEV;
4303
4304 r = kvm_init_subcore_bitmap();
4305 if (r)
4306 return r;
4307
4308 /*
4309 * We need a way of accessing the XICS interrupt controller,
4310 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4311 * indirectly, via OPAL.
4312 */
4313 #ifdef CONFIG_SMP
4314 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4315 struct device_node *np;
4316
4317 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4318 if (!np) {
4319 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4320 return -ENODEV;
4321 }
4322 }
4323 #endif
4324
4325 kvm_ops_hv.owner = THIS_MODULE;
4326 kvmppc_hv_ops = &kvm_ops_hv;
4327
4328 init_default_hcalls();
4329
4330 init_vcore_lists();
4331
4332 r = kvmppc_mmu_hv_init();
4333 if (r)
4334 return r;
4335
4336 if (kvmppc_radix_possible())
4337 r = kvmppc_radix_init();
4338 return r;
4339 }
4340
4341 static void kvmppc_book3s_exit_hv(void)
4342 {
4343 kvmppc_free_host_rm_ops();
4344 if (kvmppc_radix_possible())
4345 kvmppc_radix_exit();
4346 kvmppc_hv_ops = NULL;
4347 }
4348
4349 module_init(kvmppc_book3s_init_hv);
4350 module_exit(kvmppc_book3s_exit_hv);
4351 MODULE_LICENSE("GPL");
4352 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4353 MODULE_ALIAS("devname:kvm");
4354