]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cache.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/kvm_ppc.h>
45 #include <asm/kvm_book3s.h>
46 #include <asm/mmu_context.h>
47 #include <asm/lppaca.h>
48 #include <asm/processor.h>
49 #include <asm/cputhreads.h>
50 #include <asm/page.h>
51 #include <asm/hvcall.h>
52 #include <asm/switch_to.h>
53 #include <asm/smp.h>
54 #include <asm/dbell.h>
55 #include <linux/gfp.h>
56 #include <linux/vmalloc.h>
57 #include <linux/highmem.h>
58 #include <linux/hugetlb.h>
59 #include <linux/module.h>
60
61 #include "book3s.h"
62
63 #define CREATE_TRACE_POINTS
64 #include "trace_hv.h"
65
66 /* #define EXIT_DEBUG */
67 /* #define EXIT_DEBUG_SIMPLE */
68 /* #define EXIT_DEBUG_INT */
69
70 /* Used to indicate that a guest page fault needs to be handled */
71 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
72
73 /* Used as a "null" value for timebase values */
74 #define TB_NIL (~(u64)0)
75
76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
77
78 #if defined(CONFIG_PPC_64K_PAGES)
79 #define MPP_BUFFER_ORDER 0
80 #elif defined(CONFIG_PPC_4K_PAGES)
81 #define MPP_BUFFER_ORDER 3
82 #endif
83
84 static int dynamic_mt_modes = 6;
85 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
87 static int target_smt_mode;
88 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
90
91 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
92 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
93
94 static bool kvmppc_ipi_thread(int cpu)
95 {
96 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
97 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
98 preempt_disable();
99 if (cpu_first_thread_sibling(cpu) ==
100 cpu_first_thread_sibling(smp_processor_id())) {
101 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
102 msg |= cpu_thread_in_core(cpu);
103 smp_mb();
104 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
105 preempt_enable();
106 return true;
107 }
108 preempt_enable();
109 }
110
111 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
112 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
113 xics_wake_cpu(cpu);
114 return true;
115 }
116 #endif
117
118 return false;
119 }
120
121 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124 wait_queue_head_t *wqp;
125
126 wqp = kvm_arch_vcpu_wq(vcpu);
127 if (waitqueue_active(wqp)) {
128 wake_up_interruptible(wqp);
129 ++vcpu->stat.halt_wakeup;
130 }
131
132 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
133 return;
134
135 /* CPU points to the first thread of the core */
136 cpu = vcpu->cpu;
137 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
138 smp_send_reschedule(cpu);
139 }
140
141 /*
142 * We use the vcpu_load/put functions to measure stolen time.
143 * Stolen time is counted as time when either the vcpu is able to
144 * run as part of a virtual core, but the task running the vcore
145 * is preempted or sleeping, or when the vcpu needs something done
146 * in the kernel by the task running the vcpu, but that task is
147 * preempted or sleeping. Those two things have to be counted
148 * separately, since one of the vcpu tasks will take on the job
149 * of running the core, and the other vcpu tasks in the vcore will
150 * sleep waiting for it to do that, but that sleep shouldn't count
151 * as stolen time.
152 *
153 * Hence we accumulate stolen time when the vcpu can run as part of
154 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
155 * needs its task to do other things in the kernel (for example,
156 * service a page fault) in busy_stolen. We don't accumulate
157 * stolen time for a vcore when it is inactive, or for a vcpu
158 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
159 * a misnomer; it means that the vcpu task is not executing in
160 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
161 * the kernel. We don't have any way of dividing up that time
162 * between time that the vcpu is genuinely stopped, time that
163 * the task is actively working on behalf of the vcpu, and time
164 * that the task is preempted, so we don't count any of it as
165 * stolen.
166 *
167 * Updates to busy_stolen are protected by arch.tbacct_lock;
168 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
169 * lock. The stolen times are measured in units of timebase ticks.
170 * (Note that the != TB_NIL checks below are purely defensive;
171 * they should never fail.)
172 */
173
174 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
175 {
176 unsigned long flags;
177
178 spin_lock_irqsave(&vc->stoltb_lock, flags);
179 vc->preempt_tb = mftb();
180 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
181 }
182
183 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
184 {
185 unsigned long flags;
186
187 spin_lock_irqsave(&vc->stoltb_lock, flags);
188 if (vc->preempt_tb != TB_NIL) {
189 vc->stolen_tb += mftb() - vc->preempt_tb;
190 vc->preempt_tb = TB_NIL;
191 }
192 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
193 }
194
195 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
196 {
197 struct kvmppc_vcore *vc = vcpu->arch.vcore;
198 unsigned long flags;
199
200 /*
201 * We can test vc->runner without taking the vcore lock,
202 * because only this task ever sets vc->runner to this
203 * vcpu, and once it is set to this vcpu, only this task
204 * ever sets it to NULL.
205 */
206 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
207 kvmppc_core_end_stolen(vc);
208
209 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
210 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
211 vcpu->arch.busy_preempt != TB_NIL) {
212 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
213 vcpu->arch.busy_preempt = TB_NIL;
214 }
215 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
216 }
217
218 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
219 {
220 struct kvmppc_vcore *vc = vcpu->arch.vcore;
221 unsigned long flags;
222
223 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
224 kvmppc_core_start_stolen(vc);
225
226 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
227 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
228 vcpu->arch.busy_preempt = mftb();
229 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
230 }
231
232 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
233 {
234 vcpu->arch.shregs.msr = msr;
235 kvmppc_end_cede(vcpu);
236 }
237
238 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
239 {
240 vcpu->arch.pvr = pvr;
241 }
242
243 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
244 {
245 unsigned long pcr = 0;
246 struct kvmppc_vcore *vc = vcpu->arch.vcore;
247
248 if (arch_compat) {
249 switch (arch_compat) {
250 case PVR_ARCH_205:
251 /*
252 * If an arch bit is set in PCR, all the defined
253 * higher-order arch bits also have to be set.
254 */
255 pcr = PCR_ARCH_206 | PCR_ARCH_205;
256 break;
257 case PVR_ARCH_206:
258 case PVR_ARCH_206p:
259 pcr = PCR_ARCH_206;
260 break;
261 case PVR_ARCH_207:
262 break;
263 default:
264 return -EINVAL;
265 }
266
267 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
268 /* POWER7 can't emulate POWER8 */
269 if (!(pcr & PCR_ARCH_206))
270 return -EINVAL;
271 pcr &= ~PCR_ARCH_206;
272 }
273 }
274
275 spin_lock(&vc->lock);
276 vc->arch_compat = arch_compat;
277 vc->pcr = pcr;
278 spin_unlock(&vc->lock);
279
280 return 0;
281 }
282
283 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
284 {
285 int r;
286
287 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
288 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
289 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
290 for (r = 0; r < 16; ++r)
291 pr_err("r%2d = %.16lx r%d = %.16lx\n",
292 r, kvmppc_get_gpr(vcpu, r),
293 r+16, kvmppc_get_gpr(vcpu, r+16));
294 pr_err("ctr = %.16lx lr = %.16lx\n",
295 vcpu->arch.ctr, vcpu->arch.lr);
296 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
297 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
298 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
299 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
300 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
301 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
302 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
303 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
304 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
305 pr_err("fault dar = %.16lx dsisr = %.8x\n",
306 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
307 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
308 for (r = 0; r < vcpu->arch.slb_max; ++r)
309 pr_err(" ESID = %.16llx VSID = %.16llx\n",
310 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
311 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
312 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
313 vcpu->arch.last_inst);
314 }
315
316 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
317 {
318 int r;
319 struct kvm_vcpu *v, *ret = NULL;
320
321 mutex_lock(&kvm->lock);
322 kvm_for_each_vcpu(r, v, kvm) {
323 if (v->vcpu_id == id) {
324 ret = v;
325 break;
326 }
327 }
328 mutex_unlock(&kvm->lock);
329 return ret;
330 }
331
332 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
333 {
334 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
335 vpa->yield_count = cpu_to_be32(1);
336 }
337
338 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
339 unsigned long addr, unsigned long len)
340 {
341 /* check address is cacheline aligned */
342 if (addr & (L1_CACHE_BYTES - 1))
343 return -EINVAL;
344 spin_lock(&vcpu->arch.vpa_update_lock);
345 if (v->next_gpa != addr || v->len != len) {
346 v->next_gpa = addr;
347 v->len = addr ? len : 0;
348 v->update_pending = 1;
349 }
350 spin_unlock(&vcpu->arch.vpa_update_lock);
351 return 0;
352 }
353
354 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
355 struct reg_vpa {
356 u32 dummy;
357 union {
358 __be16 hword;
359 __be32 word;
360 } length;
361 };
362
363 static int vpa_is_registered(struct kvmppc_vpa *vpap)
364 {
365 if (vpap->update_pending)
366 return vpap->next_gpa != 0;
367 return vpap->pinned_addr != NULL;
368 }
369
370 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
371 unsigned long flags,
372 unsigned long vcpuid, unsigned long vpa)
373 {
374 struct kvm *kvm = vcpu->kvm;
375 unsigned long len, nb;
376 void *va;
377 struct kvm_vcpu *tvcpu;
378 int err;
379 int subfunc;
380 struct kvmppc_vpa *vpap;
381
382 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
383 if (!tvcpu)
384 return H_PARAMETER;
385
386 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
387 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
388 subfunc == H_VPA_REG_SLB) {
389 /* Registering new area - address must be cache-line aligned */
390 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
391 return H_PARAMETER;
392
393 /* convert logical addr to kernel addr and read length */
394 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
395 if (va == NULL)
396 return H_PARAMETER;
397 if (subfunc == H_VPA_REG_VPA)
398 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
399 else
400 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
401 kvmppc_unpin_guest_page(kvm, va, vpa, false);
402
403 /* Check length */
404 if (len > nb || len < sizeof(struct reg_vpa))
405 return H_PARAMETER;
406 } else {
407 vpa = 0;
408 len = 0;
409 }
410
411 err = H_PARAMETER;
412 vpap = NULL;
413 spin_lock(&tvcpu->arch.vpa_update_lock);
414
415 switch (subfunc) {
416 case H_VPA_REG_VPA: /* register VPA */
417 if (len < sizeof(struct lppaca))
418 break;
419 vpap = &tvcpu->arch.vpa;
420 err = 0;
421 break;
422
423 case H_VPA_REG_DTL: /* register DTL */
424 if (len < sizeof(struct dtl_entry))
425 break;
426 len -= len % sizeof(struct dtl_entry);
427
428 /* Check that they have previously registered a VPA */
429 err = H_RESOURCE;
430 if (!vpa_is_registered(&tvcpu->arch.vpa))
431 break;
432
433 vpap = &tvcpu->arch.dtl;
434 err = 0;
435 break;
436
437 case H_VPA_REG_SLB: /* register SLB shadow buffer */
438 /* Check that they have previously registered a VPA */
439 err = H_RESOURCE;
440 if (!vpa_is_registered(&tvcpu->arch.vpa))
441 break;
442
443 vpap = &tvcpu->arch.slb_shadow;
444 err = 0;
445 break;
446
447 case H_VPA_DEREG_VPA: /* deregister VPA */
448 /* Check they don't still have a DTL or SLB buf registered */
449 err = H_RESOURCE;
450 if (vpa_is_registered(&tvcpu->arch.dtl) ||
451 vpa_is_registered(&tvcpu->arch.slb_shadow))
452 break;
453
454 vpap = &tvcpu->arch.vpa;
455 err = 0;
456 break;
457
458 case H_VPA_DEREG_DTL: /* deregister DTL */
459 vpap = &tvcpu->arch.dtl;
460 err = 0;
461 break;
462
463 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
464 vpap = &tvcpu->arch.slb_shadow;
465 err = 0;
466 break;
467 }
468
469 if (vpap) {
470 vpap->next_gpa = vpa;
471 vpap->len = len;
472 vpap->update_pending = 1;
473 }
474
475 spin_unlock(&tvcpu->arch.vpa_update_lock);
476
477 return err;
478 }
479
480 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
481 {
482 struct kvm *kvm = vcpu->kvm;
483 void *va;
484 unsigned long nb;
485 unsigned long gpa;
486
487 /*
488 * We need to pin the page pointed to by vpap->next_gpa,
489 * but we can't call kvmppc_pin_guest_page under the lock
490 * as it does get_user_pages() and down_read(). So we
491 * have to drop the lock, pin the page, then get the lock
492 * again and check that a new area didn't get registered
493 * in the meantime.
494 */
495 for (;;) {
496 gpa = vpap->next_gpa;
497 spin_unlock(&vcpu->arch.vpa_update_lock);
498 va = NULL;
499 nb = 0;
500 if (gpa)
501 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
502 spin_lock(&vcpu->arch.vpa_update_lock);
503 if (gpa == vpap->next_gpa)
504 break;
505 /* sigh... unpin that one and try again */
506 if (va)
507 kvmppc_unpin_guest_page(kvm, va, gpa, false);
508 }
509
510 vpap->update_pending = 0;
511 if (va && nb < vpap->len) {
512 /*
513 * If it's now too short, it must be that userspace
514 * has changed the mappings underlying guest memory,
515 * so unregister the region.
516 */
517 kvmppc_unpin_guest_page(kvm, va, gpa, false);
518 va = NULL;
519 }
520 if (vpap->pinned_addr)
521 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
522 vpap->dirty);
523 vpap->gpa = gpa;
524 vpap->pinned_addr = va;
525 vpap->dirty = false;
526 if (va)
527 vpap->pinned_end = va + vpap->len;
528 }
529
530 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
531 {
532 if (!(vcpu->arch.vpa.update_pending ||
533 vcpu->arch.slb_shadow.update_pending ||
534 vcpu->arch.dtl.update_pending))
535 return;
536
537 spin_lock(&vcpu->arch.vpa_update_lock);
538 if (vcpu->arch.vpa.update_pending) {
539 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
540 if (vcpu->arch.vpa.pinned_addr)
541 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
542 }
543 if (vcpu->arch.dtl.update_pending) {
544 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
545 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
546 vcpu->arch.dtl_index = 0;
547 }
548 if (vcpu->arch.slb_shadow.update_pending)
549 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
550 spin_unlock(&vcpu->arch.vpa_update_lock);
551 }
552
553 /*
554 * Return the accumulated stolen time for the vcore up until `now'.
555 * The caller should hold the vcore lock.
556 */
557 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
558 {
559 u64 p;
560 unsigned long flags;
561
562 spin_lock_irqsave(&vc->stoltb_lock, flags);
563 p = vc->stolen_tb;
564 if (vc->vcore_state != VCORE_INACTIVE &&
565 vc->preempt_tb != TB_NIL)
566 p += now - vc->preempt_tb;
567 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
568 return p;
569 }
570
571 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
572 struct kvmppc_vcore *vc)
573 {
574 struct dtl_entry *dt;
575 struct lppaca *vpa;
576 unsigned long stolen;
577 unsigned long core_stolen;
578 u64 now;
579
580 dt = vcpu->arch.dtl_ptr;
581 vpa = vcpu->arch.vpa.pinned_addr;
582 now = mftb();
583 core_stolen = vcore_stolen_time(vc, now);
584 stolen = core_stolen - vcpu->arch.stolen_logged;
585 vcpu->arch.stolen_logged = core_stolen;
586 spin_lock_irq(&vcpu->arch.tbacct_lock);
587 stolen += vcpu->arch.busy_stolen;
588 vcpu->arch.busy_stolen = 0;
589 spin_unlock_irq(&vcpu->arch.tbacct_lock);
590 if (!dt || !vpa)
591 return;
592 memset(dt, 0, sizeof(struct dtl_entry));
593 dt->dispatch_reason = 7;
594 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
595 dt->timebase = cpu_to_be64(now + vc->tb_offset);
596 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
597 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
598 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
599 ++dt;
600 if (dt == vcpu->arch.dtl.pinned_end)
601 dt = vcpu->arch.dtl.pinned_addr;
602 vcpu->arch.dtl_ptr = dt;
603 /* order writing *dt vs. writing vpa->dtl_idx */
604 smp_wmb();
605 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
606 vcpu->arch.dtl.dirty = true;
607 }
608
609 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
610 {
611 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
612 return true;
613 if ((!vcpu->arch.vcore->arch_compat) &&
614 cpu_has_feature(CPU_FTR_ARCH_207S))
615 return true;
616 return false;
617 }
618
619 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
620 unsigned long resource, unsigned long value1,
621 unsigned long value2)
622 {
623 switch (resource) {
624 case H_SET_MODE_RESOURCE_SET_CIABR:
625 if (!kvmppc_power8_compatible(vcpu))
626 return H_P2;
627 if (value2)
628 return H_P4;
629 if (mflags)
630 return H_UNSUPPORTED_FLAG_START;
631 /* Guests can't breakpoint the hypervisor */
632 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
633 return H_P3;
634 vcpu->arch.ciabr = value1;
635 return H_SUCCESS;
636 case H_SET_MODE_RESOURCE_SET_DAWR:
637 if (!kvmppc_power8_compatible(vcpu))
638 return H_P2;
639 if (mflags)
640 return H_UNSUPPORTED_FLAG_START;
641 if (value2 & DABRX_HYP)
642 return H_P4;
643 vcpu->arch.dawr = value1;
644 vcpu->arch.dawrx = value2;
645 return H_SUCCESS;
646 default:
647 return H_TOO_HARD;
648 }
649 }
650
651 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
652 {
653 struct kvmppc_vcore *vcore = target->arch.vcore;
654
655 /*
656 * We expect to have been called by the real mode handler
657 * (kvmppc_rm_h_confer()) which would have directly returned
658 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
659 * have useful work to do and should not confer) so we don't
660 * recheck that here.
661 */
662
663 spin_lock(&vcore->lock);
664 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
665 vcore->vcore_state != VCORE_INACTIVE &&
666 vcore->runner)
667 target = vcore->runner;
668 spin_unlock(&vcore->lock);
669
670 return kvm_vcpu_yield_to(target);
671 }
672
673 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
674 {
675 int yield_count = 0;
676 struct lppaca *lppaca;
677
678 spin_lock(&vcpu->arch.vpa_update_lock);
679 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
680 if (lppaca)
681 yield_count = be32_to_cpu(lppaca->yield_count);
682 spin_unlock(&vcpu->arch.vpa_update_lock);
683 return yield_count;
684 }
685
686 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
687 {
688 unsigned long req = kvmppc_get_gpr(vcpu, 3);
689 unsigned long target, ret = H_SUCCESS;
690 int yield_count;
691 struct kvm_vcpu *tvcpu;
692 int idx, rc;
693
694 if (req <= MAX_HCALL_OPCODE &&
695 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
696 return RESUME_HOST;
697
698 switch (req) {
699 case H_CEDE:
700 break;
701 case H_PROD:
702 target = kvmppc_get_gpr(vcpu, 4);
703 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
704 if (!tvcpu) {
705 ret = H_PARAMETER;
706 break;
707 }
708 tvcpu->arch.prodded = 1;
709 smp_mb();
710 if (vcpu->arch.ceded) {
711 if (waitqueue_active(&vcpu->wq)) {
712 wake_up_interruptible(&vcpu->wq);
713 vcpu->stat.halt_wakeup++;
714 }
715 }
716 break;
717 case H_CONFER:
718 target = kvmppc_get_gpr(vcpu, 4);
719 if (target == -1)
720 break;
721 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
722 if (!tvcpu) {
723 ret = H_PARAMETER;
724 break;
725 }
726 yield_count = kvmppc_get_gpr(vcpu, 5);
727 if (kvmppc_get_yield_count(tvcpu) != yield_count)
728 break;
729 kvm_arch_vcpu_yield_to(tvcpu);
730 break;
731 case H_REGISTER_VPA:
732 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
733 kvmppc_get_gpr(vcpu, 5),
734 kvmppc_get_gpr(vcpu, 6));
735 break;
736 case H_RTAS:
737 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
738 return RESUME_HOST;
739
740 idx = srcu_read_lock(&vcpu->kvm->srcu);
741 rc = kvmppc_rtas_hcall(vcpu);
742 srcu_read_unlock(&vcpu->kvm->srcu, idx);
743
744 if (rc == -ENOENT)
745 return RESUME_HOST;
746 else if (rc == 0)
747 break;
748
749 /* Send the error out to userspace via KVM_RUN */
750 return rc;
751 case H_LOGICAL_CI_LOAD:
752 ret = kvmppc_h_logical_ci_load(vcpu);
753 if (ret == H_TOO_HARD)
754 return RESUME_HOST;
755 break;
756 case H_LOGICAL_CI_STORE:
757 ret = kvmppc_h_logical_ci_store(vcpu);
758 if (ret == H_TOO_HARD)
759 return RESUME_HOST;
760 break;
761 case H_SET_MODE:
762 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
763 kvmppc_get_gpr(vcpu, 5),
764 kvmppc_get_gpr(vcpu, 6),
765 kvmppc_get_gpr(vcpu, 7));
766 if (ret == H_TOO_HARD)
767 return RESUME_HOST;
768 break;
769 case H_XIRR:
770 case H_CPPR:
771 case H_EOI:
772 case H_IPI:
773 case H_IPOLL:
774 case H_XIRR_X:
775 if (kvmppc_xics_enabled(vcpu)) {
776 ret = kvmppc_xics_hcall(vcpu, req);
777 break;
778 } /* fallthrough */
779 default:
780 return RESUME_HOST;
781 }
782 kvmppc_set_gpr(vcpu, 3, ret);
783 vcpu->arch.hcall_needed = 0;
784 return RESUME_GUEST;
785 }
786
787 static int kvmppc_hcall_impl_hv(unsigned long cmd)
788 {
789 switch (cmd) {
790 case H_CEDE:
791 case H_PROD:
792 case H_CONFER:
793 case H_REGISTER_VPA:
794 case H_SET_MODE:
795 case H_LOGICAL_CI_LOAD:
796 case H_LOGICAL_CI_STORE:
797 #ifdef CONFIG_KVM_XICS
798 case H_XIRR:
799 case H_CPPR:
800 case H_EOI:
801 case H_IPI:
802 case H_IPOLL:
803 case H_XIRR_X:
804 #endif
805 return 1;
806 }
807
808 /* See if it's in the real-mode table */
809 return kvmppc_hcall_impl_hv_realmode(cmd);
810 }
811
812 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
813 struct kvm_vcpu *vcpu)
814 {
815 u32 last_inst;
816
817 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
818 EMULATE_DONE) {
819 /*
820 * Fetch failed, so return to guest and
821 * try executing it again.
822 */
823 return RESUME_GUEST;
824 }
825
826 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
827 run->exit_reason = KVM_EXIT_DEBUG;
828 run->debug.arch.address = kvmppc_get_pc(vcpu);
829 return RESUME_HOST;
830 } else {
831 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
832 return RESUME_GUEST;
833 }
834 }
835
836 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
837 struct task_struct *tsk)
838 {
839 int r = RESUME_HOST;
840
841 vcpu->stat.sum_exits++;
842
843 run->exit_reason = KVM_EXIT_UNKNOWN;
844 run->ready_for_interrupt_injection = 1;
845 switch (vcpu->arch.trap) {
846 /* We're good on these - the host merely wanted to get our attention */
847 case BOOK3S_INTERRUPT_HV_DECREMENTER:
848 vcpu->stat.dec_exits++;
849 r = RESUME_GUEST;
850 break;
851 case BOOK3S_INTERRUPT_EXTERNAL:
852 case BOOK3S_INTERRUPT_H_DOORBELL:
853 vcpu->stat.ext_intr_exits++;
854 r = RESUME_GUEST;
855 break;
856 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
857 case BOOK3S_INTERRUPT_HMI:
858 case BOOK3S_INTERRUPT_PERFMON:
859 r = RESUME_GUEST;
860 break;
861 case BOOK3S_INTERRUPT_MACHINE_CHECK:
862 /*
863 * Deliver a machine check interrupt to the guest.
864 * We have to do this, even if the host has handled the
865 * machine check, because machine checks use SRR0/1 and
866 * the interrupt might have trashed guest state in them.
867 */
868 kvmppc_book3s_queue_irqprio(vcpu,
869 BOOK3S_INTERRUPT_MACHINE_CHECK);
870 r = RESUME_GUEST;
871 break;
872 case BOOK3S_INTERRUPT_PROGRAM:
873 {
874 ulong flags;
875 /*
876 * Normally program interrupts are delivered directly
877 * to the guest by the hardware, but we can get here
878 * as a result of a hypervisor emulation interrupt
879 * (e40) getting turned into a 700 by BML RTAS.
880 */
881 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
882 kvmppc_core_queue_program(vcpu, flags);
883 r = RESUME_GUEST;
884 break;
885 }
886 case BOOK3S_INTERRUPT_SYSCALL:
887 {
888 /* hcall - punt to userspace */
889 int i;
890
891 /* hypercall with MSR_PR has already been handled in rmode,
892 * and never reaches here.
893 */
894
895 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
896 for (i = 0; i < 9; ++i)
897 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
898 run->exit_reason = KVM_EXIT_PAPR_HCALL;
899 vcpu->arch.hcall_needed = 1;
900 r = RESUME_HOST;
901 break;
902 }
903 /*
904 * We get these next two if the guest accesses a page which it thinks
905 * it has mapped but which is not actually present, either because
906 * it is for an emulated I/O device or because the corresonding
907 * host page has been paged out. Any other HDSI/HISI interrupts
908 * have been handled already.
909 */
910 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
911 r = RESUME_PAGE_FAULT;
912 break;
913 case BOOK3S_INTERRUPT_H_INST_STORAGE:
914 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
915 vcpu->arch.fault_dsisr = 0;
916 r = RESUME_PAGE_FAULT;
917 break;
918 /*
919 * This occurs if the guest executes an illegal instruction.
920 * If the guest debug is disabled, generate a program interrupt
921 * to the guest. If guest debug is enabled, we need to check
922 * whether the instruction is a software breakpoint instruction.
923 * Accordingly return to Guest or Host.
924 */
925 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
926 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
927 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
928 swab32(vcpu->arch.emul_inst) :
929 vcpu->arch.emul_inst;
930 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
931 r = kvmppc_emulate_debug_inst(run, vcpu);
932 } else {
933 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
934 r = RESUME_GUEST;
935 }
936 break;
937 /*
938 * This occurs if the guest (kernel or userspace), does something that
939 * is prohibited by HFSCR. We just generate a program interrupt to
940 * the guest.
941 */
942 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
943 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
944 r = RESUME_GUEST;
945 break;
946 default:
947 kvmppc_dump_regs(vcpu);
948 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
949 vcpu->arch.trap, kvmppc_get_pc(vcpu),
950 vcpu->arch.shregs.msr);
951 run->hw.hardware_exit_reason = vcpu->arch.trap;
952 r = RESUME_HOST;
953 break;
954 }
955
956 return r;
957 }
958
959 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
960 struct kvm_sregs *sregs)
961 {
962 int i;
963
964 memset(sregs, 0, sizeof(struct kvm_sregs));
965 sregs->pvr = vcpu->arch.pvr;
966 for (i = 0; i < vcpu->arch.slb_max; i++) {
967 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
968 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
969 }
970
971 return 0;
972 }
973
974 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
975 struct kvm_sregs *sregs)
976 {
977 int i, j;
978
979 /* Only accept the same PVR as the host's, since we can't spoof it */
980 if (sregs->pvr != vcpu->arch.pvr)
981 return -EINVAL;
982
983 j = 0;
984 for (i = 0; i < vcpu->arch.slb_nr; i++) {
985 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
986 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
987 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
988 ++j;
989 }
990 }
991 vcpu->arch.slb_max = j;
992
993 return 0;
994 }
995
996 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
997 bool preserve_top32)
998 {
999 struct kvm *kvm = vcpu->kvm;
1000 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1001 u64 mask;
1002
1003 mutex_lock(&kvm->lock);
1004 spin_lock(&vc->lock);
1005 /*
1006 * If ILE (interrupt little-endian) has changed, update the
1007 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1008 */
1009 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1010 struct kvm_vcpu *vcpu;
1011 int i;
1012
1013 kvm_for_each_vcpu(i, vcpu, kvm) {
1014 if (vcpu->arch.vcore != vc)
1015 continue;
1016 if (new_lpcr & LPCR_ILE)
1017 vcpu->arch.intr_msr |= MSR_LE;
1018 else
1019 vcpu->arch.intr_msr &= ~MSR_LE;
1020 }
1021 }
1022
1023 /*
1024 * Userspace can only modify DPFD (default prefetch depth),
1025 * ILE (interrupt little-endian) and TC (translation control).
1026 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1027 */
1028 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1029 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1030 mask |= LPCR_AIL;
1031
1032 /* Broken 32-bit version of LPCR must not clear top bits */
1033 if (preserve_top32)
1034 mask &= 0xFFFFFFFF;
1035 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1036 spin_unlock(&vc->lock);
1037 mutex_unlock(&kvm->lock);
1038 }
1039
1040 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1041 union kvmppc_one_reg *val)
1042 {
1043 int r = 0;
1044 long int i;
1045
1046 switch (id) {
1047 case KVM_REG_PPC_DEBUG_INST:
1048 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1049 break;
1050 case KVM_REG_PPC_HIOR:
1051 *val = get_reg_val(id, 0);
1052 break;
1053 case KVM_REG_PPC_DABR:
1054 *val = get_reg_val(id, vcpu->arch.dabr);
1055 break;
1056 case KVM_REG_PPC_DABRX:
1057 *val = get_reg_val(id, vcpu->arch.dabrx);
1058 break;
1059 case KVM_REG_PPC_DSCR:
1060 *val = get_reg_val(id, vcpu->arch.dscr);
1061 break;
1062 case KVM_REG_PPC_PURR:
1063 *val = get_reg_val(id, vcpu->arch.purr);
1064 break;
1065 case KVM_REG_PPC_SPURR:
1066 *val = get_reg_val(id, vcpu->arch.spurr);
1067 break;
1068 case KVM_REG_PPC_AMR:
1069 *val = get_reg_val(id, vcpu->arch.amr);
1070 break;
1071 case KVM_REG_PPC_UAMOR:
1072 *val = get_reg_val(id, vcpu->arch.uamor);
1073 break;
1074 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1075 i = id - KVM_REG_PPC_MMCR0;
1076 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1077 break;
1078 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1079 i = id - KVM_REG_PPC_PMC1;
1080 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1081 break;
1082 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1083 i = id - KVM_REG_PPC_SPMC1;
1084 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1085 break;
1086 case KVM_REG_PPC_SIAR:
1087 *val = get_reg_val(id, vcpu->arch.siar);
1088 break;
1089 case KVM_REG_PPC_SDAR:
1090 *val = get_reg_val(id, vcpu->arch.sdar);
1091 break;
1092 case KVM_REG_PPC_SIER:
1093 *val = get_reg_val(id, vcpu->arch.sier);
1094 break;
1095 case KVM_REG_PPC_IAMR:
1096 *val = get_reg_val(id, vcpu->arch.iamr);
1097 break;
1098 case KVM_REG_PPC_PSPB:
1099 *val = get_reg_val(id, vcpu->arch.pspb);
1100 break;
1101 case KVM_REG_PPC_DPDES:
1102 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1103 break;
1104 case KVM_REG_PPC_DAWR:
1105 *val = get_reg_val(id, vcpu->arch.dawr);
1106 break;
1107 case KVM_REG_PPC_DAWRX:
1108 *val = get_reg_val(id, vcpu->arch.dawrx);
1109 break;
1110 case KVM_REG_PPC_CIABR:
1111 *val = get_reg_val(id, vcpu->arch.ciabr);
1112 break;
1113 case KVM_REG_PPC_CSIGR:
1114 *val = get_reg_val(id, vcpu->arch.csigr);
1115 break;
1116 case KVM_REG_PPC_TACR:
1117 *val = get_reg_val(id, vcpu->arch.tacr);
1118 break;
1119 case KVM_REG_PPC_TCSCR:
1120 *val = get_reg_val(id, vcpu->arch.tcscr);
1121 break;
1122 case KVM_REG_PPC_PID:
1123 *val = get_reg_val(id, vcpu->arch.pid);
1124 break;
1125 case KVM_REG_PPC_ACOP:
1126 *val = get_reg_val(id, vcpu->arch.acop);
1127 break;
1128 case KVM_REG_PPC_WORT:
1129 *val = get_reg_val(id, vcpu->arch.wort);
1130 break;
1131 case KVM_REG_PPC_VPA_ADDR:
1132 spin_lock(&vcpu->arch.vpa_update_lock);
1133 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1134 spin_unlock(&vcpu->arch.vpa_update_lock);
1135 break;
1136 case KVM_REG_PPC_VPA_SLB:
1137 spin_lock(&vcpu->arch.vpa_update_lock);
1138 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1139 val->vpaval.length = vcpu->arch.slb_shadow.len;
1140 spin_unlock(&vcpu->arch.vpa_update_lock);
1141 break;
1142 case KVM_REG_PPC_VPA_DTL:
1143 spin_lock(&vcpu->arch.vpa_update_lock);
1144 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1145 val->vpaval.length = vcpu->arch.dtl.len;
1146 spin_unlock(&vcpu->arch.vpa_update_lock);
1147 break;
1148 case KVM_REG_PPC_TB_OFFSET:
1149 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1150 break;
1151 case KVM_REG_PPC_LPCR:
1152 case KVM_REG_PPC_LPCR_64:
1153 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1154 break;
1155 case KVM_REG_PPC_PPR:
1156 *val = get_reg_val(id, vcpu->arch.ppr);
1157 break;
1158 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1159 case KVM_REG_PPC_TFHAR:
1160 *val = get_reg_val(id, vcpu->arch.tfhar);
1161 break;
1162 case KVM_REG_PPC_TFIAR:
1163 *val = get_reg_val(id, vcpu->arch.tfiar);
1164 break;
1165 case KVM_REG_PPC_TEXASR:
1166 *val = get_reg_val(id, vcpu->arch.texasr);
1167 break;
1168 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1169 i = id - KVM_REG_PPC_TM_GPR0;
1170 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1171 break;
1172 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1173 {
1174 int j;
1175 i = id - KVM_REG_PPC_TM_VSR0;
1176 if (i < 32)
1177 for (j = 0; j < TS_FPRWIDTH; j++)
1178 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1179 else {
1180 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1181 val->vval = vcpu->arch.vr_tm.vr[i-32];
1182 else
1183 r = -ENXIO;
1184 }
1185 break;
1186 }
1187 case KVM_REG_PPC_TM_CR:
1188 *val = get_reg_val(id, vcpu->arch.cr_tm);
1189 break;
1190 case KVM_REG_PPC_TM_LR:
1191 *val = get_reg_val(id, vcpu->arch.lr_tm);
1192 break;
1193 case KVM_REG_PPC_TM_CTR:
1194 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1195 break;
1196 case KVM_REG_PPC_TM_FPSCR:
1197 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1198 break;
1199 case KVM_REG_PPC_TM_AMR:
1200 *val = get_reg_val(id, vcpu->arch.amr_tm);
1201 break;
1202 case KVM_REG_PPC_TM_PPR:
1203 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1204 break;
1205 case KVM_REG_PPC_TM_VRSAVE:
1206 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1207 break;
1208 case KVM_REG_PPC_TM_VSCR:
1209 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1210 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1211 else
1212 r = -ENXIO;
1213 break;
1214 case KVM_REG_PPC_TM_DSCR:
1215 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1216 break;
1217 case KVM_REG_PPC_TM_TAR:
1218 *val = get_reg_val(id, vcpu->arch.tar_tm);
1219 break;
1220 #endif
1221 case KVM_REG_PPC_ARCH_COMPAT:
1222 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1223 break;
1224 default:
1225 r = -EINVAL;
1226 break;
1227 }
1228
1229 return r;
1230 }
1231
1232 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1233 union kvmppc_one_reg *val)
1234 {
1235 int r = 0;
1236 long int i;
1237 unsigned long addr, len;
1238
1239 switch (id) {
1240 case KVM_REG_PPC_HIOR:
1241 /* Only allow this to be set to zero */
1242 if (set_reg_val(id, *val))
1243 r = -EINVAL;
1244 break;
1245 case KVM_REG_PPC_DABR:
1246 vcpu->arch.dabr = set_reg_val(id, *val);
1247 break;
1248 case KVM_REG_PPC_DABRX:
1249 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1250 break;
1251 case KVM_REG_PPC_DSCR:
1252 vcpu->arch.dscr = set_reg_val(id, *val);
1253 break;
1254 case KVM_REG_PPC_PURR:
1255 vcpu->arch.purr = set_reg_val(id, *val);
1256 break;
1257 case KVM_REG_PPC_SPURR:
1258 vcpu->arch.spurr = set_reg_val(id, *val);
1259 break;
1260 case KVM_REG_PPC_AMR:
1261 vcpu->arch.amr = set_reg_val(id, *val);
1262 break;
1263 case KVM_REG_PPC_UAMOR:
1264 vcpu->arch.uamor = set_reg_val(id, *val);
1265 break;
1266 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1267 i = id - KVM_REG_PPC_MMCR0;
1268 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1269 break;
1270 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1271 i = id - KVM_REG_PPC_PMC1;
1272 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1273 break;
1274 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1275 i = id - KVM_REG_PPC_SPMC1;
1276 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1277 break;
1278 case KVM_REG_PPC_SIAR:
1279 vcpu->arch.siar = set_reg_val(id, *val);
1280 break;
1281 case KVM_REG_PPC_SDAR:
1282 vcpu->arch.sdar = set_reg_val(id, *val);
1283 break;
1284 case KVM_REG_PPC_SIER:
1285 vcpu->arch.sier = set_reg_val(id, *val);
1286 break;
1287 case KVM_REG_PPC_IAMR:
1288 vcpu->arch.iamr = set_reg_val(id, *val);
1289 break;
1290 case KVM_REG_PPC_PSPB:
1291 vcpu->arch.pspb = set_reg_val(id, *val);
1292 break;
1293 case KVM_REG_PPC_DPDES:
1294 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1295 break;
1296 case KVM_REG_PPC_DAWR:
1297 vcpu->arch.dawr = set_reg_val(id, *val);
1298 break;
1299 case KVM_REG_PPC_DAWRX:
1300 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1301 break;
1302 case KVM_REG_PPC_CIABR:
1303 vcpu->arch.ciabr = set_reg_val(id, *val);
1304 /* Don't allow setting breakpoints in hypervisor code */
1305 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1306 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1307 break;
1308 case KVM_REG_PPC_CSIGR:
1309 vcpu->arch.csigr = set_reg_val(id, *val);
1310 break;
1311 case KVM_REG_PPC_TACR:
1312 vcpu->arch.tacr = set_reg_val(id, *val);
1313 break;
1314 case KVM_REG_PPC_TCSCR:
1315 vcpu->arch.tcscr = set_reg_val(id, *val);
1316 break;
1317 case KVM_REG_PPC_PID:
1318 vcpu->arch.pid = set_reg_val(id, *val);
1319 break;
1320 case KVM_REG_PPC_ACOP:
1321 vcpu->arch.acop = set_reg_val(id, *val);
1322 break;
1323 case KVM_REG_PPC_WORT:
1324 vcpu->arch.wort = set_reg_val(id, *val);
1325 break;
1326 case KVM_REG_PPC_VPA_ADDR:
1327 addr = set_reg_val(id, *val);
1328 r = -EINVAL;
1329 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1330 vcpu->arch.dtl.next_gpa))
1331 break;
1332 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1333 break;
1334 case KVM_REG_PPC_VPA_SLB:
1335 addr = val->vpaval.addr;
1336 len = val->vpaval.length;
1337 r = -EINVAL;
1338 if (addr && !vcpu->arch.vpa.next_gpa)
1339 break;
1340 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1341 break;
1342 case KVM_REG_PPC_VPA_DTL:
1343 addr = val->vpaval.addr;
1344 len = val->vpaval.length;
1345 r = -EINVAL;
1346 if (addr && (len < sizeof(struct dtl_entry) ||
1347 !vcpu->arch.vpa.next_gpa))
1348 break;
1349 len -= len % sizeof(struct dtl_entry);
1350 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1351 break;
1352 case KVM_REG_PPC_TB_OFFSET:
1353 /* round up to multiple of 2^24 */
1354 vcpu->arch.vcore->tb_offset =
1355 ALIGN(set_reg_val(id, *val), 1UL << 24);
1356 break;
1357 case KVM_REG_PPC_LPCR:
1358 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1359 break;
1360 case KVM_REG_PPC_LPCR_64:
1361 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1362 break;
1363 case KVM_REG_PPC_PPR:
1364 vcpu->arch.ppr = set_reg_val(id, *val);
1365 break;
1366 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1367 case KVM_REG_PPC_TFHAR:
1368 vcpu->arch.tfhar = set_reg_val(id, *val);
1369 break;
1370 case KVM_REG_PPC_TFIAR:
1371 vcpu->arch.tfiar = set_reg_val(id, *val);
1372 break;
1373 case KVM_REG_PPC_TEXASR:
1374 vcpu->arch.texasr = set_reg_val(id, *val);
1375 break;
1376 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1377 i = id - KVM_REG_PPC_TM_GPR0;
1378 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1379 break;
1380 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1381 {
1382 int j;
1383 i = id - KVM_REG_PPC_TM_VSR0;
1384 if (i < 32)
1385 for (j = 0; j < TS_FPRWIDTH; j++)
1386 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1387 else
1388 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1389 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1390 else
1391 r = -ENXIO;
1392 break;
1393 }
1394 case KVM_REG_PPC_TM_CR:
1395 vcpu->arch.cr_tm = set_reg_val(id, *val);
1396 break;
1397 case KVM_REG_PPC_TM_LR:
1398 vcpu->arch.lr_tm = set_reg_val(id, *val);
1399 break;
1400 case KVM_REG_PPC_TM_CTR:
1401 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1402 break;
1403 case KVM_REG_PPC_TM_FPSCR:
1404 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1405 break;
1406 case KVM_REG_PPC_TM_AMR:
1407 vcpu->arch.amr_tm = set_reg_val(id, *val);
1408 break;
1409 case KVM_REG_PPC_TM_PPR:
1410 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1411 break;
1412 case KVM_REG_PPC_TM_VRSAVE:
1413 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1414 break;
1415 case KVM_REG_PPC_TM_VSCR:
1416 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1417 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1418 else
1419 r = - ENXIO;
1420 break;
1421 case KVM_REG_PPC_TM_DSCR:
1422 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1423 break;
1424 case KVM_REG_PPC_TM_TAR:
1425 vcpu->arch.tar_tm = set_reg_val(id, *val);
1426 break;
1427 #endif
1428 case KVM_REG_PPC_ARCH_COMPAT:
1429 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1430 break;
1431 default:
1432 r = -EINVAL;
1433 break;
1434 }
1435
1436 return r;
1437 }
1438
1439 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1440 {
1441 struct kvmppc_vcore *vcore;
1442
1443 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1444
1445 if (vcore == NULL)
1446 return NULL;
1447
1448 INIT_LIST_HEAD(&vcore->runnable_threads);
1449 spin_lock_init(&vcore->lock);
1450 spin_lock_init(&vcore->stoltb_lock);
1451 init_waitqueue_head(&vcore->wq);
1452 vcore->preempt_tb = TB_NIL;
1453 vcore->lpcr = kvm->arch.lpcr;
1454 vcore->first_vcpuid = core * threads_per_subcore;
1455 vcore->kvm = kvm;
1456 INIT_LIST_HEAD(&vcore->preempt_list);
1457
1458 vcore->mpp_buffer_is_valid = false;
1459
1460 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1461 vcore->mpp_buffer = (void *)__get_free_pages(
1462 GFP_KERNEL|__GFP_ZERO,
1463 MPP_BUFFER_ORDER);
1464
1465 return vcore;
1466 }
1467
1468 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1469 static struct debugfs_timings_element {
1470 const char *name;
1471 size_t offset;
1472 } timings[] = {
1473 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1474 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1475 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1476 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1477 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1478 };
1479
1480 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1481
1482 struct debugfs_timings_state {
1483 struct kvm_vcpu *vcpu;
1484 unsigned int buflen;
1485 char buf[N_TIMINGS * 100];
1486 };
1487
1488 static int debugfs_timings_open(struct inode *inode, struct file *file)
1489 {
1490 struct kvm_vcpu *vcpu = inode->i_private;
1491 struct debugfs_timings_state *p;
1492
1493 p = kzalloc(sizeof(*p), GFP_KERNEL);
1494 if (!p)
1495 return -ENOMEM;
1496
1497 kvm_get_kvm(vcpu->kvm);
1498 p->vcpu = vcpu;
1499 file->private_data = p;
1500
1501 return nonseekable_open(inode, file);
1502 }
1503
1504 static int debugfs_timings_release(struct inode *inode, struct file *file)
1505 {
1506 struct debugfs_timings_state *p = file->private_data;
1507
1508 kvm_put_kvm(p->vcpu->kvm);
1509 kfree(p);
1510 return 0;
1511 }
1512
1513 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1514 size_t len, loff_t *ppos)
1515 {
1516 struct debugfs_timings_state *p = file->private_data;
1517 struct kvm_vcpu *vcpu = p->vcpu;
1518 char *s, *buf_end;
1519 struct kvmhv_tb_accumulator tb;
1520 u64 count;
1521 loff_t pos;
1522 ssize_t n;
1523 int i, loops;
1524 bool ok;
1525
1526 if (!p->buflen) {
1527 s = p->buf;
1528 buf_end = s + sizeof(p->buf);
1529 for (i = 0; i < N_TIMINGS; ++i) {
1530 struct kvmhv_tb_accumulator *acc;
1531
1532 acc = (struct kvmhv_tb_accumulator *)
1533 ((unsigned long)vcpu + timings[i].offset);
1534 ok = false;
1535 for (loops = 0; loops < 1000; ++loops) {
1536 count = acc->seqcount;
1537 if (!(count & 1)) {
1538 smp_rmb();
1539 tb = *acc;
1540 smp_rmb();
1541 if (count == acc->seqcount) {
1542 ok = true;
1543 break;
1544 }
1545 }
1546 udelay(1);
1547 }
1548 if (!ok)
1549 snprintf(s, buf_end - s, "%s: stuck\n",
1550 timings[i].name);
1551 else
1552 snprintf(s, buf_end - s,
1553 "%s: %llu %llu %llu %llu\n",
1554 timings[i].name, count / 2,
1555 tb_to_ns(tb.tb_total),
1556 tb_to_ns(tb.tb_min),
1557 tb_to_ns(tb.tb_max));
1558 s += strlen(s);
1559 }
1560 p->buflen = s - p->buf;
1561 }
1562
1563 pos = *ppos;
1564 if (pos >= p->buflen)
1565 return 0;
1566 if (len > p->buflen - pos)
1567 len = p->buflen - pos;
1568 n = copy_to_user(buf, p->buf + pos, len);
1569 if (n) {
1570 if (n == len)
1571 return -EFAULT;
1572 len -= n;
1573 }
1574 *ppos = pos + len;
1575 return len;
1576 }
1577
1578 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1579 size_t len, loff_t *ppos)
1580 {
1581 return -EACCES;
1582 }
1583
1584 static const struct file_operations debugfs_timings_ops = {
1585 .owner = THIS_MODULE,
1586 .open = debugfs_timings_open,
1587 .release = debugfs_timings_release,
1588 .read = debugfs_timings_read,
1589 .write = debugfs_timings_write,
1590 .llseek = generic_file_llseek,
1591 };
1592
1593 /* Create a debugfs directory for the vcpu */
1594 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1595 {
1596 char buf[16];
1597 struct kvm *kvm = vcpu->kvm;
1598
1599 snprintf(buf, sizeof(buf), "vcpu%u", id);
1600 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1601 return;
1602 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1603 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1604 return;
1605 vcpu->arch.debugfs_timings =
1606 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1607 vcpu, &debugfs_timings_ops);
1608 }
1609
1610 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1611 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1612 {
1613 }
1614 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1615
1616 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1617 unsigned int id)
1618 {
1619 struct kvm_vcpu *vcpu;
1620 int err = -EINVAL;
1621 int core;
1622 struct kvmppc_vcore *vcore;
1623
1624 core = id / threads_per_subcore;
1625 if (core >= KVM_MAX_VCORES)
1626 goto out;
1627
1628 err = -ENOMEM;
1629 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1630 if (!vcpu)
1631 goto out;
1632
1633 err = kvm_vcpu_init(vcpu, kvm, id);
1634 if (err)
1635 goto free_vcpu;
1636
1637 vcpu->arch.shared = &vcpu->arch.shregs;
1638 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1639 /*
1640 * The shared struct is never shared on HV,
1641 * so we can always use host endianness
1642 */
1643 #ifdef __BIG_ENDIAN__
1644 vcpu->arch.shared_big_endian = true;
1645 #else
1646 vcpu->arch.shared_big_endian = false;
1647 #endif
1648 #endif
1649 vcpu->arch.mmcr[0] = MMCR0_FC;
1650 vcpu->arch.ctrl = CTRL_RUNLATCH;
1651 /* default to host PVR, since we can't spoof it */
1652 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1653 spin_lock_init(&vcpu->arch.vpa_update_lock);
1654 spin_lock_init(&vcpu->arch.tbacct_lock);
1655 vcpu->arch.busy_preempt = TB_NIL;
1656 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1657
1658 kvmppc_mmu_book3s_hv_init(vcpu);
1659
1660 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1661
1662 init_waitqueue_head(&vcpu->arch.cpu_run);
1663
1664 mutex_lock(&kvm->lock);
1665 vcore = kvm->arch.vcores[core];
1666 if (!vcore) {
1667 vcore = kvmppc_vcore_create(kvm, core);
1668 kvm->arch.vcores[core] = vcore;
1669 kvm->arch.online_vcores++;
1670 }
1671 mutex_unlock(&kvm->lock);
1672
1673 if (!vcore)
1674 goto free_vcpu;
1675
1676 spin_lock(&vcore->lock);
1677 ++vcore->num_threads;
1678 spin_unlock(&vcore->lock);
1679 vcpu->arch.vcore = vcore;
1680 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1681 vcpu->arch.thread_cpu = -1;
1682
1683 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1684 kvmppc_sanity_check(vcpu);
1685
1686 debugfs_vcpu_init(vcpu, id);
1687
1688 return vcpu;
1689
1690 free_vcpu:
1691 kmem_cache_free(kvm_vcpu_cache, vcpu);
1692 out:
1693 return ERR_PTR(err);
1694 }
1695
1696 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1697 {
1698 if (vpa->pinned_addr)
1699 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1700 vpa->dirty);
1701 }
1702
1703 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1704 {
1705 spin_lock(&vcpu->arch.vpa_update_lock);
1706 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1707 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1708 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1709 spin_unlock(&vcpu->arch.vpa_update_lock);
1710 kvm_vcpu_uninit(vcpu);
1711 kmem_cache_free(kvm_vcpu_cache, vcpu);
1712 }
1713
1714 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1715 {
1716 /* Indicate we want to get back into the guest */
1717 return 1;
1718 }
1719
1720 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1721 {
1722 unsigned long dec_nsec, now;
1723
1724 now = get_tb();
1725 if (now > vcpu->arch.dec_expires) {
1726 /* decrementer has already gone negative */
1727 kvmppc_core_queue_dec(vcpu);
1728 kvmppc_core_prepare_to_enter(vcpu);
1729 return;
1730 }
1731 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1732 / tb_ticks_per_sec;
1733 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1734 HRTIMER_MODE_REL);
1735 vcpu->arch.timer_running = 1;
1736 }
1737
1738 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1739 {
1740 vcpu->arch.ceded = 0;
1741 if (vcpu->arch.timer_running) {
1742 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1743 vcpu->arch.timer_running = 0;
1744 }
1745 }
1746
1747 extern void __kvmppc_vcore_entry(void);
1748
1749 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1750 struct kvm_vcpu *vcpu)
1751 {
1752 u64 now;
1753
1754 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1755 return;
1756 spin_lock_irq(&vcpu->arch.tbacct_lock);
1757 now = mftb();
1758 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1759 vcpu->arch.stolen_logged;
1760 vcpu->arch.busy_preempt = now;
1761 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1762 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1763 --vc->n_runnable;
1764 list_del(&vcpu->arch.run_list);
1765 }
1766
1767 static int kvmppc_grab_hwthread(int cpu)
1768 {
1769 struct paca_struct *tpaca;
1770 long timeout = 10000;
1771
1772 tpaca = &paca[cpu];
1773
1774 /* Ensure the thread won't go into the kernel if it wakes */
1775 tpaca->kvm_hstate.kvm_vcpu = NULL;
1776 tpaca->kvm_hstate.kvm_vcore = NULL;
1777 tpaca->kvm_hstate.napping = 0;
1778 smp_wmb();
1779 tpaca->kvm_hstate.hwthread_req = 1;
1780
1781 /*
1782 * If the thread is already executing in the kernel (e.g. handling
1783 * a stray interrupt), wait for it to get back to nap mode.
1784 * The smp_mb() is to ensure that our setting of hwthread_req
1785 * is visible before we look at hwthread_state, so if this
1786 * races with the code at system_reset_pSeries and the thread
1787 * misses our setting of hwthread_req, we are sure to see its
1788 * setting of hwthread_state, and vice versa.
1789 */
1790 smp_mb();
1791 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1792 if (--timeout <= 0) {
1793 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1794 return -EBUSY;
1795 }
1796 udelay(1);
1797 }
1798 return 0;
1799 }
1800
1801 static void kvmppc_release_hwthread(int cpu)
1802 {
1803 struct paca_struct *tpaca;
1804
1805 tpaca = &paca[cpu];
1806 tpaca->kvm_hstate.hwthread_req = 0;
1807 tpaca->kvm_hstate.kvm_vcpu = NULL;
1808 tpaca->kvm_hstate.kvm_vcore = NULL;
1809 tpaca->kvm_hstate.kvm_split_mode = NULL;
1810 }
1811
1812 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1813 {
1814 int cpu;
1815 struct paca_struct *tpaca;
1816 struct kvmppc_vcore *mvc = vc->master_vcore;
1817
1818 cpu = vc->pcpu;
1819 if (vcpu) {
1820 if (vcpu->arch.timer_running) {
1821 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1822 vcpu->arch.timer_running = 0;
1823 }
1824 cpu += vcpu->arch.ptid;
1825 vcpu->cpu = mvc->pcpu;
1826 vcpu->arch.thread_cpu = cpu;
1827 }
1828 tpaca = &paca[cpu];
1829 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1830 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1831 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1832 smp_wmb();
1833 tpaca->kvm_hstate.kvm_vcore = mvc;
1834 if (cpu != smp_processor_id())
1835 kvmppc_ipi_thread(cpu);
1836 }
1837
1838 static void kvmppc_wait_for_nap(void)
1839 {
1840 int cpu = smp_processor_id();
1841 int i, loops;
1842
1843 for (loops = 0; loops < 1000000; ++loops) {
1844 /*
1845 * Check if all threads are finished.
1846 * We set the vcore pointer when starting a thread
1847 * and the thread clears it when finished, so we look
1848 * for any threads that still have a non-NULL vcore ptr.
1849 */
1850 for (i = 1; i < threads_per_subcore; ++i)
1851 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1852 break;
1853 if (i == threads_per_subcore) {
1854 HMT_medium();
1855 return;
1856 }
1857 HMT_low();
1858 }
1859 HMT_medium();
1860 for (i = 1; i < threads_per_subcore; ++i)
1861 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1862 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1863 }
1864
1865 /*
1866 * Check that we are on thread 0 and that any other threads in
1867 * this core are off-line. Then grab the threads so they can't
1868 * enter the kernel.
1869 */
1870 static int on_primary_thread(void)
1871 {
1872 int cpu = smp_processor_id();
1873 int thr;
1874
1875 /* Are we on a primary subcore? */
1876 if (cpu_thread_in_subcore(cpu))
1877 return 0;
1878
1879 thr = 0;
1880 while (++thr < threads_per_subcore)
1881 if (cpu_online(cpu + thr))
1882 return 0;
1883
1884 /* Grab all hw threads so they can't go into the kernel */
1885 for (thr = 1; thr < threads_per_subcore; ++thr) {
1886 if (kvmppc_grab_hwthread(cpu + thr)) {
1887 /* Couldn't grab one; let the others go */
1888 do {
1889 kvmppc_release_hwthread(cpu + thr);
1890 } while (--thr > 0);
1891 return 0;
1892 }
1893 }
1894 return 1;
1895 }
1896
1897 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1898 {
1899 phys_addr_t phy_addr, mpp_addr;
1900
1901 phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1902 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1903
1904 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1905 logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1906
1907 vc->mpp_buffer_is_valid = true;
1908 }
1909
1910 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1911 {
1912 phys_addr_t phy_addr, mpp_addr;
1913
1914 phy_addr = virt_to_phys(vc->mpp_buffer);
1915 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1916
1917 /* We must abort any in-progress save operations to ensure
1918 * the table is valid so that prefetch engine knows when to
1919 * stop prefetching. */
1920 logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1921 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1922 }
1923
1924 /*
1925 * A list of virtual cores for each physical CPU.
1926 * These are vcores that could run but their runner VCPU tasks are
1927 * (or may be) preempted.
1928 */
1929 struct preempted_vcore_list {
1930 struct list_head list;
1931 spinlock_t lock;
1932 };
1933
1934 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1935
1936 static void init_vcore_lists(void)
1937 {
1938 int cpu;
1939
1940 for_each_possible_cpu(cpu) {
1941 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1942 spin_lock_init(&lp->lock);
1943 INIT_LIST_HEAD(&lp->list);
1944 }
1945 }
1946
1947 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1948 {
1949 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1950
1951 vc->vcore_state = VCORE_PREEMPT;
1952 vc->pcpu = smp_processor_id();
1953 if (vc->num_threads < threads_per_subcore) {
1954 spin_lock(&lp->lock);
1955 list_add_tail(&vc->preempt_list, &lp->list);
1956 spin_unlock(&lp->lock);
1957 }
1958
1959 /* Start accumulating stolen time */
1960 kvmppc_core_start_stolen(vc);
1961 }
1962
1963 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1964 {
1965 struct preempted_vcore_list *lp;
1966
1967 kvmppc_core_end_stolen(vc);
1968 if (!list_empty(&vc->preempt_list)) {
1969 lp = &per_cpu(preempted_vcores, vc->pcpu);
1970 spin_lock(&lp->lock);
1971 list_del_init(&vc->preempt_list);
1972 spin_unlock(&lp->lock);
1973 }
1974 vc->vcore_state = VCORE_INACTIVE;
1975 }
1976
1977 /*
1978 * This stores information about the virtual cores currently
1979 * assigned to a physical core.
1980 */
1981 struct core_info {
1982 int n_subcores;
1983 int max_subcore_threads;
1984 int total_threads;
1985 int subcore_threads[MAX_SUBCORES];
1986 struct kvm *subcore_vm[MAX_SUBCORES];
1987 struct list_head vcs[MAX_SUBCORES];
1988 };
1989
1990 /*
1991 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1992 * respectively in 2-way micro-threading (split-core) mode.
1993 */
1994 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1995
1996 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1997 {
1998 int sub;
1999
2000 memset(cip, 0, sizeof(*cip));
2001 cip->n_subcores = 1;
2002 cip->max_subcore_threads = vc->num_threads;
2003 cip->total_threads = vc->num_threads;
2004 cip->subcore_threads[0] = vc->num_threads;
2005 cip->subcore_vm[0] = vc->kvm;
2006 for (sub = 0; sub < MAX_SUBCORES; ++sub)
2007 INIT_LIST_HEAD(&cip->vcs[sub]);
2008 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2009 }
2010
2011 static bool subcore_config_ok(int n_subcores, int n_threads)
2012 {
2013 /* Can only dynamically split if unsplit to begin with */
2014 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2015 return false;
2016 if (n_subcores > MAX_SUBCORES)
2017 return false;
2018 if (n_subcores > 1) {
2019 if (!(dynamic_mt_modes & 2))
2020 n_subcores = 4;
2021 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2022 return false;
2023 }
2024
2025 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2026 }
2027
2028 static void init_master_vcore(struct kvmppc_vcore *vc)
2029 {
2030 vc->master_vcore = vc;
2031 vc->entry_exit_map = 0;
2032 vc->in_guest = 0;
2033 vc->napping_threads = 0;
2034 vc->conferring_threads = 0;
2035 }
2036
2037 /*
2038 * See if the existing subcores can be split into 3 (or fewer) subcores
2039 * of at most two threads each, so we can fit in another vcore. This
2040 * assumes there are at most two subcores and at most 6 threads in total.
2041 */
2042 static bool can_split_piggybacked_subcores(struct core_info *cip)
2043 {
2044 int sub, new_sub;
2045 int large_sub = -1;
2046 int thr;
2047 int n_subcores = cip->n_subcores;
2048 struct kvmppc_vcore *vc, *vcnext;
2049 struct kvmppc_vcore *master_vc = NULL;
2050
2051 for (sub = 0; sub < cip->n_subcores; ++sub) {
2052 if (cip->subcore_threads[sub] <= 2)
2053 continue;
2054 if (large_sub >= 0)
2055 return false;
2056 large_sub = sub;
2057 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2058 preempt_list);
2059 if (vc->num_threads > 2)
2060 return false;
2061 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2062 }
2063 if (n_subcores > 3 || large_sub < 0)
2064 return false;
2065
2066 /*
2067 * Seems feasible, so go through and move vcores to new subcores.
2068 * Note that when we have two or more vcores in one subcore,
2069 * all those vcores must have only one thread each.
2070 */
2071 new_sub = cip->n_subcores;
2072 thr = 0;
2073 sub = large_sub;
2074 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2075 if (thr >= 2) {
2076 list_del(&vc->preempt_list);
2077 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2078 /* vc->num_threads must be 1 */
2079 if (++cip->subcore_threads[new_sub] == 1) {
2080 cip->subcore_vm[new_sub] = vc->kvm;
2081 init_master_vcore(vc);
2082 master_vc = vc;
2083 ++cip->n_subcores;
2084 } else {
2085 vc->master_vcore = master_vc;
2086 ++new_sub;
2087 }
2088 }
2089 thr += vc->num_threads;
2090 }
2091 cip->subcore_threads[large_sub] = 2;
2092 cip->max_subcore_threads = 2;
2093
2094 return true;
2095 }
2096
2097 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2098 {
2099 int n_threads = vc->num_threads;
2100 int sub;
2101
2102 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2103 return false;
2104
2105 if (n_threads < cip->max_subcore_threads)
2106 n_threads = cip->max_subcore_threads;
2107 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2108 cip->max_subcore_threads = n_threads;
2109 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2110 vc->num_threads <= 2) {
2111 /*
2112 * We may be able to fit another subcore in by
2113 * splitting an existing subcore with 3 or 4
2114 * threads into two 2-thread subcores, or one
2115 * with 5 or 6 threads into three subcores.
2116 * We can only do this if those subcores have
2117 * piggybacked virtual cores.
2118 */
2119 if (!can_split_piggybacked_subcores(cip))
2120 return false;
2121 } else {
2122 return false;
2123 }
2124
2125 sub = cip->n_subcores;
2126 ++cip->n_subcores;
2127 cip->total_threads += vc->num_threads;
2128 cip->subcore_threads[sub] = vc->num_threads;
2129 cip->subcore_vm[sub] = vc->kvm;
2130 init_master_vcore(vc);
2131 list_del(&vc->preempt_list);
2132 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2133
2134 return true;
2135 }
2136
2137 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2138 struct core_info *cip, int sub)
2139 {
2140 struct kvmppc_vcore *vc;
2141 int n_thr;
2142
2143 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2144 preempt_list);
2145
2146 /* require same VM and same per-core reg values */
2147 if (pvc->kvm != vc->kvm ||
2148 pvc->tb_offset != vc->tb_offset ||
2149 pvc->pcr != vc->pcr ||
2150 pvc->lpcr != vc->lpcr)
2151 return false;
2152
2153 /* P8 guest with > 1 thread per core would see wrong TIR value */
2154 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2155 (vc->num_threads > 1 || pvc->num_threads > 1))
2156 return false;
2157
2158 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2159 if (n_thr > cip->max_subcore_threads) {
2160 if (!subcore_config_ok(cip->n_subcores, n_thr))
2161 return false;
2162 cip->max_subcore_threads = n_thr;
2163 }
2164
2165 cip->total_threads += pvc->num_threads;
2166 cip->subcore_threads[sub] = n_thr;
2167 pvc->master_vcore = vc;
2168 list_del(&pvc->preempt_list);
2169 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2170
2171 return true;
2172 }
2173
2174 /*
2175 * Work out whether it is possible to piggyback the execution of
2176 * vcore *pvc onto the execution of the other vcores described in *cip.
2177 */
2178 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2179 int target_threads)
2180 {
2181 int sub;
2182
2183 if (cip->total_threads + pvc->num_threads > target_threads)
2184 return false;
2185 for (sub = 0; sub < cip->n_subcores; ++sub)
2186 if (cip->subcore_threads[sub] &&
2187 can_piggyback_subcore(pvc, cip, sub))
2188 return true;
2189
2190 if (can_dynamic_split(pvc, cip))
2191 return true;
2192
2193 return false;
2194 }
2195
2196 static void prepare_threads(struct kvmppc_vcore *vc)
2197 {
2198 struct kvm_vcpu *vcpu, *vnext;
2199
2200 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2201 arch.run_list) {
2202 if (signal_pending(vcpu->arch.run_task))
2203 vcpu->arch.ret = -EINTR;
2204 else if (vcpu->arch.vpa.update_pending ||
2205 vcpu->arch.slb_shadow.update_pending ||
2206 vcpu->arch.dtl.update_pending)
2207 vcpu->arch.ret = RESUME_GUEST;
2208 else
2209 continue;
2210 kvmppc_remove_runnable(vc, vcpu);
2211 wake_up(&vcpu->arch.cpu_run);
2212 }
2213 }
2214
2215 static void collect_piggybacks(struct core_info *cip, int target_threads)
2216 {
2217 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2218 struct kvmppc_vcore *pvc, *vcnext;
2219
2220 spin_lock(&lp->lock);
2221 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2222 if (!spin_trylock(&pvc->lock))
2223 continue;
2224 prepare_threads(pvc);
2225 if (!pvc->n_runnable) {
2226 list_del_init(&pvc->preempt_list);
2227 if (pvc->runner == NULL) {
2228 pvc->vcore_state = VCORE_INACTIVE;
2229 kvmppc_core_end_stolen(pvc);
2230 }
2231 spin_unlock(&pvc->lock);
2232 continue;
2233 }
2234 if (!can_piggyback(pvc, cip, target_threads)) {
2235 spin_unlock(&pvc->lock);
2236 continue;
2237 }
2238 kvmppc_core_end_stolen(pvc);
2239 pvc->vcore_state = VCORE_PIGGYBACK;
2240 if (cip->total_threads >= target_threads)
2241 break;
2242 }
2243 spin_unlock(&lp->lock);
2244 }
2245
2246 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2247 {
2248 int still_running = 0;
2249 u64 now;
2250 long ret;
2251 struct kvm_vcpu *vcpu, *vnext;
2252
2253 spin_lock(&vc->lock);
2254 now = get_tb();
2255 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2256 arch.run_list) {
2257 /* cancel pending dec exception if dec is positive */
2258 if (now < vcpu->arch.dec_expires &&
2259 kvmppc_core_pending_dec(vcpu))
2260 kvmppc_core_dequeue_dec(vcpu);
2261
2262 trace_kvm_guest_exit(vcpu);
2263
2264 ret = RESUME_GUEST;
2265 if (vcpu->arch.trap)
2266 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2267 vcpu->arch.run_task);
2268
2269 vcpu->arch.ret = ret;
2270 vcpu->arch.trap = 0;
2271
2272 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2273 if (vcpu->arch.pending_exceptions)
2274 kvmppc_core_prepare_to_enter(vcpu);
2275 if (vcpu->arch.ceded)
2276 kvmppc_set_timer(vcpu);
2277 else
2278 ++still_running;
2279 } else {
2280 kvmppc_remove_runnable(vc, vcpu);
2281 wake_up(&vcpu->arch.cpu_run);
2282 }
2283 }
2284 list_del_init(&vc->preempt_list);
2285 if (!is_master) {
2286 if (still_running > 0) {
2287 kvmppc_vcore_preempt(vc);
2288 } else if (vc->runner) {
2289 vc->vcore_state = VCORE_PREEMPT;
2290 kvmppc_core_start_stolen(vc);
2291 } else {
2292 vc->vcore_state = VCORE_INACTIVE;
2293 }
2294 if (vc->n_runnable > 0 && vc->runner == NULL) {
2295 /* make sure there's a candidate runner awake */
2296 vcpu = list_first_entry(&vc->runnable_threads,
2297 struct kvm_vcpu, arch.run_list);
2298 wake_up(&vcpu->arch.cpu_run);
2299 }
2300 }
2301 spin_unlock(&vc->lock);
2302 }
2303
2304 /*
2305 * Run a set of guest threads on a physical core.
2306 * Called with vc->lock held.
2307 */
2308 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2309 {
2310 struct kvm_vcpu *vcpu, *vnext;
2311 int i;
2312 int srcu_idx;
2313 struct core_info core_info;
2314 struct kvmppc_vcore *pvc, *vcnext;
2315 struct kvm_split_mode split_info, *sip;
2316 int split, subcore_size, active;
2317 int sub;
2318 bool thr0_done;
2319 unsigned long cmd_bit, stat_bit;
2320 int pcpu, thr;
2321 int target_threads;
2322
2323 /*
2324 * Remove from the list any threads that have a signal pending
2325 * or need a VPA update done
2326 */
2327 prepare_threads(vc);
2328
2329 /* if the runner is no longer runnable, let the caller pick a new one */
2330 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2331 return;
2332
2333 /*
2334 * Initialize *vc.
2335 */
2336 init_master_vcore(vc);
2337 vc->preempt_tb = TB_NIL;
2338
2339 /*
2340 * Make sure we are running on primary threads, and that secondary
2341 * threads are offline. Also check if the number of threads in this
2342 * guest are greater than the current system threads per guest.
2343 */
2344 if ((threads_per_core > 1) &&
2345 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2346 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2347 arch.run_list) {
2348 vcpu->arch.ret = -EBUSY;
2349 kvmppc_remove_runnable(vc, vcpu);
2350 wake_up(&vcpu->arch.cpu_run);
2351 }
2352 goto out;
2353 }
2354
2355 /*
2356 * See if we could run any other vcores on the physical core
2357 * along with this one.
2358 */
2359 init_core_info(&core_info, vc);
2360 pcpu = smp_processor_id();
2361 target_threads = threads_per_subcore;
2362 if (target_smt_mode && target_smt_mode < target_threads)
2363 target_threads = target_smt_mode;
2364 if (vc->num_threads < target_threads)
2365 collect_piggybacks(&core_info, target_threads);
2366
2367 /* Decide on micro-threading (split-core) mode */
2368 subcore_size = threads_per_subcore;
2369 cmd_bit = stat_bit = 0;
2370 split = core_info.n_subcores;
2371 sip = NULL;
2372 if (split > 1) {
2373 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2374 if (split == 2 && (dynamic_mt_modes & 2)) {
2375 cmd_bit = HID0_POWER8_1TO2LPAR;
2376 stat_bit = HID0_POWER8_2LPARMODE;
2377 } else {
2378 split = 4;
2379 cmd_bit = HID0_POWER8_1TO4LPAR;
2380 stat_bit = HID0_POWER8_4LPARMODE;
2381 }
2382 subcore_size = MAX_SMT_THREADS / split;
2383 sip = &split_info;
2384 memset(&split_info, 0, sizeof(split_info));
2385 split_info.rpr = mfspr(SPRN_RPR);
2386 split_info.pmmar = mfspr(SPRN_PMMAR);
2387 split_info.ldbar = mfspr(SPRN_LDBAR);
2388 split_info.subcore_size = subcore_size;
2389 for (sub = 0; sub < core_info.n_subcores; ++sub)
2390 split_info.master_vcs[sub] =
2391 list_first_entry(&core_info.vcs[sub],
2392 struct kvmppc_vcore, preempt_list);
2393 /* order writes to split_info before kvm_split_mode pointer */
2394 smp_wmb();
2395 }
2396 pcpu = smp_processor_id();
2397 for (thr = 0; thr < threads_per_subcore; ++thr)
2398 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2399
2400 /* Initiate micro-threading (split-core) if required */
2401 if (cmd_bit) {
2402 unsigned long hid0 = mfspr(SPRN_HID0);
2403
2404 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2405 mb();
2406 mtspr(SPRN_HID0, hid0);
2407 isync();
2408 for (;;) {
2409 hid0 = mfspr(SPRN_HID0);
2410 if (hid0 & stat_bit)
2411 break;
2412 cpu_relax();
2413 }
2414 }
2415
2416 /* Start all the threads */
2417 active = 0;
2418 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2419 thr = subcore_thread_map[sub];
2420 thr0_done = false;
2421 active |= 1 << thr;
2422 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2423 pvc->pcpu = pcpu + thr;
2424 list_for_each_entry(vcpu, &pvc->runnable_threads,
2425 arch.run_list) {
2426 kvmppc_start_thread(vcpu, pvc);
2427 kvmppc_create_dtl_entry(vcpu, pvc);
2428 trace_kvm_guest_enter(vcpu);
2429 if (!vcpu->arch.ptid)
2430 thr0_done = true;
2431 active |= 1 << (thr + vcpu->arch.ptid);
2432 }
2433 /*
2434 * We need to start the first thread of each subcore
2435 * even if it doesn't have a vcpu.
2436 */
2437 if (pvc->master_vcore == pvc && !thr0_done)
2438 kvmppc_start_thread(NULL, pvc);
2439 thr += pvc->num_threads;
2440 }
2441 }
2442
2443 /*
2444 * Ensure that split_info.do_nap is set after setting
2445 * the vcore pointer in the PACA of the secondaries.
2446 */
2447 smp_mb();
2448 if (cmd_bit)
2449 split_info.do_nap = 1; /* ask secondaries to nap when done */
2450
2451 /*
2452 * When doing micro-threading, poke the inactive threads as well.
2453 * This gets them to the nap instruction after kvm_do_nap,
2454 * which reduces the time taken to unsplit later.
2455 */
2456 if (split > 1)
2457 for (thr = 1; thr < threads_per_subcore; ++thr)
2458 if (!(active & (1 << thr)))
2459 kvmppc_ipi_thread(pcpu + thr);
2460
2461 vc->vcore_state = VCORE_RUNNING;
2462 preempt_disable();
2463
2464 trace_kvmppc_run_core(vc, 0);
2465
2466 for (sub = 0; sub < core_info.n_subcores; ++sub)
2467 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2468 spin_unlock(&pvc->lock);
2469
2470 kvm_guest_enter();
2471
2472 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2473
2474 if (vc->mpp_buffer_is_valid)
2475 kvmppc_start_restoring_l2_cache(vc);
2476
2477 __kvmppc_vcore_entry();
2478
2479 if (vc->mpp_buffer)
2480 kvmppc_start_saving_l2_cache(vc);
2481
2482 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2483
2484 spin_lock(&vc->lock);
2485 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2486 vc->vcore_state = VCORE_EXITING;
2487
2488 /* wait for secondary threads to finish writing their state to memory */
2489 kvmppc_wait_for_nap();
2490
2491 /* Return to whole-core mode if we split the core earlier */
2492 if (split > 1) {
2493 unsigned long hid0 = mfspr(SPRN_HID0);
2494 unsigned long loops = 0;
2495
2496 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2497 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2498 mb();
2499 mtspr(SPRN_HID0, hid0);
2500 isync();
2501 for (;;) {
2502 hid0 = mfspr(SPRN_HID0);
2503 if (!(hid0 & stat_bit))
2504 break;
2505 cpu_relax();
2506 ++loops;
2507 }
2508 split_info.do_nap = 0;
2509 }
2510
2511 /* Let secondaries go back to the offline loop */
2512 for (i = 0; i < threads_per_subcore; ++i) {
2513 kvmppc_release_hwthread(pcpu + i);
2514 if (sip && sip->napped[i])
2515 kvmppc_ipi_thread(pcpu + i);
2516 }
2517
2518 spin_unlock(&vc->lock);
2519
2520 /* make sure updates to secondary vcpu structs are visible now */
2521 smp_mb();
2522 kvm_guest_exit();
2523
2524 for (sub = 0; sub < core_info.n_subcores; ++sub)
2525 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2526 preempt_list)
2527 post_guest_process(pvc, pvc == vc);
2528
2529 spin_lock(&vc->lock);
2530 preempt_enable();
2531
2532 out:
2533 vc->vcore_state = VCORE_INACTIVE;
2534 trace_kvmppc_run_core(vc, 1);
2535 }
2536
2537 /*
2538 * Wait for some other vcpu thread to execute us, and
2539 * wake us up when we need to handle something in the host.
2540 */
2541 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2542 struct kvm_vcpu *vcpu, int wait_state)
2543 {
2544 DEFINE_WAIT(wait);
2545
2546 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2547 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2548 spin_unlock(&vc->lock);
2549 schedule();
2550 spin_lock(&vc->lock);
2551 }
2552 finish_wait(&vcpu->arch.cpu_run, &wait);
2553 }
2554
2555 /*
2556 * All the vcpus in this vcore are idle, so wait for a decrementer
2557 * or external interrupt to one of the vcpus. vc->lock is held.
2558 */
2559 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2560 {
2561 struct kvm_vcpu *vcpu;
2562 int do_sleep = 1;
2563
2564 DEFINE_WAIT(wait);
2565
2566 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2567
2568 /*
2569 * Check one last time for pending exceptions and ceded state after
2570 * we put ourselves on the wait queue
2571 */
2572 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2573 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2574 do_sleep = 0;
2575 break;
2576 }
2577 }
2578
2579 if (!do_sleep) {
2580 finish_wait(&vc->wq, &wait);
2581 return;
2582 }
2583
2584 vc->vcore_state = VCORE_SLEEPING;
2585 trace_kvmppc_vcore_blocked(vc, 0);
2586 spin_unlock(&vc->lock);
2587 schedule();
2588 finish_wait(&vc->wq, &wait);
2589 spin_lock(&vc->lock);
2590 vc->vcore_state = VCORE_INACTIVE;
2591 trace_kvmppc_vcore_blocked(vc, 1);
2592 }
2593
2594 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2595 {
2596 int n_ceded;
2597 struct kvmppc_vcore *vc;
2598 struct kvm_vcpu *v, *vn;
2599
2600 trace_kvmppc_run_vcpu_enter(vcpu);
2601
2602 kvm_run->exit_reason = 0;
2603 vcpu->arch.ret = RESUME_GUEST;
2604 vcpu->arch.trap = 0;
2605 kvmppc_update_vpas(vcpu);
2606
2607 /*
2608 * Synchronize with other threads in this virtual core
2609 */
2610 vc = vcpu->arch.vcore;
2611 spin_lock(&vc->lock);
2612 vcpu->arch.ceded = 0;
2613 vcpu->arch.run_task = current;
2614 vcpu->arch.kvm_run = kvm_run;
2615 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2616 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2617 vcpu->arch.busy_preempt = TB_NIL;
2618 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2619 ++vc->n_runnable;
2620
2621 /*
2622 * This happens the first time this is called for a vcpu.
2623 * If the vcore is already running, we may be able to start
2624 * this thread straight away and have it join in.
2625 */
2626 if (!signal_pending(current)) {
2627 if (vc->vcore_state == VCORE_PIGGYBACK) {
2628 struct kvmppc_vcore *mvc = vc->master_vcore;
2629 if (spin_trylock(&mvc->lock)) {
2630 if (mvc->vcore_state == VCORE_RUNNING &&
2631 !VCORE_IS_EXITING(mvc)) {
2632 kvmppc_create_dtl_entry(vcpu, vc);
2633 kvmppc_start_thread(vcpu, vc);
2634 trace_kvm_guest_enter(vcpu);
2635 }
2636 spin_unlock(&mvc->lock);
2637 }
2638 } else if (vc->vcore_state == VCORE_RUNNING &&
2639 !VCORE_IS_EXITING(vc)) {
2640 kvmppc_create_dtl_entry(vcpu, vc);
2641 kvmppc_start_thread(vcpu, vc);
2642 trace_kvm_guest_enter(vcpu);
2643 } else if (vc->vcore_state == VCORE_SLEEPING) {
2644 wake_up(&vc->wq);
2645 }
2646
2647 }
2648
2649 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2650 !signal_pending(current)) {
2651 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2652 kvmppc_vcore_end_preempt(vc);
2653
2654 if (vc->vcore_state != VCORE_INACTIVE) {
2655 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2656 continue;
2657 }
2658 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2659 arch.run_list) {
2660 kvmppc_core_prepare_to_enter(v);
2661 if (signal_pending(v->arch.run_task)) {
2662 kvmppc_remove_runnable(vc, v);
2663 v->stat.signal_exits++;
2664 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2665 v->arch.ret = -EINTR;
2666 wake_up(&v->arch.cpu_run);
2667 }
2668 }
2669 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2670 break;
2671 n_ceded = 0;
2672 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2673 if (!v->arch.pending_exceptions)
2674 n_ceded += v->arch.ceded;
2675 else
2676 v->arch.ceded = 0;
2677 }
2678 vc->runner = vcpu;
2679 if (n_ceded == vc->n_runnable) {
2680 kvmppc_vcore_blocked(vc);
2681 } else if (need_resched()) {
2682 kvmppc_vcore_preempt(vc);
2683 /* Let something else run */
2684 cond_resched_lock(&vc->lock);
2685 if (vc->vcore_state == VCORE_PREEMPT)
2686 kvmppc_vcore_end_preempt(vc);
2687 } else {
2688 kvmppc_run_core(vc);
2689 }
2690 vc->runner = NULL;
2691 }
2692
2693 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2694 (vc->vcore_state == VCORE_RUNNING ||
2695 vc->vcore_state == VCORE_EXITING))
2696 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2697
2698 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2699 kvmppc_remove_runnable(vc, vcpu);
2700 vcpu->stat.signal_exits++;
2701 kvm_run->exit_reason = KVM_EXIT_INTR;
2702 vcpu->arch.ret = -EINTR;
2703 }
2704
2705 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2706 /* Wake up some vcpu to run the core */
2707 v = list_first_entry(&vc->runnable_threads,
2708 struct kvm_vcpu, arch.run_list);
2709 wake_up(&v->arch.cpu_run);
2710 }
2711
2712 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2713 spin_unlock(&vc->lock);
2714 return vcpu->arch.ret;
2715 }
2716
2717 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2718 {
2719 int r;
2720 int srcu_idx;
2721
2722 if (!vcpu->arch.sane) {
2723 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2724 return -EINVAL;
2725 }
2726
2727 kvmppc_core_prepare_to_enter(vcpu);
2728
2729 /* No need to go into the guest when all we'll do is come back out */
2730 if (signal_pending(current)) {
2731 run->exit_reason = KVM_EXIT_INTR;
2732 return -EINTR;
2733 }
2734
2735 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2736 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2737 smp_mb();
2738
2739 /* On the first time here, set up HTAB and VRMA */
2740 if (!vcpu->kvm->arch.hpte_setup_done) {
2741 r = kvmppc_hv_setup_htab_rma(vcpu);
2742 if (r)
2743 goto out;
2744 }
2745
2746 flush_fp_to_thread(current);
2747 flush_altivec_to_thread(current);
2748 flush_vsx_to_thread(current);
2749 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2750 vcpu->arch.pgdir = current->mm->pgd;
2751 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2752
2753 do {
2754 r = kvmppc_run_vcpu(run, vcpu);
2755
2756 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2757 !(vcpu->arch.shregs.msr & MSR_PR)) {
2758 trace_kvm_hcall_enter(vcpu);
2759 r = kvmppc_pseries_do_hcall(vcpu);
2760 trace_kvm_hcall_exit(vcpu, r);
2761 kvmppc_core_prepare_to_enter(vcpu);
2762 } else if (r == RESUME_PAGE_FAULT) {
2763 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2764 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2765 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2766 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2767 }
2768 } while (is_kvmppc_resume_guest(r));
2769
2770 out:
2771 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2772 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2773 return r;
2774 }
2775
2776 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2777 int linux_psize)
2778 {
2779 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2780
2781 if (!def->shift)
2782 return;
2783 (*sps)->page_shift = def->shift;
2784 (*sps)->slb_enc = def->sllp;
2785 (*sps)->enc[0].page_shift = def->shift;
2786 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2787 /*
2788 * Add 16MB MPSS support if host supports it
2789 */
2790 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2791 (*sps)->enc[1].page_shift = 24;
2792 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2793 }
2794 (*sps)++;
2795 }
2796
2797 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2798 struct kvm_ppc_smmu_info *info)
2799 {
2800 struct kvm_ppc_one_seg_page_size *sps;
2801
2802 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2803 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2804 info->flags |= KVM_PPC_1T_SEGMENTS;
2805 info->slb_size = mmu_slb_size;
2806
2807 /* We only support these sizes for now, and no muti-size segments */
2808 sps = &info->sps[0];
2809 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2810 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2811 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2812
2813 return 0;
2814 }
2815
2816 /*
2817 * Get (and clear) the dirty memory log for a memory slot.
2818 */
2819 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2820 struct kvm_dirty_log *log)
2821 {
2822 struct kvm_memslots *slots;
2823 struct kvm_memory_slot *memslot;
2824 int r;
2825 unsigned long n;
2826
2827 mutex_lock(&kvm->slots_lock);
2828
2829 r = -EINVAL;
2830 if (log->slot >= KVM_USER_MEM_SLOTS)
2831 goto out;
2832
2833 slots = kvm_memslots(kvm);
2834 memslot = id_to_memslot(slots, log->slot);
2835 r = -ENOENT;
2836 if (!memslot->dirty_bitmap)
2837 goto out;
2838
2839 n = kvm_dirty_bitmap_bytes(memslot);
2840 memset(memslot->dirty_bitmap, 0, n);
2841
2842 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2843 if (r)
2844 goto out;
2845
2846 r = -EFAULT;
2847 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2848 goto out;
2849
2850 r = 0;
2851 out:
2852 mutex_unlock(&kvm->slots_lock);
2853 return r;
2854 }
2855
2856 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2857 struct kvm_memory_slot *dont)
2858 {
2859 if (!dont || free->arch.rmap != dont->arch.rmap) {
2860 vfree(free->arch.rmap);
2861 free->arch.rmap = NULL;
2862 }
2863 }
2864
2865 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2866 unsigned long npages)
2867 {
2868 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2869 if (!slot->arch.rmap)
2870 return -ENOMEM;
2871
2872 return 0;
2873 }
2874
2875 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2876 struct kvm_memory_slot *memslot,
2877 const struct kvm_userspace_memory_region *mem)
2878 {
2879 return 0;
2880 }
2881
2882 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2883 const struct kvm_userspace_memory_region *mem,
2884 const struct kvm_memory_slot *old,
2885 const struct kvm_memory_slot *new)
2886 {
2887 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2888 struct kvm_memslots *slots;
2889 struct kvm_memory_slot *memslot;
2890
2891 if (npages && old->npages) {
2892 /*
2893 * If modifying a memslot, reset all the rmap dirty bits.
2894 * If this is a new memslot, we don't need to do anything
2895 * since the rmap array starts out as all zeroes,
2896 * i.e. no pages are dirty.
2897 */
2898 slots = kvm_memslots(kvm);
2899 memslot = id_to_memslot(slots, mem->slot);
2900 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2901 }
2902 }
2903
2904 /*
2905 * Update LPCR values in kvm->arch and in vcores.
2906 * Caller must hold kvm->lock.
2907 */
2908 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2909 {
2910 long int i;
2911 u32 cores_done = 0;
2912
2913 if ((kvm->arch.lpcr & mask) == lpcr)
2914 return;
2915
2916 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2917
2918 for (i = 0; i < KVM_MAX_VCORES; ++i) {
2919 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2920 if (!vc)
2921 continue;
2922 spin_lock(&vc->lock);
2923 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2924 spin_unlock(&vc->lock);
2925 if (++cores_done >= kvm->arch.online_vcores)
2926 break;
2927 }
2928 }
2929
2930 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2931 {
2932 return;
2933 }
2934
2935 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2936 {
2937 int err = 0;
2938 struct kvm *kvm = vcpu->kvm;
2939 unsigned long hva;
2940 struct kvm_memory_slot *memslot;
2941 struct vm_area_struct *vma;
2942 unsigned long lpcr = 0, senc;
2943 unsigned long psize, porder;
2944 int srcu_idx;
2945
2946 mutex_lock(&kvm->lock);
2947 if (kvm->arch.hpte_setup_done)
2948 goto out; /* another vcpu beat us to it */
2949
2950 /* Allocate hashed page table (if not done already) and reset it */
2951 if (!kvm->arch.hpt_virt) {
2952 err = kvmppc_alloc_hpt(kvm, NULL);
2953 if (err) {
2954 pr_err("KVM: Couldn't alloc HPT\n");
2955 goto out;
2956 }
2957 }
2958
2959 /* Look up the memslot for guest physical address 0 */
2960 srcu_idx = srcu_read_lock(&kvm->srcu);
2961 memslot = gfn_to_memslot(kvm, 0);
2962
2963 /* We must have some memory at 0 by now */
2964 err = -EINVAL;
2965 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2966 goto out_srcu;
2967
2968 /* Look up the VMA for the start of this memory slot */
2969 hva = memslot->userspace_addr;
2970 down_read(&current->mm->mmap_sem);
2971 vma = find_vma(current->mm, hva);
2972 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2973 goto up_out;
2974
2975 psize = vma_kernel_pagesize(vma);
2976 porder = __ilog2(psize);
2977
2978 up_read(&current->mm->mmap_sem);
2979
2980 /* We can handle 4k, 64k or 16M pages in the VRMA */
2981 err = -EINVAL;
2982 if (!(psize == 0x1000 || psize == 0x10000 ||
2983 psize == 0x1000000))
2984 goto out_srcu;
2985
2986 /* Update VRMASD field in the LPCR */
2987 senc = slb_pgsize_encoding(psize);
2988 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2989 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2990 /* the -4 is to account for senc values starting at 0x10 */
2991 lpcr = senc << (LPCR_VRMASD_SH - 4);
2992
2993 /* Create HPTEs in the hash page table for the VRMA */
2994 kvmppc_map_vrma(vcpu, memslot, porder);
2995
2996 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2997
2998 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2999 smp_wmb();
3000 kvm->arch.hpte_setup_done = 1;
3001 err = 0;
3002 out_srcu:
3003 srcu_read_unlock(&kvm->srcu, srcu_idx);
3004 out:
3005 mutex_unlock(&kvm->lock);
3006 return err;
3007
3008 up_out:
3009 up_read(&current->mm->mmap_sem);
3010 goto out_srcu;
3011 }
3012
3013 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3014 {
3015 unsigned long lpcr, lpid;
3016 char buf[32];
3017
3018 /* Allocate the guest's logical partition ID */
3019
3020 lpid = kvmppc_alloc_lpid();
3021 if ((long)lpid < 0)
3022 return -ENOMEM;
3023 kvm->arch.lpid = lpid;
3024
3025 /*
3026 * Since we don't flush the TLB when tearing down a VM,
3027 * and this lpid might have previously been used,
3028 * make sure we flush on each core before running the new VM.
3029 */
3030 cpumask_setall(&kvm->arch.need_tlb_flush);
3031
3032 /* Start out with the default set of hcalls enabled */
3033 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3034 sizeof(kvm->arch.enabled_hcalls));
3035
3036 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3037
3038 /* Init LPCR for virtual RMA mode */
3039 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3040 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3041 lpcr &= LPCR_PECE | LPCR_LPES;
3042 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3043 LPCR_VPM0 | LPCR_VPM1;
3044 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3045 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3046 /* On POWER8 turn on online bit to enable PURR/SPURR */
3047 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3048 lpcr |= LPCR_ONL;
3049 kvm->arch.lpcr = lpcr;
3050
3051 /*
3052 * Track that we now have a HV mode VM active. This blocks secondary
3053 * CPU threads from coming online.
3054 */
3055 kvm_hv_vm_activated();
3056
3057 /*
3058 * Create a debugfs directory for the VM
3059 */
3060 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3061 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3062 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3063 kvmppc_mmu_debugfs_init(kvm);
3064
3065 return 0;
3066 }
3067
3068 static void kvmppc_free_vcores(struct kvm *kvm)
3069 {
3070 long int i;
3071
3072 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3073 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
3074 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3075 free_pages((unsigned long)vc->mpp_buffer,
3076 MPP_BUFFER_ORDER);
3077 }
3078 kfree(kvm->arch.vcores[i]);
3079 }
3080 kvm->arch.online_vcores = 0;
3081 }
3082
3083 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3084 {
3085 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3086
3087 kvm_hv_vm_deactivated();
3088
3089 kvmppc_free_vcores(kvm);
3090
3091 kvmppc_free_hpt(kvm);
3092 }
3093
3094 /* We don't need to emulate any privileged instructions or dcbz */
3095 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3096 unsigned int inst, int *advance)
3097 {
3098 return EMULATE_FAIL;
3099 }
3100
3101 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3102 ulong spr_val)
3103 {
3104 return EMULATE_FAIL;
3105 }
3106
3107 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3108 ulong *spr_val)
3109 {
3110 return EMULATE_FAIL;
3111 }
3112
3113 static int kvmppc_core_check_processor_compat_hv(void)
3114 {
3115 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3116 !cpu_has_feature(CPU_FTR_ARCH_206))
3117 return -EIO;
3118 return 0;
3119 }
3120
3121 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3122 unsigned int ioctl, unsigned long arg)
3123 {
3124 struct kvm *kvm __maybe_unused = filp->private_data;
3125 void __user *argp = (void __user *)arg;
3126 long r;
3127
3128 switch (ioctl) {
3129
3130 case KVM_PPC_ALLOCATE_HTAB: {
3131 u32 htab_order;
3132
3133 r = -EFAULT;
3134 if (get_user(htab_order, (u32 __user *)argp))
3135 break;
3136 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3137 if (r)
3138 break;
3139 r = -EFAULT;
3140 if (put_user(htab_order, (u32 __user *)argp))
3141 break;
3142 r = 0;
3143 break;
3144 }
3145
3146 case KVM_PPC_GET_HTAB_FD: {
3147 struct kvm_get_htab_fd ghf;
3148
3149 r = -EFAULT;
3150 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3151 break;
3152 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3153 break;
3154 }
3155
3156 default:
3157 r = -ENOTTY;
3158 }
3159
3160 return r;
3161 }
3162
3163 /*
3164 * List of hcall numbers to enable by default.
3165 * For compatibility with old userspace, we enable by default
3166 * all hcalls that were implemented before the hcall-enabling
3167 * facility was added. Note this list should not include H_RTAS.
3168 */
3169 static unsigned int default_hcall_list[] = {
3170 H_REMOVE,
3171 H_ENTER,
3172 H_READ,
3173 H_PROTECT,
3174 H_BULK_REMOVE,
3175 H_GET_TCE,
3176 H_PUT_TCE,
3177 H_SET_DABR,
3178 H_SET_XDABR,
3179 H_CEDE,
3180 H_PROD,
3181 H_CONFER,
3182 H_REGISTER_VPA,
3183 #ifdef CONFIG_KVM_XICS
3184 H_EOI,
3185 H_CPPR,
3186 H_IPI,
3187 H_IPOLL,
3188 H_XIRR,
3189 H_XIRR_X,
3190 #endif
3191 0
3192 };
3193
3194 static void init_default_hcalls(void)
3195 {
3196 int i;
3197 unsigned int hcall;
3198
3199 for (i = 0; default_hcall_list[i]; ++i) {
3200 hcall = default_hcall_list[i];
3201 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3202 __set_bit(hcall / 4, default_enabled_hcalls);
3203 }
3204 }
3205
3206 static struct kvmppc_ops kvm_ops_hv = {
3207 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3208 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3209 .get_one_reg = kvmppc_get_one_reg_hv,
3210 .set_one_reg = kvmppc_set_one_reg_hv,
3211 .vcpu_load = kvmppc_core_vcpu_load_hv,
3212 .vcpu_put = kvmppc_core_vcpu_put_hv,
3213 .set_msr = kvmppc_set_msr_hv,
3214 .vcpu_run = kvmppc_vcpu_run_hv,
3215 .vcpu_create = kvmppc_core_vcpu_create_hv,
3216 .vcpu_free = kvmppc_core_vcpu_free_hv,
3217 .check_requests = kvmppc_core_check_requests_hv,
3218 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3219 .flush_memslot = kvmppc_core_flush_memslot_hv,
3220 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3221 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3222 .unmap_hva = kvm_unmap_hva_hv,
3223 .unmap_hva_range = kvm_unmap_hva_range_hv,
3224 .age_hva = kvm_age_hva_hv,
3225 .test_age_hva = kvm_test_age_hva_hv,
3226 .set_spte_hva = kvm_set_spte_hva_hv,
3227 .mmu_destroy = kvmppc_mmu_destroy_hv,
3228 .free_memslot = kvmppc_core_free_memslot_hv,
3229 .create_memslot = kvmppc_core_create_memslot_hv,
3230 .init_vm = kvmppc_core_init_vm_hv,
3231 .destroy_vm = kvmppc_core_destroy_vm_hv,
3232 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3233 .emulate_op = kvmppc_core_emulate_op_hv,
3234 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3235 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3236 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3237 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3238 .hcall_implemented = kvmppc_hcall_impl_hv,
3239 };
3240
3241 static int kvmppc_book3s_init_hv(void)
3242 {
3243 int r;
3244 /*
3245 * FIXME!! Do we need to check on all cpus ?
3246 */
3247 r = kvmppc_core_check_processor_compat_hv();
3248 if (r < 0)
3249 return -ENODEV;
3250
3251 kvm_ops_hv.owner = THIS_MODULE;
3252 kvmppc_hv_ops = &kvm_ops_hv;
3253
3254 init_default_hcalls();
3255
3256 init_vcore_lists();
3257
3258 r = kvmppc_mmu_hv_init();
3259 return r;
3260 }
3261
3262 static void kvmppc_book3s_exit_hv(void)
3263 {
3264 kvmppc_hv_ops = NULL;
3265 }
3266
3267 module_init(kvmppc_book3s_init_hv);
3268 module_exit(kvmppc_book3s_exit_hv);
3269 MODULE_LICENSE("GPL");
3270 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3271 MODULE_ALIAS("devname:kvm");