]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
59
60 #include "book3s.h"
61
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
64
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
68
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
71
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL (~(u64)0)
74
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
76
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
83
84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
86
87 static bool kvmppc_ipi_thread(int cpu)
88 {
89 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
90 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
91 preempt_disable();
92 if (cpu_first_thread_sibling(cpu) ==
93 cpu_first_thread_sibling(smp_processor_id())) {
94 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
95 msg |= cpu_thread_in_core(cpu);
96 smp_mb();
97 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
98 preempt_enable();
99 return true;
100 }
101 preempt_enable();
102 }
103
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
106 xics_wake_cpu(cpu);
107 return true;
108 }
109 #endif
110
111 return false;
112 }
113
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
115 {
116 int cpu;
117 wait_queue_head_t *wqp;
118
119 wqp = kvm_arch_vcpu_wq(vcpu);
120 if (waitqueue_active(wqp)) {
121 wake_up_interruptible(wqp);
122 ++vcpu->stat.halt_wakeup;
123 }
124
125 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
126 return;
127
128 /* CPU points to the first thread of the core */
129 cpu = vcpu->cpu;
130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131 smp_send_reschedule(cpu);
132 }
133
134 /*
135 * We use the vcpu_load/put functions to measure stolen time.
136 * Stolen time is counted as time when either the vcpu is able to
137 * run as part of a virtual core, but the task running the vcore
138 * is preempted or sleeping, or when the vcpu needs something done
139 * in the kernel by the task running the vcpu, but that task is
140 * preempted or sleeping. Those two things have to be counted
141 * separately, since one of the vcpu tasks will take on the job
142 * of running the core, and the other vcpu tasks in the vcore will
143 * sleep waiting for it to do that, but that sleep shouldn't count
144 * as stolen time.
145 *
146 * Hence we accumulate stolen time when the vcpu can run as part of
147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148 * needs its task to do other things in the kernel (for example,
149 * service a page fault) in busy_stolen. We don't accumulate
150 * stolen time for a vcore when it is inactive, or for a vcpu
151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
152 * a misnomer; it means that the vcpu task is not executing in
153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154 * the kernel. We don't have any way of dividing up that time
155 * between time that the vcpu is genuinely stopped, time that
156 * the task is actively working on behalf of the vcpu, and time
157 * that the task is preempted, so we don't count any of it as
158 * stolen.
159 *
160 * Updates to busy_stolen are protected by arch.tbacct_lock;
161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162 * lock. The stolen times are measured in units of timebase ticks.
163 * (Note that the != TB_NIL checks below are purely defensive;
164 * they should never fail.)
165 */
166
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
168 {
169 unsigned long flags;
170
171 spin_lock_irqsave(&vc->stoltb_lock, flags);
172 vc->preempt_tb = mftb();
173 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
174 }
175
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
177 {
178 unsigned long flags;
179
180 spin_lock_irqsave(&vc->stoltb_lock, flags);
181 if (vc->preempt_tb != TB_NIL) {
182 vc->stolen_tb += mftb() - vc->preempt_tb;
183 vc->preempt_tb = TB_NIL;
184 }
185 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
186 }
187
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
189 {
190 struct kvmppc_vcore *vc = vcpu->arch.vcore;
191 unsigned long flags;
192
193 /*
194 * We can test vc->runner without taking the vcore lock,
195 * because only this task ever sets vc->runner to this
196 * vcpu, and once it is set to this vcpu, only this task
197 * ever sets it to NULL.
198 */
199 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
200 kvmppc_core_end_stolen(vc);
201
202 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
203 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
204 vcpu->arch.busy_preempt != TB_NIL) {
205 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
206 vcpu->arch.busy_preempt = TB_NIL;
207 }
208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
212 {
213 struct kvmppc_vcore *vc = vcpu->arch.vcore;
214 unsigned long flags;
215
216 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
217 kvmppc_core_start_stolen(vc);
218
219 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
220 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
221 vcpu->arch.busy_preempt = mftb();
222 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
223 }
224
225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
226 {
227 vcpu->arch.shregs.msr = msr;
228 kvmppc_end_cede(vcpu);
229 }
230
231 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
232 {
233 vcpu->arch.pvr = pvr;
234 }
235
236 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
237 {
238 unsigned long pcr = 0;
239 struct kvmppc_vcore *vc = vcpu->arch.vcore;
240
241 if (arch_compat) {
242 switch (arch_compat) {
243 case PVR_ARCH_205:
244 /*
245 * If an arch bit is set in PCR, all the defined
246 * higher-order arch bits also have to be set.
247 */
248 pcr = PCR_ARCH_206 | PCR_ARCH_205;
249 break;
250 case PVR_ARCH_206:
251 case PVR_ARCH_206p:
252 pcr = PCR_ARCH_206;
253 break;
254 case PVR_ARCH_207:
255 break;
256 default:
257 return -EINVAL;
258 }
259
260 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
261 /* POWER7 can't emulate POWER8 */
262 if (!(pcr & PCR_ARCH_206))
263 return -EINVAL;
264 pcr &= ~PCR_ARCH_206;
265 }
266 }
267
268 spin_lock(&vc->lock);
269 vc->arch_compat = arch_compat;
270 vc->pcr = pcr;
271 spin_unlock(&vc->lock);
272
273 return 0;
274 }
275
276 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
277 {
278 int r;
279
280 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
281 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
282 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
283 for (r = 0; r < 16; ++r)
284 pr_err("r%2d = %.16lx r%d = %.16lx\n",
285 r, kvmppc_get_gpr(vcpu, r),
286 r+16, kvmppc_get_gpr(vcpu, r+16));
287 pr_err("ctr = %.16lx lr = %.16lx\n",
288 vcpu->arch.ctr, vcpu->arch.lr);
289 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
290 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
291 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
292 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
293 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
294 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
295 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
296 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
297 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
298 pr_err("fault dar = %.16lx dsisr = %.8x\n",
299 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
300 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
301 for (r = 0; r < vcpu->arch.slb_max; ++r)
302 pr_err(" ESID = %.16llx VSID = %.16llx\n",
303 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
304 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
305 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
306 vcpu->arch.last_inst);
307 }
308
309 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
310 {
311 int r;
312 struct kvm_vcpu *v, *ret = NULL;
313
314 mutex_lock(&kvm->lock);
315 kvm_for_each_vcpu(r, v, kvm) {
316 if (v->vcpu_id == id) {
317 ret = v;
318 break;
319 }
320 }
321 mutex_unlock(&kvm->lock);
322 return ret;
323 }
324
325 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
326 {
327 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
328 vpa->yield_count = cpu_to_be32(1);
329 }
330
331 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
332 unsigned long addr, unsigned long len)
333 {
334 /* check address is cacheline aligned */
335 if (addr & (L1_CACHE_BYTES - 1))
336 return -EINVAL;
337 spin_lock(&vcpu->arch.vpa_update_lock);
338 if (v->next_gpa != addr || v->len != len) {
339 v->next_gpa = addr;
340 v->len = addr ? len : 0;
341 v->update_pending = 1;
342 }
343 spin_unlock(&vcpu->arch.vpa_update_lock);
344 return 0;
345 }
346
347 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
348 struct reg_vpa {
349 u32 dummy;
350 union {
351 __be16 hword;
352 __be32 word;
353 } length;
354 };
355
356 static int vpa_is_registered(struct kvmppc_vpa *vpap)
357 {
358 if (vpap->update_pending)
359 return vpap->next_gpa != 0;
360 return vpap->pinned_addr != NULL;
361 }
362
363 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
364 unsigned long flags,
365 unsigned long vcpuid, unsigned long vpa)
366 {
367 struct kvm *kvm = vcpu->kvm;
368 unsigned long len, nb;
369 void *va;
370 struct kvm_vcpu *tvcpu;
371 int err;
372 int subfunc;
373 struct kvmppc_vpa *vpap;
374
375 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
376 if (!tvcpu)
377 return H_PARAMETER;
378
379 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
380 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
381 subfunc == H_VPA_REG_SLB) {
382 /* Registering new area - address must be cache-line aligned */
383 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
384 return H_PARAMETER;
385
386 /* convert logical addr to kernel addr and read length */
387 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
388 if (va == NULL)
389 return H_PARAMETER;
390 if (subfunc == H_VPA_REG_VPA)
391 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
392 else
393 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
394 kvmppc_unpin_guest_page(kvm, va, vpa, false);
395
396 /* Check length */
397 if (len > nb || len < sizeof(struct reg_vpa))
398 return H_PARAMETER;
399 } else {
400 vpa = 0;
401 len = 0;
402 }
403
404 err = H_PARAMETER;
405 vpap = NULL;
406 spin_lock(&tvcpu->arch.vpa_update_lock);
407
408 switch (subfunc) {
409 case H_VPA_REG_VPA: /* register VPA */
410 if (len < sizeof(struct lppaca))
411 break;
412 vpap = &tvcpu->arch.vpa;
413 err = 0;
414 break;
415
416 case H_VPA_REG_DTL: /* register DTL */
417 if (len < sizeof(struct dtl_entry))
418 break;
419 len -= len % sizeof(struct dtl_entry);
420
421 /* Check that they have previously registered a VPA */
422 err = H_RESOURCE;
423 if (!vpa_is_registered(&tvcpu->arch.vpa))
424 break;
425
426 vpap = &tvcpu->arch.dtl;
427 err = 0;
428 break;
429
430 case H_VPA_REG_SLB: /* register SLB shadow buffer */
431 /* Check that they have previously registered a VPA */
432 err = H_RESOURCE;
433 if (!vpa_is_registered(&tvcpu->arch.vpa))
434 break;
435
436 vpap = &tvcpu->arch.slb_shadow;
437 err = 0;
438 break;
439
440 case H_VPA_DEREG_VPA: /* deregister VPA */
441 /* Check they don't still have a DTL or SLB buf registered */
442 err = H_RESOURCE;
443 if (vpa_is_registered(&tvcpu->arch.dtl) ||
444 vpa_is_registered(&tvcpu->arch.slb_shadow))
445 break;
446
447 vpap = &tvcpu->arch.vpa;
448 err = 0;
449 break;
450
451 case H_VPA_DEREG_DTL: /* deregister DTL */
452 vpap = &tvcpu->arch.dtl;
453 err = 0;
454 break;
455
456 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
457 vpap = &tvcpu->arch.slb_shadow;
458 err = 0;
459 break;
460 }
461
462 if (vpap) {
463 vpap->next_gpa = vpa;
464 vpap->len = len;
465 vpap->update_pending = 1;
466 }
467
468 spin_unlock(&tvcpu->arch.vpa_update_lock);
469
470 return err;
471 }
472
473 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
474 {
475 struct kvm *kvm = vcpu->kvm;
476 void *va;
477 unsigned long nb;
478 unsigned long gpa;
479
480 /*
481 * We need to pin the page pointed to by vpap->next_gpa,
482 * but we can't call kvmppc_pin_guest_page under the lock
483 * as it does get_user_pages() and down_read(). So we
484 * have to drop the lock, pin the page, then get the lock
485 * again and check that a new area didn't get registered
486 * in the meantime.
487 */
488 for (;;) {
489 gpa = vpap->next_gpa;
490 spin_unlock(&vcpu->arch.vpa_update_lock);
491 va = NULL;
492 nb = 0;
493 if (gpa)
494 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
495 spin_lock(&vcpu->arch.vpa_update_lock);
496 if (gpa == vpap->next_gpa)
497 break;
498 /* sigh... unpin that one and try again */
499 if (va)
500 kvmppc_unpin_guest_page(kvm, va, gpa, false);
501 }
502
503 vpap->update_pending = 0;
504 if (va && nb < vpap->len) {
505 /*
506 * If it's now too short, it must be that userspace
507 * has changed the mappings underlying guest memory,
508 * so unregister the region.
509 */
510 kvmppc_unpin_guest_page(kvm, va, gpa, false);
511 va = NULL;
512 }
513 if (vpap->pinned_addr)
514 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
515 vpap->dirty);
516 vpap->gpa = gpa;
517 vpap->pinned_addr = va;
518 vpap->dirty = false;
519 if (va)
520 vpap->pinned_end = va + vpap->len;
521 }
522
523 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
524 {
525 if (!(vcpu->arch.vpa.update_pending ||
526 vcpu->arch.slb_shadow.update_pending ||
527 vcpu->arch.dtl.update_pending))
528 return;
529
530 spin_lock(&vcpu->arch.vpa_update_lock);
531 if (vcpu->arch.vpa.update_pending) {
532 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
533 if (vcpu->arch.vpa.pinned_addr)
534 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
535 }
536 if (vcpu->arch.dtl.update_pending) {
537 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
538 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
539 vcpu->arch.dtl_index = 0;
540 }
541 if (vcpu->arch.slb_shadow.update_pending)
542 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
543 spin_unlock(&vcpu->arch.vpa_update_lock);
544 }
545
546 /*
547 * Return the accumulated stolen time for the vcore up until `now'.
548 * The caller should hold the vcore lock.
549 */
550 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
551 {
552 u64 p;
553 unsigned long flags;
554
555 spin_lock_irqsave(&vc->stoltb_lock, flags);
556 p = vc->stolen_tb;
557 if (vc->vcore_state != VCORE_INACTIVE &&
558 vc->preempt_tb != TB_NIL)
559 p += now - vc->preempt_tb;
560 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
561 return p;
562 }
563
564 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
565 struct kvmppc_vcore *vc)
566 {
567 struct dtl_entry *dt;
568 struct lppaca *vpa;
569 unsigned long stolen;
570 unsigned long core_stolen;
571 u64 now;
572
573 dt = vcpu->arch.dtl_ptr;
574 vpa = vcpu->arch.vpa.pinned_addr;
575 now = mftb();
576 core_stolen = vcore_stolen_time(vc, now);
577 stolen = core_stolen - vcpu->arch.stolen_logged;
578 vcpu->arch.stolen_logged = core_stolen;
579 spin_lock_irq(&vcpu->arch.tbacct_lock);
580 stolen += vcpu->arch.busy_stolen;
581 vcpu->arch.busy_stolen = 0;
582 spin_unlock_irq(&vcpu->arch.tbacct_lock);
583 if (!dt || !vpa)
584 return;
585 memset(dt, 0, sizeof(struct dtl_entry));
586 dt->dispatch_reason = 7;
587 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
588 dt->timebase = cpu_to_be64(now + vc->tb_offset);
589 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
590 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
591 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
592 ++dt;
593 if (dt == vcpu->arch.dtl.pinned_end)
594 dt = vcpu->arch.dtl.pinned_addr;
595 vcpu->arch.dtl_ptr = dt;
596 /* order writing *dt vs. writing vpa->dtl_idx */
597 smp_wmb();
598 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
599 vcpu->arch.dtl.dirty = true;
600 }
601
602 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
603 {
604 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
605 return true;
606 if ((!vcpu->arch.vcore->arch_compat) &&
607 cpu_has_feature(CPU_FTR_ARCH_207S))
608 return true;
609 return false;
610 }
611
612 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
613 unsigned long resource, unsigned long value1,
614 unsigned long value2)
615 {
616 switch (resource) {
617 case H_SET_MODE_RESOURCE_SET_CIABR:
618 if (!kvmppc_power8_compatible(vcpu))
619 return H_P2;
620 if (value2)
621 return H_P4;
622 if (mflags)
623 return H_UNSUPPORTED_FLAG_START;
624 /* Guests can't breakpoint the hypervisor */
625 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
626 return H_P3;
627 vcpu->arch.ciabr = value1;
628 return H_SUCCESS;
629 case H_SET_MODE_RESOURCE_SET_DAWR:
630 if (!kvmppc_power8_compatible(vcpu))
631 return H_P2;
632 if (mflags)
633 return H_UNSUPPORTED_FLAG_START;
634 if (value2 & DABRX_HYP)
635 return H_P4;
636 vcpu->arch.dawr = value1;
637 vcpu->arch.dawrx = value2;
638 return H_SUCCESS;
639 default:
640 return H_TOO_HARD;
641 }
642 }
643
644 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
645 {
646 struct kvmppc_vcore *vcore = target->arch.vcore;
647
648 /*
649 * We expect to have been called by the real mode handler
650 * (kvmppc_rm_h_confer()) which would have directly returned
651 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
652 * have useful work to do and should not confer) so we don't
653 * recheck that here.
654 */
655
656 spin_lock(&vcore->lock);
657 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
658 vcore->vcore_state != VCORE_INACTIVE &&
659 vcore->runner)
660 target = vcore->runner;
661 spin_unlock(&vcore->lock);
662
663 return kvm_vcpu_yield_to(target);
664 }
665
666 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
667 {
668 int yield_count = 0;
669 struct lppaca *lppaca;
670
671 spin_lock(&vcpu->arch.vpa_update_lock);
672 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
673 if (lppaca)
674 yield_count = be32_to_cpu(lppaca->yield_count);
675 spin_unlock(&vcpu->arch.vpa_update_lock);
676 return yield_count;
677 }
678
679 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
680 {
681 unsigned long req = kvmppc_get_gpr(vcpu, 3);
682 unsigned long target, ret = H_SUCCESS;
683 int yield_count;
684 struct kvm_vcpu *tvcpu;
685 int idx, rc;
686
687 if (req <= MAX_HCALL_OPCODE &&
688 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
689 return RESUME_HOST;
690
691 switch (req) {
692 case H_CEDE:
693 break;
694 case H_PROD:
695 target = kvmppc_get_gpr(vcpu, 4);
696 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
697 if (!tvcpu) {
698 ret = H_PARAMETER;
699 break;
700 }
701 tvcpu->arch.prodded = 1;
702 smp_mb();
703 if (vcpu->arch.ceded) {
704 if (waitqueue_active(&vcpu->wq)) {
705 wake_up_interruptible(&vcpu->wq);
706 vcpu->stat.halt_wakeup++;
707 }
708 }
709 break;
710 case H_CONFER:
711 target = kvmppc_get_gpr(vcpu, 4);
712 if (target == -1)
713 break;
714 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
715 if (!tvcpu) {
716 ret = H_PARAMETER;
717 break;
718 }
719 yield_count = kvmppc_get_gpr(vcpu, 5);
720 if (kvmppc_get_yield_count(tvcpu) != yield_count)
721 break;
722 kvm_arch_vcpu_yield_to(tvcpu);
723 break;
724 case H_REGISTER_VPA:
725 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
726 kvmppc_get_gpr(vcpu, 5),
727 kvmppc_get_gpr(vcpu, 6));
728 break;
729 case H_RTAS:
730 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
731 return RESUME_HOST;
732
733 idx = srcu_read_lock(&vcpu->kvm->srcu);
734 rc = kvmppc_rtas_hcall(vcpu);
735 srcu_read_unlock(&vcpu->kvm->srcu, idx);
736
737 if (rc == -ENOENT)
738 return RESUME_HOST;
739 else if (rc == 0)
740 break;
741
742 /* Send the error out to userspace via KVM_RUN */
743 return rc;
744 case H_LOGICAL_CI_LOAD:
745 ret = kvmppc_h_logical_ci_load(vcpu);
746 if (ret == H_TOO_HARD)
747 return RESUME_HOST;
748 break;
749 case H_LOGICAL_CI_STORE:
750 ret = kvmppc_h_logical_ci_store(vcpu);
751 if (ret == H_TOO_HARD)
752 return RESUME_HOST;
753 break;
754 case H_SET_MODE:
755 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
756 kvmppc_get_gpr(vcpu, 5),
757 kvmppc_get_gpr(vcpu, 6),
758 kvmppc_get_gpr(vcpu, 7));
759 if (ret == H_TOO_HARD)
760 return RESUME_HOST;
761 break;
762 case H_XIRR:
763 case H_CPPR:
764 case H_EOI:
765 case H_IPI:
766 case H_IPOLL:
767 case H_XIRR_X:
768 if (kvmppc_xics_enabled(vcpu)) {
769 ret = kvmppc_xics_hcall(vcpu, req);
770 break;
771 } /* fallthrough */
772 default:
773 return RESUME_HOST;
774 }
775 kvmppc_set_gpr(vcpu, 3, ret);
776 vcpu->arch.hcall_needed = 0;
777 return RESUME_GUEST;
778 }
779
780 static int kvmppc_hcall_impl_hv(unsigned long cmd)
781 {
782 switch (cmd) {
783 case H_CEDE:
784 case H_PROD:
785 case H_CONFER:
786 case H_REGISTER_VPA:
787 case H_SET_MODE:
788 case H_LOGICAL_CI_LOAD:
789 case H_LOGICAL_CI_STORE:
790 #ifdef CONFIG_KVM_XICS
791 case H_XIRR:
792 case H_CPPR:
793 case H_EOI:
794 case H_IPI:
795 case H_IPOLL:
796 case H_XIRR_X:
797 #endif
798 return 1;
799 }
800
801 /* See if it's in the real-mode table */
802 return kvmppc_hcall_impl_hv_realmode(cmd);
803 }
804
805 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
806 struct kvm_vcpu *vcpu)
807 {
808 u32 last_inst;
809
810 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
811 EMULATE_DONE) {
812 /*
813 * Fetch failed, so return to guest and
814 * try executing it again.
815 */
816 return RESUME_GUEST;
817 }
818
819 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
820 run->exit_reason = KVM_EXIT_DEBUG;
821 run->debug.arch.address = kvmppc_get_pc(vcpu);
822 return RESUME_HOST;
823 } else {
824 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
825 return RESUME_GUEST;
826 }
827 }
828
829 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
830 struct task_struct *tsk)
831 {
832 int r = RESUME_HOST;
833
834 vcpu->stat.sum_exits++;
835
836 run->exit_reason = KVM_EXIT_UNKNOWN;
837 run->ready_for_interrupt_injection = 1;
838 switch (vcpu->arch.trap) {
839 /* We're good on these - the host merely wanted to get our attention */
840 case BOOK3S_INTERRUPT_HV_DECREMENTER:
841 vcpu->stat.dec_exits++;
842 r = RESUME_GUEST;
843 break;
844 case BOOK3S_INTERRUPT_EXTERNAL:
845 case BOOK3S_INTERRUPT_H_DOORBELL:
846 vcpu->stat.ext_intr_exits++;
847 r = RESUME_GUEST;
848 break;
849 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
850 case BOOK3S_INTERRUPT_HMI:
851 case BOOK3S_INTERRUPT_PERFMON:
852 r = RESUME_GUEST;
853 break;
854 case BOOK3S_INTERRUPT_MACHINE_CHECK:
855 /*
856 * Deliver a machine check interrupt to the guest.
857 * We have to do this, even if the host has handled the
858 * machine check, because machine checks use SRR0/1 and
859 * the interrupt might have trashed guest state in them.
860 */
861 kvmppc_book3s_queue_irqprio(vcpu,
862 BOOK3S_INTERRUPT_MACHINE_CHECK);
863 r = RESUME_GUEST;
864 break;
865 case BOOK3S_INTERRUPT_PROGRAM:
866 {
867 ulong flags;
868 /*
869 * Normally program interrupts are delivered directly
870 * to the guest by the hardware, but we can get here
871 * as a result of a hypervisor emulation interrupt
872 * (e40) getting turned into a 700 by BML RTAS.
873 */
874 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
875 kvmppc_core_queue_program(vcpu, flags);
876 r = RESUME_GUEST;
877 break;
878 }
879 case BOOK3S_INTERRUPT_SYSCALL:
880 {
881 /* hcall - punt to userspace */
882 int i;
883
884 /* hypercall with MSR_PR has already been handled in rmode,
885 * and never reaches here.
886 */
887
888 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
889 for (i = 0; i < 9; ++i)
890 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
891 run->exit_reason = KVM_EXIT_PAPR_HCALL;
892 vcpu->arch.hcall_needed = 1;
893 r = RESUME_HOST;
894 break;
895 }
896 /*
897 * We get these next two if the guest accesses a page which it thinks
898 * it has mapped but which is not actually present, either because
899 * it is for an emulated I/O device or because the corresonding
900 * host page has been paged out. Any other HDSI/HISI interrupts
901 * have been handled already.
902 */
903 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
904 r = RESUME_PAGE_FAULT;
905 break;
906 case BOOK3S_INTERRUPT_H_INST_STORAGE:
907 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
908 vcpu->arch.fault_dsisr = 0;
909 r = RESUME_PAGE_FAULT;
910 break;
911 /*
912 * This occurs if the guest executes an illegal instruction.
913 * If the guest debug is disabled, generate a program interrupt
914 * to the guest. If guest debug is enabled, we need to check
915 * whether the instruction is a software breakpoint instruction.
916 * Accordingly return to Guest or Host.
917 */
918 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
919 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
920 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
921 swab32(vcpu->arch.emul_inst) :
922 vcpu->arch.emul_inst;
923 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
924 r = kvmppc_emulate_debug_inst(run, vcpu);
925 } else {
926 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
927 r = RESUME_GUEST;
928 }
929 break;
930 /*
931 * This occurs if the guest (kernel or userspace), does something that
932 * is prohibited by HFSCR. We just generate a program interrupt to
933 * the guest.
934 */
935 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
936 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
937 r = RESUME_GUEST;
938 break;
939 default:
940 kvmppc_dump_regs(vcpu);
941 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
942 vcpu->arch.trap, kvmppc_get_pc(vcpu),
943 vcpu->arch.shregs.msr);
944 run->hw.hardware_exit_reason = vcpu->arch.trap;
945 r = RESUME_HOST;
946 break;
947 }
948
949 return r;
950 }
951
952 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
953 struct kvm_sregs *sregs)
954 {
955 int i;
956
957 memset(sregs, 0, sizeof(struct kvm_sregs));
958 sregs->pvr = vcpu->arch.pvr;
959 for (i = 0; i < vcpu->arch.slb_max; i++) {
960 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
961 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
962 }
963
964 return 0;
965 }
966
967 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
968 struct kvm_sregs *sregs)
969 {
970 int i, j;
971
972 /* Only accept the same PVR as the host's, since we can't spoof it */
973 if (sregs->pvr != vcpu->arch.pvr)
974 return -EINVAL;
975
976 j = 0;
977 for (i = 0; i < vcpu->arch.slb_nr; i++) {
978 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
979 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
980 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
981 ++j;
982 }
983 }
984 vcpu->arch.slb_max = j;
985
986 return 0;
987 }
988
989 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
990 bool preserve_top32)
991 {
992 struct kvm *kvm = vcpu->kvm;
993 struct kvmppc_vcore *vc = vcpu->arch.vcore;
994 u64 mask;
995
996 mutex_lock(&kvm->lock);
997 spin_lock(&vc->lock);
998 /*
999 * If ILE (interrupt little-endian) has changed, update the
1000 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1001 */
1002 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1003 struct kvm_vcpu *vcpu;
1004 int i;
1005
1006 kvm_for_each_vcpu(i, vcpu, kvm) {
1007 if (vcpu->arch.vcore != vc)
1008 continue;
1009 if (new_lpcr & LPCR_ILE)
1010 vcpu->arch.intr_msr |= MSR_LE;
1011 else
1012 vcpu->arch.intr_msr &= ~MSR_LE;
1013 }
1014 }
1015
1016 /*
1017 * Userspace can only modify DPFD (default prefetch depth),
1018 * ILE (interrupt little-endian) and TC (translation control).
1019 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1020 */
1021 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1022 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1023 mask |= LPCR_AIL;
1024
1025 /* Broken 32-bit version of LPCR must not clear top bits */
1026 if (preserve_top32)
1027 mask &= 0xFFFFFFFF;
1028 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1029 spin_unlock(&vc->lock);
1030 mutex_unlock(&kvm->lock);
1031 }
1032
1033 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1034 union kvmppc_one_reg *val)
1035 {
1036 int r = 0;
1037 long int i;
1038
1039 switch (id) {
1040 case KVM_REG_PPC_DEBUG_INST:
1041 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1042 break;
1043 case KVM_REG_PPC_HIOR:
1044 *val = get_reg_val(id, 0);
1045 break;
1046 case KVM_REG_PPC_DABR:
1047 *val = get_reg_val(id, vcpu->arch.dabr);
1048 break;
1049 case KVM_REG_PPC_DABRX:
1050 *val = get_reg_val(id, vcpu->arch.dabrx);
1051 break;
1052 case KVM_REG_PPC_DSCR:
1053 *val = get_reg_val(id, vcpu->arch.dscr);
1054 break;
1055 case KVM_REG_PPC_PURR:
1056 *val = get_reg_val(id, vcpu->arch.purr);
1057 break;
1058 case KVM_REG_PPC_SPURR:
1059 *val = get_reg_val(id, vcpu->arch.spurr);
1060 break;
1061 case KVM_REG_PPC_AMR:
1062 *val = get_reg_val(id, vcpu->arch.amr);
1063 break;
1064 case KVM_REG_PPC_UAMOR:
1065 *val = get_reg_val(id, vcpu->arch.uamor);
1066 break;
1067 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1068 i = id - KVM_REG_PPC_MMCR0;
1069 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1070 break;
1071 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1072 i = id - KVM_REG_PPC_PMC1;
1073 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1074 break;
1075 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1076 i = id - KVM_REG_PPC_SPMC1;
1077 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1078 break;
1079 case KVM_REG_PPC_SIAR:
1080 *val = get_reg_val(id, vcpu->arch.siar);
1081 break;
1082 case KVM_REG_PPC_SDAR:
1083 *val = get_reg_val(id, vcpu->arch.sdar);
1084 break;
1085 case KVM_REG_PPC_SIER:
1086 *val = get_reg_val(id, vcpu->arch.sier);
1087 break;
1088 case KVM_REG_PPC_IAMR:
1089 *val = get_reg_val(id, vcpu->arch.iamr);
1090 break;
1091 case KVM_REG_PPC_PSPB:
1092 *val = get_reg_val(id, vcpu->arch.pspb);
1093 break;
1094 case KVM_REG_PPC_DPDES:
1095 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1096 break;
1097 case KVM_REG_PPC_DAWR:
1098 *val = get_reg_val(id, vcpu->arch.dawr);
1099 break;
1100 case KVM_REG_PPC_DAWRX:
1101 *val = get_reg_val(id, vcpu->arch.dawrx);
1102 break;
1103 case KVM_REG_PPC_CIABR:
1104 *val = get_reg_val(id, vcpu->arch.ciabr);
1105 break;
1106 case KVM_REG_PPC_CSIGR:
1107 *val = get_reg_val(id, vcpu->arch.csigr);
1108 break;
1109 case KVM_REG_PPC_TACR:
1110 *val = get_reg_val(id, vcpu->arch.tacr);
1111 break;
1112 case KVM_REG_PPC_TCSCR:
1113 *val = get_reg_val(id, vcpu->arch.tcscr);
1114 break;
1115 case KVM_REG_PPC_PID:
1116 *val = get_reg_val(id, vcpu->arch.pid);
1117 break;
1118 case KVM_REG_PPC_ACOP:
1119 *val = get_reg_val(id, vcpu->arch.acop);
1120 break;
1121 case KVM_REG_PPC_WORT:
1122 *val = get_reg_val(id, vcpu->arch.wort);
1123 break;
1124 case KVM_REG_PPC_VPA_ADDR:
1125 spin_lock(&vcpu->arch.vpa_update_lock);
1126 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1127 spin_unlock(&vcpu->arch.vpa_update_lock);
1128 break;
1129 case KVM_REG_PPC_VPA_SLB:
1130 spin_lock(&vcpu->arch.vpa_update_lock);
1131 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1132 val->vpaval.length = vcpu->arch.slb_shadow.len;
1133 spin_unlock(&vcpu->arch.vpa_update_lock);
1134 break;
1135 case KVM_REG_PPC_VPA_DTL:
1136 spin_lock(&vcpu->arch.vpa_update_lock);
1137 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1138 val->vpaval.length = vcpu->arch.dtl.len;
1139 spin_unlock(&vcpu->arch.vpa_update_lock);
1140 break;
1141 case KVM_REG_PPC_TB_OFFSET:
1142 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1143 break;
1144 case KVM_REG_PPC_LPCR:
1145 case KVM_REG_PPC_LPCR_64:
1146 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1147 break;
1148 case KVM_REG_PPC_PPR:
1149 *val = get_reg_val(id, vcpu->arch.ppr);
1150 break;
1151 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1152 case KVM_REG_PPC_TFHAR:
1153 *val = get_reg_val(id, vcpu->arch.tfhar);
1154 break;
1155 case KVM_REG_PPC_TFIAR:
1156 *val = get_reg_val(id, vcpu->arch.tfiar);
1157 break;
1158 case KVM_REG_PPC_TEXASR:
1159 *val = get_reg_val(id, vcpu->arch.texasr);
1160 break;
1161 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1162 i = id - KVM_REG_PPC_TM_GPR0;
1163 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1164 break;
1165 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1166 {
1167 int j;
1168 i = id - KVM_REG_PPC_TM_VSR0;
1169 if (i < 32)
1170 for (j = 0; j < TS_FPRWIDTH; j++)
1171 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1172 else {
1173 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1174 val->vval = vcpu->arch.vr_tm.vr[i-32];
1175 else
1176 r = -ENXIO;
1177 }
1178 break;
1179 }
1180 case KVM_REG_PPC_TM_CR:
1181 *val = get_reg_val(id, vcpu->arch.cr_tm);
1182 break;
1183 case KVM_REG_PPC_TM_LR:
1184 *val = get_reg_val(id, vcpu->arch.lr_tm);
1185 break;
1186 case KVM_REG_PPC_TM_CTR:
1187 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1188 break;
1189 case KVM_REG_PPC_TM_FPSCR:
1190 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1191 break;
1192 case KVM_REG_PPC_TM_AMR:
1193 *val = get_reg_val(id, vcpu->arch.amr_tm);
1194 break;
1195 case KVM_REG_PPC_TM_PPR:
1196 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1197 break;
1198 case KVM_REG_PPC_TM_VRSAVE:
1199 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1200 break;
1201 case KVM_REG_PPC_TM_VSCR:
1202 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1203 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1204 else
1205 r = -ENXIO;
1206 break;
1207 case KVM_REG_PPC_TM_DSCR:
1208 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1209 break;
1210 case KVM_REG_PPC_TM_TAR:
1211 *val = get_reg_val(id, vcpu->arch.tar_tm);
1212 break;
1213 #endif
1214 case KVM_REG_PPC_ARCH_COMPAT:
1215 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1216 break;
1217 default:
1218 r = -EINVAL;
1219 break;
1220 }
1221
1222 return r;
1223 }
1224
1225 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1226 union kvmppc_one_reg *val)
1227 {
1228 int r = 0;
1229 long int i;
1230 unsigned long addr, len;
1231
1232 switch (id) {
1233 case KVM_REG_PPC_HIOR:
1234 /* Only allow this to be set to zero */
1235 if (set_reg_val(id, *val))
1236 r = -EINVAL;
1237 break;
1238 case KVM_REG_PPC_DABR:
1239 vcpu->arch.dabr = set_reg_val(id, *val);
1240 break;
1241 case KVM_REG_PPC_DABRX:
1242 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1243 break;
1244 case KVM_REG_PPC_DSCR:
1245 vcpu->arch.dscr = set_reg_val(id, *val);
1246 break;
1247 case KVM_REG_PPC_PURR:
1248 vcpu->arch.purr = set_reg_val(id, *val);
1249 break;
1250 case KVM_REG_PPC_SPURR:
1251 vcpu->arch.spurr = set_reg_val(id, *val);
1252 break;
1253 case KVM_REG_PPC_AMR:
1254 vcpu->arch.amr = set_reg_val(id, *val);
1255 break;
1256 case KVM_REG_PPC_UAMOR:
1257 vcpu->arch.uamor = set_reg_val(id, *val);
1258 break;
1259 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1260 i = id - KVM_REG_PPC_MMCR0;
1261 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1262 break;
1263 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1264 i = id - KVM_REG_PPC_PMC1;
1265 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1266 break;
1267 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1268 i = id - KVM_REG_PPC_SPMC1;
1269 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1270 break;
1271 case KVM_REG_PPC_SIAR:
1272 vcpu->arch.siar = set_reg_val(id, *val);
1273 break;
1274 case KVM_REG_PPC_SDAR:
1275 vcpu->arch.sdar = set_reg_val(id, *val);
1276 break;
1277 case KVM_REG_PPC_SIER:
1278 vcpu->arch.sier = set_reg_val(id, *val);
1279 break;
1280 case KVM_REG_PPC_IAMR:
1281 vcpu->arch.iamr = set_reg_val(id, *val);
1282 break;
1283 case KVM_REG_PPC_PSPB:
1284 vcpu->arch.pspb = set_reg_val(id, *val);
1285 break;
1286 case KVM_REG_PPC_DPDES:
1287 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1288 break;
1289 case KVM_REG_PPC_DAWR:
1290 vcpu->arch.dawr = set_reg_val(id, *val);
1291 break;
1292 case KVM_REG_PPC_DAWRX:
1293 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1294 break;
1295 case KVM_REG_PPC_CIABR:
1296 vcpu->arch.ciabr = set_reg_val(id, *val);
1297 /* Don't allow setting breakpoints in hypervisor code */
1298 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1299 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1300 break;
1301 case KVM_REG_PPC_CSIGR:
1302 vcpu->arch.csigr = set_reg_val(id, *val);
1303 break;
1304 case KVM_REG_PPC_TACR:
1305 vcpu->arch.tacr = set_reg_val(id, *val);
1306 break;
1307 case KVM_REG_PPC_TCSCR:
1308 vcpu->arch.tcscr = set_reg_val(id, *val);
1309 break;
1310 case KVM_REG_PPC_PID:
1311 vcpu->arch.pid = set_reg_val(id, *val);
1312 break;
1313 case KVM_REG_PPC_ACOP:
1314 vcpu->arch.acop = set_reg_val(id, *val);
1315 break;
1316 case KVM_REG_PPC_WORT:
1317 vcpu->arch.wort = set_reg_val(id, *val);
1318 break;
1319 case KVM_REG_PPC_VPA_ADDR:
1320 addr = set_reg_val(id, *val);
1321 r = -EINVAL;
1322 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1323 vcpu->arch.dtl.next_gpa))
1324 break;
1325 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1326 break;
1327 case KVM_REG_PPC_VPA_SLB:
1328 addr = val->vpaval.addr;
1329 len = val->vpaval.length;
1330 r = -EINVAL;
1331 if (addr && !vcpu->arch.vpa.next_gpa)
1332 break;
1333 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1334 break;
1335 case KVM_REG_PPC_VPA_DTL:
1336 addr = val->vpaval.addr;
1337 len = val->vpaval.length;
1338 r = -EINVAL;
1339 if (addr && (len < sizeof(struct dtl_entry) ||
1340 !vcpu->arch.vpa.next_gpa))
1341 break;
1342 len -= len % sizeof(struct dtl_entry);
1343 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1344 break;
1345 case KVM_REG_PPC_TB_OFFSET:
1346 /* round up to multiple of 2^24 */
1347 vcpu->arch.vcore->tb_offset =
1348 ALIGN(set_reg_val(id, *val), 1UL << 24);
1349 break;
1350 case KVM_REG_PPC_LPCR:
1351 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1352 break;
1353 case KVM_REG_PPC_LPCR_64:
1354 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1355 break;
1356 case KVM_REG_PPC_PPR:
1357 vcpu->arch.ppr = set_reg_val(id, *val);
1358 break;
1359 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1360 case KVM_REG_PPC_TFHAR:
1361 vcpu->arch.tfhar = set_reg_val(id, *val);
1362 break;
1363 case KVM_REG_PPC_TFIAR:
1364 vcpu->arch.tfiar = set_reg_val(id, *val);
1365 break;
1366 case KVM_REG_PPC_TEXASR:
1367 vcpu->arch.texasr = set_reg_val(id, *val);
1368 break;
1369 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1370 i = id - KVM_REG_PPC_TM_GPR0;
1371 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1372 break;
1373 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1374 {
1375 int j;
1376 i = id - KVM_REG_PPC_TM_VSR0;
1377 if (i < 32)
1378 for (j = 0; j < TS_FPRWIDTH; j++)
1379 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1380 else
1381 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1382 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1383 else
1384 r = -ENXIO;
1385 break;
1386 }
1387 case KVM_REG_PPC_TM_CR:
1388 vcpu->arch.cr_tm = set_reg_val(id, *val);
1389 break;
1390 case KVM_REG_PPC_TM_LR:
1391 vcpu->arch.lr_tm = set_reg_val(id, *val);
1392 break;
1393 case KVM_REG_PPC_TM_CTR:
1394 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1395 break;
1396 case KVM_REG_PPC_TM_FPSCR:
1397 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1398 break;
1399 case KVM_REG_PPC_TM_AMR:
1400 vcpu->arch.amr_tm = set_reg_val(id, *val);
1401 break;
1402 case KVM_REG_PPC_TM_PPR:
1403 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1404 break;
1405 case KVM_REG_PPC_TM_VRSAVE:
1406 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1407 break;
1408 case KVM_REG_PPC_TM_VSCR:
1409 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1410 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1411 else
1412 r = - ENXIO;
1413 break;
1414 case KVM_REG_PPC_TM_DSCR:
1415 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1416 break;
1417 case KVM_REG_PPC_TM_TAR:
1418 vcpu->arch.tar_tm = set_reg_val(id, *val);
1419 break;
1420 #endif
1421 case KVM_REG_PPC_ARCH_COMPAT:
1422 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1423 break;
1424 default:
1425 r = -EINVAL;
1426 break;
1427 }
1428
1429 return r;
1430 }
1431
1432 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1433 {
1434 struct kvmppc_vcore *vcore;
1435
1436 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1437
1438 if (vcore == NULL)
1439 return NULL;
1440
1441 INIT_LIST_HEAD(&vcore->runnable_threads);
1442 spin_lock_init(&vcore->lock);
1443 spin_lock_init(&vcore->stoltb_lock);
1444 init_waitqueue_head(&vcore->wq);
1445 vcore->preempt_tb = TB_NIL;
1446 vcore->lpcr = kvm->arch.lpcr;
1447 vcore->first_vcpuid = core * threads_per_subcore;
1448 vcore->kvm = kvm;
1449 INIT_LIST_HEAD(&vcore->preempt_list);
1450
1451 return vcore;
1452 }
1453
1454 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1455 static struct debugfs_timings_element {
1456 const char *name;
1457 size_t offset;
1458 } timings[] = {
1459 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1460 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1461 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1462 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1463 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1464 };
1465
1466 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1467
1468 struct debugfs_timings_state {
1469 struct kvm_vcpu *vcpu;
1470 unsigned int buflen;
1471 char buf[N_TIMINGS * 100];
1472 };
1473
1474 static int debugfs_timings_open(struct inode *inode, struct file *file)
1475 {
1476 struct kvm_vcpu *vcpu = inode->i_private;
1477 struct debugfs_timings_state *p;
1478
1479 p = kzalloc(sizeof(*p), GFP_KERNEL);
1480 if (!p)
1481 return -ENOMEM;
1482
1483 kvm_get_kvm(vcpu->kvm);
1484 p->vcpu = vcpu;
1485 file->private_data = p;
1486
1487 return nonseekable_open(inode, file);
1488 }
1489
1490 static int debugfs_timings_release(struct inode *inode, struct file *file)
1491 {
1492 struct debugfs_timings_state *p = file->private_data;
1493
1494 kvm_put_kvm(p->vcpu->kvm);
1495 kfree(p);
1496 return 0;
1497 }
1498
1499 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1500 size_t len, loff_t *ppos)
1501 {
1502 struct debugfs_timings_state *p = file->private_data;
1503 struct kvm_vcpu *vcpu = p->vcpu;
1504 char *s, *buf_end;
1505 struct kvmhv_tb_accumulator tb;
1506 u64 count;
1507 loff_t pos;
1508 ssize_t n;
1509 int i, loops;
1510 bool ok;
1511
1512 if (!p->buflen) {
1513 s = p->buf;
1514 buf_end = s + sizeof(p->buf);
1515 for (i = 0; i < N_TIMINGS; ++i) {
1516 struct kvmhv_tb_accumulator *acc;
1517
1518 acc = (struct kvmhv_tb_accumulator *)
1519 ((unsigned long)vcpu + timings[i].offset);
1520 ok = false;
1521 for (loops = 0; loops < 1000; ++loops) {
1522 count = acc->seqcount;
1523 if (!(count & 1)) {
1524 smp_rmb();
1525 tb = *acc;
1526 smp_rmb();
1527 if (count == acc->seqcount) {
1528 ok = true;
1529 break;
1530 }
1531 }
1532 udelay(1);
1533 }
1534 if (!ok)
1535 snprintf(s, buf_end - s, "%s: stuck\n",
1536 timings[i].name);
1537 else
1538 snprintf(s, buf_end - s,
1539 "%s: %llu %llu %llu %llu\n",
1540 timings[i].name, count / 2,
1541 tb_to_ns(tb.tb_total),
1542 tb_to_ns(tb.tb_min),
1543 tb_to_ns(tb.tb_max));
1544 s += strlen(s);
1545 }
1546 p->buflen = s - p->buf;
1547 }
1548
1549 pos = *ppos;
1550 if (pos >= p->buflen)
1551 return 0;
1552 if (len > p->buflen - pos)
1553 len = p->buflen - pos;
1554 n = copy_to_user(buf, p->buf + pos, len);
1555 if (n) {
1556 if (n == len)
1557 return -EFAULT;
1558 len -= n;
1559 }
1560 *ppos = pos + len;
1561 return len;
1562 }
1563
1564 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1565 size_t len, loff_t *ppos)
1566 {
1567 return -EACCES;
1568 }
1569
1570 static const struct file_operations debugfs_timings_ops = {
1571 .owner = THIS_MODULE,
1572 .open = debugfs_timings_open,
1573 .release = debugfs_timings_release,
1574 .read = debugfs_timings_read,
1575 .write = debugfs_timings_write,
1576 .llseek = generic_file_llseek,
1577 };
1578
1579 /* Create a debugfs directory for the vcpu */
1580 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1581 {
1582 char buf[16];
1583 struct kvm *kvm = vcpu->kvm;
1584
1585 snprintf(buf, sizeof(buf), "vcpu%u", id);
1586 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1587 return;
1588 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1589 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1590 return;
1591 vcpu->arch.debugfs_timings =
1592 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1593 vcpu, &debugfs_timings_ops);
1594 }
1595
1596 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1597 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1598 {
1599 }
1600 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1601
1602 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1603 unsigned int id)
1604 {
1605 struct kvm_vcpu *vcpu;
1606 int err = -EINVAL;
1607 int core;
1608 struct kvmppc_vcore *vcore;
1609
1610 core = id / threads_per_subcore;
1611 if (core >= KVM_MAX_VCORES)
1612 goto out;
1613
1614 err = -ENOMEM;
1615 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1616 if (!vcpu)
1617 goto out;
1618
1619 err = kvm_vcpu_init(vcpu, kvm, id);
1620 if (err)
1621 goto free_vcpu;
1622
1623 vcpu->arch.shared = &vcpu->arch.shregs;
1624 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1625 /*
1626 * The shared struct is never shared on HV,
1627 * so we can always use host endianness
1628 */
1629 #ifdef __BIG_ENDIAN__
1630 vcpu->arch.shared_big_endian = true;
1631 #else
1632 vcpu->arch.shared_big_endian = false;
1633 #endif
1634 #endif
1635 vcpu->arch.mmcr[0] = MMCR0_FC;
1636 vcpu->arch.ctrl = CTRL_RUNLATCH;
1637 /* default to host PVR, since we can't spoof it */
1638 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1639 spin_lock_init(&vcpu->arch.vpa_update_lock);
1640 spin_lock_init(&vcpu->arch.tbacct_lock);
1641 vcpu->arch.busy_preempt = TB_NIL;
1642 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1643
1644 kvmppc_mmu_book3s_hv_init(vcpu);
1645
1646 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1647
1648 init_waitqueue_head(&vcpu->arch.cpu_run);
1649
1650 mutex_lock(&kvm->lock);
1651 vcore = kvm->arch.vcores[core];
1652 if (!vcore) {
1653 vcore = kvmppc_vcore_create(kvm, core);
1654 kvm->arch.vcores[core] = vcore;
1655 kvm->arch.online_vcores++;
1656 }
1657 mutex_unlock(&kvm->lock);
1658
1659 if (!vcore)
1660 goto free_vcpu;
1661
1662 spin_lock(&vcore->lock);
1663 ++vcore->num_threads;
1664 spin_unlock(&vcore->lock);
1665 vcpu->arch.vcore = vcore;
1666 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1667 vcpu->arch.thread_cpu = -1;
1668
1669 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1670 kvmppc_sanity_check(vcpu);
1671
1672 debugfs_vcpu_init(vcpu, id);
1673
1674 return vcpu;
1675
1676 free_vcpu:
1677 kmem_cache_free(kvm_vcpu_cache, vcpu);
1678 out:
1679 return ERR_PTR(err);
1680 }
1681
1682 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1683 {
1684 if (vpa->pinned_addr)
1685 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1686 vpa->dirty);
1687 }
1688
1689 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1690 {
1691 spin_lock(&vcpu->arch.vpa_update_lock);
1692 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1693 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1694 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1695 spin_unlock(&vcpu->arch.vpa_update_lock);
1696 kvm_vcpu_uninit(vcpu);
1697 kmem_cache_free(kvm_vcpu_cache, vcpu);
1698 }
1699
1700 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1701 {
1702 /* Indicate we want to get back into the guest */
1703 return 1;
1704 }
1705
1706 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1707 {
1708 unsigned long dec_nsec, now;
1709
1710 now = get_tb();
1711 if (now > vcpu->arch.dec_expires) {
1712 /* decrementer has already gone negative */
1713 kvmppc_core_queue_dec(vcpu);
1714 kvmppc_core_prepare_to_enter(vcpu);
1715 return;
1716 }
1717 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1718 / tb_ticks_per_sec;
1719 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1720 HRTIMER_MODE_REL);
1721 vcpu->arch.timer_running = 1;
1722 }
1723
1724 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1725 {
1726 vcpu->arch.ceded = 0;
1727 if (vcpu->arch.timer_running) {
1728 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1729 vcpu->arch.timer_running = 0;
1730 }
1731 }
1732
1733 extern void __kvmppc_vcore_entry(void);
1734
1735 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1736 struct kvm_vcpu *vcpu)
1737 {
1738 u64 now;
1739
1740 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1741 return;
1742 spin_lock_irq(&vcpu->arch.tbacct_lock);
1743 now = mftb();
1744 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1745 vcpu->arch.stolen_logged;
1746 vcpu->arch.busy_preempt = now;
1747 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1748 spin_unlock_irq(&vcpu->arch.tbacct_lock);
1749 --vc->n_runnable;
1750 list_del(&vcpu->arch.run_list);
1751 }
1752
1753 static int kvmppc_grab_hwthread(int cpu)
1754 {
1755 struct paca_struct *tpaca;
1756 long timeout = 10000;
1757
1758 tpaca = &paca[cpu];
1759
1760 /* Ensure the thread won't go into the kernel if it wakes */
1761 tpaca->kvm_hstate.kvm_vcpu = NULL;
1762 tpaca->kvm_hstate.kvm_vcore = NULL;
1763 tpaca->kvm_hstate.napping = 0;
1764 smp_wmb();
1765 tpaca->kvm_hstate.hwthread_req = 1;
1766
1767 /*
1768 * If the thread is already executing in the kernel (e.g. handling
1769 * a stray interrupt), wait for it to get back to nap mode.
1770 * The smp_mb() is to ensure that our setting of hwthread_req
1771 * is visible before we look at hwthread_state, so if this
1772 * races with the code at system_reset_pSeries and the thread
1773 * misses our setting of hwthread_req, we are sure to see its
1774 * setting of hwthread_state, and vice versa.
1775 */
1776 smp_mb();
1777 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1778 if (--timeout <= 0) {
1779 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1780 return -EBUSY;
1781 }
1782 udelay(1);
1783 }
1784 return 0;
1785 }
1786
1787 static void kvmppc_release_hwthread(int cpu)
1788 {
1789 struct paca_struct *tpaca;
1790
1791 tpaca = &paca[cpu];
1792 tpaca->kvm_hstate.hwthread_req = 0;
1793 tpaca->kvm_hstate.kvm_vcpu = NULL;
1794 tpaca->kvm_hstate.kvm_vcore = NULL;
1795 tpaca->kvm_hstate.kvm_split_mode = NULL;
1796 }
1797
1798 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1799 {
1800 int cpu;
1801 struct paca_struct *tpaca;
1802 struct kvmppc_vcore *mvc = vc->master_vcore;
1803
1804 cpu = vc->pcpu;
1805 if (vcpu) {
1806 if (vcpu->arch.timer_running) {
1807 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1808 vcpu->arch.timer_running = 0;
1809 }
1810 cpu += vcpu->arch.ptid;
1811 vcpu->cpu = mvc->pcpu;
1812 vcpu->arch.thread_cpu = cpu;
1813 }
1814 tpaca = &paca[cpu];
1815 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1816 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1817 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1818 smp_wmb();
1819 tpaca->kvm_hstate.kvm_vcore = mvc;
1820 if (cpu != smp_processor_id())
1821 kvmppc_ipi_thread(cpu);
1822 }
1823
1824 static void kvmppc_wait_for_nap(void)
1825 {
1826 int cpu = smp_processor_id();
1827 int i, loops;
1828
1829 for (loops = 0; loops < 1000000; ++loops) {
1830 /*
1831 * Check if all threads are finished.
1832 * We set the vcore pointer when starting a thread
1833 * and the thread clears it when finished, so we look
1834 * for any threads that still have a non-NULL vcore ptr.
1835 */
1836 for (i = 1; i < threads_per_subcore; ++i)
1837 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1838 break;
1839 if (i == threads_per_subcore) {
1840 HMT_medium();
1841 return;
1842 }
1843 HMT_low();
1844 }
1845 HMT_medium();
1846 for (i = 1; i < threads_per_subcore; ++i)
1847 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1848 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1849 }
1850
1851 /*
1852 * Check that we are on thread 0 and that any other threads in
1853 * this core are off-line. Then grab the threads so they can't
1854 * enter the kernel.
1855 */
1856 static int on_primary_thread(void)
1857 {
1858 int cpu = smp_processor_id();
1859 int thr;
1860
1861 /* Are we on a primary subcore? */
1862 if (cpu_thread_in_subcore(cpu))
1863 return 0;
1864
1865 thr = 0;
1866 while (++thr < threads_per_subcore)
1867 if (cpu_online(cpu + thr))
1868 return 0;
1869
1870 /* Grab all hw threads so they can't go into the kernel */
1871 for (thr = 1; thr < threads_per_subcore; ++thr) {
1872 if (kvmppc_grab_hwthread(cpu + thr)) {
1873 /* Couldn't grab one; let the others go */
1874 do {
1875 kvmppc_release_hwthread(cpu + thr);
1876 } while (--thr > 0);
1877 return 0;
1878 }
1879 }
1880 return 1;
1881 }
1882
1883 /*
1884 * A list of virtual cores for each physical CPU.
1885 * These are vcores that could run but their runner VCPU tasks are
1886 * (or may be) preempted.
1887 */
1888 struct preempted_vcore_list {
1889 struct list_head list;
1890 spinlock_t lock;
1891 };
1892
1893 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1894
1895 static void init_vcore_lists(void)
1896 {
1897 int cpu;
1898
1899 for_each_possible_cpu(cpu) {
1900 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1901 spin_lock_init(&lp->lock);
1902 INIT_LIST_HEAD(&lp->list);
1903 }
1904 }
1905
1906 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1907 {
1908 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1909
1910 vc->vcore_state = VCORE_PREEMPT;
1911 vc->pcpu = smp_processor_id();
1912 if (vc->num_threads < threads_per_subcore) {
1913 spin_lock(&lp->lock);
1914 list_add_tail(&vc->preempt_list, &lp->list);
1915 spin_unlock(&lp->lock);
1916 }
1917
1918 /* Start accumulating stolen time */
1919 kvmppc_core_start_stolen(vc);
1920 }
1921
1922 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1923 {
1924 struct preempted_vcore_list *lp;
1925
1926 kvmppc_core_end_stolen(vc);
1927 if (!list_empty(&vc->preempt_list)) {
1928 lp = &per_cpu(preempted_vcores, vc->pcpu);
1929 spin_lock(&lp->lock);
1930 list_del_init(&vc->preempt_list);
1931 spin_unlock(&lp->lock);
1932 }
1933 vc->vcore_state = VCORE_INACTIVE;
1934 }
1935
1936 /*
1937 * This stores information about the virtual cores currently
1938 * assigned to a physical core.
1939 */
1940 struct core_info {
1941 int n_subcores;
1942 int max_subcore_threads;
1943 int total_threads;
1944 int subcore_threads[MAX_SUBCORES];
1945 struct kvm *subcore_vm[MAX_SUBCORES];
1946 struct list_head vcs[MAX_SUBCORES];
1947 };
1948
1949 /*
1950 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1951 * respectively in 2-way micro-threading (split-core) mode.
1952 */
1953 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1954
1955 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1956 {
1957 int sub;
1958
1959 memset(cip, 0, sizeof(*cip));
1960 cip->n_subcores = 1;
1961 cip->max_subcore_threads = vc->num_threads;
1962 cip->total_threads = vc->num_threads;
1963 cip->subcore_threads[0] = vc->num_threads;
1964 cip->subcore_vm[0] = vc->kvm;
1965 for (sub = 0; sub < MAX_SUBCORES; ++sub)
1966 INIT_LIST_HEAD(&cip->vcs[sub]);
1967 list_add_tail(&vc->preempt_list, &cip->vcs[0]);
1968 }
1969
1970 static bool subcore_config_ok(int n_subcores, int n_threads)
1971 {
1972 /* Can only dynamically split if unsplit to begin with */
1973 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
1974 return false;
1975 if (n_subcores > MAX_SUBCORES)
1976 return false;
1977 if (n_subcores > 1) {
1978 if (!(dynamic_mt_modes & 2))
1979 n_subcores = 4;
1980 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
1981 return false;
1982 }
1983
1984 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
1985 }
1986
1987 static void init_master_vcore(struct kvmppc_vcore *vc)
1988 {
1989 vc->master_vcore = vc;
1990 vc->entry_exit_map = 0;
1991 vc->in_guest = 0;
1992 vc->napping_threads = 0;
1993 vc->conferring_threads = 0;
1994 }
1995
1996 /*
1997 * See if the existing subcores can be split into 3 (or fewer) subcores
1998 * of at most two threads each, so we can fit in another vcore. This
1999 * assumes there are at most two subcores and at most 6 threads in total.
2000 */
2001 static bool can_split_piggybacked_subcores(struct core_info *cip)
2002 {
2003 int sub, new_sub;
2004 int large_sub = -1;
2005 int thr;
2006 int n_subcores = cip->n_subcores;
2007 struct kvmppc_vcore *vc, *vcnext;
2008 struct kvmppc_vcore *master_vc = NULL;
2009
2010 for (sub = 0; sub < cip->n_subcores; ++sub) {
2011 if (cip->subcore_threads[sub] <= 2)
2012 continue;
2013 if (large_sub >= 0)
2014 return false;
2015 large_sub = sub;
2016 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2017 preempt_list);
2018 if (vc->num_threads > 2)
2019 return false;
2020 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2021 }
2022 if (n_subcores > 3 || large_sub < 0)
2023 return false;
2024
2025 /*
2026 * Seems feasible, so go through and move vcores to new subcores.
2027 * Note that when we have two or more vcores in one subcore,
2028 * all those vcores must have only one thread each.
2029 */
2030 new_sub = cip->n_subcores;
2031 thr = 0;
2032 sub = large_sub;
2033 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2034 if (thr >= 2) {
2035 list_del(&vc->preempt_list);
2036 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2037 /* vc->num_threads must be 1 */
2038 if (++cip->subcore_threads[new_sub] == 1) {
2039 cip->subcore_vm[new_sub] = vc->kvm;
2040 init_master_vcore(vc);
2041 master_vc = vc;
2042 ++cip->n_subcores;
2043 } else {
2044 vc->master_vcore = master_vc;
2045 ++new_sub;
2046 }
2047 }
2048 thr += vc->num_threads;
2049 }
2050 cip->subcore_threads[large_sub] = 2;
2051 cip->max_subcore_threads = 2;
2052
2053 return true;
2054 }
2055
2056 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2057 {
2058 int n_threads = vc->num_threads;
2059 int sub;
2060
2061 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2062 return false;
2063
2064 if (n_threads < cip->max_subcore_threads)
2065 n_threads = cip->max_subcore_threads;
2066 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2067 cip->max_subcore_threads = n_threads;
2068 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2069 vc->num_threads <= 2) {
2070 /*
2071 * We may be able to fit another subcore in by
2072 * splitting an existing subcore with 3 or 4
2073 * threads into two 2-thread subcores, or one
2074 * with 5 or 6 threads into three subcores.
2075 * We can only do this if those subcores have
2076 * piggybacked virtual cores.
2077 */
2078 if (!can_split_piggybacked_subcores(cip))
2079 return false;
2080 } else {
2081 return false;
2082 }
2083
2084 sub = cip->n_subcores;
2085 ++cip->n_subcores;
2086 cip->total_threads += vc->num_threads;
2087 cip->subcore_threads[sub] = vc->num_threads;
2088 cip->subcore_vm[sub] = vc->kvm;
2089 init_master_vcore(vc);
2090 list_del(&vc->preempt_list);
2091 list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2092
2093 return true;
2094 }
2095
2096 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2097 struct core_info *cip, int sub)
2098 {
2099 struct kvmppc_vcore *vc;
2100 int n_thr;
2101
2102 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2103 preempt_list);
2104
2105 /* require same VM and same per-core reg values */
2106 if (pvc->kvm != vc->kvm ||
2107 pvc->tb_offset != vc->tb_offset ||
2108 pvc->pcr != vc->pcr ||
2109 pvc->lpcr != vc->lpcr)
2110 return false;
2111
2112 /* P8 guest with > 1 thread per core would see wrong TIR value */
2113 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2114 (vc->num_threads > 1 || pvc->num_threads > 1))
2115 return false;
2116
2117 n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2118 if (n_thr > cip->max_subcore_threads) {
2119 if (!subcore_config_ok(cip->n_subcores, n_thr))
2120 return false;
2121 cip->max_subcore_threads = n_thr;
2122 }
2123
2124 cip->total_threads += pvc->num_threads;
2125 cip->subcore_threads[sub] = n_thr;
2126 pvc->master_vcore = vc;
2127 list_del(&pvc->preempt_list);
2128 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2129
2130 return true;
2131 }
2132
2133 /*
2134 * Work out whether it is possible to piggyback the execution of
2135 * vcore *pvc onto the execution of the other vcores described in *cip.
2136 */
2137 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2138 int target_threads)
2139 {
2140 int sub;
2141
2142 if (cip->total_threads + pvc->num_threads > target_threads)
2143 return false;
2144 for (sub = 0; sub < cip->n_subcores; ++sub)
2145 if (cip->subcore_threads[sub] &&
2146 can_piggyback_subcore(pvc, cip, sub))
2147 return true;
2148
2149 if (can_dynamic_split(pvc, cip))
2150 return true;
2151
2152 return false;
2153 }
2154
2155 static void prepare_threads(struct kvmppc_vcore *vc)
2156 {
2157 struct kvm_vcpu *vcpu, *vnext;
2158
2159 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2160 arch.run_list) {
2161 if (signal_pending(vcpu->arch.run_task))
2162 vcpu->arch.ret = -EINTR;
2163 else if (vcpu->arch.vpa.update_pending ||
2164 vcpu->arch.slb_shadow.update_pending ||
2165 vcpu->arch.dtl.update_pending)
2166 vcpu->arch.ret = RESUME_GUEST;
2167 else
2168 continue;
2169 kvmppc_remove_runnable(vc, vcpu);
2170 wake_up(&vcpu->arch.cpu_run);
2171 }
2172 }
2173
2174 static void collect_piggybacks(struct core_info *cip, int target_threads)
2175 {
2176 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2177 struct kvmppc_vcore *pvc, *vcnext;
2178
2179 spin_lock(&lp->lock);
2180 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2181 if (!spin_trylock(&pvc->lock))
2182 continue;
2183 prepare_threads(pvc);
2184 if (!pvc->n_runnable) {
2185 list_del_init(&pvc->preempt_list);
2186 if (pvc->runner == NULL) {
2187 pvc->vcore_state = VCORE_INACTIVE;
2188 kvmppc_core_end_stolen(pvc);
2189 }
2190 spin_unlock(&pvc->lock);
2191 continue;
2192 }
2193 if (!can_piggyback(pvc, cip, target_threads)) {
2194 spin_unlock(&pvc->lock);
2195 continue;
2196 }
2197 kvmppc_core_end_stolen(pvc);
2198 pvc->vcore_state = VCORE_PIGGYBACK;
2199 if (cip->total_threads >= target_threads)
2200 break;
2201 }
2202 spin_unlock(&lp->lock);
2203 }
2204
2205 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2206 {
2207 int still_running = 0;
2208 u64 now;
2209 long ret;
2210 struct kvm_vcpu *vcpu, *vnext;
2211
2212 spin_lock(&vc->lock);
2213 now = get_tb();
2214 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2215 arch.run_list) {
2216 /* cancel pending dec exception if dec is positive */
2217 if (now < vcpu->arch.dec_expires &&
2218 kvmppc_core_pending_dec(vcpu))
2219 kvmppc_core_dequeue_dec(vcpu);
2220
2221 trace_kvm_guest_exit(vcpu);
2222
2223 ret = RESUME_GUEST;
2224 if (vcpu->arch.trap)
2225 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2226 vcpu->arch.run_task);
2227
2228 vcpu->arch.ret = ret;
2229 vcpu->arch.trap = 0;
2230
2231 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2232 if (vcpu->arch.pending_exceptions)
2233 kvmppc_core_prepare_to_enter(vcpu);
2234 if (vcpu->arch.ceded)
2235 kvmppc_set_timer(vcpu);
2236 else
2237 ++still_running;
2238 } else {
2239 kvmppc_remove_runnable(vc, vcpu);
2240 wake_up(&vcpu->arch.cpu_run);
2241 }
2242 }
2243 list_del_init(&vc->preempt_list);
2244 if (!is_master) {
2245 if (still_running > 0) {
2246 kvmppc_vcore_preempt(vc);
2247 } else if (vc->runner) {
2248 vc->vcore_state = VCORE_PREEMPT;
2249 kvmppc_core_start_stolen(vc);
2250 } else {
2251 vc->vcore_state = VCORE_INACTIVE;
2252 }
2253 if (vc->n_runnable > 0 && vc->runner == NULL) {
2254 /* make sure there's a candidate runner awake */
2255 vcpu = list_first_entry(&vc->runnable_threads,
2256 struct kvm_vcpu, arch.run_list);
2257 wake_up(&vcpu->arch.cpu_run);
2258 }
2259 }
2260 spin_unlock(&vc->lock);
2261 }
2262
2263 /*
2264 * Run a set of guest threads on a physical core.
2265 * Called with vc->lock held.
2266 */
2267 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2268 {
2269 struct kvm_vcpu *vcpu, *vnext;
2270 int i;
2271 int srcu_idx;
2272 struct core_info core_info;
2273 struct kvmppc_vcore *pvc, *vcnext;
2274 struct kvm_split_mode split_info, *sip;
2275 int split, subcore_size, active;
2276 int sub;
2277 bool thr0_done;
2278 unsigned long cmd_bit, stat_bit;
2279 int pcpu, thr;
2280 int target_threads;
2281
2282 /*
2283 * Remove from the list any threads that have a signal pending
2284 * or need a VPA update done
2285 */
2286 prepare_threads(vc);
2287
2288 /* if the runner is no longer runnable, let the caller pick a new one */
2289 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2290 return;
2291
2292 /*
2293 * Initialize *vc.
2294 */
2295 init_master_vcore(vc);
2296 vc->preempt_tb = TB_NIL;
2297
2298 /*
2299 * Make sure we are running on primary threads, and that secondary
2300 * threads are offline. Also check if the number of threads in this
2301 * guest are greater than the current system threads per guest.
2302 */
2303 if ((threads_per_core > 1) &&
2304 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2305 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2306 arch.run_list) {
2307 vcpu->arch.ret = -EBUSY;
2308 kvmppc_remove_runnable(vc, vcpu);
2309 wake_up(&vcpu->arch.cpu_run);
2310 }
2311 goto out;
2312 }
2313
2314 /*
2315 * See if we could run any other vcores on the physical core
2316 * along with this one.
2317 */
2318 init_core_info(&core_info, vc);
2319 pcpu = smp_processor_id();
2320 target_threads = threads_per_subcore;
2321 if (target_smt_mode && target_smt_mode < target_threads)
2322 target_threads = target_smt_mode;
2323 if (vc->num_threads < target_threads)
2324 collect_piggybacks(&core_info, target_threads);
2325
2326 /* Decide on micro-threading (split-core) mode */
2327 subcore_size = threads_per_subcore;
2328 cmd_bit = stat_bit = 0;
2329 split = core_info.n_subcores;
2330 sip = NULL;
2331 if (split > 1) {
2332 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2333 if (split == 2 && (dynamic_mt_modes & 2)) {
2334 cmd_bit = HID0_POWER8_1TO2LPAR;
2335 stat_bit = HID0_POWER8_2LPARMODE;
2336 } else {
2337 split = 4;
2338 cmd_bit = HID0_POWER8_1TO4LPAR;
2339 stat_bit = HID0_POWER8_4LPARMODE;
2340 }
2341 subcore_size = MAX_SMT_THREADS / split;
2342 sip = &split_info;
2343 memset(&split_info, 0, sizeof(split_info));
2344 split_info.rpr = mfspr(SPRN_RPR);
2345 split_info.pmmar = mfspr(SPRN_PMMAR);
2346 split_info.ldbar = mfspr(SPRN_LDBAR);
2347 split_info.subcore_size = subcore_size;
2348 for (sub = 0; sub < core_info.n_subcores; ++sub)
2349 split_info.master_vcs[sub] =
2350 list_first_entry(&core_info.vcs[sub],
2351 struct kvmppc_vcore, preempt_list);
2352 /* order writes to split_info before kvm_split_mode pointer */
2353 smp_wmb();
2354 }
2355 pcpu = smp_processor_id();
2356 for (thr = 0; thr < threads_per_subcore; ++thr)
2357 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2358
2359 /* Initiate micro-threading (split-core) if required */
2360 if (cmd_bit) {
2361 unsigned long hid0 = mfspr(SPRN_HID0);
2362
2363 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2364 mb();
2365 mtspr(SPRN_HID0, hid0);
2366 isync();
2367 for (;;) {
2368 hid0 = mfspr(SPRN_HID0);
2369 if (hid0 & stat_bit)
2370 break;
2371 cpu_relax();
2372 }
2373 }
2374
2375 /* Start all the threads */
2376 active = 0;
2377 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2378 thr = subcore_thread_map[sub];
2379 thr0_done = false;
2380 active |= 1 << thr;
2381 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2382 pvc->pcpu = pcpu + thr;
2383 list_for_each_entry(vcpu, &pvc->runnable_threads,
2384 arch.run_list) {
2385 kvmppc_start_thread(vcpu, pvc);
2386 kvmppc_create_dtl_entry(vcpu, pvc);
2387 trace_kvm_guest_enter(vcpu);
2388 if (!vcpu->arch.ptid)
2389 thr0_done = true;
2390 active |= 1 << (thr + vcpu->arch.ptid);
2391 }
2392 /*
2393 * We need to start the first thread of each subcore
2394 * even if it doesn't have a vcpu.
2395 */
2396 if (pvc->master_vcore == pvc && !thr0_done)
2397 kvmppc_start_thread(NULL, pvc);
2398 thr += pvc->num_threads;
2399 }
2400 }
2401
2402 /*
2403 * Ensure that split_info.do_nap is set after setting
2404 * the vcore pointer in the PACA of the secondaries.
2405 */
2406 smp_mb();
2407 if (cmd_bit)
2408 split_info.do_nap = 1; /* ask secondaries to nap when done */
2409
2410 /*
2411 * When doing micro-threading, poke the inactive threads as well.
2412 * This gets them to the nap instruction after kvm_do_nap,
2413 * which reduces the time taken to unsplit later.
2414 */
2415 if (split > 1)
2416 for (thr = 1; thr < threads_per_subcore; ++thr)
2417 if (!(active & (1 << thr)))
2418 kvmppc_ipi_thread(pcpu + thr);
2419
2420 vc->vcore_state = VCORE_RUNNING;
2421 preempt_disable();
2422
2423 trace_kvmppc_run_core(vc, 0);
2424
2425 for (sub = 0; sub < core_info.n_subcores; ++sub)
2426 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2427 spin_unlock(&pvc->lock);
2428
2429 kvm_guest_enter();
2430
2431 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2432
2433 __kvmppc_vcore_entry();
2434
2435 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2436
2437 spin_lock(&vc->lock);
2438 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2439 vc->vcore_state = VCORE_EXITING;
2440
2441 /* wait for secondary threads to finish writing their state to memory */
2442 kvmppc_wait_for_nap();
2443
2444 /* Return to whole-core mode if we split the core earlier */
2445 if (split > 1) {
2446 unsigned long hid0 = mfspr(SPRN_HID0);
2447 unsigned long loops = 0;
2448
2449 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2450 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2451 mb();
2452 mtspr(SPRN_HID0, hid0);
2453 isync();
2454 for (;;) {
2455 hid0 = mfspr(SPRN_HID0);
2456 if (!(hid0 & stat_bit))
2457 break;
2458 cpu_relax();
2459 ++loops;
2460 }
2461 split_info.do_nap = 0;
2462 }
2463
2464 /* Let secondaries go back to the offline loop */
2465 for (i = 0; i < threads_per_subcore; ++i) {
2466 kvmppc_release_hwthread(pcpu + i);
2467 if (sip && sip->napped[i])
2468 kvmppc_ipi_thread(pcpu + i);
2469 }
2470
2471 spin_unlock(&vc->lock);
2472
2473 /* make sure updates to secondary vcpu structs are visible now */
2474 smp_mb();
2475 kvm_guest_exit();
2476
2477 for (sub = 0; sub < core_info.n_subcores; ++sub)
2478 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2479 preempt_list)
2480 post_guest_process(pvc, pvc == vc);
2481
2482 spin_lock(&vc->lock);
2483 preempt_enable();
2484
2485 out:
2486 vc->vcore_state = VCORE_INACTIVE;
2487 trace_kvmppc_run_core(vc, 1);
2488 }
2489
2490 /*
2491 * Wait for some other vcpu thread to execute us, and
2492 * wake us up when we need to handle something in the host.
2493 */
2494 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2495 struct kvm_vcpu *vcpu, int wait_state)
2496 {
2497 DEFINE_WAIT(wait);
2498
2499 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2500 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2501 spin_unlock(&vc->lock);
2502 schedule();
2503 spin_lock(&vc->lock);
2504 }
2505 finish_wait(&vcpu->arch.cpu_run, &wait);
2506 }
2507
2508 /*
2509 * All the vcpus in this vcore are idle, so wait for a decrementer
2510 * or external interrupt to one of the vcpus. vc->lock is held.
2511 */
2512 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2513 {
2514 struct kvm_vcpu *vcpu;
2515 int do_sleep = 1;
2516
2517 DEFINE_WAIT(wait);
2518
2519 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2520
2521 /*
2522 * Check one last time for pending exceptions and ceded state after
2523 * we put ourselves on the wait queue
2524 */
2525 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2526 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2527 do_sleep = 0;
2528 break;
2529 }
2530 }
2531
2532 if (!do_sleep) {
2533 finish_wait(&vc->wq, &wait);
2534 return;
2535 }
2536
2537 vc->vcore_state = VCORE_SLEEPING;
2538 trace_kvmppc_vcore_blocked(vc, 0);
2539 spin_unlock(&vc->lock);
2540 schedule();
2541 finish_wait(&vc->wq, &wait);
2542 spin_lock(&vc->lock);
2543 vc->vcore_state = VCORE_INACTIVE;
2544 trace_kvmppc_vcore_blocked(vc, 1);
2545 }
2546
2547 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2548 {
2549 int n_ceded;
2550 struct kvmppc_vcore *vc;
2551 struct kvm_vcpu *v, *vn;
2552
2553 trace_kvmppc_run_vcpu_enter(vcpu);
2554
2555 kvm_run->exit_reason = 0;
2556 vcpu->arch.ret = RESUME_GUEST;
2557 vcpu->arch.trap = 0;
2558 kvmppc_update_vpas(vcpu);
2559
2560 /*
2561 * Synchronize with other threads in this virtual core
2562 */
2563 vc = vcpu->arch.vcore;
2564 spin_lock(&vc->lock);
2565 vcpu->arch.ceded = 0;
2566 vcpu->arch.run_task = current;
2567 vcpu->arch.kvm_run = kvm_run;
2568 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2569 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2570 vcpu->arch.busy_preempt = TB_NIL;
2571 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2572 ++vc->n_runnable;
2573
2574 /*
2575 * This happens the first time this is called for a vcpu.
2576 * If the vcore is already running, we may be able to start
2577 * this thread straight away and have it join in.
2578 */
2579 if (!signal_pending(current)) {
2580 if (vc->vcore_state == VCORE_PIGGYBACK) {
2581 struct kvmppc_vcore *mvc = vc->master_vcore;
2582 if (spin_trylock(&mvc->lock)) {
2583 if (mvc->vcore_state == VCORE_RUNNING &&
2584 !VCORE_IS_EXITING(mvc)) {
2585 kvmppc_create_dtl_entry(vcpu, vc);
2586 kvmppc_start_thread(vcpu, vc);
2587 trace_kvm_guest_enter(vcpu);
2588 }
2589 spin_unlock(&mvc->lock);
2590 }
2591 } else if (vc->vcore_state == VCORE_RUNNING &&
2592 !VCORE_IS_EXITING(vc)) {
2593 kvmppc_create_dtl_entry(vcpu, vc);
2594 kvmppc_start_thread(vcpu, vc);
2595 trace_kvm_guest_enter(vcpu);
2596 } else if (vc->vcore_state == VCORE_SLEEPING) {
2597 wake_up(&vc->wq);
2598 }
2599
2600 }
2601
2602 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2603 !signal_pending(current)) {
2604 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2605 kvmppc_vcore_end_preempt(vc);
2606
2607 if (vc->vcore_state != VCORE_INACTIVE) {
2608 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2609 continue;
2610 }
2611 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2612 arch.run_list) {
2613 kvmppc_core_prepare_to_enter(v);
2614 if (signal_pending(v->arch.run_task)) {
2615 kvmppc_remove_runnable(vc, v);
2616 v->stat.signal_exits++;
2617 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2618 v->arch.ret = -EINTR;
2619 wake_up(&v->arch.cpu_run);
2620 }
2621 }
2622 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2623 break;
2624 n_ceded = 0;
2625 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2626 if (!v->arch.pending_exceptions)
2627 n_ceded += v->arch.ceded;
2628 else
2629 v->arch.ceded = 0;
2630 }
2631 vc->runner = vcpu;
2632 if (n_ceded == vc->n_runnable) {
2633 kvmppc_vcore_blocked(vc);
2634 } else if (need_resched()) {
2635 kvmppc_vcore_preempt(vc);
2636 /* Let something else run */
2637 cond_resched_lock(&vc->lock);
2638 if (vc->vcore_state == VCORE_PREEMPT)
2639 kvmppc_vcore_end_preempt(vc);
2640 } else {
2641 kvmppc_run_core(vc);
2642 }
2643 vc->runner = NULL;
2644 }
2645
2646 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2647 (vc->vcore_state == VCORE_RUNNING ||
2648 vc->vcore_state == VCORE_EXITING ||
2649 vc->vcore_state == VCORE_PIGGYBACK))
2650 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2651
2652 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2653 kvmppc_vcore_end_preempt(vc);
2654
2655 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2656 kvmppc_remove_runnable(vc, vcpu);
2657 vcpu->stat.signal_exits++;
2658 kvm_run->exit_reason = KVM_EXIT_INTR;
2659 vcpu->arch.ret = -EINTR;
2660 }
2661
2662 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2663 /* Wake up some vcpu to run the core */
2664 v = list_first_entry(&vc->runnable_threads,
2665 struct kvm_vcpu, arch.run_list);
2666 wake_up(&v->arch.cpu_run);
2667 }
2668
2669 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2670 spin_unlock(&vc->lock);
2671 return vcpu->arch.ret;
2672 }
2673
2674 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2675 {
2676 int r;
2677 int srcu_idx;
2678
2679 if (!vcpu->arch.sane) {
2680 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2681 return -EINVAL;
2682 }
2683
2684 kvmppc_core_prepare_to_enter(vcpu);
2685
2686 /* No need to go into the guest when all we'll do is come back out */
2687 if (signal_pending(current)) {
2688 run->exit_reason = KVM_EXIT_INTR;
2689 return -EINTR;
2690 }
2691
2692 atomic_inc(&vcpu->kvm->arch.vcpus_running);
2693 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2694 smp_mb();
2695
2696 /* On the first time here, set up HTAB and VRMA */
2697 if (!vcpu->kvm->arch.hpte_setup_done) {
2698 r = kvmppc_hv_setup_htab_rma(vcpu);
2699 if (r)
2700 goto out;
2701 }
2702
2703 flush_fp_to_thread(current);
2704 flush_altivec_to_thread(current);
2705 flush_vsx_to_thread(current);
2706 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2707 vcpu->arch.pgdir = current->mm->pgd;
2708 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2709
2710 do {
2711 r = kvmppc_run_vcpu(run, vcpu);
2712
2713 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2714 !(vcpu->arch.shregs.msr & MSR_PR)) {
2715 trace_kvm_hcall_enter(vcpu);
2716 r = kvmppc_pseries_do_hcall(vcpu);
2717 trace_kvm_hcall_exit(vcpu, r);
2718 kvmppc_core_prepare_to_enter(vcpu);
2719 } else if (r == RESUME_PAGE_FAULT) {
2720 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2721 r = kvmppc_book3s_hv_page_fault(run, vcpu,
2722 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2723 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2724 }
2725 } while (is_kvmppc_resume_guest(r));
2726
2727 out:
2728 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2729 atomic_dec(&vcpu->kvm->arch.vcpus_running);
2730 return r;
2731 }
2732
2733 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2734 int linux_psize)
2735 {
2736 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2737
2738 if (!def->shift)
2739 return;
2740 (*sps)->page_shift = def->shift;
2741 (*sps)->slb_enc = def->sllp;
2742 (*sps)->enc[0].page_shift = def->shift;
2743 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2744 /*
2745 * Add 16MB MPSS support if host supports it
2746 */
2747 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2748 (*sps)->enc[1].page_shift = 24;
2749 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2750 }
2751 (*sps)++;
2752 }
2753
2754 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2755 struct kvm_ppc_smmu_info *info)
2756 {
2757 struct kvm_ppc_one_seg_page_size *sps;
2758
2759 info->flags = KVM_PPC_PAGE_SIZES_REAL;
2760 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2761 info->flags |= KVM_PPC_1T_SEGMENTS;
2762 info->slb_size = mmu_slb_size;
2763
2764 /* We only support these sizes for now, and no muti-size segments */
2765 sps = &info->sps[0];
2766 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2767 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2768 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2769
2770 return 0;
2771 }
2772
2773 /*
2774 * Get (and clear) the dirty memory log for a memory slot.
2775 */
2776 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2777 struct kvm_dirty_log *log)
2778 {
2779 struct kvm_memslots *slots;
2780 struct kvm_memory_slot *memslot;
2781 int r;
2782 unsigned long n;
2783
2784 mutex_lock(&kvm->slots_lock);
2785
2786 r = -EINVAL;
2787 if (log->slot >= KVM_USER_MEM_SLOTS)
2788 goto out;
2789
2790 slots = kvm_memslots(kvm);
2791 memslot = id_to_memslot(slots, log->slot);
2792 r = -ENOENT;
2793 if (!memslot->dirty_bitmap)
2794 goto out;
2795
2796 n = kvm_dirty_bitmap_bytes(memslot);
2797 memset(memslot->dirty_bitmap, 0, n);
2798
2799 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2800 if (r)
2801 goto out;
2802
2803 r = -EFAULT;
2804 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2805 goto out;
2806
2807 r = 0;
2808 out:
2809 mutex_unlock(&kvm->slots_lock);
2810 return r;
2811 }
2812
2813 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2814 struct kvm_memory_slot *dont)
2815 {
2816 if (!dont || free->arch.rmap != dont->arch.rmap) {
2817 vfree(free->arch.rmap);
2818 free->arch.rmap = NULL;
2819 }
2820 }
2821
2822 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2823 unsigned long npages)
2824 {
2825 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2826 if (!slot->arch.rmap)
2827 return -ENOMEM;
2828
2829 return 0;
2830 }
2831
2832 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2833 struct kvm_memory_slot *memslot,
2834 const struct kvm_userspace_memory_region *mem)
2835 {
2836 return 0;
2837 }
2838
2839 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2840 const struct kvm_userspace_memory_region *mem,
2841 const struct kvm_memory_slot *old,
2842 const struct kvm_memory_slot *new)
2843 {
2844 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2845 struct kvm_memslots *slots;
2846 struct kvm_memory_slot *memslot;
2847
2848 if (npages && old->npages) {
2849 /*
2850 * If modifying a memslot, reset all the rmap dirty bits.
2851 * If this is a new memslot, we don't need to do anything
2852 * since the rmap array starts out as all zeroes,
2853 * i.e. no pages are dirty.
2854 */
2855 slots = kvm_memslots(kvm);
2856 memslot = id_to_memslot(slots, mem->slot);
2857 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2858 }
2859 }
2860
2861 /*
2862 * Update LPCR values in kvm->arch and in vcores.
2863 * Caller must hold kvm->lock.
2864 */
2865 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2866 {
2867 long int i;
2868 u32 cores_done = 0;
2869
2870 if ((kvm->arch.lpcr & mask) == lpcr)
2871 return;
2872
2873 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2874
2875 for (i = 0; i < KVM_MAX_VCORES; ++i) {
2876 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2877 if (!vc)
2878 continue;
2879 spin_lock(&vc->lock);
2880 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2881 spin_unlock(&vc->lock);
2882 if (++cores_done >= kvm->arch.online_vcores)
2883 break;
2884 }
2885 }
2886
2887 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2888 {
2889 return;
2890 }
2891
2892 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2893 {
2894 int err = 0;
2895 struct kvm *kvm = vcpu->kvm;
2896 unsigned long hva;
2897 struct kvm_memory_slot *memslot;
2898 struct vm_area_struct *vma;
2899 unsigned long lpcr = 0, senc;
2900 unsigned long psize, porder;
2901 int srcu_idx;
2902
2903 mutex_lock(&kvm->lock);
2904 if (kvm->arch.hpte_setup_done)
2905 goto out; /* another vcpu beat us to it */
2906
2907 /* Allocate hashed page table (if not done already) and reset it */
2908 if (!kvm->arch.hpt_virt) {
2909 err = kvmppc_alloc_hpt(kvm, NULL);
2910 if (err) {
2911 pr_err("KVM: Couldn't alloc HPT\n");
2912 goto out;
2913 }
2914 }
2915
2916 /* Look up the memslot for guest physical address 0 */
2917 srcu_idx = srcu_read_lock(&kvm->srcu);
2918 memslot = gfn_to_memslot(kvm, 0);
2919
2920 /* We must have some memory at 0 by now */
2921 err = -EINVAL;
2922 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2923 goto out_srcu;
2924
2925 /* Look up the VMA for the start of this memory slot */
2926 hva = memslot->userspace_addr;
2927 down_read(&current->mm->mmap_sem);
2928 vma = find_vma(current->mm, hva);
2929 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2930 goto up_out;
2931
2932 psize = vma_kernel_pagesize(vma);
2933 porder = __ilog2(psize);
2934
2935 up_read(&current->mm->mmap_sem);
2936
2937 /* We can handle 4k, 64k or 16M pages in the VRMA */
2938 err = -EINVAL;
2939 if (!(psize == 0x1000 || psize == 0x10000 ||
2940 psize == 0x1000000))
2941 goto out_srcu;
2942
2943 /* Update VRMASD field in the LPCR */
2944 senc = slb_pgsize_encoding(psize);
2945 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2946 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2947 /* the -4 is to account for senc values starting at 0x10 */
2948 lpcr = senc << (LPCR_VRMASD_SH - 4);
2949
2950 /* Create HPTEs in the hash page table for the VRMA */
2951 kvmppc_map_vrma(vcpu, memslot, porder);
2952
2953 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2954
2955 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2956 smp_wmb();
2957 kvm->arch.hpte_setup_done = 1;
2958 err = 0;
2959 out_srcu:
2960 srcu_read_unlock(&kvm->srcu, srcu_idx);
2961 out:
2962 mutex_unlock(&kvm->lock);
2963 return err;
2964
2965 up_out:
2966 up_read(&current->mm->mmap_sem);
2967 goto out_srcu;
2968 }
2969
2970 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2971 {
2972 unsigned long lpcr, lpid;
2973 char buf[32];
2974
2975 /* Allocate the guest's logical partition ID */
2976
2977 lpid = kvmppc_alloc_lpid();
2978 if ((long)lpid < 0)
2979 return -ENOMEM;
2980 kvm->arch.lpid = lpid;
2981
2982 /*
2983 * Since we don't flush the TLB when tearing down a VM,
2984 * and this lpid might have previously been used,
2985 * make sure we flush on each core before running the new VM.
2986 */
2987 cpumask_setall(&kvm->arch.need_tlb_flush);
2988
2989 /* Start out with the default set of hcalls enabled */
2990 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2991 sizeof(kvm->arch.enabled_hcalls));
2992
2993 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2994
2995 /* Init LPCR for virtual RMA mode */
2996 kvm->arch.host_lpid = mfspr(SPRN_LPID);
2997 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2998 lpcr &= LPCR_PECE | LPCR_LPES;
2999 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3000 LPCR_VPM0 | LPCR_VPM1;
3001 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3002 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3003 /* On POWER8 turn on online bit to enable PURR/SPURR */
3004 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3005 lpcr |= LPCR_ONL;
3006 kvm->arch.lpcr = lpcr;
3007
3008 /*
3009 * Track that we now have a HV mode VM active. This blocks secondary
3010 * CPU threads from coming online.
3011 */
3012 kvm_hv_vm_activated();
3013
3014 /*
3015 * Create a debugfs directory for the VM
3016 */
3017 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3018 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3019 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3020 kvmppc_mmu_debugfs_init(kvm);
3021
3022 return 0;
3023 }
3024
3025 static void kvmppc_free_vcores(struct kvm *kvm)
3026 {
3027 long int i;
3028
3029 for (i = 0; i < KVM_MAX_VCORES; ++i)
3030 kfree(kvm->arch.vcores[i]);
3031 kvm->arch.online_vcores = 0;
3032 }
3033
3034 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3035 {
3036 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3037
3038 kvm_hv_vm_deactivated();
3039
3040 kvmppc_free_vcores(kvm);
3041
3042 kvmppc_free_hpt(kvm);
3043 }
3044
3045 /* We don't need to emulate any privileged instructions or dcbz */
3046 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3047 unsigned int inst, int *advance)
3048 {
3049 return EMULATE_FAIL;
3050 }
3051
3052 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3053 ulong spr_val)
3054 {
3055 return EMULATE_FAIL;
3056 }
3057
3058 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3059 ulong *spr_val)
3060 {
3061 return EMULATE_FAIL;
3062 }
3063
3064 static int kvmppc_core_check_processor_compat_hv(void)
3065 {
3066 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3067 !cpu_has_feature(CPU_FTR_ARCH_206))
3068 return -EIO;
3069 return 0;
3070 }
3071
3072 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3073 unsigned int ioctl, unsigned long arg)
3074 {
3075 struct kvm *kvm __maybe_unused = filp->private_data;
3076 void __user *argp = (void __user *)arg;
3077 long r;
3078
3079 switch (ioctl) {
3080
3081 case KVM_PPC_ALLOCATE_HTAB: {
3082 u32 htab_order;
3083
3084 r = -EFAULT;
3085 if (get_user(htab_order, (u32 __user *)argp))
3086 break;
3087 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3088 if (r)
3089 break;
3090 r = -EFAULT;
3091 if (put_user(htab_order, (u32 __user *)argp))
3092 break;
3093 r = 0;
3094 break;
3095 }
3096
3097 case KVM_PPC_GET_HTAB_FD: {
3098 struct kvm_get_htab_fd ghf;
3099
3100 r = -EFAULT;
3101 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3102 break;
3103 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3104 break;
3105 }
3106
3107 default:
3108 r = -ENOTTY;
3109 }
3110
3111 return r;
3112 }
3113
3114 /*
3115 * List of hcall numbers to enable by default.
3116 * For compatibility with old userspace, we enable by default
3117 * all hcalls that were implemented before the hcall-enabling
3118 * facility was added. Note this list should not include H_RTAS.
3119 */
3120 static unsigned int default_hcall_list[] = {
3121 H_REMOVE,
3122 H_ENTER,
3123 H_READ,
3124 H_PROTECT,
3125 H_BULK_REMOVE,
3126 H_GET_TCE,
3127 H_PUT_TCE,
3128 H_SET_DABR,
3129 H_SET_XDABR,
3130 H_CEDE,
3131 H_PROD,
3132 H_CONFER,
3133 H_REGISTER_VPA,
3134 #ifdef CONFIG_KVM_XICS
3135 H_EOI,
3136 H_CPPR,
3137 H_IPI,
3138 H_IPOLL,
3139 H_XIRR,
3140 H_XIRR_X,
3141 #endif
3142 0
3143 };
3144
3145 static void init_default_hcalls(void)
3146 {
3147 int i;
3148 unsigned int hcall;
3149
3150 for (i = 0; default_hcall_list[i]; ++i) {
3151 hcall = default_hcall_list[i];
3152 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3153 __set_bit(hcall / 4, default_enabled_hcalls);
3154 }
3155 }
3156
3157 static struct kvmppc_ops kvm_ops_hv = {
3158 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3159 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3160 .get_one_reg = kvmppc_get_one_reg_hv,
3161 .set_one_reg = kvmppc_set_one_reg_hv,
3162 .vcpu_load = kvmppc_core_vcpu_load_hv,
3163 .vcpu_put = kvmppc_core_vcpu_put_hv,
3164 .set_msr = kvmppc_set_msr_hv,
3165 .vcpu_run = kvmppc_vcpu_run_hv,
3166 .vcpu_create = kvmppc_core_vcpu_create_hv,
3167 .vcpu_free = kvmppc_core_vcpu_free_hv,
3168 .check_requests = kvmppc_core_check_requests_hv,
3169 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
3170 .flush_memslot = kvmppc_core_flush_memslot_hv,
3171 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3172 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
3173 .unmap_hva = kvm_unmap_hva_hv,
3174 .unmap_hva_range = kvm_unmap_hva_range_hv,
3175 .age_hva = kvm_age_hva_hv,
3176 .test_age_hva = kvm_test_age_hva_hv,
3177 .set_spte_hva = kvm_set_spte_hva_hv,
3178 .mmu_destroy = kvmppc_mmu_destroy_hv,
3179 .free_memslot = kvmppc_core_free_memslot_hv,
3180 .create_memslot = kvmppc_core_create_memslot_hv,
3181 .init_vm = kvmppc_core_init_vm_hv,
3182 .destroy_vm = kvmppc_core_destroy_vm_hv,
3183 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3184 .emulate_op = kvmppc_core_emulate_op_hv,
3185 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3186 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3187 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3188 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
3189 .hcall_implemented = kvmppc_hcall_impl_hv,
3190 };
3191
3192 static int kvmppc_book3s_init_hv(void)
3193 {
3194 int r;
3195 /*
3196 * FIXME!! Do we need to check on all cpus ?
3197 */
3198 r = kvmppc_core_check_processor_compat_hv();
3199 if (r < 0)
3200 return -ENODEV;
3201
3202 kvm_ops_hv.owner = THIS_MODULE;
3203 kvmppc_hv_ops = &kvm_ops_hv;
3204
3205 init_default_hcalls();
3206
3207 init_vcore_lists();
3208
3209 r = kvmppc_mmu_hv_init();
3210 return r;
3211 }
3212
3213 static void kvmppc_book3s_exit_hv(void)
3214 {
3215 kvmppc_hv_ops = NULL;
3216 }
3217
3218 module_init(kvmppc_book3s_init_hv);
3219 module_exit(kvmppc_book3s_exit_hv);
3220 MODULE_LICENSE("GPL");
3221 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3222 MODULE_ALIAS("devname:kvm");