]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
dc9eb6b495ce6c57549c121c9ddfa92f2c76d877
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108 .set = param_set_int,
109 .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
113 S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
117 S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
119 #endif
120
121 /* If set, the threads on each CPU core have to be in the same MMU mode */
122 static bool no_mixing_hpt_and_radix;
123
124 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
125 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
126
127 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
128 int *ip)
129 {
130 int i = *ip;
131 struct kvm_vcpu *vcpu;
132
133 while (++i < MAX_SMT_THREADS) {
134 vcpu = READ_ONCE(vc->runnable_threads[i]);
135 if (vcpu) {
136 *ip = i;
137 return vcpu;
138 }
139 }
140 return NULL;
141 }
142
143 /* Used to traverse the list of runnable threads for a given vcore */
144 #define for_each_runnable_thread(i, vcpu, vc) \
145 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
146
147 static bool kvmppc_ipi_thread(int cpu)
148 {
149 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
150
151 /* On POWER9 we can use msgsnd to IPI any cpu */
152 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
153 msg |= get_hard_smp_processor_id(cpu);
154 smp_mb();
155 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
156 return true;
157 }
158
159 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
160 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
161 preempt_disable();
162 if (cpu_first_thread_sibling(cpu) ==
163 cpu_first_thread_sibling(smp_processor_id())) {
164 msg |= cpu_thread_in_core(cpu);
165 smp_mb();
166 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
167 preempt_enable();
168 return true;
169 }
170 preempt_enable();
171 }
172
173 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
174 if (cpu >= 0 && cpu < nr_cpu_ids) {
175 if (paca[cpu].kvm_hstate.xics_phys) {
176 xics_wake_cpu(cpu);
177 return true;
178 }
179 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
180 return true;
181 }
182 #endif
183
184 return false;
185 }
186
187 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
188 {
189 int cpu;
190 struct swait_queue_head *wqp;
191
192 wqp = kvm_arch_vcpu_wq(vcpu);
193 if (swq_has_sleeper(wqp)) {
194 swake_up(wqp);
195 ++vcpu->stat.halt_wakeup;
196 }
197
198 cpu = READ_ONCE(vcpu->arch.thread_cpu);
199 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
200 return;
201
202 /* CPU points to the first thread of the core */
203 cpu = vcpu->cpu;
204 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
205 smp_send_reschedule(cpu);
206 }
207
208 /*
209 * We use the vcpu_load/put functions to measure stolen time.
210 * Stolen time is counted as time when either the vcpu is able to
211 * run as part of a virtual core, but the task running the vcore
212 * is preempted or sleeping, or when the vcpu needs something done
213 * in the kernel by the task running the vcpu, but that task is
214 * preempted or sleeping. Those two things have to be counted
215 * separately, since one of the vcpu tasks will take on the job
216 * of running the core, and the other vcpu tasks in the vcore will
217 * sleep waiting for it to do that, but that sleep shouldn't count
218 * as stolen time.
219 *
220 * Hence we accumulate stolen time when the vcpu can run as part of
221 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
222 * needs its task to do other things in the kernel (for example,
223 * service a page fault) in busy_stolen. We don't accumulate
224 * stolen time for a vcore when it is inactive, or for a vcpu
225 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
226 * a misnomer; it means that the vcpu task is not executing in
227 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
228 * the kernel. We don't have any way of dividing up that time
229 * between time that the vcpu is genuinely stopped, time that
230 * the task is actively working on behalf of the vcpu, and time
231 * that the task is preempted, so we don't count any of it as
232 * stolen.
233 *
234 * Updates to busy_stolen are protected by arch.tbacct_lock;
235 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
236 * lock. The stolen times are measured in units of timebase ticks.
237 * (Note that the != TB_NIL checks below are purely defensive;
238 * they should never fail.)
239 */
240
241 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(&vc->stoltb_lock, flags);
246 vc->preempt_tb = mftb();
247 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
248 }
249
250 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
251 {
252 unsigned long flags;
253
254 spin_lock_irqsave(&vc->stoltb_lock, flags);
255 if (vc->preempt_tb != TB_NIL) {
256 vc->stolen_tb += mftb() - vc->preempt_tb;
257 vc->preempt_tb = TB_NIL;
258 }
259 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
260 }
261
262 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
263 {
264 struct kvmppc_vcore *vc = vcpu->arch.vcore;
265 unsigned long flags;
266
267 /*
268 * We can test vc->runner without taking the vcore lock,
269 * because only this task ever sets vc->runner to this
270 * vcpu, and once it is set to this vcpu, only this task
271 * ever sets it to NULL.
272 */
273 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
274 kvmppc_core_end_stolen(vc);
275
276 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
277 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
278 vcpu->arch.busy_preempt != TB_NIL) {
279 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
280 vcpu->arch.busy_preempt = TB_NIL;
281 }
282 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
283 }
284
285 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
286 {
287 struct kvmppc_vcore *vc = vcpu->arch.vcore;
288 unsigned long flags;
289
290 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
291 kvmppc_core_start_stolen(vc);
292
293 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
294 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
295 vcpu->arch.busy_preempt = mftb();
296 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
297 }
298
299 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
300 {
301 /*
302 * Check for illegal transactional state bit combination
303 * and if we find it, force the TS field to a safe state.
304 */
305 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
306 msr &= ~MSR_TS_MASK;
307 vcpu->arch.shregs.msr = msr;
308 kvmppc_end_cede(vcpu);
309 }
310
311 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
312 {
313 vcpu->arch.pvr = pvr;
314 }
315
316 /* Dummy value used in computing PCR value below */
317 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
318
319 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
320 {
321 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
322 struct kvmppc_vcore *vc = vcpu->arch.vcore;
323
324 /* We can (emulate) our own architecture version and anything older */
325 if (cpu_has_feature(CPU_FTR_ARCH_300))
326 host_pcr_bit = PCR_ARCH_300;
327 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
328 host_pcr_bit = PCR_ARCH_207;
329 else if (cpu_has_feature(CPU_FTR_ARCH_206))
330 host_pcr_bit = PCR_ARCH_206;
331 else
332 host_pcr_bit = PCR_ARCH_205;
333
334 /* Determine lowest PCR bit needed to run guest in given PVR level */
335 guest_pcr_bit = host_pcr_bit;
336 if (arch_compat) {
337 switch (arch_compat) {
338 case PVR_ARCH_205:
339 guest_pcr_bit = PCR_ARCH_205;
340 break;
341 case PVR_ARCH_206:
342 case PVR_ARCH_206p:
343 guest_pcr_bit = PCR_ARCH_206;
344 break;
345 case PVR_ARCH_207:
346 guest_pcr_bit = PCR_ARCH_207;
347 break;
348 case PVR_ARCH_300:
349 guest_pcr_bit = PCR_ARCH_300;
350 break;
351 default:
352 return -EINVAL;
353 }
354 }
355
356 /* Check requested PCR bits don't exceed our capabilities */
357 if (guest_pcr_bit > host_pcr_bit)
358 return -EINVAL;
359
360 spin_lock(&vc->lock);
361 vc->arch_compat = arch_compat;
362 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
363 vc->pcr = host_pcr_bit - guest_pcr_bit;
364 spin_unlock(&vc->lock);
365
366 return 0;
367 }
368
369 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
370 {
371 int r;
372
373 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
374 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
375 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
376 for (r = 0; r < 16; ++r)
377 pr_err("r%2d = %.16lx r%d = %.16lx\n",
378 r, kvmppc_get_gpr(vcpu, r),
379 r+16, kvmppc_get_gpr(vcpu, r+16));
380 pr_err("ctr = %.16lx lr = %.16lx\n",
381 vcpu->arch.ctr, vcpu->arch.lr);
382 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
383 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
384 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
385 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
386 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
387 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
388 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
389 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
390 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
391 pr_err("fault dar = %.16lx dsisr = %.8x\n",
392 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
393 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
394 for (r = 0; r < vcpu->arch.slb_max; ++r)
395 pr_err(" ESID = %.16llx VSID = %.16llx\n",
396 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
397 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
398 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
399 vcpu->arch.last_inst);
400 }
401
402 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
403 {
404 struct kvm_vcpu *ret;
405
406 mutex_lock(&kvm->lock);
407 ret = kvm_get_vcpu_by_id(kvm, id);
408 mutex_unlock(&kvm->lock);
409 return ret;
410 }
411
412 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
413 {
414 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
415 vpa->yield_count = cpu_to_be32(1);
416 }
417
418 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
419 unsigned long addr, unsigned long len)
420 {
421 /* check address is cacheline aligned */
422 if (addr & (L1_CACHE_BYTES - 1))
423 return -EINVAL;
424 spin_lock(&vcpu->arch.vpa_update_lock);
425 if (v->next_gpa != addr || v->len != len) {
426 v->next_gpa = addr;
427 v->len = addr ? len : 0;
428 v->update_pending = 1;
429 }
430 spin_unlock(&vcpu->arch.vpa_update_lock);
431 return 0;
432 }
433
434 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
435 struct reg_vpa {
436 u32 dummy;
437 union {
438 __be16 hword;
439 __be32 word;
440 } length;
441 };
442
443 static int vpa_is_registered(struct kvmppc_vpa *vpap)
444 {
445 if (vpap->update_pending)
446 return vpap->next_gpa != 0;
447 return vpap->pinned_addr != NULL;
448 }
449
450 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
451 unsigned long flags,
452 unsigned long vcpuid, unsigned long vpa)
453 {
454 struct kvm *kvm = vcpu->kvm;
455 unsigned long len, nb;
456 void *va;
457 struct kvm_vcpu *tvcpu;
458 int err;
459 int subfunc;
460 struct kvmppc_vpa *vpap;
461
462 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
463 if (!tvcpu)
464 return H_PARAMETER;
465
466 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
467 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
468 subfunc == H_VPA_REG_SLB) {
469 /* Registering new area - address must be cache-line aligned */
470 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
471 return H_PARAMETER;
472
473 /* convert logical addr to kernel addr and read length */
474 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
475 if (va == NULL)
476 return H_PARAMETER;
477 if (subfunc == H_VPA_REG_VPA)
478 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
479 else
480 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
481 kvmppc_unpin_guest_page(kvm, va, vpa, false);
482
483 /* Check length */
484 if (len > nb || len < sizeof(struct reg_vpa))
485 return H_PARAMETER;
486 } else {
487 vpa = 0;
488 len = 0;
489 }
490
491 err = H_PARAMETER;
492 vpap = NULL;
493 spin_lock(&tvcpu->arch.vpa_update_lock);
494
495 switch (subfunc) {
496 case H_VPA_REG_VPA: /* register VPA */
497 /*
498 * The size of our lppaca is 1kB because of the way we align
499 * it for the guest to avoid crossing a 4kB boundary. We only
500 * use 640 bytes of the structure though, so we should accept
501 * clients that set a size of 640.
502 */
503 if (len < 640)
504 break;
505 vpap = &tvcpu->arch.vpa;
506 err = 0;
507 break;
508
509 case H_VPA_REG_DTL: /* register DTL */
510 if (len < sizeof(struct dtl_entry))
511 break;
512 len -= len % sizeof(struct dtl_entry);
513
514 /* Check that they have previously registered a VPA */
515 err = H_RESOURCE;
516 if (!vpa_is_registered(&tvcpu->arch.vpa))
517 break;
518
519 vpap = &tvcpu->arch.dtl;
520 err = 0;
521 break;
522
523 case H_VPA_REG_SLB: /* register SLB shadow buffer */
524 /* Check that they have previously registered a VPA */
525 err = H_RESOURCE;
526 if (!vpa_is_registered(&tvcpu->arch.vpa))
527 break;
528
529 vpap = &tvcpu->arch.slb_shadow;
530 err = 0;
531 break;
532
533 case H_VPA_DEREG_VPA: /* deregister VPA */
534 /* Check they don't still have a DTL or SLB buf registered */
535 err = H_RESOURCE;
536 if (vpa_is_registered(&tvcpu->arch.dtl) ||
537 vpa_is_registered(&tvcpu->arch.slb_shadow))
538 break;
539
540 vpap = &tvcpu->arch.vpa;
541 err = 0;
542 break;
543
544 case H_VPA_DEREG_DTL: /* deregister DTL */
545 vpap = &tvcpu->arch.dtl;
546 err = 0;
547 break;
548
549 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
550 vpap = &tvcpu->arch.slb_shadow;
551 err = 0;
552 break;
553 }
554
555 if (vpap) {
556 vpap->next_gpa = vpa;
557 vpap->len = len;
558 vpap->update_pending = 1;
559 }
560
561 spin_unlock(&tvcpu->arch.vpa_update_lock);
562
563 return err;
564 }
565
566 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
567 {
568 struct kvm *kvm = vcpu->kvm;
569 void *va;
570 unsigned long nb;
571 unsigned long gpa;
572
573 /*
574 * We need to pin the page pointed to by vpap->next_gpa,
575 * but we can't call kvmppc_pin_guest_page under the lock
576 * as it does get_user_pages() and down_read(). So we
577 * have to drop the lock, pin the page, then get the lock
578 * again and check that a new area didn't get registered
579 * in the meantime.
580 */
581 for (;;) {
582 gpa = vpap->next_gpa;
583 spin_unlock(&vcpu->arch.vpa_update_lock);
584 va = NULL;
585 nb = 0;
586 if (gpa)
587 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
588 spin_lock(&vcpu->arch.vpa_update_lock);
589 if (gpa == vpap->next_gpa)
590 break;
591 /* sigh... unpin that one and try again */
592 if (va)
593 kvmppc_unpin_guest_page(kvm, va, gpa, false);
594 }
595
596 vpap->update_pending = 0;
597 if (va && nb < vpap->len) {
598 /*
599 * If it's now too short, it must be that userspace
600 * has changed the mappings underlying guest memory,
601 * so unregister the region.
602 */
603 kvmppc_unpin_guest_page(kvm, va, gpa, false);
604 va = NULL;
605 }
606 if (vpap->pinned_addr)
607 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
608 vpap->dirty);
609 vpap->gpa = gpa;
610 vpap->pinned_addr = va;
611 vpap->dirty = false;
612 if (va)
613 vpap->pinned_end = va + vpap->len;
614 }
615
616 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
617 {
618 if (!(vcpu->arch.vpa.update_pending ||
619 vcpu->arch.slb_shadow.update_pending ||
620 vcpu->arch.dtl.update_pending))
621 return;
622
623 spin_lock(&vcpu->arch.vpa_update_lock);
624 if (vcpu->arch.vpa.update_pending) {
625 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
626 if (vcpu->arch.vpa.pinned_addr)
627 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
628 }
629 if (vcpu->arch.dtl.update_pending) {
630 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
631 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
632 vcpu->arch.dtl_index = 0;
633 }
634 if (vcpu->arch.slb_shadow.update_pending)
635 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
636 spin_unlock(&vcpu->arch.vpa_update_lock);
637 }
638
639 /*
640 * Return the accumulated stolen time for the vcore up until `now'.
641 * The caller should hold the vcore lock.
642 */
643 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
644 {
645 u64 p;
646 unsigned long flags;
647
648 spin_lock_irqsave(&vc->stoltb_lock, flags);
649 p = vc->stolen_tb;
650 if (vc->vcore_state != VCORE_INACTIVE &&
651 vc->preempt_tb != TB_NIL)
652 p += now - vc->preempt_tb;
653 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
654 return p;
655 }
656
657 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
658 struct kvmppc_vcore *vc)
659 {
660 struct dtl_entry *dt;
661 struct lppaca *vpa;
662 unsigned long stolen;
663 unsigned long core_stolen;
664 u64 now;
665 unsigned long flags;
666
667 dt = vcpu->arch.dtl_ptr;
668 vpa = vcpu->arch.vpa.pinned_addr;
669 now = mftb();
670 core_stolen = vcore_stolen_time(vc, now);
671 stolen = core_stolen - vcpu->arch.stolen_logged;
672 vcpu->arch.stolen_logged = core_stolen;
673 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
674 stolen += vcpu->arch.busy_stolen;
675 vcpu->arch.busy_stolen = 0;
676 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
677 if (!dt || !vpa)
678 return;
679 memset(dt, 0, sizeof(struct dtl_entry));
680 dt->dispatch_reason = 7;
681 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
682 dt->timebase = cpu_to_be64(now + vc->tb_offset);
683 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
684 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
685 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
686 ++dt;
687 if (dt == vcpu->arch.dtl.pinned_end)
688 dt = vcpu->arch.dtl.pinned_addr;
689 vcpu->arch.dtl_ptr = dt;
690 /* order writing *dt vs. writing vpa->dtl_idx */
691 smp_wmb();
692 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
693 vcpu->arch.dtl.dirty = true;
694 }
695
696 /* See if there is a doorbell interrupt pending for a vcpu */
697 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
698 {
699 int thr;
700 struct kvmppc_vcore *vc;
701
702 if (vcpu->arch.doorbell_request)
703 return true;
704 /*
705 * Ensure that the read of vcore->dpdes comes after the read
706 * of vcpu->doorbell_request. This barrier matches the
707 * lwsync in book3s_hv_rmhandlers.S just before the
708 * fast_guest_return label.
709 */
710 smp_rmb();
711 vc = vcpu->arch.vcore;
712 thr = vcpu->vcpu_id - vc->first_vcpuid;
713 return !!(vc->dpdes & (1 << thr));
714 }
715
716 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
717 {
718 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
719 return true;
720 if ((!vcpu->arch.vcore->arch_compat) &&
721 cpu_has_feature(CPU_FTR_ARCH_207S))
722 return true;
723 return false;
724 }
725
726 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
727 unsigned long resource, unsigned long value1,
728 unsigned long value2)
729 {
730 switch (resource) {
731 case H_SET_MODE_RESOURCE_SET_CIABR:
732 if (!kvmppc_power8_compatible(vcpu))
733 return H_P2;
734 if (value2)
735 return H_P4;
736 if (mflags)
737 return H_UNSUPPORTED_FLAG_START;
738 /* Guests can't breakpoint the hypervisor */
739 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
740 return H_P3;
741 vcpu->arch.ciabr = value1;
742 return H_SUCCESS;
743 case H_SET_MODE_RESOURCE_SET_DAWR:
744 if (!kvmppc_power8_compatible(vcpu))
745 return H_P2;
746 if (mflags)
747 return H_UNSUPPORTED_FLAG_START;
748 if (value2 & DABRX_HYP)
749 return H_P4;
750 vcpu->arch.dawr = value1;
751 vcpu->arch.dawrx = value2;
752 return H_SUCCESS;
753 default:
754 return H_TOO_HARD;
755 }
756 }
757
758 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
759 {
760 struct kvmppc_vcore *vcore = target->arch.vcore;
761
762 /*
763 * We expect to have been called by the real mode handler
764 * (kvmppc_rm_h_confer()) which would have directly returned
765 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
766 * have useful work to do and should not confer) so we don't
767 * recheck that here.
768 */
769
770 spin_lock(&vcore->lock);
771 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
772 vcore->vcore_state != VCORE_INACTIVE &&
773 vcore->runner)
774 target = vcore->runner;
775 spin_unlock(&vcore->lock);
776
777 return kvm_vcpu_yield_to(target);
778 }
779
780 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
781 {
782 int yield_count = 0;
783 struct lppaca *lppaca;
784
785 spin_lock(&vcpu->arch.vpa_update_lock);
786 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
787 if (lppaca)
788 yield_count = be32_to_cpu(lppaca->yield_count);
789 spin_unlock(&vcpu->arch.vpa_update_lock);
790 return yield_count;
791 }
792
793 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
794 {
795 unsigned long req = kvmppc_get_gpr(vcpu, 3);
796 unsigned long target, ret = H_SUCCESS;
797 int yield_count;
798 struct kvm_vcpu *tvcpu;
799 int idx, rc;
800
801 if (req <= MAX_HCALL_OPCODE &&
802 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
803 return RESUME_HOST;
804
805 switch (req) {
806 case H_CEDE:
807 break;
808 case H_PROD:
809 target = kvmppc_get_gpr(vcpu, 4);
810 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
811 if (!tvcpu) {
812 ret = H_PARAMETER;
813 break;
814 }
815 tvcpu->arch.prodded = 1;
816 smp_mb();
817 if (tvcpu->arch.ceded)
818 kvmppc_fast_vcpu_kick_hv(tvcpu);
819 break;
820 case H_CONFER:
821 target = kvmppc_get_gpr(vcpu, 4);
822 if (target == -1)
823 break;
824 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
825 if (!tvcpu) {
826 ret = H_PARAMETER;
827 break;
828 }
829 yield_count = kvmppc_get_gpr(vcpu, 5);
830 if (kvmppc_get_yield_count(tvcpu) != yield_count)
831 break;
832 kvm_arch_vcpu_yield_to(tvcpu);
833 break;
834 case H_REGISTER_VPA:
835 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
836 kvmppc_get_gpr(vcpu, 5),
837 kvmppc_get_gpr(vcpu, 6));
838 break;
839 case H_RTAS:
840 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
841 return RESUME_HOST;
842
843 idx = srcu_read_lock(&vcpu->kvm->srcu);
844 rc = kvmppc_rtas_hcall(vcpu);
845 srcu_read_unlock(&vcpu->kvm->srcu, idx);
846
847 if (rc == -ENOENT)
848 return RESUME_HOST;
849 else if (rc == 0)
850 break;
851
852 /* Send the error out to userspace via KVM_RUN */
853 return rc;
854 case H_LOGICAL_CI_LOAD:
855 ret = kvmppc_h_logical_ci_load(vcpu);
856 if (ret == H_TOO_HARD)
857 return RESUME_HOST;
858 break;
859 case H_LOGICAL_CI_STORE:
860 ret = kvmppc_h_logical_ci_store(vcpu);
861 if (ret == H_TOO_HARD)
862 return RESUME_HOST;
863 break;
864 case H_SET_MODE:
865 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
866 kvmppc_get_gpr(vcpu, 5),
867 kvmppc_get_gpr(vcpu, 6),
868 kvmppc_get_gpr(vcpu, 7));
869 if (ret == H_TOO_HARD)
870 return RESUME_HOST;
871 break;
872 case H_XIRR:
873 case H_CPPR:
874 case H_EOI:
875 case H_IPI:
876 case H_IPOLL:
877 case H_XIRR_X:
878 if (kvmppc_xics_enabled(vcpu)) {
879 if (xive_enabled()) {
880 ret = H_NOT_AVAILABLE;
881 return RESUME_GUEST;
882 }
883 ret = kvmppc_xics_hcall(vcpu, req);
884 break;
885 }
886 return RESUME_HOST;
887 case H_PUT_TCE:
888 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
889 kvmppc_get_gpr(vcpu, 5),
890 kvmppc_get_gpr(vcpu, 6));
891 if (ret == H_TOO_HARD)
892 return RESUME_HOST;
893 break;
894 case H_PUT_TCE_INDIRECT:
895 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
896 kvmppc_get_gpr(vcpu, 5),
897 kvmppc_get_gpr(vcpu, 6),
898 kvmppc_get_gpr(vcpu, 7));
899 if (ret == H_TOO_HARD)
900 return RESUME_HOST;
901 break;
902 case H_STUFF_TCE:
903 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
904 kvmppc_get_gpr(vcpu, 5),
905 kvmppc_get_gpr(vcpu, 6),
906 kvmppc_get_gpr(vcpu, 7));
907 if (ret == H_TOO_HARD)
908 return RESUME_HOST;
909 break;
910 default:
911 return RESUME_HOST;
912 }
913 kvmppc_set_gpr(vcpu, 3, ret);
914 vcpu->arch.hcall_needed = 0;
915 return RESUME_GUEST;
916 }
917
918 static int kvmppc_hcall_impl_hv(unsigned long cmd)
919 {
920 switch (cmd) {
921 case H_CEDE:
922 case H_PROD:
923 case H_CONFER:
924 case H_REGISTER_VPA:
925 case H_SET_MODE:
926 case H_LOGICAL_CI_LOAD:
927 case H_LOGICAL_CI_STORE:
928 #ifdef CONFIG_KVM_XICS
929 case H_XIRR:
930 case H_CPPR:
931 case H_EOI:
932 case H_IPI:
933 case H_IPOLL:
934 case H_XIRR_X:
935 #endif
936 return 1;
937 }
938
939 /* See if it's in the real-mode table */
940 return kvmppc_hcall_impl_hv_realmode(cmd);
941 }
942
943 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
944 struct kvm_vcpu *vcpu)
945 {
946 u32 last_inst;
947
948 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
949 EMULATE_DONE) {
950 /*
951 * Fetch failed, so return to guest and
952 * try executing it again.
953 */
954 return RESUME_GUEST;
955 }
956
957 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
958 run->exit_reason = KVM_EXIT_DEBUG;
959 run->debug.arch.address = kvmppc_get_pc(vcpu);
960 return RESUME_HOST;
961 } else {
962 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
963 return RESUME_GUEST;
964 }
965 }
966
967 static void do_nothing(void *x)
968 {
969 }
970
971 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
972 {
973 int thr, cpu, pcpu, nthreads;
974 struct kvm_vcpu *v;
975 unsigned long dpdes;
976
977 nthreads = vcpu->kvm->arch.emul_smt_mode;
978 dpdes = 0;
979 cpu = vcpu->vcpu_id & ~(nthreads - 1);
980 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
981 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
982 if (!v)
983 continue;
984 /*
985 * If the vcpu is currently running on a physical cpu thread,
986 * interrupt it in order to pull it out of the guest briefly,
987 * which will update its vcore->dpdes value.
988 */
989 pcpu = READ_ONCE(v->cpu);
990 if (pcpu >= 0)
991 smp_call_function_single(pcpu, do_nothing, NULL, 1);
992 if (kvmppc_doorbell_pending(v))
993 dpdes |= 1 << thr;
994 }
995 return dpdes;
996 }
997
998 /*
999 * On POWER9, emulate doorbell-related instructions in order to
1000 * give the guest the illusion of running on a multi-threaded core.
1001 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1002 * and mfspr DPDES.
1003 */
1004 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1005 {
1006 u32 inst, rb, thr;
1007 unsigned long arg;
1008 struct kvm *kvm = vcpu->kvm;
1009 struct kvm_vcpu *tvcpu;
1010
1011 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1012 return RESUME_GUEST;
1013 if (get_op(inst) != 31)
1014 return EMULATE_FAIL;
1015 rb = get_rb(inst);
1016 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1017 switch (get_xop(inst)) {
1018 case OP_31_XOP_MSGSNDP:
1019 arg = kvmppc_get_gpr(vcpu, rb);
1020 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1021 break;
1022 arg &= 0x3f;
1023 if (arg >= kvm->arch.emul_smt_mode)
1024 break;
1025 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1026 if (!tvcpu)
1027 break;
1028 if (!tvcpu->arch.doorbell_request) {
1029 tvcpu->arch.doorbell_request = 1;
1030 kvmppc_fast_vcpu_kick_hv(tvcpu);
1031 }
1032 break;
1033 case OP_31_XOP_MSGCLRP:
1034 arg = kvmppc_get_gpr(vcpu, rb);
1035 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1036 break;
1037 vcpu->arch.vcore->dpdes = 0;
1038 vcpu->arch.doorbell_request = 0;
1039 break;
1040 case OP_31_XOP_MFSPR:
1041 switch (get_sprn(inst)) {
1042 case SPRN_TIR:
1043 arg = thr;
1044 break;
1045 case SPRN_DPDES:
1046 arg = kvmppc_read_dpdes(vcpu);
1047 break;
1048 default:
1049 return EMULATE_FAIL;
1050 }
1051 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1052 break;
1053 default:
1054 return EMULATE_FAIL;
1055 }
1056 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1057 return RESUME_GUEST;
1058 }
1059
1060 /* Called with vcpu->arch.vcore->lock held */
1061 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1062 struct task_struct *tsk)
1063 {
1064 int r = RESUME_HOST;
1065
1066 vcpu->stat.sum_exits++;
1067
1068 /*
1069 * This can happen if an interrupt occurs in the last stages
1070 * of guest entry or the first stages of guest exit (i.e. after
1071 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1072 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1073 * That can happen due to a bug, or due to a machine check
1074 * occurring at just the wrong time.
1075 */
1076 if (vcpu->arch.shregs.msr & MSR_HV) {
1077 printk(KERN_EMERG "KVM trap in HV mode!\n");
1078 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1079 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1080 vcpu->arch.shregs.msr);
1081 kvmppc_dump_regs(vcpu);
1082 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1083 run->hw.hardware_exit_reason = vcpu->arch.trap;
1084 return RESUME_HOST;
1085 }
1086 run->exit_reason = KVM_EXIT_UNKNOWN;
1087 run->ready_for_interrupt_injection = 1;
1088 switch (vcpu->arch.trap) {
1089 /* We're good on these - the host merely wanted to get our attention */
1090 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1091 vcpu->stat.dec_exits++;
1092 r = RESUME_GUEST;
1093 break;
1094 case BOOK3S_INTERRUPT_EXTERNAL:
1095 case BOOK3S_INTERRUPT_H_DOORBELL:
1096 case BOOK3S_INTERRUPT_H_VIRT:
1097 vcpu->stat.ext_intr_exits++;
1098 r = RESUME_GUEST;
1099 break;
1100 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1101 case BOOK3S_INTERRUPT_HMI:
1102 case BOOK3S_INTERRUPT_PERFMON:
1103 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1104 r = RESUME_GUEST;
1105 break;
1106 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1107 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1108 run->exit_reason = KVM_EXIT_NMI;
1109 run->hw.hardware_exit_reason = vcpu->arch.trap;
1110 /* Clear out the old NMI status from run->flags */
1111 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1112 /* Now set the NMI status */
1113 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1114 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1115 else
1116 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1117
1118 r = RESUME_HOST;
1119 /* Print the MCE event to host console. */
1120 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1121 break;
1122 case BOOK3S_INTERRUPT_PROGRAM:
1123 {
1124 ulong flags;
1125 /*
1126 * Normally program interrupts are delivered directly
1127 * to the guest by the hardware, but we can get here
1128 * as a result of a hypervisor emulation interrupt
1129 * (e40) getting turned into a 700 by BML RTAS.
1130 */
1131 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1132 kvmppc_core_queue_program(vcpu, flags);
1133 r = RESUME_GUEST;
1134 break;
1135 }
1136 case BOOK3S_INTERRUPT_SYSCALL:
1137 {
1138 /* hcall - punt to userspace */
1139 int i;
1140
1141 /* hypercall with MSR_PR has already been handled in rmode,
1142 * and never reaches here.
1143 */
1144
1145 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1146 for (i = 0; i < 9; ++i)
1147 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1148 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1149 vcpu->arch.hcall_needed = 1;
1150 r = RESUME_HOST;
1151 break;
1152 }
1153 /*
1154 * We get these next two if the guest accesses a page which it thinks
1155 * it has mapped but which is not actually present, either because
1156 * it is for an emulated I/O device or because the corresonding
1157 * host page has been paged out. Any other HDSI/HISI interrupts
1158 * have been handled already.
1159 */
1160 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1161 r = RESUME_PAGE_FAULT;
1162 break;
1163 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1164 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1165 vcpu->arch.fault_dsisr = 0;
1166 r = RESUME_PAGE_FAULT;
1167 break;
1168 /*
1169 * This occurs if the guest executes an illegal instruction.
1170 * If the guest debug is disabled, generate a program interrupt
1171 * to the guest. If guest debug is enabled, we need to check
1172 * whether the instruction is a software breakpoint instruction.
1173 * Accordingly return to Guest or Host.
1174 */
1175 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1176 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1177 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1178 swab32(vcpu->arch.emul_inst) :
1179 vcpu->arch.emul_inst;
1180 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1181 /* Need vcore unlocked to call kvmppc_get_last_inst */
1182 spin_unlock(&vcpu->arch.vcore->lock);
1183 r = kvmppc_emulate_debug_inst(run, vcpu);
1184 spin_lock(&vcpu->arch.vcore->lock);
1185 } else {
1186 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1187 r = RESUME_GUEST;
1188 }
1189 break;
1190 /*
1191 * This occurs if the guest (kernel or userspace), does something that
1192 * is prohibited by HFSCR.
1193 * On POWER9, this could be a doorbell instruction that we need
1194 * to emulate.
1195 * Otherwise, we just generate a program interrupt to the guest.
1196 */
1197 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1198 r = EMULATE_FAIL;
1199 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1200 cpu_has_feature(CPU_FTR_ARCH_300)) {
1201 /* Need vcore unlocked to call kvmppc_get_last_inst */
1202 spin_unlock(&vcpu->arch.vcore->lock);
1203 r = kvmppc_emulate_doorbell_instr(vcpu);
1204 spin_lock(&vcpu->arch.vcore->lock);
1205 }
1206 if (r == EMULATE_FAIL) {
1207 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1208 r = RESUME_GUEST;
1209 }
1210 break;
1211
1212 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1213 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1214 /*
1215 * This occurs for various TM-related instructions that
1216 * we need to emulate on POWER9 DD2.2. We have already
1217 * handled the cases where the guest was in real-suspend
1218 * mode and was transitioning to transactional state.
1219 */
1220 r = kvmhv_p9_tm_emulation(vcpu);
1221 break;
1222 #endif
1223
1224 case BOOK3S_INTERRUPT_HV_RM_HARD:
1225 r = RESUME_PASSTHROUGH;
1226 break;
1227 default:
1228 kvmppc_dump_regs(vcpu);
1229 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1230 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1231 vcpu->arch.shregs.msr);
1232 run->hw.hardware_exit_reason = vcpu->arch.trap;
1233 r = RESUME_HOST;
1234 break;
1235 }
1236
1237 return r;
1238 }
1239
1240 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1241 struct kvm_sregs *sregs)
1242 {
1243 int i;
1244
1245 memset(sregs, 0, sizeof(struct kvm_sregs));
1246 sregs->pvr = vcpu->arch.pvr;
1247 for (i = 0; i < vcpu->arch.slb_max; i++) {
1248 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1249 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1250 }
1251
1252 return 0;
1253 }
1254
1255 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1256 struct kvm_sregs *sregs)
1257 {
1258 int i, j;
1259
1260 /* Only accept the same PVR as the host's, since we can't spoof it */
1261 if (sregs->pvr != vcpu->arch.pvr)
1262 return -EINVAL;
1263
1264 j = 0;
1265 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1266 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1267 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1268 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1269 ++j;
1270 }
1271 }
1272 vcpu->arch.slb_max = j;
1273
1274 return 0;
1275 }
1276
1277 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1278 bool preserve_top32)
1279 {
1280 struct kvm *kvm = vcpu->kvm;
1281 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1282 u64 mask;
1283
1284 mutex_lock(&kvm->lock);
1285 spin_lock(&vc->lock);
1286 /*
1287 * If ILE (interrupt little-endian) has changed, update the
1288 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1289 */
1290 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1291 struct kvm_vcpu *vcpu;
1292 int i;
1293
1294 kvm_for_each_vcpu(i, vcpu, kvm) {
1295 if (vcpu->arch.vcore != vc)
1296 continue;
1297 if (new_lpcr & LPCR_ILE)
1298 vcpu->arch.intr_msr |= MSR_LE;
1299 else
1300 vcpu->arch.intr_msr &= ~MSR_LE;
1301 }
1302 }
1303
1304 /*
1305 * Userspace can only modify DPFD (default prefetch depth),
1306 * ILE (interrupt little-endian) and TC (translation control).
1307 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1308 */
1309 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1310 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1311 mask |= LPCR_AIL;
1312 /*
1313 * On POWER9, allow userspace to enable large decrementer for the
1314 * guest, whether or not the host has it enabled.
1315 */
1316 if (cpu_has_feature(CPU_FTR_ARCH_300))
1317 mask |= LPCR_LD;
1318
1319 /* Broken 32-bit version of LPCR must not clear top bits */
1320 if (preserve_top32)
1321 mask &= 0xFFFFFFFF;
1322 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1323 spin_unlock(&vc->lock);
1324 mutex_unlock(&kvm->lock);
1325 }
1326
1327 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1328 union kvmppc_one_reg *val)
1329 {
1330 int r = 0;
1331 long int i;
1332
1333 switch (id) {
1334 case KVM_REG_PPC_DEBUG_INST:
1335 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1336 break;
1337 case KVM_REG_PPC_HIOR:
1338 *val = get_reg_val(id, 0);
1339 break;
1340 case KVM_REG_PPC_DABR:
1341 *val = get_reg_val(id, vcpu->arch.dabr);
1342 break;
1343 case KVM_REG_PPC_DABRX:
1344 *val = get_reg_val(id, vcpu->arch.dabrx);
1345 break;
1346 case KVM_REG_PPC_DSCR:
1347 *val = get_reg_val(id, vcpu->arch.dscr);
1348 break;
1349 case KVM_REG_PPC_PURR:
1350 *val = get_reg_val(id, vcpu->arch.purr);
1351 break;
1352 case KVM_REG_PPC_SPURR:
1353 *val = get_reg_val(id, vcpu->arch.spurr);
1354 break;
1355 case KVM_REG_PPC_AMR:
1356 *val = get_reg_val(id, vcpu->arch.amr);
1357 break;
1358 case KVM_REG_PPC_UAMOR:
1359 *val = get_reg_val(id, vcpu->arch.uamor);
1360 break;
1361 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1362 i = id - KVM_REG_PPC_MMCR0;
1363 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1364 break;
1365 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1366 i = id - KVM_REG_PPC_PMC1;
1367 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1368 break;
1369 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1370 i = id - KVM_REG_PPC_SPMC1;
1371 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1372 break;
1373 case KVM_REG_PPC_SIAR:
1374 *val = get_reg_val(id, vcpu->arch.siar);
1375 break;
1376 case KVM_REG_PPC_SDAR:
1377 *val = get_reg_val(id, vcpu->arch.sdar);
1378 break;
1379 case KVM_REG_PPC_SIER:
1380 *val = get_reg_val(id, vcpu->arch.sier);
1381 break;
1382 case KVM_REG_PPC_IAMR:
1383 *val = get_reg_val(id, vcpu->arch.iamr);
1384 break;
1385 case KVM_REG_PPC_PSPB:
1386 *val = get_reg_val(id, vcpu->arch.pspb);
1387 break;
1388 case KVM_REG_PPC_DPDES:
1389 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1390 break;
1391 case KVM_REG_PPC_VTB:
1392 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1393 break;
1394 case KVM_REG_PPC_DAWR:
1395 *val = get_reg_val(id, vcpu->arch.dawr);
1396 break;
1397 case KVM_REG_PPC_DAWRX:
1398 *val = get_reg_val(id, vcpu->arch.dawrx);
1399 break;
1400 case KVM_REG_PPC_CIABR:
1401 *val = get_reg_val(id, vcpu->arch.ciabr);
1402 break;
1403 case KVM_REG_PPC_CSIGR:
1404 *val = get_reg_val(id, vcpu->arch.csigr);
1405 break;
1406 case KVM_REG_PPC_TACR:
1407 *val = get_reg_val(id, vcpu->arch.tacr);
1408 break;
1409 case KVM_REG_PPC_TCSCR:
1410 *val = get_reg_val(id, vcpu->arch.tcscr);
1411 break;
1412 case KVM_REG_PPC_PID:
1413 *val = get_reg_val(id, vcpu->arch.pid);
1414 break;
1415 case KVM_REG_PPC_ACOP:
1416 *val = get_reg_val(id, vcpu->arch.acop);
1417 break;
1418 case KVM_REG_PPC_WORT:
1419 *val = get_reg_val(id, vcpu->arch.wort);
1420 break;
1421 case KVM_REG_PPC_TIDR:
1422 *val = get_reg_val(id, vcpu->arch.tid);
1423 break;
1424 case KVM_REG_PPC_PSSCR:
1425 *val = get_reg_val(id, vcpu->arch.psscr);
1426 break;
1427 case KVM_REG_PPC_VPA_ADDR:
1428 spin_lock(&vcpu->arch.vpa_update_lock);
1429 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1430 spin_unlock(&vcpu->arch.vpa_update_lock);
1431 break;
1432 case KVM_REG_PPC_VPA_SLB:
1433 spin_lock(&vcpu->arch.vpa_update_lock);
1434 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1435 val->vpaval.length = vcpu->arch.slb_shadow.len;
1436 spin_unlock(&vcpu->arch.vpa_update_lock);
1437 break;
1438 case KVM_REG_PPC_VPA_DTL:
1439 spin_lock(&vcpu->arch.vpa_update_lock);
1440 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1441 val->vpaval.length = vcpu->arch.dtl.len;
1442 spin_unlock(&vcpu->arch.vpa_update_lock);
1443 break;
1444 case KVM_REG_PPC_TB_OFFSET:
1445 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1446 break;
1447 case KVM_REG_PPC_LPCR:
1448 case KVM_REG_PPC_LPCR_64:
1449 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1450 break;
1451 case KVM_REG_PPC_PPR:
1452 *val = get_reg_val(id, vcpu->arch.ppr);
1453 break;
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455 case KVM_REG_PPC_TFHAR:
1456 *val = get_reg_val(id, vcpu->arch.tfhar);
1457 break;
1458 case KVM_REG_PPC_TFIAR:
1459 *val = get_reg_val(id, vcpu->arch.tfiar);
1460 break;
1461 case KVM_REG_PPC_TEXASR:
1462 *val = get_reg_val(id, vcpu->arch.texasr);
1463 break;
1464 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1465 i = id - KVM_REG_PPC_TM_GPR0;
1466 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1467 break;
1468 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1469 {
1470 int j;
1471 i = id - KVM_REG_PPC_TM_VSR0;
1472 if (i < 32)
1473 for (j = 0; j < TS_FPRWIDTH; j++)
1474 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1475 else {
1476 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1477 val->vval = vcpu->arch.vr_tm.vr[i-32];
1478 else
1479 r = -ENXIO;
1480 }
1481 break;
1482 }
1483 case KVM_REG_PPC_TM_CR:
1484 *val = get_reg_val(id, vcpu->arch.cr_tm);
1485 break;
1486 case KVM_REG_PPC_TM_XER:
1487 *val = get_reg_val(id, vcpu->arch.xer_tm);
1488 break;
1489 case KVM_REG_PPC_TM_LR:
1490 *val = get_reg_val(id, vcpu->arch.lr_tm);
1491 break;
1492 case KVM_REG_PPC_TM_CTR:
1493 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1494 break;
1495 case KVM_REG_PPC_TM_FPSCR:
1496 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1497 break;
1498 case KVM_REG_PPC_TM_AMR:
1499 *val = get_reg_val(id, vcpu->arch.amr_tm);
1500 break;
1501 case KVM_REG_PPC_TM_PPR:
1502 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1503 break;
1504 case KVM_REG_PPC_TM_VRSAVE:
1505 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1506 break;
1507 case KVM_REG_PPC_TM_VSCR:
1508 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1509 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1510 else
1511 r = -ENXIO;
1512 break;
1513 case KVM_REG_PPC_TM_DSCR:
1514 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1515 break;
1516 case KVM_REG_PPC_TM_TAR:
1517 *val = get_reg_val(id, vcpu->arch.tar_tm);
1518 break;
1519 #endif
1520 case KVM_REG_PPC_ARCH_COMPAT:
1521 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1522 break;
1523 case KVM_REG_PPC_DEC_EXPIRY:
1524 *val = get_reg_val(id, vcpu->arch.dec_expires +
1525 vcpu->arch.vcore->tb_offset);
1526 break;
1527 default:
1528 r = -EINVAL;
1529 break;
1530 }
1531
1532 return r;
1533 }
1534
1535 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1536 union kvmppc_one_reg *val)
1537 {
1538 int r = 0;
1539 long int i;
1540 unsigned long addr, len;
1541
1542 switch (id) {
1543 case KVM_REG_PPC_HIOR:
1544 /* Only allow this to be set to zero */
1545 if (set_reg_val(id, *val))
1546 r = -EINVAL;
1547 break;
1548 case KVM_REG_PPC_DABR:
1549 vcpu->arch.dabr = set_reg_val(id, *val);
1550 break;
1551 case KVM_REG_PPC_DABRX:
1552 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1553 break;
1554 case KVM_REG_PPC_DSCR:
1555 vcpu->arch.dscr = set_reg_val(id, *val);
1556 break;
1557 case KVM_REG_PPC_PURR:
1558 vcpu->arch.purr = set_reg_val(id, *val);
1559 break;
1560 case KVM_REG_PPC_SPURR:
1561 vcpu->arch.spurr = set_reg_val(id, *val);
1562 break;
1563 case KVM_REG_PPC_AMR:
1564 vcpu->arch.amr = set_reg_val(id, *val);
1565 break;
1566 case KVM_REG_PPC_UAMOR:
1567 vcpu->arch.uamor = set_reg_val(id, *val);
1568 break;
1569 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1570 i = id - KVM_REG_PPC_MMCR0;
1571 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1572 break;
1573 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1574 i = id - KVM_REG_PPC_PMC1;
1575 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1576 break;
1577 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1578 i = id - KVM_REG_PPC_SPMC1;
1579 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1580 break;
1581 case KVM_REG_PPC_SIAR:
1582 vcpu->arch.siar = set_reg_val(id, *val);
1583 break;
1584 case KVM_REG_PPC_SDAR:
1585 vcpu->arch.sdar = set_reg_val(id, *val);
1586 break;
1587 case KVM_REG_PPC_SIER:
1588 vcpu->arch.sier = set_reg_val(id, *val);
1589 break;
1590 case KVM_REG_PPC_IAMR:
1591 vcpu->arch.iamr = set_reg_val(id, *val);
1592 break;
1593 case KVM_REG_PPC_PSPB:
1594 vcpu->arch.pspb = set_reg_val(id, *val);
1595 break;
1596 case KVM_REG_PPC_DPDES:
1597 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1598 break;
1599 case KVM_REG_PPC_VTB:
1600 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1601 break;
1602 case KVM_REG_PPC_DAWR:
1603 vcpu->arch.dawr = set_reg_val(id, *val);
1604 break;
1605 case KVM_REG_PPC_DAWRX:
1606 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1607 break;
1608 case KVM_REG_PPC_CIABR:
1609 vcpu->arch.ciabr = set_reg_val(id, *val);
1610 /* Don't allow setting breakpoints in hypervisor code */
1611 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1612 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1613 break;
1614 case KVM_REG_PPC_CSIGR:
1615 vcpu->arch.csigr = set_reg_val(id, *val);
1616 break;
1617 case KVM_REG_PPC_TACR:
1618 vcpu->arch.tacr = set_reg_val(id, *val);
1619 break;
1620 case KVM_REG_PPC_TCSCR:
1621 vcpu->arch.tcscr = set_reg_val(id, *val);
1622 break;
1623 case KVM_REG_PPC_PID:
1624 vcpu->arch.pid = set_reg_val(id, *val);
1625 break;
1626 case KVM_REG_PPC_ACOP:
1627 vcpu->arch.acop = set_reg_val(id, *val);
1628 break;
1629 case KVM_REG_PPC_WORT:
1630 vcpu->arch.wort = set_reg_val(id, *val);
1631 break;
1632 case KVM_REG_PPC_TIDR:
1633 vcpu->arch.tid = set_reg_val(id, *val);
1634 break;
1635 case KVM_REG_PPC_PSSCR:
1636 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1637 break;
1638 case KVM_REG_PPC_VPA_ADDR:
1639 addr = set_reg_val(id, *val);
1640 r = -EINVAL;
1641 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1642 vcpu->arch.dtl.next_gpa))
1643 break;
1644 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1645 break;
1646 case KVM_REG_PPC_VPA_SLB:
1647 addr = val->vpaval.addr;
1648 len = val->vpaval.length;
1649 r = -EINVAL;
1650 if (addr && !vcpu->arch.vpa.next_gpa)
1651 break;
1652 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1653 break;
1654 case KVM_REG_PPC_VPA_DTL:
1655 addr = val->vpaval.addr;
1656 len = val->vpaval.length;
1657 r = -EINVAL;
1658 if (addr && (len < sizeof(struct dtl_entry) ||
1659 !vcpu->arch.vpa.next_gpa))
1660 break;
1661 len -= len % sizeof(struct dtl_entry);
1662 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1663 break;
1664 case KVM_REG_PPC_TB_OFFSET:
1665 /*
1666 * POWER9 DD1 has an erratum where writing TBU40 causes
1667 * the timebase to lose ticks. So we don't let the
1668 * timebase offset be changed on P9 DD1. (It is
1669 * initialized to zero.)
1670 */
1671 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1672 break;
1673 /* round up to multiple of 2^24 */
1674 vcpu->arch.vcore->tb_offset =
1675 ALIGN(set_reg_val(id, *val), 1UL << 24);
1676 break;
1677 case KVM_REG_PPC_LPCR:
1678 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1679 break;
1680 case KVM_REG_PPC_LPCR_64:
1681 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1682 break;
1683 case KVM_REG_PPC_PPR:
1684 vcpu->arch.ppr = set_reg_val(id, *val);
1685 break;
1686 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1687 case KVM_REG_PPC_TFHAR:
1688 vcpu->arch.tfhar = set_reg_val(id, *val);
1689 break;
1690 case KVM_REG_PPC_TFIAR:
1691 vcpu->arch.tfiar = set_reg_val(id, *val);
1692 break;
1693 case KVM_REG_PPC_TEXASR:
1694 vcpu->arch.texasr = set_reg_val(id, *val);
1695 break;
1696 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1697 i = id - KVM_REG_PPC_TM_GPR0;
1698 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1699 break;
1700 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1701 {
1702 int j;
1703 i = id - KVM_REG_PPC_TM_VSR0;
1704 if (i < 32)
1705 for (j = 0; j < TS_FPRWIDTH; j++)
1706 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1707 else
1708 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1709 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1710 else
1711 r = -ENXIO;
1712 break;
1713 }
1714 case KVM_REG_PPC_TM_CR:
1715 vcpu->arch.cr_tm = set_reg_val(id, *val);
1716 break;
1717 case KVM_REG_PPC_TM_XER:
1718 vcpu->arch.xer_tm = set_reg_val(id, *val);
1719 break;
1720 case KVM_REG_PPC_TM_LR:
1721 vcpu->arch.lr_tm = set_reg_val(id, *val);
1722 break;
1723 case KVM_REG_PPC_TM_CTR:
1724 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1725 break;
1726 case KVM_REG_PPC_TM_FPSCR:
1727 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1728 break;
1729 case KVM_REG_PPC_TM_AMR:
1730 vcpu->arch.amr_tm = set_reg_val(id, *val);
1731 break;
1732 case KVM_REG_PPC_TM_PPR:
1733 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1734 break;
1735 case KVM_REG_PPC_TM_VRSAVE:
1736 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1737 break;
1738 case KVM_REG_PPC_TM_VSCR:
1739 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1740 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1741 else
1742 r = - ENXIO;
1743 break;
1744 case KVM_REG_PPC_TM_DSCR:
1745 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1746 break;
1747 case KVM_REG_PPC_TM_TAR:
1748 vcpu->arch.tar_tm = set_reg_val(id, *val);
1749 break;
1750 #endif
1751 case KVM_REG_PPC_ARCH_COMPAT:
1752 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1753 break;
1754 case KVM_REG_PPC_DEC_EXPIRY:
1755 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1756 vcpu->arch.vcore->tb_offset;
1757 break;
1758 default:
1759 r = -EINVAL;
1760 break;
1761 }
1762
1763 return r;
1764 }
1765
1766 /*
1767 * On POWER9, threads are independent and can be in different partitions.
1768 * Therefore we consider each thread to be a subcore.
1769 * There is a restriction that all threads have to be in the same
1770 * MMU mode (radix or HPT), unfortunately, but since we only support
1771 * HPT guests on a HPT host so far, that isn't an impediment yet.
1772 */
1773 static int threads_per_vcore(struct kvm *kvm)
1774 {
1775 if (kvm->arch.threads_indep)
1776 return 1;
1777 return threads_per_subcore;
1778 }
1779
1780 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1781 {
1782 struct kvmppc_vcore *vcore;
1783
1784 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1785
1786 if (vcore == NULL)
1787 return NULL;
1788
1789 spin_lock_init(&vcore->lock);
1790 spin_lock_init(&vcore->stoltb_lock);
1791 init_swait_queue_head(&vcore->wq);
1792 vcore->preempt_tb = TB_NIL;
1793 vcore->lpcr = kvm->arch.lpcr;
1794 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1795 vcore->kvm = kvm;
1796 INIT_LIST_HEAD(&vcore->preempt_list);
1797
1798 return vcore;
1799 }
1800
1801 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1802 static struct debugfs_timings_element {
1803 const char *name;
1804 size_t offset;
1805 } timings[] = {
1806 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1807 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1808 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1809 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1810 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1811 };
1812
1813 #define N_TIMINGS (ARRAY_SIZE(timings))
1814
1815 struct debugfs_timings_state {
1816 struct kvm_vcpu *vcpu;
1817 unsigned int buflen;
1818 char buf[N_TIMINGS * 100];
1819 };
1820
1821 static int debugfs_timings_open(struct inode *inode, struct file *file)
1822 {
1823 struct kvm_vcpu *vcpu = inode->i_private;
1824 struct debugfs_timings_state *p;
1825
1826 p = kzalloc(sizeof(*p), GFP_KERNEL);
1827 if (!p)
1828 return -ENOMEM;
1829
1830 kvm_get_kvm(vcpu->kvm);
1831 p->vcpu = vcpu;
1832 file->private_data = p;
1833
1834 return nonseekable_open(inode, file);
1835 }
1836
1837 static int debugfs_timings_release(struct inode *inode, struct file *file)
1838 {
1839 struct debugfs_timings_state *p = file->private_data;
1840
1841 kvm_put_kvm(p->vcpu->kvm);
1842 kfree(p);
1843 return 0;
1844 }
1845
1846 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1847 size_t len, loff_t *ppos)
1848 {
1849 struct debugfs_timings_state *p = file->private_data;
1850 struct kvm_vcpu *vcpu = p->vcpu;
1851 char *s, *buf_end;
1852 struct kvmhv_tb_accumulator tb;
1853 u64 count;
1854 loff_t pos;
1855 ssize_t n;
1856 int i, loops;
1857 bool ok;
1858
1859 if (!p->buflen) {
1860 s = p->buf;
1861 buf_end = s + sizeof(p->buf);
1862 for (i = 0; i < N_TIMINGS; ++i) {
1863 struct kvmhv_tb_accumulator *acc;
1864
1865 acc = (struct kvmhv_tb_accumulator *)
1866 ((unsigned long)vcpu + timings[i].offset);
1867 ok = false;
1868 for (loops = 0; loops < 1000; ++loops) {
1869 count = acc->seqcount;
1870 if (!(count & 1)) {
1871 smp_rmb();
1872 tb = *acc;
1873 smp_rmb();
1874 if (count == acc->seqcount) {
1875 ok = true;
1876 break;
1877 }
1878 }
1879 udelay(1);
1880 }
1881 if (!ok)
1882 snprintf(s, buf_end - s, "%s: stuck\n",
1883 timings[i].name);
1884 else
1885 snprintf(s, buf_end - s,
1886 "%s: %llu %llu %llu %llu\n",
1887 timings[i].name, count / 2,
1888 tb_to_ns(tb.tb_total),
1889 tb_to_ns(tb.tb_min),
1890 tb_to_ns(tb.tb_max));
1891 s += strlen(s);
1892 }
1893 p->buflen = s - p->buf;
1894 }
1895
1896 pos = *ppos;
1897 if (pos >= p->buflen)
1898 return 0;
1899 if (len > p->buflen - pos)
1900 len = p->buflen - pos;
1901 n = copy_to_user(buf, p->buf + pos, len);
1902 if (n) {
1903 if (n == len)
1904 return -EFAULT;
1905 len -= n;
1906 }
1907 *ppos = pos + len;
1908 return len;
1909 }
1910
1911 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1912 size_t len, loff_t *ppos)
1913 {
1914 return -EACCES;
1915 }
1916
1917 static const struct file_operations debugfs_timings_ops = {
1918 .owner = THIS_MODULE,
1919 .open = debugfs_timings_open,
1920 .release = debugfs_timings_release,
1921 .read = debugfs_timings_read,
1922 .write = debugfs_timings_write,
1923 .llseek = generic_file_llseek,
1924 };
1925
1926 /* Create a debugfs directory for the vcpu */
1927 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1928 {
1929 char buf[16];
1930 struct kvm *kvm = vcpu->kvm;
1931
1932 snprintf(buf, sizeof(buf), "vcpu%u", id);
1933 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1934 return;
1935 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1936 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1937 return;
1938 vcpu->arch.debugfs_timings =
1939 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1940 vcpu, &debugfs_timings_ops);
1941 }
1942
1943 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1944 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1945 {
1946 }
1947 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1948
1949 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1950 unsigned int id)
1951 {
1952 struct kvm_vcpu *vcpu;
1953 int err;
1954 int core;
1955 struct kvmppc_vcore *vcore;
1956
1957 err = -ENOMEM;
1958 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1959 if (!vcpu)
1960 goto out;
1961
1962 err = kvm_vcpu_init(vcpu, kvm, id);
1963 if (err)
1964 goto free_vcpu;
1965
1966 vcpu->arch.shared = &vcpu->arch.shregs;
1967 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1968 /*
1969 * The shared struct is never shared on HV,
1970 * so we can always use host endianness
1971 */
1972 #ifdef __BIG_ENDIAN__
1973 vcpu->arch.shared_big_endian = true;
1974 #else
1975 vcpu->arch.shared_big_endian = false;
1976 #endif
1977 #endif
1978 vcpu->arch.mmcr[0] = MMCR0_FC;
1979 vcpu->arch.ctrl = CTRL_RUNLATCH;
1980 /* default to host PVR, since we can't spoof it */
1981 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1982 spin_lock_init(&vcpu->arch.vpa_update_lock);
1983 spin_lock_init(&vcpu->arch.tbacct_lock);
1984 vcpu->arch.busy_preempt = TB_NIL;
1985 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1986
1987 /*
1988 * Set the default HFSCR for the guest from the host value.
1989 * This value is only used on POWER9.
1990 * On POWER9 DD1, TM doesn't work, so we make sure to
1991 * prevent the guest from using it.
1992 * On POWER9, we want to virtualize the doorbell facility, so we
1993 * turn off the HFSCR bit, which causes those instructions to trap.
1994 */
1995 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1996 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
1997 vcpu->arch.hfscr |= HFSCR_TM;
1998 else if (!cpu_has_feature(CPU_FTR_TM_COMP))
1999 vcpu->arch.hfscr &= ~HFSCR_TM;
2000 if (cpu_has_feature(CPU_FTR_ARCH_300))
2001 vcpu->arch.hfscr &= ~HFSCR_MSGP;
2002
2003 kvmppc_mmu_book3s_hv_init(vcpu);
2004
2005 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2006
2007 init_waitqueue_head(&vcpu->arch.cpu_run);
2008
2009 mutex_lock(&kvm->lock);
2010 vcore = NULL;
2011 err = -EINVAL;
2012 core = id / kvm->arch.smt_mode;
2013 if (core < KVM_MAX_VCORES) {
2014 vcore = kvm->arch.vcores[core];
2015 if (!vcore) {
2016 err = -ENOMEM;
2017 vcore = kvmppc_vcore_create(kvm, core);
2018 kvm->arch.vcores[core] = vcore;
2019 kvm->arch.online_vcores++;
2020 }
2021 }
2022 mutex_unlock(&kvm->lock);
2023
2024 if (!vcore)
2025 goto free_vcpu;
2026
2027 spin_lock(&vcore->lock);
2028 ++vcore->num_threads;
2029 spin_unlock(&vcore->lock);
2030 vcpu->arch.vcore = vcore;
2031 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2032 vcpu->arch.thread_cpu = -1;
2033 vcpu->arch.prev_cpu = -1;
2034
2035 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2036 kvmppc_sanity_check(vcpu);
2037
2038 debugfs_vcpu_init(vcpu, id);
2039
2040 return vcpu;
2041
2042 free_vcpu:
2043 kmem_cache_free(kvm_vcpu_cache, vcpu);
2044 out:
2045 return ERR_PTR(err);
2046 }
2047
2048 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2049 unsigned long flags)
2050 {
2051 int err;
2052 int esmt = 0;
2053
2054 if (flags)
2055 return -EINVAL;
2056 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2057 return -EINVAL;
2058 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2059 /*
2060 * On POWER8 (or POWER7), the threading mode is "strict",
2061 * so we pack smt_mode vcpus per vcore.
2062 */
2063 if (smt_mode > threads_per_subcore)
2064 return -EINVAL;
2065 } else {
2066 /*
2067 * On POWER9, the threading mode is "loose",
2068 * so each vcpu gets its own vcore.
2069 */
2070 esmt = smt_mode;
2071 smt_mode = 1;
2072 }
2073 mutex_lock(&kvm->lock);
2074 err = -EBUSY;
2075 if (!kvm->arch.online_vcores) {
2076 kvm->arch.smt_mode = smt_mode;
2077 kvm->arch.emul_smt_mode = esmt;
2078 err = 0;
2079 }
2080 mutex_unlock(&kvm->lock);
2081
2082 return err;
2083 }
2084
2085 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2086 {
2087 if (vpa->pinned_addr)
2088 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2089 vpa->dirty);
2090 }
2091
2092 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2093 {
2094 spin_lock(&vcpu->arch.vpa_update_lock);
2095 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2096 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2097 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2098 spin_unlock(&vcpu->arch.vpa_update_lock);
2099 kvm_vcpu_uninit(vcpu);
2100 kmem_cache_free(kvm_vcpu_cache, vcpu);
2101 }
2102
2103 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2104 {
2105 /* Indicate we want to get back into the guest */
2106 return 1;
2107 }
2108
2109 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2110 {
2111 unsigned long dec_nsec, now;
2112
2113 now = get_tb();
2114 if (now > vcpu->arch.dec_expires) {
2115 /* decrementer has already gone negative */
2116 kvmppc_core_queue_dec(vcpu);
2117 kvmppc_core_prepare_to_enter(vcpu);
2118 return;
2119 }
2120 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2121 / tb_ticks_per_sec;
2122 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2123 vcpu->arch.timer_running = 1;
2124 }
2125
2126 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2127 {
2128 vcpu->arch.ceded = 0;
2129 if (vcpu->arch.timer_running) {
2130 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2131 vcpu->arch.timer_running = 0;
2132 }
2133 }
2134
2135 extern int __kvmppc_vcore_entry(void);
2136
2137 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2138 struct kvm_vcpu *vcpu)
2139 {
2140 u64 now;
2141
2142 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2143 return;
2144 spin_lock_irq(&vcpu->arch.tbacct_lock);
2145 now = mftb();
2146 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2147 vcpu->arch.stolen_logged;
2148 vcpu->arch.busy_preempt = now;
2149 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2150 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2151 --vc->n_runnable;
2152 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2153 }
2154
2155 static int kvmppc_grab_hwthread(int cpu)
2156 {
2157 struct paca_struct *tpaca;
2158 long timeout = 10000;
2159
2160 tpaca = &paca[cpu];
2161
2162 /* Ensure the thread won't go into the kernel if it wakes */
2163 tpaca->kvm_hstate.kvm_vcpu = NULL;
2164 tpaca->kvm_hstate.kvm_vcore = NULL;
2165 tpaca->kvm_hstate.napping = 0;
2166 smp_wmb();
2167 tpaca->kvm_hstate.hwthread_req = 1;
2168
2169 /*
2170 * If the thread is already executing in the kernel (e.g. handling
2171 * a stray interrupt), wait for it to get back to nap mode.
2172 * The smp_mb() is to ensure that our setting of hwthread_req
2173 * is visible before we look at hwthread_state, so if this
2174 * races with the code at system_reset_pSeries and the thread
2175 * misses our setting of hwthread_req, we are sure to see its
2176 * setting of hwthread_state, and vice versa.
2177 */
2178 smp_mb();
2179 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2180 if (--timeout <= 0) {
2181 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2182 return -EBUSY;
2183 }
2184 udelay(1);
2185 }
2186 return 0;
2187 }
2188
2189 static void kvmppc_release_hwthread(int cpu)
2190 {
2191 struct paca_struct *tpaca;
2192
2193 tpaca = &paca[cpu];
2194 tpaca->kvm_hstate.hwthread_req = 0;
2195 tpaca->kvm_hstate.kvm_vcpu = NULL;
2196 tpaca->kvm_hstate.kvm_vcore = NULL;
2197 tpaca->kvm_hstate.kvm_split_mode = NULL;
2198 }
2199
2200 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2201 {
2202 int i;
2203
2204 cpu = cpu_first_thread_sibling(cpu);
2205 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2206 /*
2207 * Make sure setting of bit in need_tlb_flush precedes
2208 * testing of cpu_in_guest bits. The matching barrier on
2209 * the other side is the first smp_mb() in kvmppc_run_core().
2210 */
2211 smp_mb();
2212 for (i = 0; i < threads_per_core; ++i)
2213 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2214 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2215 }
2216
2217 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2218 {
2219 struct kvm *kvm = vcpu->kvm;
2220
2221 /*
2222 * With radix, the guest can do TLB invalidations itself,
2223 * and it could choose to use the local form (tlbiel) if
2224 * it is invalidating a translation that has only ever been
2225 * used on one vcpu. However, that doesn't mean it has
2226 * only ever been used on one physical cpu, since vcpus
2227 * can move around between pcpus. To cope with this, when
2228 * a vcpu moves from one pcpu to another, we need to tell
2229 * any vcpus running on the same core as this vcpu previously
2230 * ran to flush the TLB. The TLB is shared between threads,
2231 * so we use a single bit in .need_tlb_flush for all 4 threads.
2232 */
2233 if (vcpu->arch.prev_cpu != pcpu) {
2234 if (vcpu->arch.prev_cpu >= 0 &&
2235 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2236 cpu_first_thread_sibling(pcpu))
2237 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2238 vcpu->arch.prev_cpu = pcpu;
2239 }
2240 }
2241
2242 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2243 {
2244 int cpu;
2245 struct paca_struct *tpaca;
2246 struct kvm *kvm = vc->kvm;
2247
2248 cpu = vc->pcpu;
2249 if (vcpu) {
2250 if (vcpu->arch.timer_running) {
2251 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2252 vcpu->arch.timer_running = 0;
2253 }
2254 cpu += vcpu->arch.ptid;
2255 vcpu->cpu = vc->pcpu;
2256 vcpu->arch.thread_cpu = cpu;
2257 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2258 }
2259 tpaca = &paca[cpu];
2260 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2261 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2262 tpaca->kvm_hstate.fake_suspend = 0;
2263 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2264 smp_wmb();
2265 tpaca->kvm_hstate.kvm_vcore = vc;
2266 if (cpu != smp_processor_id())
2267 kvmppc_ipi_thread(cpu);
2268 }
2269
2270 static void kvmppc_wait_for_nap(int n_threads)
2271 {
2272 int cpu = smp_processor_id();
2273 int i, loops;
2274
2275 if (n_threads <= 1)
2276 return;
2277 for (loops = 0; loops < 1000000; ++loops) {
2278 /*
2279 * Check if all threads are finished.
2280 * We set the vcore pointer when starting a thread
2281 * and the thread clears it when finished, so we look
2282 * for any threads that still have a non-NULL vcore ptr.
2283 */
2284 for (i = 1; i < n_threads; ++i)
2285 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2286 break;
2287 if (i == n_threads) {
2288 HMT_medium();
2289 return;
2290 }
2291 HMT_low();
2292 }
2293 HMT_medium();
2294 for (i = 1; i < n_threads; ++i)
2295 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2296 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2297 }
2298
2299 /*
2300 * Check that we are on thread 0 and that any other threads in
2301 * this core are off-line. Then grab the threads so they can't
2302 * enter the kernel.
2303 */
2304 static int on_primary_thread(void)
2305 {
2306 int cpu = smp_processor_id();
2307 int thr;
2308
2309 /* Are we on a primary subcore? */
2310 if (cpu_thread_in_subcore(cpu))
2311 return 0;
2312
2313 thr = 0;
2314 while (++thr < threads_per_subcore)
2315 if (cpu_online(cpu + thr))
2316 return 0;
2317
2318 /* Grab all hw threads so they can't go into the kernel */
2319 for (thr = 1; thr < threads_per_subcore; ++thr) {
2320 if (kvmppc_grab_hwthread(cpu + thr)) {
2321 /* Couldn't grab one; let the others go */
2322 do {
2323 kvmppc_release_hwthread(cpu + thr);
2324 } while (--thr > 0);
2325 return 0;
2326 }
2327 }
2328 return 1;
2329 }
2330
2331 /*
2332 * A list of virtual cores for each physical CPU.
2333 * These are vcores that could run but their runner VCPU tasks are
2334 * (or may be) preempted.
2335 */
2336 struct preempted_vcore_list {
2337 struct list_head list;
2338 spinlock_t lock;
2339 };
2340
2341 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2342
2343 static void init_vcore_lists(void)
2344 {
2345 int cpu;
2346
2347 for_each_possible_cpu(cpu) {
2348 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2349 spin_lock_init(&lp->lock);
2350 INIT_LIST_HEAD(&lp->list);
2351 }
2352 }
2353
2354 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2355 {
2356 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2357
2358 vc->vcore_state = VCORE_PREEMPT;
2359 vc->pcpu = smp_processor_id();
2360 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2361 spin_lock(&lp->lock);
2362 list_add_tail(&vc->preempt_list, &lp->list);
2363 spin_unlock(&lp->lock);
2364 }
2365
2366 /* Start accumulating stolen time */
2367 kvmppc_core_start_stolen(vc);
2368 }
2369
2370 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2371 {
2372 struct preempted_vcore_list *lp;
2373
2374 kvmppc_core_end_stolen(vc);
2375 if (!list_empty(&vc->preempt_list)) {
2376 lp = &per_cpu(preempted_vcores, vc->pcpu);
2377 spin_lock(&lp->lock);
2378 list_del_init(&vc->preempt_list);
2379 spin_unlock(&lp->lock);
2380 }
2381 vc->vcore_state = VCORE_INACTIVE;
2382 }
2383
2384 /*
2385 * This stores information about the virtual cores currently
2386 * assigned to a physical core.
2387 */
2388 struct core_info {
2389 int n_subcores;
2390 int max_subcore_threads;
2391 int total_threads;
2392 int subcore_threads[MAX_SUBCORES];
2393 struct kvmppc_vcore *vc[MAX_SUBCORES];
2394 };
2395
2396 /*
2397 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2398 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2399 */
2400 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2401
2402 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2403 {
2404 memset(cip, 0, sizeof(*cip));
2405 cip->n_subcores = 1;
2406 cip->max_subcore_threads = vc->num_threads;
2407 cip->total_threads = vc->num_threads;
2408 cip->subcore_threads[0] = vc->num_threads;
2409 cip->vc[0] = vc;
2410 }
2411
2412 static bool subcore_config_ok(int n_subcores, int n_threads)
2413 {
2414 /*
2415 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2416 * split-core mode, with one thread per subcore.
2417 */
2418 if (cpu_has_feature(CPU_FTR_ARCH_300))
2419 return n_subcores <= 4 && n_threads == 1;
2420
2421 /* On POWER8, can only dynamically split if unsplit to begin with */
2422 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2423 return false;
2424 if (n_subcores > MAX_SUBCORES)
2425 return false;
2426 if (n_subcores > 1) {
2427 if (!(dynamic_mt_modes & 2))
2428 n_subcores = 4;
2429 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2430 return false;
2431 }
2432
2433 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2434 }
2435
2436 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2437 {
2438 vc->entry_exit_map = 0;
2439 vc->in_guest = 0;
2440 vc->napping_threads = 0;
2441 vc->conferring_threads = 0;
2442 }
2443
2444 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2445 {
2446 int n_threads = vc->num_threads;
2447 int sub;
2448
2449 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2450 return false;
2451
2452 /* Some POWER9 chips require all threads to be in the same MMU mode */
2453 if (no_mixing_hpt_and_radix &&
2454 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2455 return false;
2456
2457 if (n_threads < cip->max_subcore_threads)
2458 n_threads = cip->max_subcore_threads;
2459 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2460 return false;
2461 cip->max_subcore_threads = n_threads;
2462
2463 sub = cip->n_subcores;
2464 ++cip->n_subcores;
2465 cip->total_threads += vc->num_threads;
2466 cip->subcore_threads[sub] = vc->num_threads;
2467 cip->vc[sub] = vc;
2468 init_vcore_to_run(vc);
2469 list_del_init(&vc->preempt_list);
2470
2471 return true;
2472 }
2473
2474 /*
2475 * Work out whether it is possible to piggyback the execution of
2476 * vcore *pvc onto the execution of the other vcores described in *cip.
2477 */
2478 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2479 int target_threads)
2480 {
2481 if (cip->total_threads + pvc->num_threads > target_threads)
2482 return false;
2483
2484 return can_dynamic_split(pvc, cip);
2485 }
2486
2487 static void prepare_threads(struct kvmppc_vcore *vc)
2488 {
2489 int i;
2490 struct kvm_vcpu *vcpu;
2491
2492 for_each_runnable_thread(i, vcpu, vc) {
2493 if (signal_pending(vcpu->arch.run_task))
2494 vcpu->arch.ret = -EINTR;
2495 else if (vcpu->arch.vpa.update_pending ||
2496 vcpu->arch.slb_shadow.update_pending ||
2497 vcpu->arch.dtl.update_pending)
2498 vcpu->arch.ret = RESUME_GUEST;
2499 else
2500 continue;
2501 kvmppc_remove_runnable(vc, vcpu);
2502 wake_up(&vcpu->arch.cpu_run);
2503 }
2504 }
2505
2506 static void collect_piggybacks(struct core_info *cip, int target_threads)
2507 {
2508 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2509 struct kvmppc_vcore *pvc, *vcnext;
2510
2511 spin_lock(&lp->lock);
2512 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2513 if (!spin_trylock(&pvc->lock))
2514 continue;
2515 prepare_threads(pvc);
2516 if (!pvc->n_runnable) {
2517 list_del_init(&pvc->preempt_list);
2518 if (pvc->runner == NULL) {
2519 pvc->vcore_state = VCORE_INACTIVE;
2520 kvmppc_core_end_stolen(pvc);
2521 }
2522 spin_unlock(&pvc->lock);
2523 continue;
2524 }
2525 if (!can_piggyback(pvc, cip, target_threads)) {
2526 spin_unlock(&pvc->lock);
2527 continue;
2528 }
2529 kvmppc_core_end_stolen(pvc);
2530 pvc->vcore_state = VCORE_PIGGYBACK;
2531 if (cip->total_threads >= target_threads)
2532 break;
2533 }
2534 spin_unlock(&lp->lock);
2535 }
2536
2537 static bool recheck_signals(struct core_info *cip)
2538 {
2539 int sub, i;
2540 struct kvm_vcpu *vcpu;
2541
2542 for (sub = 0; sub < cip->n_subcores; ++sub)
2543 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2544 if (signal_pending(vcpu->arch.run_task))
2545 return true;
2546 return false;
2547 }
2548
2549 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2550 {
2551 int still_running = 0, i;
2552 u64 now;
2553 long ret;
2554 struct kvm_vcpu *vcpu;
2555
2556 spin_lock(&vc->lock);
2557 now = get_tb();
2558 for_each_runnable_thread(i, vcpu, vc) {
2559 /* cancel pending dec exception if dec is positive */
2560 if (now < vcpu->arch.dec_expires &&
2561 kvmppc_core_pending_dec(vcpu))
2562 kvmppc_core_dequeue_dec(vcpu);
2563
2564 trace_kvm_guest_exit(vcpu);
2565
2566 ret = RESUME_GUEST;
2567 if (vcpu->arch.trap)
2568 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2569 vcpu->arch.run_task);
2570
2571 vcpu->arch.ret = ret;
2572 vcpu->arch.trap = 0;
2573
2574 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2575 if (vcpu->arch.pending_exceptions)
2576 kvmppc_core_prepare_to_enter(vcpu);
2577 if (vcpu->arch.ceded)
2578 kvmppc_set_timer(vcpu);
2579 else
2580 ++still_running;
2581 } else {
2582 kvmppc_remove_runnable(vc, vcpu);
2583 wake_up(&vcpu->arch.cpu_run);
2584 }
2585 }
2586 if (!is_master) {
2587 if (still_running > 0) {
2588 kvmppc_vcore_preempt(vc);
2589 } else if (vc->runner) {
2590 vc->vcore_state = VCORE_PREEMPT;
2591 kvmppc_core_start_stolen(vc);
2592 } else {
2593 vc->vcore_state = VCORE_INACTIVE;
2594 }
2595 if (vc->n_runnable > 0 && vc->runner == NULL) {
2596 /* make sure there's a candidate runner awake */
2597 i = -1;
2598 vcpu = next_runnable_thread(vc, &i);
2599 wake_up(&vcpu->arch.cpu_run);
2600 }
2601 }
2602 spin_unlock(&vc->lock);
2603 }
2604
2605 /*
2606 * Clear core from the list of active host cores as we are about to
2607 * enter the guest. Only do this if it is the primary thread of the
2608 * core (not if a subcore) that is entering the guest.
2609 */
2610 static inline int kvmppc_clear_host_core(unsigned int cpu)
2611 {
2612 int core;
2613
2614 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2615 return 0;
2616 /*
2617 * Memory barrier can be omitted here as we will do a smp_wmb()
2618 * later in kvmppc_start_thread and we need ensure that state is
2619 * visible to other CPUs only after we enter guest.
2620 */
2621 core = cpu >> threads_shift;
2622 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2623 return 0;
2624 }
2625
2626 /*
2627 * Advertise this core as an active host core since we exited the guest
2628 * Only need to do this if it is the primary thread of the core that is
2629 * exiting.
2630 */
2631 static inline int kvmppc_set_host_core(unsigned int cpu)
2632 {
2633 int core;
2634
2635 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2636 return 0;
2637
2638 /*
2639 * Memory barrier can be omitted here because we do a spin_unlock
2640 * immediately after this which provides the memory barrier.
2641 */
2642 core = cpu >> threads_shift;
2643 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2644 return 0;
2645 }
2646
2647 static void set_irq_happened(int trap)
2648 {
2649 switch (trap) {
2650 case BOOK3S_INTERRUPT_EXTERNAL:
2651 local_paca->irq_happened |= PACA_IRQ_EE;
2652 break;
2653 case BOOK3S_INTERRUPT_H_DOORBELL:
2654 local_paca->irq_happened |= PACA_IRQ_DBELL;
2655 break;
2656 case BOOK3S_INTERRUPT_HMI:
2657 local_paca->irq_happened |= PACA_IRQ_HMI;
2658 break;
2659 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2660 replay_system_reset();
2661 break;
2662 }
2663 }
2664
2665 /*
2666 * Run a set of guest threads on a physical core.
2667 * Called with vc->lock held.
2668 */
2669 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2670 {
2671 struct kvm_vcpu *vcpu;
2672 int i;
2673 int srcu_idx;
2674 struct core_info core_info;
2675 struct kvmppc_vcore *pvc;
2676 struct kvm_split_mode split_info, *sip;
2677 int split, subcore_size, active;
2678 int sub;
2679 bool thr0_done;
2680 unsigned long cmd_bit, stat_bit;
2681 int pcpu, thr;
2682 int target_threads;
2683 int controlled_threads;
2684 int trap;
2685 bool is_power8;
2686 bool hpt_on_radix;
2687
2688 /*
2689 * Remove from the list any threads that have a signal pending
2690 * or need a VPA update done
2691 */
2692 prepare_threads(vc);
2693
2694 /* if the runner is no longer runnable, let the caller pick a new one */
2695 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2696 return;
2697
2698 /*
2699 * Initialize *vc.
2700 */
2701 init_vcore_to_run(vc);
2702 vc->preempt_tb = TB_NIL;
2703
2704 /*
2705 * Number of threads that we will be controlling: the same as
2706 * the number of threads per subcore, except on POWER9,
2707 * where it's 1 because the threads are (mostly) independent.
2708 */
2709 controlled_threads = threads_per_vcore(vc->kvm);
2710
2711 /*
2712 * Make sure we are running on primary threads, and that secondary
2713 * threads are offline. Also check if the number of threads in this
2714 * guest are greater than the current system threads per guest.
2715 * On POWER9, we need to be not in independent-threads mode if
2716 * this is a HPT guest on a radix host machine where the
2717 * CPU threads may not be in different MMU modes.
2718 */
2719 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2720 !kvm_is_radix(vc->kvm);
2721 if (((controlled_threads > 1) &&
2722 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2723 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2724 for_each_runnable_thread(i, vcpu, vc) {
2725 vcpu->arch.ret = -EBUSY;
2726 kvmppc_remove_runnable(vc, vcpu);
2727 wake_up(&vcpu->arch.cpu_run);
2728 }
2729 goto out;
2730 }
2731
2732 /*
2733 * See if we could run any other vcores on the physical core
2734 * along with this one.
2735 */
2736 init_core_info(&core_info, vc);
2737 pcpu = smp_processor_id();
2738 target_threads = controlled_threads;
2739 if (target_smt_mode && target_smt_mode < target_threads)
2740 target_threads = target_smt_mode;
2741 if (vc->num_threads < target_threads)
2742 collect_piggybacks(&core_info, target_threads);
2743
2744 /*
2745 * On radix, arrange for TLB flushing if necessary.
2746 * This has to be done before disabling interrupts since
2747 * it uses smp_call_function().
2748 */
2749 pcpu = smp_processor_id();
2750 if (kvm_is_radix(vc->kvm)) {
2751 for (sub = 0; sub < core_info.n_subcores; ++sub)
2752 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2753 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2754 }
2755
2756 /*
2757 * Hard-disable interrupts, and check resched flag and signals.
2758 * If we need to reschedule or deliver a signal, clean up
2759 * and return without going into the guest(s).
2760 * If the mmu_ready flag has been cleared, don't go into the
2761 * guest because that means a HPT resize operation is in progress.
2762 */
2763 local_irq_disable();
2764 hard_irq_disable();
2765 if (lazy_irq_pending() || need_resched() ||
2766 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2767 local_irq_enable();
2768 vc->vcore_state = VCORE_INACTIVE;
2769 /* Unlock all except the primary vcore */
2770 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2771 pvc = core_info.vc[sub];
2772 /* Put back on to the preempted vcores list */
2773 kvmppc_vcore_preempt(pvc);
2774 spin_unlock(&pvc->lock);
2775 }
2776 for (i = 0; i < controlled_threads; ++i)
2777 kvmppc_release_hwthread(pcpu + i);
2778 return;
2779 }
2780
2781 kvmppc_clear_host_core(pcpu);
2782
2783 /* Decide on micro-threading (split-core) mode */
2784 subcore_size = threads_per_subcore;
2785 cmd_bit = stat_bit = 0;
2786 split = core_info.n_subcores;
2787 sip = NULL;
2788 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2789 && !cpu_has_feature(CPU_FTR_ARCH_300);
2790
2791 if (split > 1 || hpt_on_radix) {
2792 sip = &split_info;
2793 memset(&split_info, 0, sizeof(split_info));
2794 for (sub = 0; sub < core_info.n_subcores; ++sub)
2795 split_info.vc[sub] = core_info.vc[sub];
2796
2797 if (is_power8) {
2798 if (split == 2 && (dynamic_mt_modes & 2)) {
2799 cmd_bit = HID0_POWER8_1TO2LPAR;
2800 stat_bit = HID0_POWER8_2LPARMODE;
2801 } else {
2802 split = 4;
2803 cmd_bit = HID0_POWER8_1TO4LPAR;
2804 stat_bit = HID0_POWER8_4LPARMODE;
2805 }
2806 subcore_size = MAX_SMT_THREADS / split;
2807 split_info.rpr = mfspr(SPRN_RPR);
2808 split_info.pmmar = mfspr(SPRN_PMMAR);
2809 split_info.ldbar = mfspr(SPRN_LDBAR);
2810 split_info.subcore_size = subcore_size;
2811 } else {
2812 split_info.subcore_size = 1;
2813 if (hpt_on_radix) {
2814 /* Use the split_info for LPCR/LPIDR changes */
2815 split_info.lpcr_req = vc->lpcr;
2816 split_info.lpidr_req = vc->kvm->arch.lpid;
2817 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2818 split_info.do_set = 1;
2819 }
2820 }
2821
2822 /* order writes to split_info before kvm_split_mode pointer */
2823 smp_wmb();
2824 }
2825
2826 for (thr = 0; thr < controlled_threads; ++thr) {
2827 paca[pcpu + thr].kvm_hstate.tid = thr;
2828 paca[pcpu + thr].kvm_hstate.napping = 0;
2829 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2830 }
2831
2832 /* Initiate micro-threading (split-core) on POWER8 if required */
2833 if (cmd_bit) {
2834 unsigned long hid0 = mfspr(SPRN_HID0);
2835
2836 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2837 mb();
2838 mtspr(SPRN_HID0, hid0);
2839 isync();
2840 for (;;) {
2841 hid0 = mfspr(SPRN_HID0);
2842 if (hid0 & stat_bit)
2843 break;
2844 cpu_relax();
2845 }
2846 }
2847
2848 /* Start all the threads */
2849 active = 0;
2850 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2851 thr = is_power8 ? subcore_thread_map[sub] : sub;
2852 thr0_done = false;
2853 active |= 1 << thr;
2854 pvc = core_info.vc[sub];
2855 pvc->pcpu = pcpu + thr;
2856 for_each_runnable_thread(i, vcpu, pvc) {
2857 kvmppc_start_thread(vcpu, pvc);
2858 kvmppc_create_dtl_entry(vcpu, pvc);
2859 trace_kvm_guest_enter(vcpu);
2860 if (!vcpu->arch.ptid)
2861 thr0_done = true;
2862 active |= 1 << (thr + vcpu->arch.ptid);
2863 }
2864 /*
2865 * We need to start the first thread of each subcore
2866 * even if it doesn't have a vcpu.
2867 */
2868 if (!thr0_done)
2869 kvmppc_start_thread(NULL, pvc);
2870 thr += pvc->num_threads;
2871 }
2872
2873 /*
2874 * Ensure that split_info.do_nap is set after setting
2875 * the vcore pointer in the PACA of the secondaries.
2876 */
2877 smp_mb();
2878
2879 /*
2880 * When doing micro-threading, poke the inactive threads as well.
2881 * This gets them to the nap instruction after kvm_do_nap,
2882 * which reduces the time taken to unsplit later.
2883 * For POWER9 HPT guest on radix host, we need all the secondary
2884 * threads woken up so they can do the LPCR/LPIDR change.
2885 */
2886 if (cmd_bit || hpt_on_radix) {
2887 split_info.do_nap = 1; /* ask secondaries to nap when done */
2888 for (thr = 1; thr < threads_per_subcore; ++thr)
2889 if (!(active & (1 << thr)))
2890 kvmppc_ipi_thread(pcpu + thr);
2891 }
2892
2893 vc->vcore_state = VCORE_RUNNING;
2894 preempt_disable();
2895
2896 trace_kvmppc_run_core(vc, 0);
2897
2898 for (sub = 0; sub < core_info.n_subcores; ++sub)
2899 spin_unlock(&core_info.vc[sub]->lock);
2900
2901 /*
2902 * Interrupts will be enabled once we get into the guest,
2903 * so tell lockdep that we're about to enable interrupts.
2904 */
2905 trace_hardirqs_on();
2906
2907 guest_enter_irqoff();
2908
2909 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2910
2911 trap = __kvmppc_vcore_entry();
2912
2913 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2914
2915 trace_hardirqs_off();
2916 set_irq_happened(trap);
2917
2918 spin_lock(&vc->lock);
2919 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2920 vc->vcore_state = VCORE_EXITING;
2921
2922 /* wait for secondary threads to finish writing their state to memory */
2923 kvmppc_wait_for_nap(controlled_threads);
2924
2925 /* Return to whole-core mode if we split the core earlier */
2926 if (cmd_bit) {
2927 unsigned long hid0 = mfspr(SPRN_HID0);
2928 unsigned long loops = 0;
2929
2930 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2931 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2932 mb();
2933 mtspr(SPRN_HID0, hid0);
2934 isync();
2935 for (;;) {
2936 hid0 = mfspr(SPRN_HID0);
2937 if (!(hid0 & stat_bit))
2938 break;
2939 cpu_relax();
2940 ++loops;
2941 }
2942 } else if (hpt_on_radix) {
2943 /* Wait for all threads to have seen final sync */
2944 for (thr = 1; thr < controlled_threads; ++thr) {
2945 while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2946 HMT_low();
2947 barrier();
2948 }
2949 HMT_medium();
2950 }
2951 }
2952 split_info.do_nap = 0;
2953
2954 kvmppc_set_host_core(pcpu);
2955
2956 local_irq_enable();
2957 guest_exit();
2958
2959 /* Let secondaries go back to the offline loop */
2960 for (i = 0; i < controlled_threads; ++i) {
2961 kvmppc_release_hwthread(pcpu + i);
2962 if (sip && sip->napped[i])
2963 kvmppc_ipi_thread(pcpu + i);
2964 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2965 }
2966
2967 spin_unlock(&vc->lock);
2968
2969 /* make sure updates to secondary vcpu structs are visible now */
2970 smp_mb();
2971
2972 preempt_enable();
2973
2974 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2975 pvc = core_info.vc[sub];
2976 post_guest_process(pvc, pvc == vc);
2977 }
2978
2979 spin_lock(&vc->lock);
2980
2981 out:
2982 vc->vcore_state = VCORE_INACTIVE;
2983 trace_kvmppc_run_core(vc, 1);
2984 }
2985
2986 /*
2987 * Wait for some other vcpu thread to execute us, and
2988 * wake us up when we need to handle something in the host.
2989 */
2990 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2991 struct kvm_vcpu *vcpu, int wait_state)
2992 {
2993 DEFINE_WAIT(wait);
2994
2995 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2996 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2997 spin_unlock(&vc->lock);
2998 schedule();
2999 spin_lock(&vc->lock);
3000 }
3001 finish_wait(&vcpu->arch.cpu_run, &wait);
3002 }
3003
3004 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3005 {
3006 /* 10us base */
3007 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3008 vc->halt_poll_ns = 10000;
3009 else
3010 vc->halt_poll_ns *= halt_poll_ns_grow;
3011 }
3012
3013 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3014 {
3015 if (halt_poll_ns_shrink == 0)
3016 vc->halt_poll_ns = 0;
3017 else
3018 vc->halt_poll_ns /= halt_poll_ns_shrink;
3019 }
3020
3021 #ifdef CONFIG_KVM_XICS
3022 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3023 {
3024 if (!xive_enabled())
3025 return false;
3026 return vcpu->arch.xive_saved_state.pipr <
3027 vcpu->arch.xive_saved_state.cppr;
3028 }
3029 #else
3030 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3031 {
3032 return false;
3033 }
3034 #endif /* CONFIG_KVM_XICS */
3035
3036 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3037 {
3038 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3039 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3040 return true;
3041
3042 return false;
3043 }
3044
3045 /*
3046 * Check to see if any of the runnable vcpus on the vcore have pending
3047 * exceptions or are no longer ceded
3048 */
3049 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3050 {
3051 struct kvm_vcpu *vcpu;
3052 int i;
3053
3054 for_each_runnable_thread(i, vcpu, vc) {
3055 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3056 return 1;
3057 }
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * All the vcpus in this vcore are idle, so wait for a decrementer
3064 * or external interrupt to one of the vcpus. vc->lock is held.
3065 */
3066 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3067 {
3068 ktime_t cur, start_poll, start_wait;
3069 int do_sleep = 1;
3070 u64 block_ns;
3071 DECLARE_SWAITQUEUE(wait);
3072
3073 /* Poll for pending exceptions and ceded state */
3074 cur = start_poll = ktime_get();
3075 if (vc->halt_poll_ns) {
3076 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3077 ++vc->runner->stat.halt_attempted_poll;
3078
3079 vc->vcore_state = VCORE_POLLING;
3080 spin_unlock(&vc->lock);
3081
3082 do {
3083 if (kvmppc_vcore_check_block(vc)) {
3084 do_sleep = 0;
3085 break;
3086 }
3087 cur = ktime_get();
3088 } while (single_task_running() && ktime_before(cur, stop));
3089
3090 spin_lock(&vc->lock);
3091 vc->vcore_state = VCORE_INACTIVE;
3092
3093 if (!do_sleep) {
3094 ++vc->runner->stat.halt_successful_poll;
3095 goto out;
3096 }
3097 }
3098
3099 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3100
3101 if (kvmppc_vcore_check_block(vc)) {
3102 finish_swait(&vc->wq, &wait);
3103 do_sleep = 0;
3104 /* If we polled, count this as a successful poll */
3105 if (vc->halt_poll_ns)
3106 ++vc->runner->stat.halt_successful_poll;
3107 goto out;
3108 }
3109
3110 start_wait = ktime_get();
3111
3112 vc->vcore_state = VCORE_SLEEPING;
3113 trace_kvmppc_vcore_blocked(vc, 0);
3114 spin_unlock(&vc->lock);
3115 schedule();
3116 finish_swait(&vc->wq, &wait);
3117 spin_lock(&vc->lock);
3118 vc->vcore_state = VCORE_INACTIVE;
3119 trace_kvmppc_vcore_blocked(vc, 1);
3120 ++vc->runner->stat.halt_successful_wait;
3121
3122 cur = ktime_get();
3123
3124 out:
3125 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3126
3127 /* Attribute wait time */
3128 if (do_sleep) {
3129 vc->runner->stat.halt_wait_ns +=
3130 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3131 /* Attribute failed poll time */
3132 if (vc->halt_poll_ns)
3133 vc->runner->stat.halt_poll_fail_ns +=
3134 ktime_to_ns(start_wait) -
3135 ktime_to_ns(start_poll);
3136 } else {
3137 /* Attribute successful poll time */
3138 if (vc->halt_poll_ns)
3139 vc->runner->stat.halt_poll_success_ns +=
3140 ktime_to_ns(cur) -
3141 ktime_to_ns(start_poll);
3142 }
3143
3144 /* Adjust poll time */
3145 if (halt_poll_ns) {
3146 if (block_ns <= vc->halt_poll_ns)
3147 ;
3148 /* We slept and blocked for longer than the max halt time */
3149 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3150 shrink_halt_poll_ns(vc);
3151 /* We slept and our poll time is too small */
3152 else if (vc->halt_poll_ns < halt_poll_ns &&
3153 block_ns < halt_poll_ns)
3154 grow_halt_poll_ns(vc);
3155 if (vc->halt_poll_ns > halt_poll_ns)
3156 vc->halt_poll_ns = halt_poll_ns;
3157 } else
3158 vc->halt_poll_ns = 0;
3159
3160 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3161 }
3162
3163 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3164 {
3165 int r = 0;
3166 struct kvm *kvm = vcpu->kvm;
3167
3168 mutex_lock(&kvm->lock);
3169 if (!kvm->arch.mmu_ready) {
3170 if (!kvm_is_radix(kvm))
3171 r = kvmppc_hv_setup_htab_rma(vcpu);
3172 if (!r) {
3173 if (cpu_has_feature(CPU_FTR_ARCH_300))
3174 kvmppc_setup_partition_table(kvm);
3175 kvm->arch.mmu_ready = 1;
3176 }
3177 }
3178 mutex_unlock(&kvm->lock);
3179 return r;
3180 }
3181
3182 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3183 {
3184 int n_ceded, i, r;
3185 struct kvmppc_vcore *vc;
3186 struct kvm_vcpu *v;
3187
3188 trace_kvmppc_run_vcpu_enter(vcpu);
3189
3190 kvm_run->exit_reason = 0;
3191 vcpu->arch.ret = RESUME_GUEST;
3192 vcpu->arch.trap = 0;
3193 kvmppc_update_vpas(vcpu);
3194
3195 /*
3196 * Synchronize with other threads in this virtual core
3197 */
3198 vc = vcpu->arch.vcore;
3199 spin_lock(&vc->lock);
3200 vcpu->arch.ceded = 0;
3201 vcpu->arch.run_task = current;
3202 vcpu->arch.kvm_run = kvm_run;
3203 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3204 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3205 vcpu->arch.busy_preempt = TB_NIL;
3206 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3207 ++vc->n_runnable;
3208
3209 /*
3210 * This happens the first time this is called for a vcpu.
3211 * If the vcore is already running, we may be able to start
3212 * this thread straight away and have it join in.
3213 */
3214 if (!signal_pending(current)) {
3215 if (vc->vcore_state == VCORE_PIGGYBACK) {
3216 if (spin_trylock(&vc->lock)) {
3217 if (vc->vcore_state == VCORE_RUNNING &&
3218 !VCORE_IS_EXITING(vc)) {
3219 kvmppc_create_dtl_entry(vcpu, vc);
3220 kvmppc_start_thread(vcpu, vc);
3221 trace_kvm_guest_enter(vcpu);
3222 }
3223 spin_unlock(&vc->lock);
3224 }
3225 } else if (vc->vcore_state == VCORE_RUNNING &&
3226 !VCORE_IS_EXITING(vc)) {
3227 kvmppc_create_dtl_entry(vcpu, vc);
3228 kvmppc_start_thread(vcpu, vc);
3229 trace_kvm_guest_enter(vcpu);
3230 } else if (vc->vcore_state == VCORE_SLEEPING) {
3231 swake_up(&vc->wq);
3232 }
3233
3234 }
3235
3236 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3237 !signal_pending(current)) {
3238 /* See if the MMU is ready to go */
3239 if (!vcpu->kvm->arch.mmu_ready) {
3240 spin_unlock(&vc->lock);
3241 r = kvmhv_setup_mmu(vcpu);
3242 spin_lock(&vc->lock);
3243 if (r) {
3244 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3245 kvm_run->fail_entry.
3246 hardware_entry_failure_reason = 0;
3247 vcpu->arch.ret = r;
3248 break;
3249 }
3250 }
3251
3252 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3253 kvmppc_vcore_end_preempt(vc);
3254
3255 if (vc->vcore_state != VCORE_INACTIVE) {
3256 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3257 continue;
3258 }
3259 for_each_runnable_thread(i, v, vc) {
3260 kvmppc_core_prepare_to_enter(v);
3261 if (signal_pending(v->arch.run_task)) {
3262 kvmppc_remove_runnable(vc, v);
3263 v->stat.signal_exits++;
3264 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3265 v->arch.ret = -EINTR;
3266 wake_up(&v->arch.cpu_run);
3267 }
3268 }
3269 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3270 break;
3271 n_ceded = 0;
3272 for_each_runnable_thread(i, v, vc) {
3273 if (!kvmppc_vcpu_woken(v))
3274 n_ceded += v->arch.ceded;
3275 else
3276 v->arch.ceded = 0;
3277 }
3278 vc->runner = vcpu;
3279 if (n_ceded == vc->n_runnable) {
3280 kvmppc_vcore_blocked(vc);
3281 } else if (need_resched()) {
3282 kvmppc_vcore_preempt(vc);
3283 /* Let something else run */
3284 cond_resched_lock(&vc->lock);
3285 if (vc->vcore_state == VCORE_PREEMPT)
3286 kvmppc_vcore_end_preempt(vc);
3287 } else {
3288 kvmppc_run_core(vc);
3289 }
3290 vc->runner = NULL;
3291 }
3292
3293 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3294 (vc->vcore_state == VCORE_RUNNING ||
3295 vc->vcore_state == VCORE_EXITING ||
3296 vc->vcore_state == VCORE_PIGGYBACK))
3297 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3298
3299 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3300 kvmppc_vcore_end_preempt(vc);
3301
3302 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3303 kvmppc_remove_runnable(vc, vcpu);
3304 vcpu->stat.signal_exits++;
3305 kvm_run->exit_reason = KVM_EXIT_INTR;
3306 vcpu->arch.ret = -EINTR;
3307 }
3308
3309 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3310 /* Wake up some vcpu to run the core */
3311 i = -1;
3312 v = next_runnable_thread(vc, &i);
3313 wake_up(&v->arch.cpu_run);
3314 }
3315
3316 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3317 spin_unlock(&vc->lock);
3318 return vcpu->arch.ret;
3319 }
3320
3321 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3322 {
3323 int r;
3324 int srcu_idx;
3325 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3326 unsigned long user_tar = 0;
3327 unsigned int user_vrsave;
3328 struct kvm *kvm;
3329
3330 if (!vcpu->arch.sane) {
3331 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3332 return -EINVAL;
3333 }
3334
3335 /*
3336 * Don't allow entry with a suspended transaction, because
3337 * the guest entry/exit code will lose it.
3338 * If the guest has TM enabled, save away their TM-related SPRs
3339 * (they will get restored by the TM unavailable interrupt).
3340 */
3341 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3342 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3343 (current->thread.regs->msr & MSR_TM)) {
3344 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3345 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3346 run->fail_entry.hardware_entry_failure_reason = 0;
3347 return -EINVAL;
3348 }
3349 /* Enable TM so we can read the TM SPRs */
3350 mtmsr(mfmsr() | MSR_TM);
3351 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3352 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3353 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3354 current->thread.regs->msr &= ~MSR_TM;
3355 }
3356 #endif
3357
3358 kvmppc_core_prepare_to_enter(vcpu);
3359
3360 /* No need to go into the guest when all we'll do is come back out */
3361 if (signal_pending(current)) {
3362 run->exit_reason = KVM_EXIT_INTR;
3363 return -EINTR;
3364 }
3365
3366 kvm = vcpu->kvm;
3367 atomic_inc(&kvm->arch.vcpus_running);
3368 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3369 smp_mb();
3370
3371 flush_all_to_thread(current);
3372
3373 /* Save userspace EBB and other register values */
3374 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3375 ebb_regs[0] = mfspr(SPRN_EBBHR);
3376 ebb_regs[1] = mfspr(SPRN_EBBRR);
3377 ebb_regs[2] = mfspr(SPRN_BESCR);
3378 user_tar = mfspr(SPRN_TAR);
3379 }
3380 user_vrsave = mfspr(SPRN_VRSAVE);
3381
3382 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3383 vcpu->arch.pgdir = current->mm->pgd;
3384 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3385
3386 do {
3387 r = kvmppc_run_vcpu(run, vcpu);
3388
3389 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3390 !(vcpu->arch.shregs.msr & MSR_PR)) {
3391 trace_kvm_hcall_enter(vcpu);
3392 r = kvmppc_pseries_do_hcall(vcpu);
3393 trace_kvm_hcall_exit(vcpu, r);
3394 kvmppc_core_prepare_to_enter(vcpu);
3395 } else if (r == RESUME_PAGE_FAULT) {
3396 srcu_idx = srcu_read_lock(&kvm->srcu);
3397 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3398 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3399 srcu_read_unlock(&kvm->srcu, srcu_idx);
3400 } else if (r == RESUME_PASSTHROUGH) {
3401 if (WARN_ON(xive_enabled()))
3402 r = H_SUCCESS;
3403 else
3404 r = kvmppc_xics_rm_complete(vcpu, 0);
3405 }
3406 } while (is_kvmppc_resume_guest(r));
3407
3408 /* Restore userspace EBB and other register values */
3409 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3410 mtspr(SPRN_EBBHR, ebb_regs[0]);
3411 mtspr(SPRN_EBBRR, ebb_regs[1]);
3412 mtspr(SPRN_BESCR, ebb_regs[2]);
3413 mtspr(SPRN_TAR, user_tar);
3414 mtspr(SPRN_FSCR, current->thread.fscr);
3415 }
3416 mtspr(SPRN_VRSAVE, user_vrsave);
3417
3418 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3419 atomic_dec(&kvm->arch.vcpus_running);
3420 return r;
3421 }
3422
3423 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3424 int shift, int sllp)
3425 {
3426 (*sps)->page_shift = shift;
3427 (*sps)->slb_enc = sllp;
3428 (*sps)->enc[0].page_shift = shift;
3429 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3430 /*
3431 * Add 16MB MPSS support (may get filtered out by userspace)
3432 */
3433 if (shift != 24) {
3434 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3435 if (penc != -1) {
3436 (*sps)->enc[1].page_shift = 24;
3437 (*sps)->enc[1].pte_enc = penc;
3438 }
3439 }
3440 (*sps)++;
3441 }
3442
3443 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3444 struct kvm_ppc_smmu_info *info)
3445 {
3446 struct kvm_ppc_one_seg_page_size *sps;
3447
3448 /*
3449 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3450 * POWER7 doesn't support keys for instruction accesses,
3451 * POWER8 and POWER9 do.
3452 */
3453 info->data_keys = 32;
3454 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3455
3456 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3457 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3458 info->slb_size = 32;
3459
3460 /* We only support these sizes for now, and no muti-size segments */
3461 sps = &info->sps[0];
3462 kvmppc_add_seg_page_size(&sps, 12, 0);
3463 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3464 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3465
3466 return 0;
3467 }
3468
3469 /*
3470 * Get (and clear) the dirty memory log for a memory slot.
3471 */
3472 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3473 struct kvm_dirty_log *log)
3474 {
3475 struct kvm_memslots *slots;
3476 struct kvm_memory_slot *memslot;
3477 int i, r;
3478 unsigned long n;
3479 unsigned long *buf, *p;
3480 struct kvm_vcpu *vcpu;
3481
3482 mutex_lock(&kvm->slots_lock);
3483
3484 r = -EINVAL;
3485 if (log->slot >= KVM_USER_MEM_SLOTS)
3486 goto out;
3487
3488 slots = kvm_memslots(kvm);
3489 memslot = id_to_memslot(slots, log->slot);
3490 r = -ENOENT;
3491 if (!memslot->dirty_bitmap)
3492 goto out;
3493
3494 /*
3495 * Use second half of bitmap area because both HPT and radix
3496 * accumulate bits in the first half.
3497 */
3498 n = kvm_dirty_bitmap_bytes(memslot);
3499 buf = memslot->dirty_bitmap + n / sizeof(long);
3500 memset(buf, 0, n);
3501
3502 if (kvm_is_radix(kvm))
3503 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3504 else
3505 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3506 if (r)
3507 goto out;
3508
3509 /*
3510 * We accumulate dirty bits in the first half of the
3511 * memslot's dirty_bitmap area, for when pages are paged
3512 * out or modified by the host directly. Pick up these
3513 * bits and add them to the map.
3514 */
3515 p = memslot->dirty_bitmap;
3516 for (i = 0; i < n / sizeof(long); ++i)
3517 buf[i] |= xchg(&p[i], 0);
3518
3519 /* Harvest dirty bits from VPA and DTL updates */
3520 /* Note: we never modify the SLB shadow buffer areas */
3521 kvm_for_each_vcpu(i, vcpu, kvm) {
3522 spin_lock(&vcpu->arch.vpa_update_lock);
3523 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3524 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3525 spin_unlock(&vcpu->arch.vpa_update_lock);
3526 }
3527
3528 r = -EFAULT;
3529 if (copy_to_user(log->dirty_bitmap, buf, n))
3530 goto out;
3531
3532 r = 0;
3533 out:
3534 mutex_unlock(&kvm->slots_lock);
3535 return r;
3536 }
3537
3538 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3539 struct kvm_memory_slot *dont)
3540 {
3541 if (!dont || free->arch.rmap != dont->arch.rmap) {
3542 vfree(free->arch.rmap);
3543 free->arch.rmap = NULL;
3544 }
3545 }
3546
3547 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3548 unsigned long npages)
3549 {
3550 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3551 if (!slot->arch.rmap)
3552 return -ENOMEM;
3553
3554 return 0;
3555 }
3556
3557 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3558 struct kvm_memory_slot *memslot,
3559 const struct kvm_userspace_memory_region *mem)
3560 {
3561 return 0;
3562 }
3563
3564 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3565 const struct kvm_userspace_memory_region *mem,
3566 const struct kvm_memory_slot *old,
3567 const struct kvm_memory_slot *new)
3568 {
3569 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3570
3571 /*
3572 * If we are making a new memslot, it might make
3573 * some address that was previously cached as emulated
3574 * MMIO be no longer emulated MMIO, so invalidate
3575 * all the caches of emulated MMIO translations.
3576 */
3577 if (npages)
3578 atomic64_inc(&kvm->arch.mmio_update);
3579 }
3580
3581 /*
3582 * Update LPCR values in kvm->arch and in vcores.
3583 * Caller must hold kvm->lock.
3584 */
3585 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3586 {
3587 long int i;
3588 u32 cores_done = 0;
3589
3590 if ((kvm->arch.lpcr & mask) == lpcr)
3591 return;
3592
3593 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3594
3595 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3596 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3597 if (!vc)
3598 continue;
3599 spin_lock(&vc->lock);
3600 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3601 spin_unlock(&vc->lock);
3602 if (++cores_done >= kvm->arch.online_vcores)
3603 break;
3604 }
3605 }
3606
3607 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3608 {
3609 return;
3610 }
3611
3612 void kvmppc_setup_partition_table(struct kvm *kvm)
3613 {
3614 unsigned long dw0, dw1;
3615
3616 if (!kvm_is_radix(kvm)) {
3617 /* PS field - page size for VRMA */
3618 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3619 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3620 /* HTABSIZE and HTABORG fields */
3621 dw0 |= kvm->arch.sdr1;
3622
3623 /* Second dword as set by userspace */
3624 dw1 = kvm->arch.process_table;
3625 } else {
3626 dw0 = PATB_HR | radix__get_tree_size() |
3627 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3628 dw1 = PATB_GR | kvm->arch.process_table;
3629 }
3630
3631 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3632 }
3633
3634 /*
3635 * Set up HPT (hashed page table) and RMA (real-mode area).
3636 * Must be called with kvm->lock held.
3637 */
3638 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3639 {
3640 int err = 0;
3641 struct kvm *kvm = vcpu->kvm;
3642 unsigned long hva;
3643 struct kvm_memory_slot *memslot;
3644 struct vm_area_struct *vma;
3645 unsigned long lpcr = 0, senc;
3646 unsigned long psize, porder;
3647 int srcu_idx;
3648
3649 /* Allocate hashed page table (if not done already) and reset it */
3650 if (!kvm->arch.hpt.virt) {
3651 int order = KVM_DEFAULT_HPT_ORDER;
3652 struct kvm_hpt_info info;
3653
3654 err = kvmppc_allocate_hpt(&info, order);
3655 /* If we get here, it means userspace didn't specify a
3656 * size explicitly. So, try successively smaller
3657 * sizes if the default failed. */
3658 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3659 err = kvmppc_allocate_hpt(&info, order);
3660
3661 if (err < 0) {
3662 pr_err("KVM: Couldn't alloc HPT\n");
3663 goto out;
3664 }
3665
3666 kvmppc_set_hpt(kvm, &info);
3667 }
3668
3669 /* Look up the memslot for guest physical address 0 */
3670 srcu_idx = srcu_read_lock(&kvm->srcu);
3671 memslot = gfn_to_memslot(kvm, 0);
3672
3673 /* We must have some memory at 0 by now */
3674 err = -EINVAL;
3675 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3676 goto out_srcu;
3677
3678 /* Look up the VMA for the start of this memory slot */
3679 hva = memslot->userspace_addr;
3680 down_read(&current->mm->mmap_sem);
3681 vma = find_vma(current->mm, hva);
3682 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3683 goto up_out;
3684
3685 psize = vma_kernel_pagesize(vma);
3686
3687 up_read(&current->mm->mmap_sem);
3688
3689 /* We can handle 4k, 64k or 16M pages in the VRMA */
3690 if (psize >= 0x1000000)
3691 psize = 0x1000000;
3692 else if (psize >= 0x10000)
3693 psize = 0x10000;
3694 else
3695 psize = 0x1000;
3696 porder = __ilog2(psize);
3697
3698 senc = slb_pgsize_encoding(psize);
3699 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3700 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3701 /* Create HPTEs in the hash page table for the VRMA */
3702 kvmppc_map_vrma(vcpu, memslot, porder);
3703
3704 /* Update VRMASD field in the LPCR */
3705 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3706 /* the -4 is to account for senc values starting at 0x10 */
3707 lpcr = senc << (LPCR_VRMASD_SH - 4);
3708 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3709 }
3710
3711 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3712 smp_wmb();
3713 err = 0;
3714 out_srcu:
3715 srcu_read_unlock(&kvm->srcu, srcu_idx);
3716 out:
3717 return err;
3718
3719 up_out:
3720 up_read(&current->mm->mmap_sem);
3721 goto out_srcu;
3722 }
3723
3724 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3725 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3726 {
3727 kvmppc_free_radix(kvm);
3728 kvmppc_update_lpcr(kvm, LPCR_VPM1,
3729 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3730 kvmppc_rmap_reset(kvm);
3731 kvm->arch.radix = 0;
3732 kvm->arch.process_table = 0;
3733 return 0;
3734 }
3735
3736 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3737 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3738 {
3739 int err;
3740
3741 err = kvmppc_init_vm_radix(kvm);
3742 if (err)
3743 return err;
3744
3745 kvmppc_free_hpt(&kvm->arch.hpt);
3746 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3747 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3748 kvm->arch.radix = 1;
3749 return 0;
3750 }
3751
3752 #ifdef CONFIG_KVM_XICS
3753 /*
3754 * Allocate a per-core structure for managing state about which cores are
3755 * running in the host versus the guest and for exchanging data between
3756 * real mode KVM and CPU running in the host.
3757 * This is only done for the first VM.
3758 * The allocated structure stays even if all VMs have stopped.
3759 * It is only freed when the kvm-hv module is unloaded.
3760 * It's OK for this routine to fail, we just don't support host
3761 * core operations like redirecting H_IPI wakeups.
3762 */
3763 void kvmppc_alloc_host_rm_ops(void)
3764 {
3765 struct kvmppc_host_rm_ops *ops;
3766 unsigned long l_ops;
3767 int cpu, core;
3768 int size;
3769
3770 /* Not the first time here ? */
3771 if (kvmppc_host_rm_ops_hv != NULL)
3772 return;
3773
3774 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3775 if (!ops)
3776 return;
3777
3778 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3779 ops->rm_core = kzalloc(size, GFP_KERNEL);
3780
3781 if (!ops->rm_core) {
3782 kfree(ops);
3783 return;
3784 }
3785
3786 cpus_read_lock();
3787
3788 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3789 if (!cpu_online(cpu))
3790 continue;
3791
3792 core = cpu >> threads_shift;
3793 ops->rm_core[core].rm_state.in_host = 1;
3794 }
3795
3796 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3797
3798 /*
3799 * Make the contents of the kvmppc_host_rm_ops structure visible
3800 * to other CPUs before we assign it to the global variable.
3801 * Do an atomic assignment (no locks used here), but if someone
3802 * beats us to it, just free our copy and return.
3803 */
3804 smp_wmb();
3805 l_ops = (unsigned long) ops;
3806
3807 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3808 cpus_read_unlock();
3809 kfree(ops->rm_core);
3810 kfree(ops);
3811 return;
3812 }
3813
3814 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3815 "ppc/kvm_book3s:prepare",
3816 kvmppc_set_host_core,
3817 kvmppc_clear_host_core);
3818 cpus_read_unlock();
3819 }
3820
3821 void kvmppc_free_host_rm_ops(void)
3822 {
3823 if (kvmppc_host_rm_ops_hv) {
3824 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3825 kfree(kvmppc_host_rm_ops_hv->rm_core);
3826 kfree(kvmppc_host_rm_ops_hv);
3827 kvmppc_host_rm_ops_hv = NULL;
3828 }
3829 }
3830 #endif
3831
3832 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3833 {
3834 unsigned long lpcr, lpid;
3835 char buf[32];
3836 int ret;
3837
3838 /* Allocate the guest's logical partition ID */
3839
3840 lpid = kvmppc_alloc_lpid();
3841 if ((long)lpid < 0)
3842 return -ENOMEM;
3843 kvm->arch.lpid = lpid;
3844
3845 kvmppc_alloc_host_rm_ops();
3846
3847 /*
3848 * Since we don't flush the TLB when tearing down a VM,
3849 * and this lpid might have previously been used,
3850 * make sure we flush on each core before running the new VM.
3851 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3852 * does this flush for us.
3853 */
3854 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3855 cpumask_setall(&kvm->arch.need_tlb_flush);
3856
3857 /* Start out with the default set of hcalls enabled */
3858 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3859 sizeof(kvm->arch.enabled_hcalls));
3860
3861 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3862 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3863
3864 /* Init LPCR for virtual RMA mode */
3865 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3866 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3867 lpcr &= LPCR_PECE | LPCR_LPES;
3868 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3869 LPCR_VPM0 | LPCR_VPM1;
3870 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3871 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3872 /* On POWER8 turn on online bit to enable PURR/SPURR */
3873 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3874 lpcr |= LPCR_ONL;
3875 /*
3876 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3877 * Set HVICE bit to enable hypervisor virtualization interrupts.
3878 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3879 * be unnecessary but better safe than sorry in case we re-enable
3880 * EE in HV mode with this LPCR still set)
3881 */
3882 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3883 lpcr &= ~LPCR_VPM0;
3884 lpcr |= LPCR_HVICE | LPCR_HEIC;
3885
3886 /*
3887 * If xive is enabled, we route 0x500 interrupts directly
3888 * to the guest.
3889 */
3890 if (xive_enabled())
3891 lpcr |= LPCR_LPES;
3892 }
3893
3894 /*
3895 * If the host uses radix, the guest starts out as radix.
3896 */
3897 if (radix_enabled()) {
3898 kvm->arch.radix = 1;
3899 kvm->arch.mmu_ready = 1;
3900 lpcr &= ~LPCR_VPM1;
3901 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3902 ret = kvmppc_init_vm_radix(kvm);
3903 if (ret) {
3904 kvmppc_free_lpid(kvm->arch.lpid);
3905 return ret;
3906 }
3907 kvmppc_setup_partition_table(kvm);
3908 }
3909
3910 kvm->arch.lpcr = lpcr;
3911
3912 /* Initialization for future HPT resizes */
3913 kvm->arch.resize_hpt = NULL;
3914
3915 /*
3916 * Work out how many sets the TLB has, for the use of
3917 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3918 */
3919 if (radix_enabled())
3920 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3921 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3922 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3923 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3924 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3925 else
3926 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3927
3928 /*
3929 * Track that we now have a HV mode VM active. This blocks secondary
3930 * CPU threads from coming online.
3931 * On POWER9, we only need to do this if the "indep_threads_mode"
3932 * module parameter has been set to N.
3933 */
3934 if (cpu_has_feature(CPU_FTR_ARCH_300))
3935 kvm->arch.threads_indep = indep_threads_mode;
3936 if (!kvm->arch.threads_indep)
3937 kvm_hv_vm_activated();
3938
3939 /*
3940 * Initialize smt_mode depending on processor.
3941 * POWER8 and earlier have to use "strict" threading, where
3942 * all vCPUs in a vcore have to run on the same (sub)core,
3943 * whereas on POWER9 the threads can each run a different
3944 * guest.
3945 */
3946 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3947 kvm->arch.smt_mode = threads_per_subcore;
3948 else
3949 kvm->arch.smt_mode = 1;
3950 kvm->arch.emul_smt_mode = 1;
3951
3952 /*
3953 * Create a debugfs directory for the VM
3954 */
3955 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3956 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3957 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3958 kvmppc_mmu_debugfs_init(kvm);
3959
3960 return 0;
3961 }
3962
3963 static void kvmppc_free_vcores(struct kvm *kvm)
3964 {
3965 long int i;
3966
3967 for (i = 0; i < KVM_MAX_VCORES; ++i)
3968 kfree(kvm->arch.vcores[i]);
3969 kvm->arch.online_vcores = 0;
3970 }
3971
3972 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3973 {
3974 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3975
3976 if (!kvm->arch.threads_indep)
3977 kvm_hv_vm_deactivated();
3978
3979 kvmppc_free_vcores(kvm);
3980
3981 kvmppc_free_lpid(kvm->arch.lpid);
3982
3983 if (kvm_is_radix(kvm))
3984 kvmppc_free_radix(kvm);
3985 else
3986 kvmppc_free_hpt(&kvm->arch.hpt);
3987
3988 kvmppc_free_pimap(kvm);
3989 }
3990
3991 /* We don't need to emulate any privileged instructions or dcbz */
3992 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3993 unsigned int inst, int *advance)
3994 {
3995 return EMULATE_FAIL;
3996 }
3997
3998 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3999 ulong spr_val)
4000 {
4001 return EMULATE_FAIL;
4002 }
4003
4004 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4005 ulong *spr_val)
4006 {
4007 return EMULATE_FAIL;
4008 }
4009
4010 static int kvmppc_core_check_processor_compat_hv(void)
4011 {
4012 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4013 !cpu_has_feature(CPU_FTR_ARCH_206))
4014 return -EIO;
4015
4016 return 0;
4017 }
4018
4019 #ifdef CONFIG_KVM_XICS
4020
4021 void kvmppc_free_pimap(struct kvm *kvm)
4022 {
4023 kfree(kvm->arch.pimap);
4024 }
4025
4026 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4027 {
4028 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4029 }
4030
4031 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4032 {
4033 struct irq_desc *desc;
4034 struct kvmppc_irq_map *irq_map;
4035 struct kvmppc_passthru_irqmap *pimap;
4036 struct irq_chip *chip;
4037 int i, rc = 0;
4038
4039 if (!kvm_irq_bypass)
4040 return 1;
4041
4042 desc = irq_to_desc(host_irq);
4043 if (!desc)
4044 return -EIO;
4045
4046 mutex_lock(&kvm->lock);
4047
4048 pimap = kvm->arch.pimap;
4049 if (pimap == NULL) {
4050 /* First call, allocate structure to hold IRQ map */
4051 pimap = kvmppc_alloc_pimap();
4052 if (pimap == NULL) {
4053 mutex_unlock(&kvm->lock);
4054 return -ENOMEM;
4055 }
4056 kvm->arch.pimap = pimap;
4057 }
4058
4059 /*
4060 * For now, we only support interrupts for which the EOI operation
4061 * is an OPAL call followed by a write to XIRR, since that's
4062 * what our real-mode EOI code does, or a XIVE interrupt
4063 */
4064 chip = irq_data_get_irq_chip(&desc->irq_data);
4065 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4066 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4067 host_irq, guest_gsi);
4068 mutex_unlock(&kvm->lock);
4069 return -ENOENT;
4070 }
4071
4072 /*
4073 * See if we already have an entry for this guest IRQ number.
4074 * If it's mapped to a hardware IRQ number, that's an error,
4075 * otherwise re-use this entry.
4076 */
4077 for (i = 0; i < pimap->n_mapped; i++) {
4078 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4079 if (pimap->mapped[i].r_hwirq) {
4080 mutex_unlock(&kvm->lock);
4081 return -EINVAL;
4082 }
4083 break;
4084 }
4085 }
4086
4087 if (i == KVMPPC_PIRQ_MAPPED) {
4088 mutex_unlock(&kvm->lock);
4089 return -EAGAIN; /* table is full */
4090 }
4091
4092 irq_map = &pimap->mapped[i];
4093
4094 irq_map->v_hwirq = guest_gsi;
4095 irq_map->desc = desc;
4096
4097 /*
4098 * Order the above two stores before the next to serialize with
4099 * the KVM real mode handler.
4100 */
4101 smp_wmb();
4102 irq_map->r_hwirq = desc->irq_data.hwirq;
4103
4104 if (i == pimap->n_mapped)
4105 pimap->n_mapped++;
4106
4107 if (xive_enabled())
4108 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4109 else
4110 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4111 if (rc)
4112 irq_map->r_hwirq = 0;
4113
4114 mutex_unlock(&kvm->lock);
4115
4116 return 0;
4117 }
4118
4119 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4120 {
4121 struct irq_desc *desc;
4122 struct kvmppc_passthru_irqmap *pimap;
4123 int i, rc = 0;
4124
4125 if (!kvm_irq_bypass)
4126 return 0;
4127
4128 desc = irq_to_desc(host_irq);
4129 if (!desc)
4130 return -EIO;
4131
4132 mutex_lock(&kvm->lock);
4133 if (!kvm->arch.pimap)
4134 goto unlock;
4135
4136 pimap = kvm->arch.pimap;
4137
4138 for (i = 0; i < pimap->n_mapped; i++) {
4139 if (guest_gsi == pimap->mapped[i].v_hwirq)
4140 break;
4141 }
4142
4143 if (i == pimap->n_mapped) {
4144 mutex_unlock(&kvm->lock);
4145 return -ENODEV;
4146 }
4147
4148 if (xive_enabled())
4149 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4150 else
4151 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4152
4153 /* invalidate the entry (what do do on error from the above ?) */
4154 pimap->mapped[i].r_hwirq = 0;
4155
4156 /*
4157 * We don't free this structure even when the count goes to
4158 * zero. The structure is freed when we destroy the VM.
4159 */
4160 unlock:
4161 mutex_unlock(&kvm->lock);
4162 return rc;
4163 }
4164
4165 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4166 struct irq_bypass_producer *prod)
4167 {
4168 int ret = 0;
4169 struct kvm_kernel_irqfd *irqfd =
4170 container_of(cons, struct kvm_kernel_irqfd, consumer);
4171
4172 irqfd->producer = prod;
4173
4174 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4175 if (ret)
4176 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4177 prod->irq, irqfd->gsi, ret);
4178
4179 return ret;
4180 }
4181
4182 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4183 struct irq_bypass_producer *prod)
4184 {
4185 int ret;
4186 struct kvm_kernel_irqfd *irqfd =
4187 container_of(cons, struct kvm_kernel_irqfd, consumer);
4188
4189 irqfd->producer = NULL;
4190
4191 /*
4192 * When producer of consumer is unregistered, we change back to
4193 * default external interrupt handling mode - KVM real mode
4194 * will switch back to host.
4195 */
4196 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4197 if (ret)
4198 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4199 prod->irq, irqfd->gsi, ret);
4200 }
4201 #endif
4202
4203 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4204 unsigned int ioctl, unsigned long arg)
4205 {
4206 struct kvm *kvm __maybe_unused = filp->private_data;
4207 void __user *argp = (void __user *)arg;
4208 long r;
4209
4210 switch (ioctl) {
4211
4212 case KVM_PPC_ALLOCATE_HTAB: {
4213 u32 htab_order;
4214
4215 r = -EFAULT;
4216 if (get_user(htab_order, (u32 __user *)argp))
4217 break;
4218 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4219 if (r)
4220 break;
4221 r = 0;
4222 break;
4223 }
4224
4225 case KVM_PPC_GET_HTAB_FD: {
4226 struct kvm_get_htab_fd ghf;
4227
4228 r = -EFAULT;
4229 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4230 break;
4231 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4232 break;
4233 }
4234
4235 case KVM_PPC_RESIZE_HPT_PREPARE: {
4236 struct kvm_ppc_resize_hpt rhpt;
4237
4238 r = -EFAULT;
4239 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4240 break;
4241
4242 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4243 break;
4244 }
4245
4246 case KVM_PPC_RESIZE_HPT_COMMIT: {
4247 struct kvm_ppc_resize_hpt rhpt;
4248
4249 r = -EFAULT;
4250 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4251 break;
4252
4253 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4254 break;
4255 }
4256
4257 default:
4258 r = -ENOTTY;
4259 }
4260
4261 return r;
4262 }
4263
4264 /*
4265 * List of hcall numbers to enable by default.
4266 * For compatibility with old userspace, we enable by default
4267 * all hcalls that were implemented before the hcall-enabling
4268 * facility was added. Note this list should not include H_RTAS.
4269 */
4270 static unsigned int default_hcall_list[] = {
4271 H_REMOVE,
4272 H_ENTER,
4273 H_READ,
4274 H_PROTECT,
4275 H_BULK_REMOVE,
4276 H_GET_TCE,
4277 H_PUT_TCE,
4278 H_SET_DABR,
4279 H_SET_XDABR,
4280 H_CEDE,
4281 H_PROD,
4282 H_CONFER,
4283 H_REGISTER_VPA,
4284 #ifdef CONFIG_KVM_XICS
4285 H_EOI,
4286 H_CPPR,
4287 H_IPI,
4288 H_IPOLL,
4289 H_XIRR,
4290 H_XIRR_X,
4291 #endif
4292 0
4293 };
4294
4295 static void init_default_hcalls(void)
4296 {
4297 int i;
4298 unsigned int hcall;
4299
4300 for (i = 0; default_hcall_list[i]; ++i) {
4301 hcall = default_hcall_list[i];
4302 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4303 __set_bit(hcall / 4, default_enabled_hcalls);
4304 }
4305 }
4306
4307 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4308 {
4309 unsigned long lpcr;
4310 int radix;
4311 int err;
4312
4313 /* If not on a POWER9, reject it */
4314 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4315 return -ENODEV;
4316
4317 /* If any unknown flags set, reject it */
4318 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4319 return -EINVAL;
4320
4321 /* GR (guest radix) bit in process_table field must match */
4322 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4323 if (!!(cfg->process_table & PATB_GR) != radix)
4324 return -EINVAL;
4325
4326 /* Process table size field must be reasonable, i.e. <= 24 */
4327 if ((cfg->process_table & PRTS_MASK) > 24)
4328 return -EINVAL;
4329
4330 /* We can change a guest to/from radix now, if the host is radix */
4331 if (radix && !radix_enabled())
4332 return -EINVAL;
4333
4334 mutex_lock(&kvm->lock);
4335 if (radix != kvm_is_radix(kvm)) {
4336 if (kvm->arch.mmu_ready) {
4337 kvm->arch.mmu_ready = 0;
4338 /* order mmu_ready vs. vcpus_running */
4339 smp_mb();
4340 if (atomic_read(&kvm->arch.vcpus_running)) {
4341 kvm->arch.mmu_ready = 1;
4342 err = -EBUSY;
4343 goto out_unlock;
4344 }
4345 }
4346 if (radix)
4347 err = kvmppc_switch_mmu_to_radix(kvm);
4348 else
4349 err = kvmppc_switch_mmu_to_hpt(kvm);
4350 if (err)
4351 goto out_unlock;
4352 }
4353
4354 kvm->arch.process_table = cfg->process_table;
4355 kvmppc_setup_partition_table(kvm);
4356
4357 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4358 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4359 err = 0;
4360
4361 out_unlock:
4362 mutex_unlock(&kvm->lock);
4363 return err;
4364 }
4365
4366 static struct kvmppc_ops kvm_ops_hv = {
4367 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4368 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4369 .get_one_reg = kvmppc_get_one_reg_hv,
4370 .set_one_reg = kvmppc_set_one_reg_hv,
4371 .vcpu_load = kvmppc_core_vcpu_load_hv,
4372 .vcpu_put = kvmppc_core_vcpu_put_hv,
4373 .set_msr = kvmppc_set_msr_hv,
4374 .vcpu_run = kvmppc_vcpu_run_hv,
4375 .vcpu_create = kvmppc_core_vcpu_create_hv,
4376 .vcpu_free = kvmppc_core_vcpu_free_hv,
4377 .check_requests = kvmppc_core_check_requests_hv,
4378 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4379 .flush_memslot = kvmppc_core_flush_memslot_hv,
4380 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4381 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4382 .unmap_hva = kvm_unmap_hva_hv,
4383 .unmap_hva_range = kvm_unmap_hva_range_hv,
4384 .age_hva = kvm_age_hva_hv,
4385 .test_age_hva = kvm_test_age_hva_hv,
4386 .set_spte_hva = kvm_set_spte_hva_hv,
4387 .mmu_destroy = kvmppc_mmu_destroy_hv,
4388 .free_memslot = kvmppc_core_free_memslot_hv,
4389 .create_memslot = kvmppc_core_create_memslot_hv,
4390 .init_vm = kvmppc_core_init_vm_hv,
4391 .destroy_vm = kvmppc_core_destroy_vm_hv,
4392 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4393 .emulate_op = kvmppc_core_emulate_op_hv,
4394 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4395 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4396 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4397 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4398 .hcall_implemented = kvmppc_hcall_impl_hv,
4399 #ifdef CONFIG_KVM_XICS
4400 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4401 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4402 #endif
4403 .configure_mmu = kvmhv_configure_mmu,
4404 .get_rmmu_info = kvmhv_get_rmmu_info,
4405 .set_smt_mode = kvmhv_set_smt_mode,
4406 };
4407
4408 static int kvm_init_subcore_bitmap(void)
4409 {
4410 int i, j;
4411 int nr_cores = cpu_nr_cores();
4412 struct sibling_subcore_state *sibling_subcore_state;
4413
4414 for (i = 0; i < nr_cores; i++) {
4415 int first_cpu = i * threads_per_core;
4416 int node = cpu_to_node(first_cpu);
4417
4418 /* Ignore if it is already allocated. */
4419 if (paca[first_cpu].sibling_subcore_state)
4420 continue;
4421
4422 sibling_subcore_state =
4423 kmalloc_node(sizeof(struct sibling_subcore_state),
4424 GFP_KERNEL, node);
4425 if (!sibling_subcore_state)
4426 return -ENOMEM;
4427
4428 memset(sibling_subcore_state, 0,
4429 sizeof(struct sibling_subcore_state));
4430
4431 for (j = 0; j < threads_per_core; j++) {
4432 int cpu = first_cpu + j;
4433
4434 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4435 }
4436 }
4437 return 0;
4438 }
4439
4440 static int kvmppc_radix_possible(void)
4441 {
4442 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4443 }
4444
4445 static int kvmppc_book3s_init_hv(void)
4446 {
4447 int r;
4448 /*
4449 * FIXME!! Do we need to check on all cpus ?
4450 */
4451 r = kvmppc_core_check_processor_compat_hv();
4452 if (r < 0)
4453 return -ENODEV;
4454
4455 r = kvm_init_subcore_bitmap();
4456 if (r)
4457 return r;
4458
4459 /*
4460 * We need a way of accessing the XICS interrupt controller,
4461 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4462 * indirectly, via OPAL.
4463 */
4464 #ifdef CONFIG_SMP
4465 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4466 struct device_node *np;
4467
4468 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4469 if (!np) {
4470 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4471 return -ENODEV;
4472 }
4473 }
4474 #endif
4475
4476 kvm_ops_hv.owner = THIS_MODULE;
4477 kvmppc_hv_ops = &kvm_ops_hv;
4478
4479 init_default_hcalls();
4480
4481 init_vcore_lists();
4482
4483 r = kvmppc_mmu_hv_init();
4484 if (r)
4485 return r;
4486
4487 if (kvmppc_radix_possible())
4488 r = kvmppc_radix_init();
4489
4490 /*
4491 * POWER9 chips before version 2.02 can't have some threads in
4492 * HPT mode and some in radix mode on the same core.
4493 */
4494 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4495 unsigned int pvr = mfspr(SPRN_PVR);
4496 if ((pvr >> 16) == PVR_POWER9 &&
4497 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4498 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4499 no_mixing_hpt_and_radix = true;
4500 }
4501
4502 return r;
4503 }
4504
4505 static void kvmppc_book3s_exit_hv(void)
4506 {
4507 kvmppc_free_host_rm_ops();
4508 if (kvmppc_radix_possible())
4509 kvmppc_radix_exit();
4510 kvmppc_hv_ops = NULL;
4511 }
4512
4513 module_init(kvmppc_book3s_init_hv);
4514 module_exit(kvmppc_book3s_exit_hv);
4515 MODULE_LICENSE("GPL");
4516 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4517 MODULE_ALIAS("devname:kvm");