]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 /*
70 * We use the vcpu_load/put functions to measure stolen time.
71 * Stolen time is counted as time when either the vcpu is able to
72 * run as part of a virtual core, but the task running the vcore
73 * is preempted or sleeping, or when the vcpu needs something done
74 * in the kernel by the task running the vcpu, but that task is
75 * preempted or sleeping. Those two things have to be counted
76 * separately, since one of the vcpu tasks will take on the job
77 * of running the core, and the other vcpu tasks in the vcore will
78 * sleep waiting for it to do that, but that sleep shouldn't count
79 * as stolen time.
80 *
81 * Hence we accumulate stolen time when the vcpu can run as part of
82 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
83 * needs its task to do other things in the kernel (for example,
84 * service a page fault) in busy_stolen. We don't accumulate
85 * stolen time for a vcore when it is inactive, or for a vcpu
86 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
87 * a misnomer; it means that the vcpu task is not executing in
88 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
89 * the kernel. We don't have any way of dividing up that time
90 * between time that the vcpu is genuinely stopped, time that
91 * the task is actively working on behalf of the vcpu, and time
92 * that the task is preempted, so we don't count any of it as
93 * stolen.
94 *
95 * Updates to busy_stolen are protected by arch.tbacct_lock;
96 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
97 * of the vcpu that has taken responsibility for running the vcore
98 * (i.e. vc->runner). The stolen times are measured in units of
99 * timebase ticks. (Note that the != TB_NIL checks below are
100 * purely defensive; they should never fail.)
101 */
102
103 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
104 {
105 struct kvmppc_vcore *vc = vcpu->arch.vcore;
106
107 spin_lock(&vcpu->arch.tbacct_lock);
108 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
109 vc->preempt_tb != TB_NIL) {
110 vc->stolen_tb += mftb() - vc->preempt_tb;
111 vc->preempt_tb = TB_NIL;
112 }
113 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
114 vcpu->arch.busy_preempt != TB_NIL) {
115 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
116 vcpu->arch.busy_preempt = TB_NIL;
117 }
118 spin_unlock(&vcpu->arch.tbacct_lock);
119 }
120
121 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
122 {
123 struct kvmppc_vcore *vc = vcpu->arch.vcore;
124
125 spin_lock(&vcpu->arch.tbacct_lock);
126 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
127 vc->preempt_tb = mftb();
128 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
129 vcpu->arch.busy_preempt = mftb();
130 spin_unlock(&vcpu->arch.tbacct_lock);
131 }
132
133 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
134 {
135 vcpu->arch.shregs.msr = msr;
136 kvmppc_end_cede(vcpu);
137 }
138
139 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
140 {
141 vcpu->arch.pvr = pvr;
142 }
143
144 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
145 {
146 int r;
147
148 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
149 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
150 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
151 for (r = 0; r < 16; ++r)
152 pr_err("r%2d = %.16lx r%d = %.16lx\n",
153 r, kvmppc_get_gpr(vcpu, r),
154 r+16, kvmppc_get_gpr(vcpu, r+16));
155 pr_err("ctr = %.16lx lr = %.16lx\n",
156 vcpu->arch.ctr, vcpu->arch.lr);
157 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
158 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
159 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
160 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
161 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
162 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
163 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
164 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
165 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
166 pr_err("fault dar = %.16lx dsisr = %.8x\n",
167 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
168 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
169 for (r = 0; r < vcpu->arch.slb_max; ++r)
170 pr_err(" ESID = %.16llx VSID = %.16llx\n",
171 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
172 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
173 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
174 vcpu->arch.last_inst);
175 }
176
177 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
178 {
179 int r;
180 struct kvm_vcpu *v, *ret = NULL;
181
182 mutex_lock(&kvm->lock);
183 kvm_for_each_vcpu(r, v, kvm) {
184 if (v->vcpu_id == id) {
185 ret = v;
186 break;
187 }
188 }
189 mutex_unlock(&kvm->lock);
190 return ret;
191 }
192
193 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
194 {
195 vpa->shared_proc = 1;
196 vpa->yield_count = 1;
197 }
198
199 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
200 unsigned long addr, unsigned long len)
201 {
202 /* check address is cacheline aligned */
203 if (addr & (L1_CACHE_BYTES - 1))
204 return -EINVAL;
205 spin_lock(&vcpu->arch.vpa_update_lock);
206 if (v->next_gpa != addr || v->len != len) {
207 v->next_gpa = addr;
208 v->len = addr ? len : 0;
209 v->update_pending = 1;
210 }
211 spin_unlock(&vcpu->arch.vpa_update_lock);
212 return 0;
213 }
214
215 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
216 struct reg_vpa {
217 u32 dummy;
218 union {
219 u16 hword;
220 u32 word;
221 } length;
222 };
223
224 static int vpa_is_registered(struct kvmppc_vpa *vpap)
225 {
226 if (vpap->update_pending)
227 return vpap->next_gpa != 0;
228 return vpap->pinned_addr != NULL;
229 }
230
231 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
232 unsigned long flags,
233 unsigned long vcpuid, unsigned long vpa)
234 {
235 struct kvm *kvm = vcpu->kvm;
236 unsigned long len, nb;
237 void *va;
238 struct kvm_vcpu *tvcpu;
239 int err;
240 int subfunc;
241 struct kvmppc_vpa *vpap;
242
243 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
244 if (!tvcpu)
245 return H_PARAMETER;
246
247 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
248 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
249 subfunc == H_VPA_REG_SLB) {
250 /* Registering new area - address must be cache-line aligned */
251 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
252 return H_PARAMETER;
253
254 /* convert logical addr to kernel addr and read length */
255 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
256 if (va == NULL)
257 return H_PARAMETER;
258 if (subfunc == H_VPA_REG_VPA)
259 len = ((struct reg_vpa *)va)->length.hword;
260 else
261 len = ((struct reg_vpa *)va)->length.word;
262 kvmppc_unpin_guest_page(kvm, va);
263
264 /* Check length */
265 if (len > nb || len < sizeof(struct reg_vpa))
266 return H_PARAMETER;
267 } else {
268 vpa = 0;
269 len = 0;
270 }
271
272 err = H_PARAMETER;
273 vpap = NULL;
274 spin_lock(&tvcpu->arch.vpa_update_lock);
275
276 switch (subfunc) {
277 case H_VPA_REG_VPA: /* register VPA */
278 if (len < sizeof(struct lppaca))
279 break;
280 vpap = &tvcpu->arch.vpa;
281 err = 0;
282 break;
283
284 case H_VPA_REG_DTL: /* register DTL */
285 if (len < sizeof(struct dtl_entry))
286 break;
287 len -= len % sizeof(struct dtl_entry);
288
289 /* Check that they have previously registered a VPA */
290 err = H_RESOURCE;
291 if (!vpa_is_registered(&tvcpu->arch.vpa))
292 break;
293
294 vpap = &tvcpu->arch.dtl;
295 err = 0;
296 break;
297
298 case H_VPA_REG_SLB: /* register SLB shadow buffer */
299 /* Check that they have previously registered a VPA */
300 err = H_RESOURCE;
301 if (!vpa_is_registered(&tvcpu->arch.vpa))
302 break;
303
304 vpap = &tvcpu->arch.slb_shadow;
305 err = 0;
306 break;
307
308 case H_VPA_DEREG_VPA: /* deregister VPA */
309 /* Check they don't still have a DTL or SLB buf registered */
310 err = H_RESOURCE;
311 if (vpa_is_registered(&tvcpu->arch.dtl) ||
312 vpa_is_registered(&tvcpu->arch.slb_shadow))
313 break;
314
315 vpap = &tvcpu->arch.vpa;
316 err = 0;
317 break;
318
319 case H_VPA_DEREG_DTL: /* deregister DTL */
320 vpap = &tvcpu->arch.dtl;
321 err = 0;
322 break;
323
324 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
325 vpap = &tvcpu->arch.slb_shadow;
326 err = 0;
327 break;
328 }
329
330 if (vpap) {
331 vpap->next_gpa = vpa;
332 vpap->len = len;
333 vpap->update_pending = 1;
334 }
335
336 spin_unlock(&tvcpu->arch.vpa_update_lock);
337
338 return err;
339 }
340
341 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
342 {
343 struct kvm *kvm = vcpu->kvm;
344 void *va;
345 unsigned long nb;
346 unsigned long gpa;
347
348 /*
349 * We need to pin the page pointed to by vpap->next_gpa,
350 * but we can't call kvmppc_pin_guest_page under the lock
351 * as it does get_user_pages() and down_read(). So we
352 * have to drop the lock, pin the page, then get the lock
353 * again and check that a new area didn't get registered
354 * in the meantime.
355 */
356 for (;;) {
357 gpa = vpap->next_gpa;
358 spin_unlock(&vcpu->arch.vpa_update_lock);
359 va = NULL;
360 nb = 0;
361 if (gpa)
362 va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
363 spin_lock(&vcpu->arch.vpa_update_lock);
364 if (gpa == vpap->next_gpa)
365 break;
366 /* sigh... unpin that one and try again */
367 if (va)
368 kvmppc_unpin_guest_page(kvm, va);
369 }
370
371 vpap->update_pending = 0;
372 if (va && nb < vpap->len) {
373 /*
374 * If it's now too short, it must be that userspace
375 * has changed the mappings underlying guest memory,
376 * so unregister the region.
377 */
378 kvmppc_unpin_guest_page(kvm, va);
379 va = NULL;
380 }
381 if (vpap->pinned_addr)
382 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
383 vpap->pinned_addr = va;
384 if (va)
385 vpap->pinned_end = va + vpap->len;
386 }
387
388 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
389 {
390 if (!(vcpu->arch.vpa.update_pending ||
391 vcpu->arch.slb_shadow.update_pending ||
392 vcpu->arch.dtl.update_pending))
393 return;
394
395 spin_lock(&vcpu->arch.vpa_update_lock);
396 if (vcpu->arch.vpa.update_pending) {
397 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
398 if (vcpu->arch.vpa.pinned_addr)
399 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
400 }
401 if (vcpu->arch.dtl.update_pending) {
402 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
403 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
404 vcpu->arch.dtl_index = 0;
405 }
406 if (vcpu->arch.slb_shadow.update_pending)
407 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
408 spin_unlock(&vcpu->arch.vpa_update_lock);
409 }
410
411 /*
412 * Return the accumulated stolen time for the vcore up until `now'.
413 * The caller should hold the vcore lock.
414 */
415 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
416 {
417 u64 p;
418
419 /*
420 * If we are the task running the vcore, then since we hold
421 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
422 * can't be updated, so we don't need the tbacct_lock.
423 * If the vcore is inactive, it can't become active (since we
424 * hold the vcore lock), so the vcpu load/put functions won't
425 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
426 */
427 if (vc->vcore_state != VCORE_INACTIVE &&
428 vc->runner->arch.run_task != current) {
429 spin_lock(&vc->runner->arch.tbacct_lock);
430 p = vc->stolen_tb;
431 if (vc->preempt_tb != TB_NIL)
432 p += now - vc->preempt_tb;
433 spin_unlock(&vc->runner->arch.tbacct_lock);
434 } else {
435 p = vc->stolen_tb;
436 }
437 return p;
438 }
439
440 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
441 struct kvmppc_vcore *vc)
442 {
443 struct dtl_entry *dt;
444 struct lppaca *vpa;
445 unsigned long stolen;
446 unsigned long core_stolen;
447 u64 now;
448
449 dt = vcpu->arch.dtl_ptr;
450 vpa = vcpu->arch.vpa.pinned_addr;
451 now = mftb();
452 core_stolen = vcore_stolen_time(vc, now);
453 stolen = core_stolen - vcpu->arch.stolen_logged;
454 vcpu->arch.stolen_logged = core_stolen;
455 spin_lock(&vcpu->arch.tbacct_lock);
456 stolen += vcpu->arch.busy_stolen;
457 vcpu->arch.busy_stolen = 0;
458 spin_unlock(&vcpu->arch.tbacct_lock);
459 if (!dt || !vpa)
460 return;
461 memset(dt, 0, sizeof(struct dtl_entry));
462 dt->dispatch_reason = 7;
463 dt->processor_id = vc->pcpu + vcpu->arch.ptid;
464 dt->timebase = now;
465 dt->enqueue_to_dispatch_time = stolen;
466 dt->srr0 = kvmppc_get_pc(vcpu);
467 dt->srr1 = vcpu->arch.shregs.msr;
468 ++dt;
469 if (dt == vcpu->arch.dtl.pinned_end)
470 dt = vcpu->arch.dtl.pinned_addr;
471 vcpu->arch.dtl_ptr = dt;
472 /* order writing *dt vs. writing vpa->dtl_idx */
473 smp_wmb();
474 vpa->dtl_idx = ++vcpu->arch.dtl_index;
475 }
476
477 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
478 {
479 unsigned long req = kvmppc_get_gpr(vcpu, 3);
480 unsigned long target, ret = H_SUCCESS;
481 struct kvm_vcpu *tvcpu;
482 int idx;
483
484 switch (req) {
485 case H_ENTER:
486 idx = srcu_read_lock(&vcpu->kvm->srcu);
487 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
488 kvmppc_get_gpr(vcpu, 5),
489 kvmppc_get_gpr(vcpu, 6),
490 kvmppc_get_gpr(vcpu, 7));
491 srcu_read_unlock(&vcpu->kvm->srcu, idx);
492 break;
493 case H_CEDE:
494 break;
495 case H_PROD:
496 target = kvmppc_get_gpr(vcpu, 4);
497 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
498 if (!tvcpu) {
499 ret = H_PARAMETER;
500 break;
501 }
502 tvcpu->arch.prodded = 1;
503 smp_mb();
504 if (vcpu->arch.ceded) {
505 if (waitqueue_active(&vcpu->wq)) {
506 wake_up_interruptible(&vcpu->wq);
507 vcpu->stat.halt_wakeup++;
508 }
509 }
510 break;
511 case H_CONFER:
512 break;
513 case H_REGISTER_VPA:
514 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
515 kvmppc_get_gpr(vcpu, 5),
516 kvmppc_get_gpr(vcpu, 6));
517 break;
518 default:
519 return RESUME_HOST;
520 }
521 kvmppc_set_gpr(vcpu, 3, ret);
522 vcpu->arch.hcall_needed = 0;
523 return RESUME_GUEST;
524 }
525
526 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
527 struct task_struct *tsk)
528 {
529 int r = RESUME_HOST;
530
531 vcpu->stat.sum_exits++;
532
533 run->exit_reason = KVM_EXIT_UNKNOWN;
534 run->ready_for_interrupt_injection = 1;
535 switch (vcpu->arch.trap) {
536 /* We're good on these - the host merely wanted to get our attention */
537 case BOOK3S_INTERRUPT_HV_DECREMENTER:
538 vcpu->stat.dec_exits++;
539 r = RESUME_GUEST;
540 break;
541 case BOOK3S_INTERRUPT_EXTERNAL:
542 vcpu->stat.ext_intr_exits++;
543 r = RESUME_GUEST;
544 break;
545 case BOOK3S_INTERRUPT_PERFMON:
546 r = RESUME_GUEST;
547 break;
548 case BOOK3S_INTERRUPT_MACHINE_CHECK:
549 /*
550 * Deliver a machine check interrupt to the guest.
551 * We have to do this, even if the host has handled the
552 * machine check, because machine checks use SRR0/1 and
553 * the interrupt might have trashed guest state in them.
554 */
555 kvmppc_book3s_queue_irqprio(vcpu,
556 BOOK3S_INTERRUPT_MACHINE_CHECK);
557 r = RESUME_GUEST;
558 break;
559 case BOOK3S_INTERRUPT_PROGRAM:
560 {
561 ulong flags;
562 /*
563 * Normally program interrupts are delivered directly
564 * to the guest by the hardware, but we can get here
565 * as a result of a hypervisor emulation interrupt
566 * (e40) getting turned into a 700 by BML RTAS.
567 */
568 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
569 kvmppc_core_queue_program(vcpu, flags);
570 r = RESUME_GUEST;
571 break;
572 }
573 case BOOK3S_INTERRUPT_SYSCALL:
574 {
575 /* hcall - punt to userspace */
576 int i;
577
578 if (vcpu->arch.shregs.msr & MSR_PR) {
579 /* sc 1 from userspace - reflect to guest syscall */
580 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
581 r = RESUME_GUEST;
582 break;
583 }
584 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
585 for (i = 0; i < 9; ++i)
586 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
587 run->exit_reason = KVM_EXIT_PAPR_HCALL;
588 vcpu->arch.hcall_needed = 1;
589 r = RESUME_HOST;
590 break;
591 }
592 /*
593 * We get these next two if the guest accesses a page which it thinks
594 * it has mapped but which is not actually present, either because
595 * it is for an emulated I/O device or because the corresonding
596 * host page has been paged out. Any other HDSI/HISI interrupts
597 * have been handled already.
598 */
599 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
600 r = RESUME_PAGE_FAULT;
601 break;
602 case BOOK3S_INTERRUPT_H_INST_STORAGE:
603 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
604 vcpu->arch.fault_dsisr = 0;
605 r = RESUME_PAGE_FAULT;
606 break;
607 /*
608 * This occurs if the guest executes an illegal instruction.
609 * We just generate a program interrupt to the guest, since
610 * we don't emulate any guest instructions at this stage.
611 */
612 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
613 kvmppc_core_queue_program(vcpu, 0x80000);
614 r = RESUME_GUEST;
615 break;
616 default:
617 kvmppc_dump_regs(vcpu);
618 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
619 vcpu->arch.trap, kvmppc_get_pc(vcpu),
620 vcpu->arch.shregs.msr);
621 r = RESUME_HOST;
622 BUG();
623 break;
624 }
625
626 return r;
627 }
628
629 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
630 struct kvm_sregs *sregs)
631 {
632 int i;
633
634 sregs->pvr = vcpu->arch.pvr;
635
636 memset(sregs, 0, sizeof(struct kvm_sregs));
637 for (i = 0; i < vcpu->arch.slb_max; i++) {
638 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
639 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
640 }
641
642 return 0;
643 }
644
645 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
646 struct kvm_sregs *sregs)
647 {
648 int i, j;
649
650 kvmppc_set_pvr(vcpu, sregs->pvr);
651
652 j = 0;
653 for (i = 0; i < vcpu->arch.slb_nr; i++) {
654 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
655 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
656 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
657 ++j;
658 }
659 }
660 vcpu->arch.slb_max = j;
661
662 return 0;
663 }
664
665 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
666 {
667 int r = 0;
668 long int i;
669
670 switch (id) {
671 case KVM_REG_PPC_HIOR:
672 *val = get_reg_val(id, 0);
673 break;
674 case KVM_REG_PPC_DABR:
675 *val = get_reg_val(id, vcpu->arch.dabr);
676 break;
677 case KVM_REG_PPC_DSCR:
678 *val = get_reg_val(id, vcpu->arch.dscr);
679 break;
680 case KVM_REG_PPC_PURR:
681 *val = get_reg_val(id, vcpu->arch.purr);
682 break;
683 case KVM_REG_PPC_SPURR:
684 *val = get_reg_val(id, vcpu->arch.spurr);
685 break;
686 case KVM_REG_PPC_AMR:
687 *val = get_reg_val(id, vcpu->arch.amr);
688 break;
689 case KVM_REG_PPC_UAMOR:
690 *val = get_reg_val(id, vcpu->arch.uamor);
691 break;
692 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
693 i = id - KVM_REG_PPC_MMCR0;
694 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
695 break;
696 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
697 i = id - KVM_REG_PPC_PMC1;
698 *val = get_reg_val(id, vcpu->arch.pmc[i]);
699 break;
700 #ifdef CONFIG_VSX
701 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
702 if (cpu_has_feature(CPU_FTR_VSX)) {
703 /* VSX => FP reg i is stored in arch.vsr[2*i] */
704 long int i = id - KVM_REG_PPC_FPR0;
705 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
706 } else {
707 /* let generic code handle it */
708 r = -EINVAL;
709 }
710 break;
711 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
712 if (cpu_has_feature(CPU_FTR_VSX)) {
713 long int i = id - KVM_REG_PPC_VSR0;
714 val->vsxval[0] = vcpu->arch.vsr[2 * i];
715 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
716 } else {
717 r = -ENXIO;
718 }
719 break;
720 #endif /* CONFIG_VSX */
721 case KVM_REG_PPC_VPA_ADDR:
722 spin_lock(&vcpu->arch.vpa_update_lock);
723 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
724 spin_unlock(&vcpu->arch.vpa_update_lock);
725 break;
726 case KVM_REG_PPC_VPA_SLB:
727 spin_lock(&vcpu->arch.vpa_update_lock);
728 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
729 val->vpaval.length = vcpu->arch.slb_shadow.len;
730 spin_unlock(&vcpu->arch.vpa_update_lock);
731 break;
732 case KVM_REG_PPC_VPA_DTL:
733 spin_lock(&vcpu->arch.vpa_update_lock);
734 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
735 val->vpaval.length = vcpu->arch.dtl.len;
736 spin_unlock(&vcpu->arch.vpa_update_lock);
737 break;
738 default:
739 r = -EINVAL;
740 break;
741 }
742
743 return r;
744 }
745
746 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
747 {
748 int r = 0;
749 long int i;
750 unsigned long addr, len;
751
752 switch (id) {
753 case KVM_REG_PPC_HIOR:
754 /* Only allow this to be set to zero */
755 if (set_reg_val(id, *val))
756 r = -EINVAL;
757 break;
758 case KVM_REG_PPC_DABR:
759 vcpu->arch.dabr = set_reg_val(id, *val);
760 break;
761 case KVM_REG_PPC_DSCR:
762 vcpu->arch.dscr = set_reg_val(id, *val);
763 break;
764 case KVM_REG_PPC_PURR:
765 vcpu->arch.purr = set_reg_val(id, *val);
766 break;
767 case KVM_REG_PPC_SPURR:
768 vcpu->arch.spurr = set_reg_val(id, *val);
769 break;
770 case KVM_REG_PPC_AMR:
771 vcpu->arch.amr = set_reg_val(id, *val);
772 break;
773 case KVM_REG_PPC_UAMOR:
774 vcpu->arch.uamor = set_reg_val(id, *val);
775 break;
776 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
777 i = id - KVM_REG_PPC_MMCR0;
778 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
779 break;
780 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
781 i = id - KVM_REG_PPC_PMC1;
782 vcpu->arch.pmc[i] = set_reg_val(id, *val);
783 break;
784 #ifdef CONFIG_VSX
785 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
786 if (cpu_has_feature(CPU_FTR_VSX)) {
787 /* VSX => FP reg i is stored in arch.vsr[2*i] */
788 long int i = id - KVM_REG_PPC_FPR0;
789 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
790 } else {
791 /* let generic code handle it */
792 r = -EINVAL;
793 }
794 break;
795 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
796 if (cpu_has_feature(CPU_FTR_VSX)) {
797 long int i = id - KVM_REG_PPC_VSR0;
798 vcpu->arch.vsr[2 * i] = val->vsxval[0];
799 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
800 } else {
801 r = -ENXIO;
802 }
803 break;
804 #endif /* CONFIG_VSX */
805 case KVM_REG_PPC_VPA_ADDR:
806 addr = set_reg_val(id, *val);
807 r = -EINVAL;
808 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
809 vcpu->arch.dtl.next_gpa))
810 break;
811 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
812 break;
813 case KVM_REG_PPC_VPA_SLB:
814 addr = val->vpaval.addr;
815 len = val->vpaval.length;
816 r = -EINVAL;
817 if (addr && !vcpu->arch.vpa.next_gpa)
818 break;
819 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
820 break;
821 case KVM_REG_PPC_VPA_DTL:
822 addr = val->vpaval.addr;
823 len = val->vpaval.length;
824 r = -EINVAL;
825 if (addr && (len < sizeof(struct dtl_entry) ||
826 !vcpu->arch.vpa.next_gpa))
827 break;
828 len -= len % sizeof(struct dtl_entry);
829 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
830 break;
831 default:
832 r = -EINVAL;
833 break;
834 }
835
836 return r;
837 }
838
839 int kvmppc_core_check_processor_compat(void)
840 {
841 if (cpu_has_feature(CPU_FTR_HVMODE))
842 return 0;
843 return -EIO;
844 }
845
846 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
847 {
848 struct kvm_vcpu *vcpu;
849 int err = -EINVAL;
850 int core;
851 struct kvmppc_vcore *vcore;
852
853 core = id / threads_per_core;
854 if (core >= KVM_MAX_VCORES)
855 goto out;
856
857 err = -ENOMEM;
858 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
859 if (!vcpu)
860 goto out;
861
862 err = kvm_vcpu_init(vcpu, kvm, id);
863 if (err)
864 goto free_vcpu;
865
866 vcpu->arch.shared = &vcpu->arch.shregs;
867 vcpu->arch.mmcr[0] = MMCR0_FC;
868 vcpu->arch.ctrl = CTRL_RUNLATCH;
869 /* default to host PVR, since we can't spoof it */
870 vcpu->arch.pvr = mfspr(SPRN_PVR);
871 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
872 spin_lock_init(&vcpu->arch.vpa_update_lock);
873 spin_lock_init(&vcpu->arch.tbacct_lock);
874 vcpu->arch.busy_preempt = TB_NIL;
875
876 kvmppc_mmu_book3s_hv_init(vcpu);
877
878 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
879
880 init_waitqueue_head(&vcpu->arch.cpu_run);
881
882 mutex_lock(&kvm->lock);
883 vcore = kvm->arch.vcores[core];
884 if (!vcore) {
885 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
886 if (vcore) {
887 INIT_LIST_HEAD(&vcore->runnable_threads);
888 spin_lock_init(&vcore->lock);
889 init_waitqueue_head(&vcore->wq);
890 vcore->preempt_tb = TB_NIL;
891 }
892 kvm->arch.vcores[core] = vcore;
893 kvm->arch.online_vcores++;
894 }
895 mutex_unlock(&kvm->lock);
896
897 if (!vcore)
898 goto free_vcpu;
899
900 spin_lock(&vcore->lock);
901 ++vcore->num_threads;
902 spin_unlock(&vcore->lock);
903 vcpu->arch.vcore = vcore;
904
905 vcpu->arch.cpu_type = KVM_CPU_3S_64;
906 kvmppc_sanity_check(vcpu);
907
908 return vcpu;
909
910 free_vcpu:
911 kmem_cache_free(kvm_vcpu_cache, vcpu);
912 out:
913 return ERR_PTR(err);
914 }
915
916 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
917 {
918 spin_lock(&vcpu->arch.vpa_update_lock);
919 if (vcpu->arch.dtl.pinned_addr)
920 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
921 if (vcpu->arch.slb_shadow.pinned_addr)
922 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
923 if (vcpu->arch.vpa.pinned_addr)
924 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
925 spin_unlock(&vcpu->arch.vpa_update_lock);
926 kvm_vcpu_uninit(vcpu);
927 kmem_cache_free(kvm_vcpu_cache, vcpu);
928 }
929
930 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
931 {
932 unsigned long dec_nsec, now;
933
934 now = get_tb();
935 if (now > vcpu->arch.dec_expires) {
936 /* decrementer has already gone negative */
937 kvmppc_core_queue_dec(vcpu);
938 kvmppc_core_prepare_to_enter(vcpu);
939 return;
940 }
941 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
942 / tb_ticks_per_sec;
943 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
944 HRTIMER_MODE_REL);
945 vcpu->arch.timer_running = 1;
946 }
947
948 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
949 {
950 vcpu->arch.ceded = 0;
951 if (vcpu->arch.timer_running) {
952 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
953 vcpu->arch.timer_running = 0;
954 }
955 }
956
957 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
958 extern void xics_wake_cpu(int cpu);
959
960 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
961 struct kvm_vcpu *vcpu)
962 {
963 u64 now;
964
965 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
966 return;
967 spin_lock(&vcpu->arch.tbacct_lock);
968 now = mftb();
969 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
970 vcpu->arch.stolen_logged;
971 vcpu->arch.busy_preempt = now;
972 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
973 spin_unlock(&vcpu->arch.tbacct_lock);
974 --vc->n_runnable;
975 list_del(&vcpu->arch.run_list);
976 }
977
978 static int kvmppc_grab_hwthread(int cpu)
979 {
980 struct paca_struct *tpaca;
981 long timeout = 1000;
982
983 tpaca = &paca[cpu];
984
985 /* Ensure the thread won't go into the kernel if it wakes */
986 tpaca->kvm_hstate.hwthread_req = 1;
987 tpaca->kvm_hstate.kvm_vcpu = NULL;
988
989 /*
990 * If the thread is already executing in the kernel (e.g. handling
991 * a stray interrupt), wait for it to get back to nap mode.
992 * The smp_mb() is to ensure that our setting of hwthread_req
993 * is visible before we look at hwthread_state, so if this
994 * races with the code at system_reset_pSeries and the thread
995 * misses our setting of hwthread_req, we are sure to see its
996 * setting of hwthread_state, and vice versa.
997 */
998 smp_mb();
999 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1000 if (--timeout <= 0) {
1001 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1002 return -EBUSY;
1003 }
1004 udelay(1);
1005 }
1006 return 0;
1007 }
1008
1009 static void kvmppc_release_hwthread(int cpu)
1010 {
1011 struct paca_struct *tpaca;
1012
1013 tpaca = &paca[cpu];
1014 tpaca->kvm_hstate.hwthread_req = 0;
1015 tpaca->kvm_hstate.kvm_vcpu = NULL;
1016 }
1017
1018 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1019 {
1020 int cpu;
1021 struct paca_struct *tpaca;
1022 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1023
1024 if (vcpu->arch.timer_running) {
1025 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1026 vcpu->arch.timer_running = 0;
1027 }
1028 cpu = vc->pcpu + vcpu->arch.ptid;
1029 tpaca = &paca[cpu];
1030 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1031 tpaca->kvm_hstate.kvm_vcore = vc;
1032 tpaca->kvm_hstate.napping = 0;
1033 vcpu->cpu = vc->pcpu;
1034 smp_wmb();
1035 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1036 if (vcpu->arch.ptid) {
1037 xics_wake_cpu(cpu);
1038 ++vc->n_woken;
1039 }
1040 #endif
1041 }
1042
1043 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1044 {
1045 int i;
1046
1047 HMT_low();
1048 i = 0;
1049 while (vc->nap_count < vc->n_woken) {
1050 if (++i >= 1000000) {
1051 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1052 vc->nap_count, vc->n_woken);
1053 break;
1054 }
1055 cpu_relax();
1056 }
1057 HMT_medium();
1058 }
1059
1060 /*
1061 * Check that we are on thread 0 and that any other threads in
1062 * this core are off-line. Then grab the threads so they can't
1063 * enter the kernel.
1064 */
1065 static int on_primary_thread(void)
1066 {
1067 int cpu = smp_processor_id();
1068 int thr = cpu_thread_in_core(cpu);
1069
1070 if (thr)
1071 return 0;
1072 while (++thr < threads_per_core)
1073 if (cpu_online(cpu + thr))
1074 return 0;
1075
1076 /* Grab all hw threads so they can't go into the kernel */
1077 for (thr = 1; thr < threads_per_core; ++thr) {
1078 if (kvmppc_grab_hwthread(cpu + thr)) {
1079 /* Couldn't grab one; let the others go */
1080 do {
1081 kvmppc_release_hwthread(cpu + thr);
1082 } while (--thr > 0);
1083 return 0;
1084 }
1085 }
1086 return 1;
1087 }
1088
1089 /*
1090 * Run a set of guest threads on a physical core.
1091 * Called with vc->lock held.
1092 */
1093 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1094 {
1095 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1096 long ret;
1097 u64 now;
1098 int ptid, i, need_vpa_update;
1099 int srcu_idx;
1100 struct kvm_vcpu *vcpus_to_update[threads_per_core];
1101
1102 /* don't start if any threads have a signal pending */
1103 need_vpa_update = 0;
1104 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1105 if (signal_pending(vcpu->arch.run_task))
1106 return;
1107 if (vcpu->arch.vpa.update_pending ||
1108 vcpu->arch.slb_shadow.update_pending ||
1109 vcpu->arch.dtl.update_pending)
1110 vcpus_to_update[need_vpa_update++] = vcpu;
1111 }
1112
1113 /*
1114 * Initialize *vc, in particular vc->vcore_state, so we can
1115 * drop the vcore lock if necessary.
1116 */
1117 vc->n_woken = 0;
1118 vc->nap_count = 0;
1119 vc->entry_exit_count = 0;
1120 vc->vcore_state = VCORE_STARTING;
1121 vc->in_guest = 0;
1122 vc->napping_threads = 0;
1123
1124 /*
1125 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1126 * which can't be called with any spinlocks held.
1127 */
1128 if (need_vpa_update) {
1129 spin_unlock(&vc->lock);
1130 for (i = 0; i < need_vpa_update; ++i)
1131 kvmppc_update_vpas(vcpus_to_update[i]);
1132 spin_lock(&vc->lock);
1133 }
1134
1135 /*
1136 * Assign physical thread IDs, first to non-ceded vcpus
1137 * and then to ceded ones.
1138 */
1139 ptid = 0;
1140 vcpu0 = NULL;
1141 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1142 if (!vcpu->arch.ceded) {
1143 if (!ptid)
1144 vcpu0 = vcpu;
1145 vcpu->arch.ptid = ptid++;
1146 }
1147 }
1148 if (!vcpu0)
1149 goto out; /* nothing to run; should never happen */
1150 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1151 if (vcpu->arch.ceded)
1152 vcpu->arch.ptid = ptid++;
1153
1154 /*
1155 * Make sure we are running on thread 0, and that
1156 * secondary threads are offline.
1157 */
1158 if (threads_per_core > 1 && !on_primary_thread()) {
1159 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1160 vcpu->arch.ret = -EBUSY;
1161 goto out;
1162 }
1163
1164 vc->pcpu = smp_processor_id();
1165 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1166 kvmppc_start_thread(vcpu);
1167 kvmppc_create_dtl_entry(vcpu, vc);
1168 }
1169
1170 vc->vcore_state = VCORE_RUNNING;
1171 preempt_disable();
1172 spin_unlock(&vc->lock);
1173
1174 kvm_guest_enter();
1175
1176 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1177
1178 __kvmppc_vcore_entry(NULL, vcpu0);
1179
1180 spin_lock(&vc->lock);
1181 /* disable sending of IPIs on virtual external irqs */
1182 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1183 vcpu->cpu = -1;
1184 /* wait for secondary threads to finish writing their state to memory */
1185 if (vc->nap_count < vc->n_woken)
1186 kvmppc_wait_for_nap(vc);
1187 for (i = 0; i < threads_per_core; ++i)
1188 kvmppc_release_hwthread(vc->pcpu + i);
1189 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1190 vc->vcore_state = VCORE_EXITING;
1191 spin_unlock(&vc->lock);
1192
1193 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1194
1195 /* make sure updates to secondary vcpu structs are visible now */
1196 smp_mb();
1197 kvm_guest_exit();
1198
1199 preempt_enable();
1200 kvm_resched(vcpu);
1201
1202 spin_lock(&vc->lock);
1203 now = get_tb();
1204 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1205 /* cancel pending dec exception if dec is positive */
1206 if (now < vcpu->arch.dec_expires &&
1207 kvmppc_core_pending_dec(vcpu))
1208 kvmppc_core_dequeue_dec(vcpu);
1209
1210 ret = RESUME_GUEST;
1211 if (vcpu->arch.trap)
1212 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1213 vcpu->arch.run_task);
1214
1215 vcpu->arch.ret = ret;
1216 vcpu->arch.trap = 0;
1217
1218 if (vcpu->arch.ceded) {
1219 if (ret != RESUME_GUEST)
1220 kvmppc_end_cede(vcpu);
1221 else
1222 kvmppc_set_timer(vcpu);
1223 }
1224 }
1225
1226 out:
1227 vc->vcore_state = VCORE_INACTIVE;
1228 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1229 arch.run_list) {
1230 if (vcpu->arch.ret != RESUME_GUEST) {
1231 kvmppc_remove_runnable(vc, vcpu);
1232 wake_up(&vcpu->arch.cpu_run);
1233 }
1234 }
1235 }
1236
1237 /*
1238 * Wait for some other vcpu thread to execute us, and
1239 * wake us up when we need to handle something in the host.
1240 */
1241 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1242 {
1243 DEFINE_WAIT(wait);
1244
1245 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1246 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1247 schedule();
1248 finish_wait(&vcpu->arch.cpu_run, &wait);
1249 }
1250
1251 /*
1252 * All the vcpus in this vcore are idle, so wait for a decrementer
1253 * or external interrupt to one of the vcpus. vc->lock is held.
1254 */
1255 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1256 {
1257 DEFINE_WAIT(wait);
1258
1259 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1260 vc->vcore_state = VCORE_SLEEPING;
1261 spin_unlock(&vc->lock);
1262 schedule();
1263 finish_wait(&vc->wq, &wait);
1264 spin_lock(&vc->lock);
1265 vc->vcore_state = VCORE_INACTIVE;
1266 }
1267
1268 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1269 {
1270 int n_ceded;
1271 struct kvmppc_vcore *vc;
1272 struct kvm_vcpu *v, *vn;
1273
1274 kvm_run->exit_reason = 0;
1275 vcpu->arch.ret = RESUME_GUEST;
1276 vcpu->arch.trap = 0;
1277 kvmppc_update_vpas(vcpu);
1278
1279 /*
1280 * Synchronize with other threads in this virtual core
1281 */
1282 vc = vcpu->arch.vcore;
1283 spin_lock(&vc->lock);
1284 vcpu->arch.ceded = 0;
1285 vcpu->arch.run_task = current;
1286 vcpu->arch.kvm_run = kvm_run;
1287 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1288 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1289 vcpu->arch.busy_preempt = TB_NIL;
1290 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1291 ++vc->n_runnable;
1292
1293 /*
1294 * This happens the first time this is called for a vcpu.
1295 * If the vcore is already running, we may be able to start
1296 * this thread straight away and have it join in.
1297 */
1298 if (!signal_pending(current)) {
1299 if (vc->vcore_state == VCORE_RUNNING &&
1300 VCORE_EXIT_COUNT(vc) == 0) {
1301 vcpu->arch.ptid = vc->n_runnable - 1;
1302 kvmppc_create_dtl_entry(vcpu, vc);
1303 kvmppc_start_thread(vcpu);
1304 } else if (vc->vcore_state == VCORE_SLEEPING) {
1305 wake_up(&vc->wq);
1306 }
1307
1308 }
1309
1310 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1311 !signal_pending(current)) {
1312 if (vc->vcore_state != VCORE_INACTIVE) {
1313 spin_unlock(&vc->lock);
1314 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1315 spin_lock(&vc->lock);
1316 continue;
1317 }
1318 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1319 arch.run_list) {
1320 kvmppc_core_prepare_to_enter(v);
1321 if (signal_pending(v->arch.run_task)) {
1322 kvmppc_remove_runnable(vc, v);
1323 v->stat.signal_exits++;
1324 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1325 v->arch.ret = -EINTR;
1326 wake_up(&v->arch.cpu_run);
1327 }
1328 }
1329 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1330 break;
1331 vc->runner = vcpu;
1332 n_ceded = 0;
1333 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1334 if (!v->arch.pending_exceptions)
1335 n_ceded += v->arch.ceded;
1336 if (n_ceded == vc->n_runnable)
1337 kvmppc_vcore_blocked(vc);
1338 else
1339 kvmppc_run_core(vc);
1340 vc->runner = NULL;
1341 }
1342
1343 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1344 (vc->vcore_state == VCORE_RUNNING ||
1345 vc->vcore_state == VCORE_EXITING)) {
1346 spin_unlock(&vc->lock);
1347 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1348 spin_lock(&vc->lock);
1349 }
1350
1351 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1352 kvmppc_remove_runnable(vc, vcpu);
1353 vcpu->stat.signal_exits++;
1354 kvm_run->exit_reason = KVM_EXIT_INTR;
1355 vcpu->arch.ret = -EINTR;
1356 }
1357
1358 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1359 /* Wake up some vcpu to run the core */
1360 v = list_first_entry(&vc->runnable_threads,
1361 struct kvm_vcpu, arch.run_list);
1362 wake_up(&v->arch.cpu_run);
1363 }
1364
1365 spin_unlock(&vc->lock);
1366 return vcpu->arch.ret;
1367 }
1368
1369 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1370 {
1371 int r;
1372 int srcu_idx;
1373
1374 if (!vcpu->arch.sane) {
1375 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1376 return -EINVAL;
1377 }
1378
1379 kvmppc_core_prepare_to_enter(vcpu);
1380
1381 /* No need to go into the guest when all we'll do is come back out */
1382 if (signal_pending(current)) {
1383 run->exit_reason = KVM_EXIT_INTR;
1384 return -EINTR;
1385 }
1386
1387 atomic_inc(&vcpu->kvm->arch.vcpus_running);
1388 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1389 smp_mb();
1390
1391 /* On the first time here, set up HTAB and VRMA or RMA */
1392 if (!vcpu->kvm->arch.rma_setup_done) {
1393 r = kvmppc_hv_setup_htab_rma(vcpu);
1394 if (r)
1395 goto out;
1396 }
1397
1398 flush_fp_to_thread(current);
1399 flush_altivec_to_thread(current);
1400 flush_vsx_to_thread(current);
1401 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1402 vcpu->arch.pgdir = current->mm->pgd;
1403 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1404
1405 do {
1406 r = kvmppc_run_vcpu(run, vcpu);
1407
1408 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1409 !(vcpu->arch.shregs.msr & MSR_PR)) {
1410 r = kvmppc_pseries_do_hcall(vcpu);
1411 kvmppc_core_prepare_to_enter(vcpu);
1412 } else if (r == RESUME_PAGE_FAULT) {
1413 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1414 r = kvmppc_book3s_hv_page_fault(run, vcpu,
1415 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1416 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1417 }
1418 } while (r == RESUME_GUEST);
1419
1420 out:
1421 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1422 atomic_dec(&vcpu->kvm->arch.vcpus_running);
1423 return r;
1424 }
1425
1426
1427 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1428 Assumes POWER7 or PPC970. */
1429 static inline int lpcr_rmls(unsigned long rma_size)
1430 {
1431 switch (rma_size) {
1432 case 32ul << 20: /* 32 MB */
1433 if (cpu_has_feature(CPU_FTR_ARCH_206))
1434 return 8; /* only supported on POWER7 */
1435 return -1;
1436 case 64ul << 20: /* 64 MB */
1437 return 3;
1438 case 128ul << 20: /* 128 MB */
1439 return 7;
1440 case 256ul << 20: /* 256 MB */
1441 return 4;
1442 case 1ul << 30: /* 1 GB */
1443 return 2;
1444 case 16ul << 30: /* 16 GB */
1445 return 1;
1446 case 256ul << 30: /* 256 GB */
1447 return 0;
1448 default:
1449 return -1;
1450 }
1451 }
1452
1453 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1454 {
1455 struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1456 struct page *page;
1457
1458 if (vmf->pgoff >= ri->npages)
1459 return VM_FAULT_SIGBUS;
1460
1461 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1462 get_page(page);
1463 vmf->page = page;
1464 return 0;
1465 }
1466
1467 static const struct vm_operations_struct kvm_rma_vm_ops = {
1468 .fault = kvm_rma_fault,
1469 };
1470
1471 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1472 {
1473 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1474 vma->vm_ops = &kvm_rma_vm_ops;
1475 return 0;
1476 }
1477
1478 static int kvm_rma_release(struct inode *inode, struct file *filp)
1479 {
1480 struct kvmppc_linear_info *ri = filp->private_data;
1481
1482 kvm_release_rma(ri);
1483 return 0;
1484 }
1485
1486 static struct file_operations kvm_rma_fops = {
1487 .mmap = kvm_rma_mmap,
1488 .release = kvm_rma_release,
1489 };
1490
1491 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1492 {
1493 struct kvmppc_linear_info *ri;
1494 long fd;
1495
1496 ri = kvm_alloc_rma();
1497 if (!ri)
1498 return -ENOMEM;
1499
1500 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1501 if (fd < 0)
1502 kvm_release_rma(ri);
1503
1504 ret->rma_size = ri->npages << PAGE_SHIFT;
1505 return fd;
1506 }
1507
1508 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1509 int linux_psize)
1510 {
1511 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1512
1513 if (!def->shift)
1514 return;
1515 (*sps)->page_shift = def->shift;
1516 (*sps)->slb_enc = def->sllp;
1517 (*sps)->enc[0].page_shift = def->shift;
1518 (*sps)->enc[0].pte_enc = def->penc;
1519 (*sps)++;
1520 }
1521
1522 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1523 {
1524 struct kvm_ppc_one_seg_page_size *sps;
1525
1526 info->flags = KVM_PPC_PAGE_SIZES_REAL;
1527 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1528 info->flags |= KVM_PPC_1T_SEGMENTS;
1529 info->slb_size = mmu_slb_size;
1530
1531 /* We only support these sizes for now, and no muti-size segments */
1532 sps = &info->sps[0];
1533 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1534 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1535 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1536
1537 return 0;
1538 }
1539
1540 /*
1541 * Get (and clear) the dirty memory log for a memory slot.
1542 */
1543 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1544 {
1545 struct kvm_memory_slot *memslot;
1546 int r;
1547 unsigned long n;
1548
1549 mutex_lock(&kvm->slots_lock);
1550
1551 r = -EINVAL;
1552 if (log->slot >= KVM_USER_MEM_SLOTS)
1553 goto out;
1554
1555 memslot = id_to_memslot(kvm->memslots, log->slot);
1556 r = -ENOENT;
1557 if (!memslot->dirty_bitmap)
1558 goto out;
1559
1560 n = kvm_dirty_bitmap_bytes(memslot);
1561 memset(memslot->dirty_bitmap, 0, n);
1562
1563 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1564 if (r)
1565 goto out;
1566
1567 r = -EFAULT;
1568 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1569 goto out;
1570
1571 r = 0;
1572 out:
1573 mutex_unlock(&kvm->slots_lock);
1574 return r;
1575 }
1576
1577 static void unpin_slot(struct kvm_memory_slot *memslot)
1578 {
1579 unsigned long *physp;
1580 unsigned long j, npages, pfn;
1581 struct page *page;
1582
1583 physp = memslot->arch.slot_phys;
1584 npages = memslot->npages;
1585 if (!physp)
1586 return;
1587 for (j = 0; j < npages; j++) {
1588 if (!(physp[j] & KVMPPC_GOT_PAGE))
1589 continue;
1590 pfn = physp[j] >> PAGE_SHIFT;
1591 page = pfn_to_page(pfn);
1592 SetPageDirty(page);
1593 put_page(page);
1594 }
1595 }
1596
1597 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1598 struct kvm_memory_slot *dont)
1599 {
1600 if (!dont || free->arch.rmap != dont->arch.rmap) {
1601 vfree(free->arch.rmap);
1602 free->arch.rmap = NULL;
1603 }
1604 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1605 unpin_slot(free);
1606 vfree(free->arch.slot_phys);
1607 free->arch.slot_phys = NULL;
1608 }
1609 }
1610
1611 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1612 unsigned long npages)
1613 {
1614 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1615 if (!slot->arch.rmap)
1616 return -ENOMEM;
1617 slot->arch.slot_phys = NULL;
1618
1619 return 0;
1620 }
1621
1622 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1623 struct kvm_memory_slot *memslot,
1624 struct kvm_userspace_memory_region *mem)
1625 {
1626 unsigned long *phys;
1627
1628 /* Allocate a slot_phys array if needed */
1629 phys = memslot->arch.slot_phys;
1630 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1631 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1632 if (!phys)
1633 return -ENOMEM;
1634 memslot->arch.slot_phys = phys;
1635 }
1636
1637 return 0;
1638 }
1639
1640 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1641 struct kvm_userspace_memory_region *mem,
1642 struct kvm_memory_slot old)
1643 {
1644 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1645 struct kvm_memory_slot *memslot;
1646
1647 if (npages && old.npages) {
1648 /*
1649 * If modifying a memslot, reset all the rmap dirty bits.
1650 * If this is a new memslot, we don't need to do anything
1651 * since the rmap array starts out as all zeroes,
1652 * i.e. no pages are dirty.
1653 */
1654 memslot = id_to_memslot(kvm->memslots, mem->slot);
1655 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1656 }
1657 }
1658
1659 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1660 {
1661 int err = 0;
1662 struct kvm *kvm = vcpu->kvm;
1663 struct kvmppc_linear_info *ri = NULL;
1664 unsigned long hva;
1665 struct kvm_memory_slot *memslot;
1666 struct vm_area_struct *vma;
1667 unsigned long lpcr, senc;
1668 unsigned long psize, porder;
1669 unsigned long rma_size;
1670 unsigned long rmls;
1671 unsigned long *physp;
1672 unsigned long i, npages;
1673 int srcu_idx;
1674
1675 mutex_lock(&kvm->lock);
1676 if (kvm->arch.rma_setup_done)
1677 goto out; /* another vcpu beat us to it */
1678
1679 /* Allocate hashed page table (if not done already) and reset it */
1680 if (!kvm->arch.hpt_virt) {
1681 err = kvmppc_alloc_hpt(kvm, NULL);
1682 if (err) {
1683 pr_err("KVM: Couldn't alloc HPT\n");
1684 goto out;
1685 }
1686 }
1687
1688 /* Look up the memslot for guest physical address 0 */
1689 srcu_idx = srcu_read_lock(&kvm->srcu);
1690 memslot = gfn_to_memslot(kvm, 0);
1691
1692 /* We must have some memory at 0 by now */
1693 err = -EINVAL;
1694 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1695 goto out_srcu;
1696
1697 /* Look up the VMA for the start of this memory slot */
1698 hva = memslot->userspace_addr;
1699 down_read(&current->mm->mmap_sem);
1700 vma = find_vma(current->mm, hva);
1701 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1702 goto up_out;
1703
1704 psize = vma_kernel_pagesize(vma);
1705 porder = __ilog2(psize);
1706
1707 /* Is this one of our preallocated RMAs? */
1708 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1709 hva == vma->vm_start)
1710 ri = vma->vm_file->private_data;
1711
1712 up_read(&current->mm->mmap_sem);
1713
1714 if (!ri) {
1715 /* On POWER7, use VRMA; on PPC970, give up */
1716 err = -EPERM;
1717 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1718 pr_err("KVM: CPU requires an RMO\n");
1719 goto out_srcu;
1720 }
1721
1722 /* We can handle 4k, 64k or 16M pages in the VRMA */
1723 err = -EINVAL;
1724 if (!(psize == 0x1000 || psize == 0x10000 ||
1725 psize == 0x1000000))
1726 goto out_srcu;
1727
1728 /* Update VRMASD field in the LPCR */
1729 senc = slb_pgsize_encoding(psize);
1730 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1731 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1732 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1733 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1734 kvm->arch.lpcr = lpcr;
1735
1736 /* Create HPTEs in the hash page table for the VRMA */
1737 kvmppc_map_vrma(vcpu, memslot, porder);
1738
1739 } else {
1740 /* Set up to use an RMO region */
1741 rma_size = ri->npages;
1742 if (rma_size > memslot->npages)
1743 rma_size = memslot->npages;
1744 rma_size <<= PAGE_SHIFT;
1745 rmls = lpcr_rmls(rma_size);
1746 err = -EINVAL;
1747 if (rmls < 0) {
1748 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1749 goto out_srcu;
1750 }
1751 atomic_inc(&ri->use_count);
1752 kvm->arch.rma = ri;
1753
1754 /* Update LPCR and RMOR */
1755 lpcr = kvm->arch.lpcr;
1756 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1757 /* PPC970; insert RMLS value (split field) in HID4 */
1758 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1759 (3ul << HID4_RMLS2_SH));
1760 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1761 ((rmls & 3) << HID4_RMLS2_SH);
1762 /* RMOR is also in HID4 */
1763 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1764 << HID4_RMOR_SH;
1765 } else {
1766 /* POWER7 */
1767 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1768 lpcr |= rmls << LPCR_RMLS_SH;
1769 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1770 }
1771 kvm->arch.lpcr = lpcr;
1772 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1773 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1774
1775 /* Initialize phys addrs of pages in RMO */
1776 npages = ri->npages;
1777 porder = __ilog2(npages);
1778 physp = memslot->arch.slot_phys;
1779 if (physp) {
1780 if (npages > memslot->npages)
1781 npages = memslot->npages;
1782 spin_lock(&kvm->arch.slot_phys_lock);
1783 for (i = 0; i < npages; ++i)
1784 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1785 porder;
1786 spin_unlock(&kvm->arch.slot_phys_lock);
1787 }
1788 }
1789
1790 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1791 smp_wmb();
1792 kvm->arch.rma_setup_done = 1;
1793 err = 0;
1794 out_srcu:
1795 srcu_read_unlock(&kvm->srcu, srcu_idx);
1796 out:
1797 mutex_unlock(&kvm->lock);
1798 return err;
1799
1800 up_out:
1801 up_read(&current->mm->mmap_sem);
1802 goto out;
1803 }
1804
1805 int kvmppc_core_init_vm(struct kvm *kvm)
1806 {
1807 unsigned long lpcr, lpid;
1808
1809 /* Allocate the guest's logical partition ID */
1810
1811 lpid = kvmppc_alloc_lpid();
1812 if (lpid < 0)
1813 return -ENOMEM;
1814 kvm->arch.lpid = lpid;
1815
1816 /*
1817 * Since we don't flush the TLB when tearing down a VM,
1818 * and this lpid might have previously been used,
1819 * make sure we flush on each core before running the new VM.
1820 */
1821 cpumask_setall(&kvm->arch.need_tlb_flush);
1822
1823 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1824
1825 kvm->arch.rma = NULL;
1826
1827 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1828
1829 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1830 /* PPC970; HID4 is effectively the LPCR */
1831 kvm->arch.host_lpid = 0;
1832 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1833 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1834 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1835 ((lpid & 0xf) << HID4_LPID5_SH);
1836 } else {
1837 /* POWER7; init LPCR for virtual RMA mode */
1838 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1839 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1840 lpcr &= LPCR_PECE | LPCR_LPES;
1841 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1842 LPCR_VPM0 | LPCR_VPM1;
1843 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1844 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1845 }
1846 kvm->arch.lpcr = lpcr;
1847
1848 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1849 spin_lock_init(&kvm->arch.slot_phys_lock);
1850
1851 /*
1852 * Don't allow secondary CPU threads to come online
1853 * while any KVM VMs exist.
1854 */
1855 inhibit_secondary_onlining();
1856
1857 return 0;
1858 }
1859
1860 void kvmppc_core_destroy_vm(struct kvm *kvm)
1861 {
1862 uninhibit_secondary_onlining();
1863
1864 if (kvm->arch.rma) {
1865 kvm_release_rma(kvm->arch.rma);
1866 kvm->arch.rma = NULL;
1867 }
1868
1869 kvmppc_free_hpt(kvm);
1870 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1871 }
1872
1873 /* These are stubs for now */
1874 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1875 {
1876 }
1877
1878 /* We don't need to emulate any privileged instructions or dcbz */
1879 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1880 unsigned int inst, int *advance)
1881 {
1882 return EMULATE_FAIL;
1883 }
1884
1885 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1886 {
1887 return EMULATE_FAIL;
1888 }
1889
1890 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1891 {
1892 return EMULATE_FAIL;
1893 }
1894
1895 static int kvmppc_book3s_hv_init(void)
1896 {
1897 int r;
1898
1899 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1900
1901 if (r)
1902 return r;
1903
1904 r = kvmppc_mmu_hv_init();
1905
1906 return r;
1907 }
1908
1909 static void kvmppc_book3s_hv_exit(void)
1910 {
1911 kvm_exit();
1912 }
1913
1914 module_init(kvmppc_book3s_hv_init);
1915 module_exit(kvmppc_book3s_hv_exit);