]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'next' into for-linus
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108 .set = param_set_int,
109 .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
114
115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
117 #endif
118
119 /* If set, the threads on each CPU core have to be in the same MMU mode */
120 static bool no_mixing_hpt_and_radix;
121
122 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
123 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
124
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126 int *ip)
127 {
128 int i = *ip;
129 struct kvm_vcpu *vcpu;
130
131 while (++i < MAX_SMT_THREADS) {
132 vcpu = READ_ONCE(vc->runnable_threads[i]);
133 if (vcpu) {
134 *ip = i;
135 return vcpu;
136 }
137 }
138 return NULL;
139 }
140
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148
149 /* On POWER9 we can use msgsnd to IPI any cpu */
150 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151 msg |= get_hard_smp_processor_id(cpu);
152 smp_mb();
153 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154 return true;
155 }
156
157 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
158 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159 preempt_disable();
160 if (cpu_first_thread_sibling(cpu) ==
161 cpu_first_thread_sibling(smp_processor_id())) {
162 msg |= cpu_thread_in_core(cpu);
163 smp_mb();
164 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165 preempt_enable();
166 return true;
167 }
168 preempt_enable();
169 }
170
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172 if (cpu >= 0 && cpu < nr_cpu_ids) {
173 if (paca[cpu].kvm_hstate.xics_phys) {
174 xics_wake_cpu(cpu);
175 return true;
176 }
177 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178 return true;
179 }
180 #endif
181
182 return false;
183 }
184
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187 int cpu;
188 struct swait_queue_head *wqp;
189
190 wqp = kvm_arch_vcpu_wq(vcpu);
191 if (swq_has_sleeper(wqp)) {
192 swake_up(wqp);
193 ++vcpu->stat.halt_wakeup;
194 }
195
196 cpu = READ_ONCE(vcpu->arch.thread_cpu);
197 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198 return;
199
200 /* CPU points to the first thread of the core */
201 cpu = vcpu->cpu;
202 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203 smp_send_reschedule(cpu);
204 }
205
206 /*
207 * We use the vcpu_load/put functions to measure stolen time.
208 * Stolen time is counted as time when either the vcpu is able to
209 * run as part of a virtual core, but the task running the vcore
210 * is preempted or sleeping, or when the vcpu needs something done
211 * in the kernel by the task running the vcpu, but that task is
212 * preempted or sleeping. Those two things have to be counted
213 * separately, since one of the vcpu tasks will take on the job
214 * of running the core, and the other vcpu tasks in the vcore will
215 * sleep waiting for it to do that, but that sleep shouldn't count
216 * as stolen time.
217 *
218 * Hence we accumulate stolen time when the vcpu can run as part of
219 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220 * needs its task to do other things in the kernel (for example,
221 * service a page fault) in busy_stolen. We don't accumulate
222 * stolen time for a vcore when it is inactive, or for a vcpu
223 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
224 * a misnomer; it means that the vcpu task is not executing in
225 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226 * the kernel. We don't have any way of dividing up that time
227 * between time that the vcpu is genuinely stopped, time that
228 * the task is actively working on behalf of the vcpu, and time
229 * that the task is preempted, so we don't count any of it as
230 * stolen.
231 *
232 * Updates to busy_stolen are protected by arch.tbacct_lock;
233 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234 * lock. The stolen times are measured in units of timebase ticks.
235 * (Note that the != TB_NIL checks below are purely defensive;
236 * they should never fail.)
237 */
238
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(&vc->stoltb_lock, flags);
244 vc->preempt_tb = mftb();
245 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250 unsigned long flags;
251
252 spin_lock_irqsave(&vc->stoltb_lock, flags);
253 if (vc->preempt_tb != TB_NIL) {
254 vc->stolen_tb += mftb() - vc->preempt_tb;
255 vc->preempt_tb = TB_NIL;
256 }
257 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262 struct kvmppc_vcore *vc = vcpu->arch.vcore;
263 unsigned long flags;
264
265 /*
266 * We can test vc->runner without taking the vcore lock,
267 * because only this task ever sets vc->runner to this
268 * vcpu, and once it is set to this vcpu, only this task
269 * ever sets it to NULL.
270 */
271 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272 kvmppc_core_end_stolen(vc);
273
274 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276 vcpu->arch.busy_preempt != TB_NIL) {
277 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278 vcpu->arch.busy_preempt = TB_NIL;
279 }
280 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285 struct kvmppc_vcore *vc = vcpu->arch.vcore;
286 unsigned long flags;
287
288 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289 kvmppc_core_start_stolen(vc);
290
291 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293 vcpu->arch.busy_preempt = mftb();
294 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299 /*
300 * Check for illegal transactional state bit combination
301 * and if we find it, force the TS field to a safe state.
302 */
303 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304 msr &= ~MSR_TS_MASK;
305 vcpu->arch.shregs.msr = msr;
306 kvmppc_end_cede(vcpu);
307 }
308
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311 vcpu->arch.pvr = pvr;
312 }
313
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
316
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320 struct kvmppc_vcore *vc = vcpu->arch.vcore;
321
322 /* We can (emulate) our own architecture version and anything older */
323 if (cpu_has_feature(CPU_FTR_ARCH_300))
324 host_pcr_bit = PCR_ARCH_300;
325 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326 host_pcr_bit = PCR_ARCH_207;
327 else if (cpu_has_feature(CPU_FTR_ARCH_206))
328 host_pcr_bit = PCR_ARCH_206;
329 else
330 host_pcr_bit = PCR_ARCH_205;
331
332 /* Determine lowest PCR bit needed to run guest in given PVR level */
333 guest_pcr_bit = host_pcr_bit;
334 if (arch_compat) {
335 switch (arch_compat) {
336 case PVR_ARCH_205:
337 guest_pcr_bit = PCR_ARCH_205;
338 break;
339 case PVR_ARCH_206:
340 case PVR_ARCH_206p:
341 guest_pcr_bit = PCR_ARCH_206;
342 break;
343 case PVR_ARCH_207:
344 guest_pcr_bit = PCR_ARCH_207;
345 break;
346 case PVR_ARCH_300:
347 guest_pcr_bit = PCR_ARCH_300;
348 break;
349 default:
350 return -EINVAL;
351 }
352 }
353
354 /* Check requested PCR bits don't exceed our capabilities */
355 if (guest_pcr_bit > host_pcr_bit)
356 return -EINVAL;
357
358 spin_lock(&vc->lock);
359 vc->arch_compat = arch_compat;
360 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361 vc->pcr = host_pcr_bit - guest_pcr_bit;
362 spin_unlock(&vc->lock);
363
364 return 0;
365 }
366
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369 int r;
370
371 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
373 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374 for (r = 0; r < 16; ++r)
375 pr_err("r%2d = %.16lx r%d = %.16lx\n",
376 r, kvmppc_get_gpr(vcpu, r),
377 r+16, kvmppc_get_gpr(vcpu, r+16));
378 pr_err("ctr = %.16lx lr = %.16lx\n",
379 vcpu->arch.ctr, vcpu->arch.lr);
380 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
387 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389 pr_err("fault dar = %.16lx dsisr = %.8x\n",
390 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392 for (r = 0; r < vcpu->arch.slb_max; ++r)
393 pr_err(" ESID = %.16llx VSID = %.16llx\n",
394 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397 vcpu->arch.last_inst);
398 }
399
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402 struct kvm_vcpu *ret;
403
404 mutex_lock(&kvm->lock);
405 ret = kvm_get_vcpu_by_id(kvm, id);
406 mutex_unlock(&kvm->lock);
407 return ret;
408 }
409
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413 vpa->yield_count = cpu_to_be32(1);
414 }
415
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417 unsigned long addr, unsigned long len)
418 {
419 /* check address is cacheline aligned */
420 if (addr & (L1_CACHE_BYTES - 1))
421 return -EINVAL;
422 spin_lock(&vcpu->arch.vpa_update_lock);
423 if (v->next_gpa != addr || v->len != len) {
424 v->next_gpa = addr;
425 v->len = addr ? len : 0;
426 v->update_pending = 1;
427 }
428 spin_unlock(&vcpu->arch.vpa_update_lock);
429 return 0;
430 }
431
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434 u32 dummy;
435 union {
436 __be16 hword;
437 __be32 word;
438 } length;
439 };
440
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443 if (vpap->update_pending)
444 return vpap->next_gpa != 0;
445 return vpap->pinned_addr != NULL;
446 }
447
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449 unsigned long flags,
450 unsigned long vcpuid, unsigned long vpa)
451 {
452 struct kvm *kvm = vcpu->kvm;
453 unsigned long len, nb;
454 void *va;
455 struct kvm_vcpu *tvcpu;
456 int err;
457 int subfunc;
458 struct kvmppc_vpa *vpap;
459
460 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461 if (!tvcpu)
462 return H_PARAMETER;
463
464 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466 subfunc == H_VPA_REG_SLB) {
467 /* Registering new area - address must be cache-line aligned */
468 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469 return H_PARAMETER;
470
471 /* convert logical addr to kernel addr and read length */
472 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473 if (va == NULL)
474 return H_PARAMETER;
475 if (subfunc == H_VPA_REG_VPA)
476 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477 else
478 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479 kvmppc_unpin_guest_page(kvm, va, vpa, false);
480
481 /* Check length */
482 if (len > nb || len < sizeof(struct reg_vpa))
483 return H_PARAMETER;
484 } else {
485 vpa = 0;
486 len = 0;
487 }
488
489 err = H_PARAMETER;
490 vpap = NULL;
491 spin_lock(&tvcpu->arch.vpa_update_lock);
492
493 switch (subfunc) {
494 case H_VPA_REG_VPA: /* register VPA */
495 /*
496 * The size of our lppaca is 1kB because of the way we align
497 * it for the guest to avoid crossing a 4kB boundary. We only
498 * use 640 bytes of the structure though, so we should accept
499 * clients that set a size of 640.
500 */
501 if (len < 640)
502 break;
503 vpap = &tvcpu->arch.vpa;
504 err = 0;
505 break;
506
507 case H_VPA_REG_DTL: /* register DTL */
508 if (len < sizeof(struct dtl_entry))
509 break;
510 len -= len % sizeof(struct dtl_entry);
511
512 /* Check that they have previously registered a VPA */
513 err = H_RESOURCE;
514 if (!vpa_is_registered(&tvcpu->arch.vpa))
515 break;
516
517 vpap = &tvcpu->arch.dtl;
518 err = 0;
519 break;
520
521 case H_VPA_REG_SLB: /* register SLB shadow buffer */
522 /* Check that they have previously registered a VPA */
523 err = H_RESOURCE;
524 if (!vpa_is_registered(&tvcpu->arch.vpa))
525 break;
526
527 vpap = &tvcpu->arch.slb_shadow;
528 err = 0;
529 break;
530
531 case H_VPA_DEREG_VPA: /* deregister VPA */
532 /* Check they don't still have a DTL or SLB buf registered */
533 err = H_RESOURCE;
534 if (vpa_is_registered(&tvcpu->arch.dtl) ||
535 vpa_is_registered(&tvcpu->arch.slb_shadow))
536 break;
537
538 vpap = &tvcpu->arch.vpa;
539 err = 0;
540 break;
541
542 case H_VPA_DEREG_DTL: /* deregister DTL */
543 vpap = &tvcpu->arch.dtl;
544 err = 0;
545 break;
546
547 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
548 vpap = &tvcpu->arch.slb_shadow;
549 err = 0;
550 break;
551 }
552
553 if (vpap) {
554 vpap->next_gpa = vpa;
555 vpap->len = len;
556 vpap->update_pending = 1;
557 }
558
559 spin_unlock(&tvcpu->arch.vpa_update_lock);
560
561 return err;
562 }
563
564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
565 {
566 struct kvm *kvm = vcpu->kvm;
567 void *va;
568 unsigned long nb;
569 unsigned long gpa;
570
571 /*
572 * We need to pin the page pointed to by vpap->next_gpa,
573 * but we can't call kvmppc_pin_guest_page under the lock
574 * as it does get_user_pages() and down_read(). So we
575 * have to drop the lock, pin the page, then get the lock
576 * again and check that a new area didn't get registered
577 * in the meantime.
578 */
579 for (;;) {
580 gpa = vpap->next_gpa;
581 spin_unlock(&vcpu->arch.vpa_update_lock);
582 va = NULL;
583 nb = 0;
584 if (gpa)
585 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
586 spin_lock(&vcpu->arch.vpa_update_lock);
587 if (gpa == vpap->next_gpa)
588 break;
589 /* sigh... unpin that one and try again */
590 if (va)
591 kvmppc_unpin_guest_page(kvm, va, gpa, false);
592 }
593
594 vpap->update_pending = 0;
595 if (va && nb < vpap->len) {
596 /*
597 * If it's now too short, it must be that userspace
598 * has changed the mappings underlying guest memory,
599 * so unregister the region.
600 */
601 kvmppc_unpin_guest_page(kvm, va, gpa, false);
602 va = NULL;
603 }
604 if (vpap->pinned_addr)
605 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
606 vpap->dirty);
607 vpap->gpa = gpa;
608 vpap->pinned_addr = va;
609 vpap->dirty = false;
610 if (va)
611 vpap->pinned_end = va + vpap->len;
612 }
613
614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
615 {
616 if (!(vcpu->arch.vpa.update_pending ||
617 vcpu->arch.slb_shadow.update_pending ||
618 vcpu->arch.dtl.update_pending))
619 return;
620
621 spin_lock(&vcpu->arch.vpa_update_lock);
622 if (vcpu->arch.vpa.update_pending) {
623 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
624 if (vcpu->arch.vpa.pinned_addr)
625 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
626 }
627 if (vcpu->arch.dtl.update_pending) {
628 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
629 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
630 vcpu->arch.dtl_index = 0;
631 }
632 if (vcpu->arch.slb_shadow.update_pending)
633 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
634 spin_unlock(&vcpu->arch.vpa_update_lock);
635 }
636
637 /*
638 * Return the accumulated stolen time for the vcore up until `now'.
639 * The caller should hold the vcore lock.
640 */
641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
642 {
643 u64 p;
644 unsigned long flags;
645
646 spin_lock_irqsave(&vc->stoltb_lock, flags);
647 p = vc->stolen_tb;
648 if (vc->vcore_state != VCORE_INACTIVE &&
649 vc->preempt_tb != TB_NIL)
650 p += now - vc->preempt_tb;
651 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
652 return p;
653 }
654
655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
656 struct kvmppc_vcore *vc)
657 {
658 struct dtl_entry *dt;
659 struct lppaca *vpa;
660 unsigned long stolen;
661 unsigned long core_stolen;
662 u64 now;
663 unsigned long flags;
664
665 dt = vcpu->arch.dtl_ptr;
666 vpa = vcpu->arch.vpa.pinned_addr;
667 now = mftb();
668 core_stolen = vcore_stolen_time(vc, now);
669 stolen = core_stolen - vcpu->arch.stolen_logged;
670 vcpu->arch.stolen_logged = core_stolen;
671 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
672 stolen += vcpu->arch.busy_stolen;
673 vcpu->arch.busy_stolen = 0;
674 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
675 if (!dt || !vpa)
676 return;
677 memset(dt, 0, sizeof(struct dtl_entry));
678 dt->dispatch_reason = 7;
679 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
680 dt->timebase = cpu_to_be64(now + vc->tb_offset);
681 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
682 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
683 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
684 ++dt;
685 if (dt == vcpu->arch.dtl.pinned_end)
686 dt = vcpu->arch.dtl.pinned_addr;
687 vcpu->arch.dtl_ptr = dt;
688 /* order writing *dt vs. writing vpa->dtl_idx */
689 smp_wmb();
690 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
691 vcpu->arch.dtl.dirty = true;
692 }
693
694 /* See if there is a doorbell interrupt pending for a vcpu */
695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
696 {
697 int thr;
698 struct kvmppc_vcore *vc;
699
700 if (vcpu->arch.doorbell_request)
701 return true;
702 /*
703 * Ensure that the read of vcore->dpdes comes after the read
704 * of vcpu->doorbell_request. This barrier matches the
705 * lwsync in book3s_hv_rmhandlers.S just before the
706 * fast_guest_return label.
707 */
708 smp_rmb();
709 vc = vcpu->arch.vcore;
710 thr = vcpu->vcpu_id - vc->first_vcpuid;
711 return !!(vc->dpdes & (1 << thr));
712 }
713
714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
715 {
716 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
717 return true;
718 if ((!vcpu->arch.vcore->arch_compat) &&
719 cpu_has_feature(CPU_FTR_ARCH_207S))
720 return true;
721 return false;
722 }
723
724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
725 unsigned long resource, unsigned long value1,
726 unsigned long value2)
727 {
728 switch (resource) {
729 case H_SET_MODE_RESOURCE_SET_CIABR:
730 if (!kvmppc_power8_compatible(vcpu))
731 return H_P2;
732 if (value2)
733 return H_P4;
734 if (mflags)
735 return H_UNSUPPORTED_FLAG_START;
736 /* Guests can't breakpoint the hypervisor */
737 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
738 return H_P3;
739 vcpu->arch.ciabr = value1;
740 return H_SUCCESS;
741 case H_SET_MODE_RESOURCE_SET_DAWR:
742 if (!kvmppc_power8_compatible(vcpu))
743 return H_P2;
744 if (mflags)
745 return H_UNSUPPORTED_FLAG_START;
746 if (value2 & DABRX_HYP)
747 return H_P4;
748 vcpu->arch.dawr = value1;
749 vcpu->arch.dawrx = value2;
750 return H_SUCCESS;
751 default:
752 return H_TOO_HARD;
753 }
754 }
755
756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
757 {
758 struct kvmppc_vcore *vcore = target->arch.vcore;
759
760 /*
761 * We expect to have been called by the real mode handler
762 * (kvmppc_rm_h_confer()) which would have directly returned
763 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
764 * have useful work to do and should not confer) so we don't
765 * recheck that here.
766 */
767
768 spin_lock(&vcore->lock);
769 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
770 vcore->vcore_state != VCORE_INACTIVE &&
771 vcore->runner)
772 target = vcore->runner;
773 spin_unlock(&vcore->lock);
774
775 return kvm_vcpu_yield_to(target);
776 }
777
778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
779 {
780 int yield_count = 0;
781 struct lppaca *lppaca;
782
783 spin_lock(&vcpu->arch.vpa_update_lock);
784 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
785 if (lppaca)
786 yield_count = be32_to_cpu(lppaca->yield_count);
787 spin_unlock(&vcpu->arch.vpa_update_lock);
788 return yield_count;
789 }
790
791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
792 {
793 unsigned long req = kvmppc_get_gpr(vcpu, 3);
794 unsigned long target, ret = H_SUCCESS;
795 int yield_count;
796 struct kvm_vcpu *tvcpu;
797 int idx, rc;
798
799 if (req <= MAX_HCALL_OPCODE &&
800 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
801 return RESUME_HOST;
802
803 switch (req) {
804 case H_CEDE:
805 break;
806 case H_PROD:
807 target = kvmppc_get_gpr(vcpu, 4);
808 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
809 if (!tvcpu) {
810 ret = H_PARAMETER;
811 break;
812 }
813 tvcpu->arch.prodded = 1;
814 smp_mb();
815 if (tvcpu->arch.ceded)
816 kvmppc_fast_vcpu_kick_hv(tvcpu);
817 break;
818 case H_CONFER:
819 target = kvmppc_get_gpr(vcpu, 4);
820 if (target == -1)
821 break;
822 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
823 if (!tvcpu) {
824 ret = H_PARAMETER;
825 break;
826 }
827 yield_count = kvmppc_get_gpr(vcpu, 5);
828 if (kvmppc_get_yield_count(tvcpu) != yield_count)
829 break;
830 kvm_arch_vcpu_yield_to(tvcpu);
831 break;
832 case H_REGISTER_VPA:
833 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
834 kvmppc_get_gpr(vcpu, 5),
835 kvmppc_get_gpr(vcpu, 6));
836 break;
837 case H_RTAS:
838 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
839 return RESUME_HOST;
840
841 idx = srcu_read_lock(&vcpu->kvm->srcu);
842 rc = kvmppc_rtas_hcall(vcpu);
843 srcu_read_unlock(&vcpu->kvm->srcu, idx);
844
845 if (rc == -ENOENT)
846 return RESUME_HOST;
847 else if (rc == 0)
848 break;
849
850 /* Send the error out to userspace via KVM_RUN */
851 return rc;
852 case H_LOGICAL_CI_LOAD:
853 ret = kvmppc_h_logical_ci_load(vcpu);
854 if (ret == H_TOO_HARD)
855 return RESUME_HOST;
856 break;
857 case H_LOGICAL_CI_STORE:
858 ret = kvmppc_h_logical_ci_store(vcpu);
859 if (ret == H_TOO_HARD)
860 return RESUME_HOST;
861 break;
862 case H_SET_MODE:
863 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
864 kvmppc_get_gpr(vcpu, 5),
865 kvmppc_get_gpr(vcpu, 6),
866 kvmppc_get_gpr(vcpu, 7));
867 if (ret == H_TOO_HARD)
868 return RESUME_HOST;
869 break;
870 case H_XIRR:
871 case H_CPPR:
872 case H_EOI:
873 case H_IPI:
874 case H_IPOLL:
875 case H_XIRR_X:
876 if (kvmppc_xics_enabled(vcpu)) {
877 if (xive_enabled()) {
878 ret = H_NOT_AVAILABLE;
879 return RESUME_GUEST;
880 }
881 ret = kvmppc_xics_hcall(vcpu, req);
882 break;
883 }
884 return RESUME_HOST;
885 case H_PUT_TCE:
886 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
887 kvmppc_get_gpr(vcpu, 5),
888 kvmppc_get_gpr(vcpu, 6));
889 if (ret == H_TOO_HARD)
890 return RESUME_HOST;
891 break;
892 case H_PUT_TCE_INDIRECT:
893 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
894 kvmppc_get_gpr(vcpu, 5),
895 kvmppc_get_gpr(vcpu, 6),
896 kvmppc_get_gpr(vcpu, 7));
897 if (ret == H_TOO_HARD)
898 return RESUME_HOST;
899 break;
900 case H_STUFF_TCE:
901 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
902 kvmppc_get_gpr(vcpu, 5),
903 kvmppc_get_gpr(vcpu, 6),
904 kvmppc_get_gpr(vcpu, 7));
905 if (ret == H_TOO_HARD)
906 return RESUME_HOST;
907 break;
908 default:
909 return RESUME_HOST;
910 }
911 kvmppc_set_gpr(vcpu, 3, ret);
912 vcpu->arch.hcall_needed = 0;
913 return RESUME_GUEST;
914 }
915
916 static int kvmppc_hcall_impl_hv(unsigned long cmd)
917 {
918 switch (cmd) {
919 case H_CEDE:
920 case H_PROD:
921 case H_CONFER:
922 case H_REGISTER_VPA:
923 case H_SET_MODE:
924 case H_LOGICAL_CI_LOAD:
925 case H_LOGICAL_CI_STORE:
926 #ifdef CONFIG_KVM_XICS
927 case H_XIRR:
928 case H_CPPR:
929 case H_EOI:
930 case H_IPI:
931 case H_IPOLL:
932 case H_XIRR_X:
933 #endif
934 return 1;
935 }
936
937 /* See if it's in the real-mode table */
938 return kvmppc_hcall_impl_hv_realmode(cmd);
939 }
940
941 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
942 struct kvm_vcpu *vcpu)
943 {
944 u32 last_inst;
945
946 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
947 EMULATE_DONE) {
948 /*
949 * Fetch failed, so return to guest and
950 * try executing it again.
951 */
952 return RESUME_GUEST;
953 }
954
955 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
956 run->exit_reason = KVM_EXIT_DEBUG;
957 run->debug.arch.address = kvmppc_get_pc(vcpu);
958 return RESUME_HOST;
959 } else {
960 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
961 return RESUME_GUEST;
962 }
963 }
964
965 static void do_nothing(void *x)
966 {
967 }
968
969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
970 {
971 int thr, cpu, pcpu, nthreads;
972 struct kvm_vcpu *v;
973 unsigned long dpdes;
974
975 nthreads = vcpu->kvm->arch.emul_smt_mode;
976 dpdes = 0;
977 cpu = vcpu->vcpu_id & ~(nthreads - 1);
978 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
979 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
980 if (!v)
981 continue;
982 /*
983 * If the vcpu is currently running on a physical cpu thread,
984 * interrupt it in order to pull it out of the guest briefly,
985 * which will update its vcore->dpdes value.
986 */
987 pcpu = READ_ONCE(v->cpu);
988 if (pcpu >= 0)
989 smp_call_function_single(pcpu, do_nothing, NULL, 1);
990 if (kvmppc_doorbell_pending(v))
991 dpdes |= 1 << thr;
992 }
993 return dpdes;
994 }
995
996 /*
997 * On POWER9, emulate doorbell-related instructions in order to
998 * give the guest the illusion of running on a multi-threaded core.
999 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1000 * and mfspr DPDES.
1001 */
1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1003 {
1004 u32 inst, rb, thr;
1005 unsigned long arg;
1006 struct kvm *kvm = vcpu->kvm;
1007 struct kvm_vcpu *tvcpu;
1008
1009 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1010 return RESUME_GUEST;
1011 if (get_op(inst) != 31)
1012 return EMULATE_FAIL;
1013 rb = get_rb(inst);
1014 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1015 switch (get_xop(inst)) {
1016 case OP_31_XOP_MSGSNDP:
1017 arg = kvmppc_get_gpr(vcpu, rb);
1018 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1019 break;
1020 arg &= 0x3f;
1021 if (arg >= kvm->arch.emul_smt_mode)
1022 break;
1023 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1024 if (!tvcpu)
1025 break;
1026 if (!tvcpu->arch.doorbell_request) {
1027 tvcpu->arch.doorbell_request = 1;
1028 kvmppc_fast_vcpu_kick_hv(tvcpu);
1029 }
1030 break;
1031 case OP_31_XOP_MSGCLRP:
1032 arg = kvmppc_get_gpr(vcpu, rb);
1033 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1034 break;
1035 vcpu->arch.vcore->dpdes = 0;
1036 vcpu->arch.doorbell_request = 0;
1037 break;
1038 case OP_31_XOP_MFSPR:
1039 switch (get_sprn(inst)) {
1040 case SPRN_TIR:
1041 arg = thr;
1042 break;
1043 case SPRN_DPDES:
1044 arg = kvmppc_read_dpdes(vcpu);
1045 break;
1046 default:
1047 return EMULATE_FAIL;
1048 }
1049 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1050 break;
1051 default:
1052 return EMULATE_FAIL;
1053 }
1054 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1055 return RESUME_GUEST;
1056 }
1057
1058 /* Called with vcpu->arch.vcore->lock held */
1059 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060 struct task_struct *tsk)
1061 {
1062 int r = RESUME_HOST;
1063
1064 vcpu->stat.sum_exits++;
1065
1066 /*
1067 * This can happen if an interrupt occurs in the last stages
1068 * of guest entry or the first stages of guest exit (i.e. after
1069 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1070 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1071 * That can happen due to a bug, or due to a machine check
1072 * occurring at just the wrong time.
1073 */
1074 if (vcpu->arch.shregs.msr & MSR_HV) {
1075 printk(KERN_EMERG "KVM trap in HV mode!\n");
1076 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1077 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1078 vcpu->arch.shregs.msr);
1079 kvmppc_dump_regs(vcpu);
1080 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1081 run->hw.hardware_exit_reason = vcpu->arch.trap;
1082 return RESUME_HOST;
1083 }
1084 run->exit_reason = KVM_EXIT_UNKNOWN;
1085 run->ready_for_interrupt_injection = 1;
1086 switch (vcpu->arch.trap) {
1087 /* We're good on these - the host merely wanted to get our attention */
1088 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1089 vcpu->stat.dec_exits++;
1090 r = RESUME_GUEST;
1091 break;
1092 case BOOK3S_INTERRUPT_EXTERNAL:
1093 case BOOK3S_INTERRUPT_H_DOORBELL:
1094 case BOOK3S_INTERRUPT_H_VIRT:
1095 vcpu->stat.ext_intr_exits++;
1096 r = RESUME_GUEST;
1097 break;
1098 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099 case BOOK3S_INTERRUPT_HMI:
1100 case BOOK3S_INTERRUPT_PERFMON:
1101 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102 r = RESUME_GUEST;
1103 break;
1104 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1106 run->exit_reason = KVM_EXIT_NMI;
1107 run->hw.hardware_exit_reason = vcpu->arch.trap;
1108 /* Clear out the old NMI status from run->flags */
1109 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1110 /* Now set the NMI status */
1111 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1112 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1113 else
1114 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1115
1116 r = RESUME_HOST;
1117 /* Print the MCE event to host console. */
1118 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119 break;
1120 case BOOK3S_INTERRUPT_PROGRAM:
1121 {
1122 ulong flags;
1123 /*
1124 * Normally program interrupts are delivered directly
1125 * to the guest by the hardware, but we can get here
1126 * as a result of a hypervisor emulation interrupt
1127 * (e40) getting turned into a 700 by BML RTAS.
1128 */
1129 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1130 kvmppc_core_queue_program(vcpu, flags);
1131 r = RESUME_GUEST;
1132 break;
1133 }
1134 case BOOK3S_INTERRUPT_SYSCALL:
1135 {
1136 /* hcall - punt to userspace */
1137 int i;
1138
1139 /* hypercall with MSR_PR has already been handled in rmode,
1140 * and never reaches here.
1141 */
1142
1143 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1144 for (i = 0; i < 9; ++i)
1145 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1146 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1147 vcpu->arch.hcall_needed = 1;
1148 r = RESUME_HOST;
1149 break;
1150 }
1151 /*
1152 * We get these next two if the guest accesses a page which it thinks
1153 * it has mapped but which is not actually present, either because
1154 * it is for an emulated I/O device or because the corresonding
1155 * host page has been paged out. Any other HDSI/HISI interrupts
1156 * have been handled already.
1157 */
1158 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159 r = RESUME_PAGE_FAULT;
1160 break;
1161 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1163 vcpu->arch.fault_dsisr = 0;
1164 r = RESUME_PAGE_FAULT;
1165 break;
1166 /*
1167 * This occurs if the guest executes an illegal instruction.
1168 * If the guest debug is disabled, generate a program interrupt
1169 * to the guest. If guest debug is enabled, we need to check
1170 * whether the instruction is a software breakpoint instruction.
1171 * Accordingly return to Guest or Host.
1172 */
1173 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1175 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1176 swab32(vcpu->arch.emul_inst) :
1177 vcpu->arch.emul_inst;
1178 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1179 /* Need vcore unlocked to call kvmppc_get_last_inst */
1180 spin_unlock(&vcpu->arch.vcore->lock);
1181 r = kvmppc_emulate_debug_inst(run, vcpu);
1182 spin_lock(&vcpu->arch.vcore->lock);
1183 } else {
1184 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1185 r = RESUME_GUEST;
1186 }
1187 break;
1188 /*
1189 * This occurs if the guest (kernel or userspace), does something that
1190 * is prohibited by HFSCR.
1191 * On POWER9, this could be a doorbell instruction that we need
1192 * to emulate.
1193 * Otherwise, we just generate a program interrupt to the guest.
1194 */
1195 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1196 r = EMULATE_FAIL;
1197 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1198 cpu_has_feature(CPU_FTR_ARCH_300)) {
1199 /* Need vcore unlocked to call kvmppc_get_last_inst */
1200 spin_unlock(&vcpu->arch.vcore->lock);
1201 r = kvmppc_emulate_doorbell_instr(vcpu);
1202 spin_lock(&vcpu->arch.vcore->lock);
1203 }
1204 if (r == EMULATE_FAIL) {
1205 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1206 r = RESUME_GUEST;
1207 }
1208 break;
1209 case BOOK3S_INTERRUPT_HV_RM_HARD:
1210 r = RESUME_PASSTHROUGH;
1211 break;
1212 default:
1213 kvmppc_dump_regs(vcpu);
1214 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1215 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1216 vcpu->arch.shregs.msr);
1217 run->hw.hardware_exit_reason = vcpu->arch.trap;
1218 r = RESUME_HOST;
1219 break;
1220 }
1221
1222 return r;
1223 }
1224
1225 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1226 struct kvm_sregs *sregs)
1227 {
1228 int i;
1229
1230 memset(sregs, 0, sizeof(struct kvm_sregs));
1231 sregs->pvr = vcpu->arch.pvr;
1232 for (i = 0; i < vcpu->arch.slb_max; i++) {
1233 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1234 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1235 }
1236
1237 return 0;
1238 }
1239
1240 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1241 struct kvm_sregs *sregs)
1242 {
1243 int i, j;
1244
1245 /* Only accept the same PVR as the host's, since we can't spoof it */
1246 if (sregs->pvr != vcpu->arch.pvr)
1247 return -EINVAL;
1248
1249 j = 0;
1250 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1251 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1252 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1253 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1254 ++j;
1255 }
1256 }
1257 vcpu->arch.slb_max = j;
1258
1259 return 0;
1260 }
1261
1262 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1263 bool preserve_top32)
1264 {
1265 struct kvm *kvm = vcpu->kvm;
1266 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1267 u64 mask;
1268
1269 mutex_lock(&kvm->lock);
1270 spin_lock(&vc->lock);
1271 /*
1272 * If ILE (interrupt little-endian) has changed, update the
1273 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1274 */
1275 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1276 struct kvm_vcpu *vcpu;
1277 int i;
1278
1279 kvm_for_each_vcpu(i, vcpu, kvm) {
1280 if (vcpu->arch.vcore != vc)
1281 continue;
1282 if (new_lpcr & LPCR_ILE)
1283 vcpu->arch.intr_msr |= MSR_LE;
1284 else
1285 vcpu->arch.intr_msr &= ~MSR_LE;
1286 }
1287 }
1288
1289 /*
1290 * Userspace can only modify DPFD (default prefetch depth),
1291 * ILE (interrupt little-endian) and TC (translation control).
1292 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1293 */
1294 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1295 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1296 mask |= LPCR_AIL;
1297 /*
1298 * On POWER9, allow userspace to enable large decrementer for the
1299 * guest, whether or not the host has it enabled.
1300 */
1301 if (cpu_has_feature(CPU_FTR_ARCH_300))
1302 mask |= LPCR_LD;
1303
1304 /* Broken 32-bit version of LPCR must not clear top bits */
1305 if (preserve_top32)
1306 mask &= 0xFFFFFFFF;
1307 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1308 spin_unlock(&vc->lock);
1309 mutex_unlock(&kvm->lock);
1310 }
1311
1312 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1313 union kvmppc_one_reg *val)
1314 {
1315 int r = 0;
1316 long int i;
1317
1318 switch (id) {
1319 case KVM_REG_PPC_DEBUG_INST:
1320 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1321 break;
1322 case KVM_REG_PPC_HIOR:
1323 *val = get_reg_val(id, 0);
1324 break;
1325 case KVM_REG_PPC_DABR:
1326 *val = get_reg_val(id, vcpu->arch.dabr);
1327 break;
1328 case KVM_REG_PPC_DABRX:
1329 *val = get_reg_val(id, vcpu->arch.dabrx);
1330 break;
1331 case KVM_REG_PPC_DSCR:
1332 *val = get_reg_val(id, vcpu->arch.dscr);
1333 break;
1334 case KVM_REG_PPC_PURR:
1335 *val = get_reg_val(id, vcpu->arch.purr);
1336 break;
1337 case KVM_REG_PPC_SPURR:
1338 *val = get_reg_val(id, vcpu->arch.spurr);
1339 break;
1340 case KVM_REG_PPC_AMR:
1341 *val = get_reg_val(id, vcpu->arch.amr);
1342 break;
1343 case KVM_REG_PPC_UAMOR:
1344 *val = get_reg_val(id, vcpu->arch.uamor);
1345 break;
1346 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1347 i = id - KVM_REG_PPC_MMCR0;
1348 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1349 break;
1350 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1351 i = id - KVM_REG_PPC_PMC1;
1352 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1353 break;
1354 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1355 i = id - KVM_REG_PPC_SPMC1;
1356 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1357 break;
1358 case KVM_REG_PPC_SIAR:
1359 *val = get_reg_val(id, vcpu->arch.siar);
1360 break;
1361 case KVM_REG_PPC_SDAR:
1362 *val = get_reg_val(id, vcpu->arch.sdar);
1363 break;
1364 case KVM_REG_PPC_SIER:
1365 *val = get_reg_val(id, vcpu->arch.sier);
1366 break;
1367 case KVM_REG_PPC_IAMR:
1368 *val = get_reg_val(id, vcpu->arch.iamr);
1369 break;
1370 case KVM_REG_PPC_PSPB:
1371 *val = get_reg_val(id, vcpu->arch.pspb);
1372 break;
1373 case KVM_REG_PPC_DPDES:
1374 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1375 break;
1376 case KVM_REG_PPC_VTB:
1377 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1378 break;
1379 case KVM_REG_PPC_DAWR:
1380 *val = get_reg_val(id, vcpu->arch.dawr);
1381 break;
1382 case KVM_REG_PPC_DAWRX:
1383 *val = get_reg_val(id, vcpu->arch.dawrx);
1384 break;
1385 case KVM_REG_PPC_CIABR:
1386 *val = get_reg_val(id, vcpu->arch.ciabr);
1387 break;
1388 case KVM_REG_PPC_CSIGR:
1389 *val = get_reg_val(id, vcpu->arch.csigr);
1390 break;
1391 case KVM_REG_PPC_TACR:
1392 *val = get_reg_val(id, vcpu->arch.tacr);
1393 break;
1394 case KVM_REG_PPC_TCSCR:
1395 *val = get_reg_val(id, vcpu->arch.tcscr);
1396 break;
1397 case KVM_REG_PPC_PID:
1398 *val = get_reg_val(id, vcpu->arch.pid);
1399 break;
1400 case KVM_REG_PPC_ACOP:
1401 *val = get_reg_val(id, vcpu->arch.acop);
1402 break;
1403 case KVM_REG_PPC_WORT:
1404 *val = get_reg_val(id, vcpu->arch.wort);
1405 break;
1406 case KVM_REG_PPC_TIDR:
1407 *val = get_reg_val(id, vcpu->arch.tid);
1408 break;
1409 case KVM_REG_PPC_PSSCR:
1410 *val = get_reg_val(id, vcpu->arch.psscr);
1411 break;
1412 case KVM_REG_PPC_VPA_ADDR:
1413 spin_lock(&vcpu->arch.vpa_update_lock);
1414 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1415 spin_unlock(&vcpu->arch.vpa_update_lock);
1416 break;
1417 case KVM_REG_PPC_VPA_SLB:
1418 spin_lock(&vcpu->arch.vpa_update_lock);
1419 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1420 val->vpaval.length = vcpu->arch.slb_shadow.len;
1421 spin_unlock(&vcpu->arch.vpa_update_lock);
1422 break;
1423 case KVM_REG_PPC_VPA_DTL:
1424 spin_lock(&vcpu->arch.vpa_update_lock);
1425 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1426 val->vpaval.length = vcpu->arch.dtl.len;
1427 spin_unlock(&vcpu->arch.vpa_update_lock);
1428 break;
1429 case KVM_REG_PPC_TB_OFFSET:
1430 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1431 break;
1432 case KVM_REG_PPC_LPCR:
1433 case KVM_REG_PPC_LPCR_64:
1434 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1435 break;
1436 case KVM_REG_PPC_PPR:
1437 *val = get_reg_val(id, vcpu->arch.ppr);
1438 break;
1439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1440 case KVM_REG_PPC_TFHAR:
1441 *val = get_reg_val(id, vcpu->arch.tfhar);
1442 break;
1443 case KVM_REG_PPC_TFIAR:
1444 *val = get_reg_val(id, vcpu->arch.tfiar);
1445 break;
1446 case KVM_REG_PPC_TEXASR:
1447 *val = get_reg_val(id, vcpu->arch.texasr);
1448 break;
1449 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1450 i = id - KVM_REG_PPC_TM_GPR0;
1451 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1452 break;
1453 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1454 {
1455 int j;
1456 i = id - KVM_REG_PPC_TM_VSR0;
1457 if (i < 32)
1458 for (j = 0; j < TS_FPRWIDTH; j++)
1459 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1460 else {
1461 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1462 val->vval = vcpu->arch.vr_tm.vr[i-32];
1463 else
1464 r = -ENXIO;
1465 }
1466 break;
1467 }
1468 case KVM_REG_PPC_TM_CR:
1469 *val = get_reg_val(id, vcpu->arch.cr_tm);
1470 break;
1471 case KVM_REG_PPC_TM_XER:
1472 *val = get_reg_val(id, vcpu->arch.xer_tm);
1473 break;
1474 case KVM_REG_PPC_TM_LR:
1475 *val = get_reg_val(id, vcpu->arch.lr_tm);
1476 break;
1477 case KVM_REG_PPC_TM_CTR:
1478 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1479 break;
1480 case KVM_REG_PPC_TM_FPSCR:
1481 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1482 break;
1483 case KVM_REG_PPC_TM_AMR:
1484 *val = get_reg_val(id, vcpu->arch.amr_tm);
1485 break;
1486 case KVM_REG_PPC_TM_PPR:
1487 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1488 break;
1489 case KVM_REG_PPC_TM_VRSAVE:
1490 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1491 break;
1492 case KVM_REG_PPC_TM_VSCR:
1493 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1494 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1495 else
1496 r = -ENXIO;
1497 break;
1498 case KVM_REG_PPC_TM_DSCR:
1499 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1500 break;
1501 case KVM_REG_PPC_TM_TAR:
1502 *val = get_reg_val(id, vcpu->arch.tar_tm);
1503 break;
1504 #endif
1505 case KVM_REG_PPC_ARCH_COMPAT:
1506 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1507 break;
1508 case KVM_REG_PPC_DEC_EXPIRY:
1509 *val = get_reg_val(id, vcpu->arch.dec_expires +
1510 vcpu->arch.vcore->tb_offset);
1511 break;
1512 default:
1513 r = -EINVAL;
1514 break;
1515 }
1516
1517 return r;
1518 }
1519
1520 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1521 union kvmppc_one_reg *val)
1522 {
1523 int r = 0;
1524 long int i;
1525 unsigned long addr, len;
1526
1527 switch (id) {
1528 case KVM_REG_PPC_HIOR:
1529 /* Only allow this to be set to zero */
1530 if (set_reg_val(id, *val))
1531 r = -EINVAL;
1532 break;
1533 case KVM_REG_PPC_DABR:
1534 vcpu->arch.dabr = set_reg_val(id, *val);
1535 break;
1536 case KVM_REG_PPC_DABRX:
1537 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1538 break;
1539 case KVM_REG_PPC_DSCR:
1540 vcpu->arch.dscr = set_reg_val(id, *val);
1541 break;
1542 case KVM_REG_PPC_PURR:
1543 vcpu->arch.purr = set_reg_val(id, *val);
1544 break;
1545 case KVM_REG_PPC_SPURR:
1546 vcpu->arch.spurr = set_reg_val(id, *val);
1547 break;
1548 case KVM_REG_PPC_AMR:
1549 vcpu->arch.amr = set_reg_val(id, *val);
1550 break;
1551 case KVM_REG_PPC_UAMOR:
1552 vcpu->arch.uamor = set_reg_val(id, *val);
1553 break;
1554 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1555 i = id - KVM_REG_PPC_MMCR0;
1556 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1557 break;
1558 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1559 i = id - KVM_REG_PPC_PMC1;
1560 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1561 break;
1562 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1563 i = id - KVM_REG_PPC_SPMC1;
1564 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1565 break;
1566 case KVM_REG_PPC_SIAR:
1567 vcpu->arch.siar = set_reg_val(id, *val);
1568 break;
1569 case KVM_REG_PPC_SDAR:
1570 vcpu->arch.sdar = set_reg_val(id, *val);
1571 break;
1572 case KVM_REG_PPC_SIER:
1573 vcpu->arch.sier = set_reg_val(id, *val);
1574 break;
1575 case KVM_REG_PPC_IAMR:
1576 vcpu->arch.iamr = set_reg_val(id, *val);
1577 break;
1578 case KVM_REG_PPC_PSPB:
1579 vcpu->arch.pspb = set_reg_val(id, *val);
1580 break;
1581 case KVM_REG_PPC_DPDES:
1582 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1583 break;
1584 case KVM_REG_PPC_VTB:
1585 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1586 break;
1587 case KVM_REG_PPC_DAWR:
1588 vcpu->arch.dawr = set_reg_val(id, *val);
1589 break;
1590 case KVM_REG_PPC_DAWRX:
1591 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1592 break;
1593 case KVM_REG_PPC_CIABR:
1594 vcpu->arch.ciabr = set_reg_val(id, *val);
1595 /* Don't allow setting breakpoints in hypervisor code */
1596 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1597 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1598 break;
1599 case KVM_REG_PPC_CSIGR:
1600 vcpu->arch.csigr = set_reg_val(id, *val);
1601 break;
1602 case KVM_REG_PPC_TACR:
1603 vcpu->arch.tacr = set_reg_val(id, *val);
1604 break;
1605 case KVM_REG_PPC_TCSCR:
1606 vcpu->arch.tcscr = set_reg_val(id, *val);
1607 break;
1608 case KVM_REG_PPC_PID:
1609 vcpu->arch.pid = set_reg_val(id, *val);
1610 break;
1611 case KVM_REG_PPC_ACOP:
1612 vcpu->arch.acop = set_reg_val(id, *val);
1613 break;
1614 case KVM_REG_PPC_WORT:
1615 vcpu->arch.wort = set_reg_val(id, *val);
1616 break;
1617 case KVM_REG_PPC_TIDR:
1618 vcpu->arch.tid = set_reg_val(id, *val);
1619 break;
1620 case KVM_REG_PPC_PSSCR:
1621 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1622 break;
1623 case KVM_REG_PPC_VPA_ADDR:
1624 addr = set_reg_val(id, *val);
1625 r = -EINVAL;
1626 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1627 vcpu->arch.dtl.next_gpa))
1628 break;
1629 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1630 break;
1631 case KVM_REG_PPC_VPA_SLB:
1632 addr = val->vpaval.addr;
1633 len = val->vpaval.length;
1634 r = -EINVAL;
1635 if (addr && !vcpu->arch.vpa.next_gpa)
1636 break;
1637 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1638 break;
1639 case KVM_REG_PPC_VPA_DTL:
1640 addr = val->vpaval.addr;
1641 len = val->vpaval.length;
1642 r = -EINVAL;
1643 if (addr && (len < sizeof(struct dtl_entry) ||
1644 !vcpu->arch.vpa.next_gpa))
1645 break;
1646 len -= len % sizeof(struct dtl_entry);
1647 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1648 break;
1649 case KVM_REG_PPC_TB_OFFSET:
1650 /*
1651 * POWER9 DD1 has an erratum where writing TBU40 causes
1652 * the timebase to lose ticks. So we don't let the
1653 * timebase offset be changed on P9 DD1. (It is
1654 * initialized to zero.)
1655 */
1656 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1657 break;
1658 /* round up to multiple of 2^24 */
1659 vcpu->arch.vcore->tb_offset =
1660 ALIGN(set_reg_val(id, *val), 1UL << 24);
1661 break;
1662 case KVM_REG_PPC_LPCR:
1663 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1664 break;
1665 case KVM_REG_PPC_LPCR_64:
1666 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1667 break;
1668 case KVM_REG_PPC_PPR:
1669 vcpu->arch.ppr = set_reg_val(id, *val);
1670 break;
1671 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1672 case KVM_REG_PPC_TFHAR:
1673 vcpu->arch.tfhar = set_reg_val(id, *val);
1674 break;
1675 case KVM_REG_PPC_TFIAR:
1676 vcpu->arch.tfiar = set_reg_val(id, *val);
1677 break;
1678 case KVM_REG_PPC_TEXASR:
1679 vcpu->arch.texasr = set_reg_val(id, *val);
1680 break;
1681 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1682 i = id - KVM_REG_PPC_TM_GPR0;
1683 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1684 break;
1685 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1686 {
1687 int j;
1688 i = id - KVM_REG_PPC_TM_VSR0;
1689 if (i < 32)
1690 for (j = 0; j < TS_FPRWIDTH; j++)
1691 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1692 else
1693 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1694 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1695 else
1696 r = -ENXIO;
1697 break;
1698 }
1699 case KVM_REG_PPC_TM_CR:
1700 vcpu->arch.cr_tm = set_reg_val(id, *val);
1701 break;
1702 case KVM_REG_PPC_TM_XER:
1703 vcpu->arch.xer_tm = set_reg_val(id, *val);
1704 break;
1705 case KVM_REG_PPC_TM_LR:
1706 vcpu->arch.lr_tm = set_reg_val(id, *val);
1707 break;
1708 case KVM_REG_PPC_TM_CTR:
1709 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1710 break;
1711 case KVM_REG_PPC_TM_FPSCR:
1712 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1713 break;
1714 case KVM_REG_PPC_TM_AMR:
1715 vcpu->arch.amr_tm = set_reg_val(id, *val);
1716 break;
1717 case KVM_REG_PPC_TM_PPR:
1718 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1719 break;
1720 case KVM_REG_PPC_TM_VRSAVE:
1721 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1722 break;
1723 case KVM_REG_PPC_TM_VSCR:
1724 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1725 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1726 else
1727 r = - ENXIO;
1728 break;
1729 case KVM_REG_PPC_TM_DSCR:
1730 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1731 break;
1732 case KVM_REG_PPC_TM_TAR:
1733 vcpu->arch.tar_tm = set_reg_val(id, *val);
1734 break;
1735 #endif
1736 case KVM_REG_PPC_ARCH_COMPAT:
1737 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1738 break;
1739 case KVM_REG_PPC_DEC_EXPIRY:
1740 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1741 vcpu->arch.vcore->tb_offset;
1742 break;
1743 default:
1744 r = -EINVAL;
1745 break;
1746 }
1747
1748 return r;
1749 }
1750
1751 /*
1752 * On POWER9, threads are independent and can be in different partitions.
1753 * Therefore we consider each thread to be a subcore.
1754 * There is a restriction that all threads have to be in the same
1755 * MMU mode (radix or HPT), unfortunately, but since we only support
1756 * HPT guests on a HPT host so far, that isn't an impediment yet.
1757 */
1758 static int threads_per_vcore(struct kvm *kvm)
1759 {
1760 if (kvm->arch.threads_indep)
1761 return 1;
1762 return threads_per_subcore;
1763 }
1764
1765 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1766 {
1767 struct kvmppc_vcore *vcore;
1768
1769 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1770
1771 if (vcore == NULL)
1772 return NULL;
1773
1774 spin_lock_init(&vcore->lock);
1775 spin_lock_init(&vcore->stoltb_lock);
1776 init_swait_queue_head(&vcore->wq);
1777 vcore->preempt_tb = TB_NIL;
1778 vcore->lpcr = kvm->arch.lpcr;
1779 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1780 vcore->kvm = kvm;
1781 INIT_LIST_HEAD(&vcore->preempt_list);
1782
1783 return vcore;
1784 }
1785
1786 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1787 static struct debugfs_timings_element {
1788 const char *name;
1789 size_t offset;
1790 } timings[] = {
1791 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1792 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1793 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1794 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1795 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1796 };
1797
1798 #define N_TIMINGS (ARRAY_SIZE(timings))
1799
1800 struct debugfs_timings_state {
1801 struct kvm_vcpu *vcpu;
1802 unsigned int buflen;
1803 char buf[N_TIMINGS * 100];
1804 };
1805
1806 static int debugfs_timings_open(struct inode *inode, struct file *file)
1807 {
1808 struct kvm_vcpu *vcpu = inode->i_private;
1809 struct debugfs_timings_state *p;
1810
1811 p = kzalloc(sizeof(*p), GFP_KERNEL);
1812 if (!p)
1813 return -ENOMEM;
1814
1815 kvm_get_kvm(vcpu->kvm);
1816 p->vcpu = vcpu;
1817 file->private_data = p;
1818
1819 return nonseekable_open(inode, file);
1820 }
1821
1822 static int debugfs_timings_release(struct inode *inode, struct file *file)
1823 {
1824 struct debugfs_timings_state *p = file->private_data;
1825
1826 kvm_put_kvm(p->vcpu->kvm);
1827 kfree(p);
1828 return 0;
1829 }
1830
1831 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1832 size_t len, loff_t *ppos)
1833 {
1834 struct debugfs_timings_state *p = file->private_data;
1835 struct kvm_vcpu *vcpu = p->vcpu;
1836 char *s, *buf_end;
1837 struct kvmhv_tb_accumulator tb;
1838 u64 count;
1839 loff_t pos;
1840 ssize_t n;
1841 int i, loops;
1842 bool ok;
1843
1844 if (!p->buflen) {
1845 s = p->buf;
1846 buf_end = s + sizeof(p->buf);
1847 for (i = 0; i < N_TIMINGS; ++i) {
1848 struct kvmhv_tb_accumulator *acc;
1849
1850 acc = (struct kvmhv_tb_accumulator *)
1851 ((unsigned long)vcpu + timings[i].offset);
1852 ok = false;
1853 for (loops = 0; loops < 1000; ++loops) {
1854 count = acc->seqcount;
1855 if (!(count & 1)) {
1856 smp_rmb();
1857 tb = *acc;
1858 smp_rmb();
1859 if (count == acc->seqcount) {
1860 ok = true;
1861 break;
1862 }
1863 }
1864 udelay(1);
1865 }
1866 if (!ok)
1867 snprintf(s, buf_end - s, "%s: stuck\n",
1868 timings[i].name);
1869 else
1870 snprintf(s, buf_end - s,
1871 "%s: %llu %llu %llu %llu\n",
1872 timings[i].name, count / 2,
1873 tb_to_ns(tb.tb_total),
1874 tb_to_ns(tb.tb_min),
1875 tb_to_ns(tb.tb_max));
1876 s += strlen(s);
1877 }
1878 p->buflen = s - p->buf;
1879 }
1880
1881 pos = *ppos;
1882 if (pos >= p->buflen)
1883 return 0;
1884 if (len > p->buflen - pos)
1885 len = p->buflen - pos;
1886 n = copy_to_user(buf, p->buf + pos, len);
1887 if (n) {
1888 if (n == len)
1889 return -EFAULT;
1890 len -= n;
1891 }
1892 *ppos = pos + len;
1893 return len;
1894 }
1895
1896 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1897 size_t len, loff_t *ppos)
1898 {
1899 return -EACCES;
1900 }
1901
1902 static const struct file_operations debugfs_timings_ops = {
1903 .owner = THIS_MODULE,
1904 .open = debugfs_timings_open,
1905 .release = debugfs_timings_release,
1906 .read = debugfs_timings_read,
1907 .write = debugfs_timings_write,
1908 .llseek = generic_file_llseek,
1909 };
1910
1911 /* Create a debugfs directory for the vcpu */
1912 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1913 {
1914 char buf[16];
1915 struct kvm *kvm = vcpu->kvm;
1916
1917 snprintf(buf, sizeof(buf), "vcpu%u", id);
1918 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1919 return;
1920 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1921 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1922 return;
1923 vcpu->arch.debugfs_timings =
1924 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1925 vcpu, &debugfs_timings_ops);
1926 }
1927
1928 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1929 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1930 {
1931 }
1932 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1933
1934 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1935 unsigned int id)
1936 {
1937 struct kvm_vcpu *vcpu;
1938 int err;
1939 int core;
1940 struct kvmppc_vcore *vcore;
1941
1942 err = -ENOMEM;
1943 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1944 if (!vcpu)
1945 goto out;
1946
1947 err = kvm_vcpu_init(vcpu, kvm, id);
1948 if (err)
1949 goto free_vcpu;
1950
1951 vcpu->arch.shared = &vcpu->arch.shregs;
1952 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1953 /*
1954 * The shared struct is never shared on HV,
1955 * so we can always use host endianness
1956 */
1957 #ifdef __BIG_ENDIAN__
1958 vcpu->arch.shared_big_endian = true;
1959 #else
1960 vcpu->arch.shared_big_endian = false;
1961 #endif
1962 #endif
1963 vcpu->arch.mmcr[0] = MMCR0_FC;
1964 vcpu->arch.ctrl = CTRL_RUNLATCH;
1965 /* default to host PVR, since we can't spoof it */
1966 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1967 spin_lock_init(&vcpu->arch.vpa_update_lock);
1968 spin_lock_init(&vcpu->arch.tbacct_lock);
1969 vcpu->arch.busy_preempt = TB_NIL;
1970 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1971
1972 /*
1973 * Set the default HFSCR for the guest from the host value.
1974 * This value is only used on POWER9.
1975 * On POWER9 DD1, TM doesn't work, so we make sure to
1976 * prevent the guest from using it.
1977 * On POWER9, we want to virtualize the doorbell facility, so we
1978 * turn off the HFSCR bit, which causes those instructions to trap.
1979 */
1980 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1981 if (!cpu_has_feature(CPU_FTR_TM))
1982 vcpu->arch.hfscr &= ~HFSCR_TM;
1983 if (cpu_has_feature(CPU_FTR_ARCH_300))
1984 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1985
1986 kvmppc_mmu_book3s_hv_init(vcpu);
1987
1988 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1989
1990 init_waitqueue_head(&vcpu->arch.cpu_run);
1991
1992 mutex_lock(&kvm->lock);
1993 vcore = NULL;
1994 err = -EINVAL;
1995 core = id / kvm->arch.smt_mode;
1996 if (core < KVM_MAX_VCORES) {
1997 vcore = kvm->arch.vcores[core];
1998 if (!vcore) {
1999 err = -ENOMEM;
2000 vcore = kvmppc_vcore_create(kvm, core);
2001 kvm->arch.vcores[core] = vcore;
2002 kvm->arch.online_vcores++;
2003 }
2004 }
2005 mutex_unlock(&kvm->lock);
2006
2007 if (!vcore)
2008 goto free_vcpu;
2009
2010 spin_lock(&vcore->lock);
2011 ++vcore->num_threads;
2012 spin_unlock(&vcore->lock);
2013 vcpu->arch.vcore = vcore;
2014 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2015 vcpu->arch.thread_cpu = -1;
2016 vcpu->arch.prev_cpu = -1;
2017
2018 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2019 kvmppc_sanity_check(vcpu);
2020
2021 debugfs_vcpu_init(vcpu, id);
2022
2023 return vcpu;
2024
2025 free_vcpu:
2026 kmem_cache_free(kvm_vcpu_cache, vcpu);
2027 out:
2028 return ERR_PTR(err);
2029 }
2030
2031 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2032 unsigned long flags)
2033 {
2034 int err;
2035 int esmt = 0;
2036
2037 if (flags)
2038 return -EINVAL;
2039 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2040 return -EINVAL;
2041 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2042 /*
2043 * On POWER8 (or POWER7), the threading mode is "strict",
2044 * so we pack smt_mode vcpus per vcore.
2045 */
2046 if (smt_mode > threads_per_subcore)
2047 return -EINVAL;
2048 } else {
2049 /*
2050 * On POWER9, the threading mode is "loose",
2051 * so each vcpu gets its own vcore.
2052 */
2053 esmt = smt_mode;
2054 smt_mode = 1;
2055 }
2056 mutex_lock(&kvm->lock);
2057 err = -EBUSY;
2058 if (!kvm->arch.online_vcores) {
2059 kvm->arch.smt_mode = smt_mode;
2060 kvm->arch.emul_smt_mode = esmt;
2061 err = 0;
2062 }
2063 mutex_unlock(&kvm->lock);
2064
2065 return err;
2066 }
2067
2068 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2069 {
2070 if (vpa->pinned_addr)
2071 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2072 vpa->dirty);
2073 }
2074
2075 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2076 {
2077 spin_lock(&vcpu->arch.vpa_update_lock);
2078 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2079 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2080 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2081 spin_unlock(&vcpu->arch.vpa_update_lock);
2082 kvm_vcpu_uninit(vcpu);
2083 kmem_cache_free(kvm_vcpu_cache, vcpu);
2084 }
2085
2086 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2087 {
2088 /* Indicate we want to get back into the guest */
2089 return 1;
2090 }
2091
2092 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2093 {
2094 unsigned long dec_nsec, now;
2095
2096 now = get_tb();
2097 if (now > vcpu->arch.dec_expires) {
2098 /* decrementer has already gone negative */
2099 kvmppc_core_queue_dec(vcpu);
2100 kvmppc_core_prepare_to_enter(vcpu);
2101 return;
2102 }
2103 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2104 / tb_ticks_per_sec;
2105 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2106 vcpu->arch.timer_running = 1;
2107 }
2108
2109 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2110 {
2111 vcpu->arch.ceded = 0;
2112 if (vcpu->arch.timer_running) {
2113 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2114 vcpu->arch.timer_running = 0;
2115 }
2116 }
2117
2118 extern int __kvmppc_vcore_entry(void);
2119
2120 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2121 struct kvm_vcpu *vcpu)
2122 {
2123 u64 now;
2124
2125 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2126 return;
2127 spin_lock_irq(&vcpu->arch.tbacct_lock);
2128 now = mftb();
2129 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2130 vcpu->arch.stolen_logged;
2131 vcpu->arch.busy_preempt = now;
2132 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2133 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2134 --vc->n_runnable;
2135 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2136 }
2137
2138 static int kvmppc_grab_hwthread(int cpu)
2139 {
2140 struct paca_struct *tpaca;
2141 long timeout = 10000;
2142
2143 tpaca = &paca[cpu];
2144
2145 /* Ensure the thread won't go into the kernel if it wakes */
2146 tpaca->kvm_hstate.kvm_vcpu = NULL;
2147 tpaca->kvm_hstate.kvm_vcore = NULL;
2148 tpaca->kvm_hstate.napping = 0;
2149 smp_wmb();
2150 tpaca->kvm_hstate.hwthread_req = 1;
2151
2152 /*
2153 * If the thread is already executing in the kernel (e.g. handling
2154 * a stray interrupt), wait for it to get back to nap mode.
2155 * The smp_mb() is to ensure that our setting of hwthread_req
2156 * is visible before we look at hwthread_state, so if this
2157 * races with the code at system_reset_pSeries and the thread
2158 * misses our setting of hwthread_req, we are sure to see its
2159 * setting of hwthread_state, and vice versa.
2160 */
2161 smp_mb();
2162 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2163 if (--timeout <= 0) {
2164 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2165 return -EBUSY;
2166 }
2167 udelay(1);
2168 }
2169 return 0;
2170 }
2171
2172 static void kvmppc_release_hwthread(int cpu)
2173 {
2174 struct paca_struct *tpaca;
2175
2176 tpaca = &paca[cpu];
2177 tpaca->kvm_hstate.hwthread_req = 0;
2178 tpaca->kvm_hstate.kvm_vcpu = NULL;
2179 tpaca->kvm_hstate.kvm_vcore = NULL;
2180 tpaca->kvm_hstate.kvm_split_mode = NULL;
2181 }
2182
2183 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2184 {
2185 int i;
2186
2187 cpu = cpu_first_thread_sibling(cpu);
2188 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2189 /*
2190 * Make sure setting of bit in need_tlb_flush precedes
2191 * testing of cpu_in_guest bits. The matching barrier on
2192 * the other side is the first smp_mb() in kvmppc_run_core().
2193 */
2194 smp_mb();
2195 for (i = 0; i < threads_per_core; ++i)
2196 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2197 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2198 }
2199
2200 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2201 {
2202 struct kvm *kvm = vcpu->kvm;
2203
2204 /*
2205 * With radix, the guest can do TLB invalidations itself,
2206 * and it could choose to use the local form (tlbiel) if
2207 * it is invalidating a translation that has only ever been
2208 * used on one vcpu. However, that doesn't mean it has
2209 * only ever been used on one physical cpu, since vcpus
2210 * can move around between pcpus. To cope with this, when
2211 * a vcpu moves from one pcpu to another, we need to tell
2212 * any vcpus running on the same core as this vcpu previously
2213 * ran to flush the TLB. The TLB is shared between threads,
2214 * so we use a single bit in .need_tlb_flush for all 4 threads.
2215 */
2216 if (vcpu->arch.prev_cpu != pcpu) {
2217 if (vcpu->arch.prev_cpu >= 0 &&
2218 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2219 cpu_first_thread_sibling(pcpu))
2220 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2221 vcpu->arch.prev_cpu = pcpu;
2222 }
2223 }
2224
2225 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2226 {
2227 int cpu;
2228 struct paca_struct *tpaca;
2229 struct kvm *kvm = vc->kvm;
2230
2231 cpu = vc->pcpu;
2232 if (vcpu) {
2233 if (vcpu->arch.timer_running) {
2234 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2235 vcpu->arch.timer_running = 0;
2236 }
2237 cpu += vcpu->arch.ptid;
2238 vcpu->cpu = vc->pcpu;
2239 vcpu->arch.thread_cpu = cpu;
2240 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2241 }
2242 tpaca = &paca[cpu];
2243 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2244 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2245 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2246 smp_wmb();
2247 tpaca->kvm_hstate.kvm_vcore = vc;
2248 if (cpu != smp_processor_id())
2249 kvmppc_ipi_thread(cpu);
2250 }
2251
2252 static void kvmppc_wait_for_nap(int n_threads)
2253 {
2254 int cpu = smp_processor_id();
2255 int i, loops;
2256
2257 if (n_threads <= 1)
2258 return;
2259 for (loops = 0; loops < 1000000; ++loops) {
2260 /*
2261 * Check if all threads are finished.
2262 * We set the vcore pointer when starting a thread
2263 * and the thread clears it when finished, so we look
2264 * for any threads that still have a non-NULL vcore ptr.
2265 */
2266 for (i = 1; i < n_threads; ++i)
2267 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2268 break;
2269 if (i == n_threads) {
2270 HMT_medium();
2271 return;
2272 }
2273 HMT_low();
2274 }
2275 HMT_medium();
2276 for (i = 1; i < n_threads; ++i)
2277 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2278 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2279 }
2280
2281 /*
2282 * Check that we are on thread 0 and that any other threads in
2283 * this core are off-line. Then grab the threads so they can't
2284 * enter the kernel.
2285 */
2286 static int on_primary_thread(void)
2287 {
2288 int cpu = smp_processor_id();
2289 int thr;
2290
2291 /* Are we on a primary subcore? */
2292 if (cpu_thread_in_subcore(cpu))
2293 return 0;
2294
2295 thr = 0;
2296 while (++thr < threads_per_subcore)
2297 if (cpu_online(cpu + thr))
2298 return 0;
2299
2300 /* Grab all hw threads so they can't go into the kernel */
2301 for (thr = 1; thr < threads_per_subcore; ++thr) {
2302 if (kvmppc_grab_hwthread(cpu + thr)) {
2303 /* Couldn't grab one; let the others go */
2304 do {
2305 kvmppc_release_hwthread(cpu + thr);
2306 } while (--thr > 0);
2307 return 0;
2308 }
2309 }
2310 return 1;
2311 }
2312
2313 /*
2314 * A list of virtual cores for each physical CPU.
2315 * These are vcores that could run but their runner VCPU tasks are
2316 * (or may be) preempted.
2317 */
2318 struct preempted_vcore_list {
2319 struct list_head list;
2320 spinlock_t lock;
2321 };
2322
2323 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2324
2325 static void init_vcore_lists(void)
2326 {
2327 int cpu;
2328
2329 for_each_possible_cpu(cpu) {
2330 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2331 spin_lock_init(&lp->lock);
2332 INIT_LIST_HEAD(&lp->list);
2333 }
2334 }
2335
2336 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2337 {
2338 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2339
2340 vc->vcore_state = VCORE_PREEMPT;
2341 vc->pcpu = smp_processor_id();
2342 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2343 spin_lock(&lp->lock);
2344 list_add_tail(&vc->preempt_list, &lp->list);
2345 spin_unlock(&lp->lock);
2346 }
2347
2348 /* Start accumulating stolen time */
2349 kvmppc_core_start_stolen(vc);
2350 }
2351
2352 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2353 {
2354 struct preempted_vcore_list *lp;
2355
2356 kvmppc_core_end_stolen(vc);
2357 if (!list_empty(&vc->preempt_list)) {
2358 lp = &per_cpu(preempted_vcores, vc->pcpu);
2359 spin_lock(&lp->lock);
2360 list_del_init(&vc->preempt_list);
2361 spin_unlock(&lp->lock);
2362 }
2363 vc->vcore_state = VCORE_INACTIVE;
2364 }
2365
2366 /*
2367 * This stores information about the virtual cores currently
2368 * assigned to a physical core.
2369 */
2370 struct core_info {
2371 int n_subcores;
2372 int max_subcore_threads;
2373 int total_threads;
2374 int subcore_threads[MAX_SUBCORES];
2375 struct kvmppc_vcore *vc[MAX_SUBCORES];
2376 };
2377
2378 /*
2379 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2380 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2381 */
2382 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2383
2384 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2385 {
2386 memset(cip, 0, sizeof(*cip));
2387 cip->n_subcores = 1;
2388 cip->max_subcore_threads = vc->num_threads;
2389 cip->total_threads = vc->num_threads;
2390 cip->subcore_threads[0] = vc->num_threads;
2391 cip->vc[0] = vc;
2392 }
2393
2394 static bool subcore_config_ok(int n_subcores, int n_threads)
2395 {
2396 /*
2397 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2398 * split-core mode, with one thread per subcore.
2399 */
2400 if (cpu_has_feature(CPU_FTR_ARCH_300))
2401 return n_subcores <= 4 && n_threads == 1;
2402
2403 /* On POWER8, can only dynamically split if unsplit to begin with */
2404 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2405 return false;
2406 if (n_subcores > MAX_SUBCORES)
2407 return false;
2408 if (n_subcores > 1) {
2409 if (!(dynamic_mt_modes & 2))
2410 n_subcores = 4;
2411 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2412 return false;
2413 }
2414
2415 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2416 }
2417
2418 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2419 {
2420 vc->entry_exit_map = 0;
2421 vc->in_guest = 0;
2422 vc->napping_threads = 0;
2423 vc->conferring_threads = 0;
2424 }
2425
2426 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2427 {
2428 int n_threads = vc->num_threads;
2429 int sub;
2430
2431 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2432 return false;
2433
2434 /* Some POWER9 chips require all threads to be in the same MMU mode */
2435 if (no_mixing_hpt_and_radix &&
2436 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2437 return false;
2438
2439 if (n_threads < cip->max_subcore_threads)
2440 n_threads = cip->max_subcore_threads;
2441 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2442 return false;
2443 cip->max_subcore_threads = n_threads;
2444
2445 sub = cip->n_subcores;
2446 ++cip->n_subcores;
2447 cip->total_threads += vc->num_threads;
2448 cip->subcore_threads[sub] = vc->num_threads;
2449 cip->vc[sub] = vc;
2450 init_vcore_to_run(vc);
2451 list_del_init(&vc->preempt_list);
2452
2453 return true;
2454 }
2455
2456 /*
2457 * Work out whether it is possible to piggyback the execution of
2458 * vcore *pvc onto the execution of the other vcores described in *cip.
2459 */
2460 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2461 int target_threads)
2462 {
2463 if (cip->total_threads + pvc->num_threads > target_threads)
2464 return false;
2465
2466 return can_dynamic_split(pvc, cip);
2467 }
2468
2469 static void prepare_threads(struct kvmppc_vcore *vc)
2470 {
2471 int i;
2472 struct kvm_vcpu *vcpu;
2473
2474 for_each_runnable_thread(i, vcpu, vc) {
2475 if (signal_pending(vcpu->arch.run_task))
2476 vcpu->arch.ret = -EINTR;
2477 else if (vcpu->arch.vpa.update_pending ||
2478 vcpu->arch.slb_shadow.update_pending ||
2479 vcpu->arch.dtl.update_pending)
2480 vcpu->arch.ret = RESUME_GUEST;
2481 else
2482 continue;
2483 kvmppc_remove_runnable(vc, vcpu);
2484 wake_up(&vcpu->arch.cpu_run);
2485 }
2486 }
2487
2488 static void collect_piggybacks(struct core_info *cip, int target_threads)
2489 {
2490 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2491 struct kvmppc_vcore *pvc, *vcnext;
2492
2493 spin_lock(&lp->lock);
2494 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2495 if (!spin_trylock(&pvc->lock))
2496 continue;
2497 prepare_threads(pvc);
2498 if (!pvc->n_runnable) {
2499 list_del_init(&pvc->preempt_list);
2500 if (pvc->runner == NULL) {
2501 pvc->vcore_state = VCORE_INACTIVE;
2502 kvmppc_core_end_stolen(pvc);
2503 }
2504 spin_unlock(&pvc->lock);
2505 continue;
2506 }
2507 if (!can_piggyback(pvc, cip, target_threads)) {
2508 spin_unlock(&pvc->lock);
2509 continue;
2510 }
2511 kvmppc_core_end_stolen(pvc);
2512 pvc->vcore_state = VCORE_PIGGYBACK;
2513 if (cip->total_threads >= target_threads)
2514 break;
2515 }
2516 spin_unlock(&lp->lock);
2517 }
2518
2519 static bool recheck_signals(struct core_info *cip)
2520 {
2521 int sub, i;
2522 struct kvm_vcpu *vcpu;
2523
2524 for (sub = 0; sub < cip->n_subcores; ++sub)
2525 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2526 if (signal_pending(vcpu->arch.run_task))
2527 return true;
2528 return false;
2529 }
2530
2531 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2532 {
2533 int still_running = 0, i;
2534 u64 now;
2535 long ret;
2536 struct kvm_vcpu *vcpu;
2537
2538 spin_lock(&vc->lock);
2539 now = get_tb();
2540 for_each_runnable_thread(i, vcpu, vc) {
2541 /* cancel pending dec exception if dec is positive */
2542 if (now < vcpu->arch.dec_expires &&
2543 kvmppc_core_pending_dec(vcpu))
2544 kvmppc_core_dequeue_dec(vcpu);
2545
2546 trace_kvm_guest_exit(vcpu);
2547
2548 ret = RESUME_GUEST;
2549 if (vcpu->arch.trap)
2550 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2551 vcpu->arch.run_task);
2552
2553 vcpu->arch.ret = ret;
2554 vcpu->arch.trap = 0;
2555
2556 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2557 if (vcpu->arch.pending_exceptions)
2558 kvmppc_core_prepare_to_enter(vcpu);
2559 if (vcpu->arch.ceded)
2560 kvmppc_set_timer(vcpu);
2561 else
2562 ++still_running;
2563 } else {
2564 kvmppc_remove_runnable(vc, vcpu);
2565 wake_up(&vcpu->arch.cpu_run);
2566 }
2567 }
2568 if (!is_master) {
2569 if (still_running > 0) {
2570 kvmppc_vcore_preempt(vc);
2571 } else if (vc->runner) {
2572 vc->vcore_state = VCORE_PREEMPT;
2573 kvmppc_core_start_stolen(vc);
2574 } else {
2575 vc->vcore_state = VCORE_INACTIVE;
2576 }
2577 if (vc->n_runnable > 0 && vc->runner == NULL) {
2578 /* make sure there's a candidate runner awake */
2579 i = -1;
2580 vcpu = next_runnable_thread(vc, &i);
2581 wake_up(&vcpu->arch.cpu_run);
2582 }
2583 }
2584 spin_unlock(&vc->lock);
2585 }
2586
2587 /*
2588 * Clear core from the list of active host cores as we are about to
2589 * enter the guest. Only do this if it is the primary thread of the
2590 * core (not if a subcore) that is entering the guest.
2591 */
2592 static inline int kvmppc_clear_host_core(unsigned int cpu)
2593 {
2594 int core;
2595
2596 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2597 return 0;
2598 /*
2599 * Memory barrier can be omitted here as we will do a smp_wmb()
2600 * later in kvmppc_start_thread and we need ensure that state is
2601 * visible to other CPUs only after we enter guest.
2602 */
2603 core = cpu >> threads_shift;
2604 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2605 return 0;
2606 }
2607
2608 /*
2609 * Advertise this core as an active host core since we exited the guest
2610 * Only need to do this if it is the primary thread of the core that is
2611 * exiting.
2612 */
2613 static inline int kvmppc_set_host_core(unsigned int cpu)
2614 {
2615 int core;
2616
2617 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2618 return 0;
2619
2620 /*
2621 * Memory barrier can be omitted here because we do a spin_unlock
2622 * immediately after this which provides the memory barrier.
2623 */
2624 core = cpu >> threads_shift;
2625 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2626 return 0;
2627 }
2628
2629 static void set_irq_happened(int trap)
2630 {
2631 switch (trap) {
2632 case BOOK3S_INTERRUPT_EXTERNAL:
2633 local_paca->irq_happened |= PACA_IRQ_EE;
2634 break;
2635 case BOOK3S_INTERRUPT_H_DOORBELL:
2636 local_paca->irq_happened |= PACA_IRQ_DBELL;
2637 break;
2638 case BOOK3S_INTERRUPT_HMI:
2639 local_paca->irq_happened |= PACA_IRQ_HMI;
2640 break;
2641 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2642 replay_system_reset();
2643 break;
2644 }
2645 }
2646
2647 /*
2648 * Run a set of guest threads on a physical core.
2649 * Called with vc->lock held.
2650 */
2651 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2652 {
2653 struct kvm_vcpu *vcpu;
2654 int i;
2655 int srcu_idx;
2656 struct core_info core_info;
2657 struct kvmppc_vcore *pvc;
2658 struct kvm_split_mode split_info, *sip;
2659 int split, subcore_size, active;
2660 int sub;
2661 bool thr0_done;
2662 unsigned long cmd_bit, stat_bit;
2663 int pcpu, thr;
2664 int target_threads;
2665 int controlled_threads;
2666 int trap;
2667 bool is_power8;
2668 bool hpt_on_radix;
2669
2670 /*
2671 * Remove from the list any threads that have a signal pending
2672 * or need a VPA update done
2673 */
2674 prepare_threads(vc);
2675
2676 /* if the runner is no longer runnable, let the caller pick a new one */
2677 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2678 return;
2679
2680 /*
2681 * Initialize *vc.
2682 */
2683 init_vcore_to_run(vc);
2684 vc->preempt_tb = TB_NIL;
2685
2686 /*
2687 * Number of threads that we will be controlling: the same as
2688 * the number of threads per subcore, except on POWER9,
2689 * where it's 1 because the threads are (mostly) independent.
2690 */
2691 controlled_threads = threads_per_vcore(vc->kvm);
2692
2693 /*
2694 * Make sure we are running on primary threads, and that secondary
2695 * threads are offline. Also check if the number of threads in this
2696 * guest are greater than the current system threads per guest.
2697 * On POWER9, we need to be not in independent-threads mode if
2698 * this is a HPT guest on a radix host machine where the
2699 * CPU threads may not be in different MMU modes.
2700 */
2701 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2702 !kvm_is_radix(vc->kvm);
2703 if (((controlled_threads > 1) &&
2704 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2705 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2706 for_each_runnable_thread(i, vcpu, vc) {
2707 vcpu->arch.ret = -EBUSY;
2708 kvmppc_remove_runnable(vc, vcpu);
2709 wake_up(&vcpu->arch.cpu_run);
2710 }
2711 goto out;
2712 }
2713
2714 /*
2715 * See if we could run any other vcores on the physical core
2716 * along with this one.
2717 */
2718 init_core_info(&core_info, vc);
2719 pcpu = smp_processor_id();
2720 target_threads = controlled_threads;
2721 if (target_smt_mode && target_smt_mode < target_threads)
2722 target_threads = target_smt_mode;
2723 if (vc->num_threads < target_threads)
2724 collect_piggybacks(&core_info, target_threads);
2725
2726 /*
2727 * On radix, arrange for TLB flushing if necessary.
2728 * This has to be done before disabling interrupts since
2729 * it uses smp_call_function().
2730 */
2731 pcpu = smp_processor_id();
2732 if (kvm_is_radix(vc->kvm)) {
2733 for (sub = 0; sub < core_info.n_subcores; ++sub)
2734 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2735 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2736 }
2737
2738 /*
2739 * Hard-disable interrupts, and check resched flag and signals.
2740 * If we need to reschedule or deliver a signal, clean up
2741 * and return without going into the guest(s).
2742 * If the mmu_ready flag has been cleared, don't go into the
2743 * guest because that means a HPT resize operation is in progress.
2744 */
2745 local_irq_disable();
2746 hard_irq_disable();
2747 if (lazy_irq_pending() || need_resched() ||
2748 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2749 local_irq_enable();
2750 vc->vcore_state = VCORE_INACTIVE;
2751 /* Unlock all except the primary vcore */
2752 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2753 pvc = core_info.vc[sub];
2754 /* Put back on to the preempted vcores list */
2755 kvmppc_vcore_preempt(pvc);
2756 spin_unlock(&pvc->lock);
2757 }
2758 for (i = 0; i < controlled_threads; ++i)
2759 kvmppc_release_hwthread(pcpu + i);
2760 return;
2761 }
2762
2763 kvmppc_clear_host_core(pcpu);
2764
2765 /* Decide on micro-threading (split-core) mode */
2766 subcore_size = threads_per_subcore;
2767 cmd_bit = stat_bit = 0;
2768 split = core_info.n_subcores;
2769 sip = NULL;
2770 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2771 && !cpu_has_feature(CPU_FTR_ARCH_300);
2772
2773 if (split > 1 || hpt_on_radix) {
2774 sip = &split_info;
2775 memset(&split_info, 0, sizeof(split_info));
2776 for (sub = 0; sub < core_info.n_subcores; ++sub)
2777 split_info.vc[sub] = core_info.vc[sub];
2778
2779 if (is_power8) {
2780 if (split == 2 && (dynamic_mt_modes & 2)) {
2781 cmd_bit = HID0_POWER8_1TO2LPAR;
2782 stat_bit = HID0_POWER8_2LPARMODE;
2783 } else {
2784 split = 4;
2785 cmd_bit = HID0_POWER8_1TO4LPAR;
2786 stat_bit = HID0_POWER8_4LPARMODE;
2787 }
2788 subcore_size = MAX_SMT_THREADS / split;
2789 split_info.rpr = mfspr(SPRN_RPR);
2790 split_info.pmmar = mfspr(SPRN_PMMAR);
2791 split_info.ldbar = mfspr(SPRN_LDBAR);
2792 split_info.subcore_size = subcore_size;
2793 } else {
2794 split_info.subcore_size = 1;
2795 if (hpt_on_radix) {
2796 /* Use the split_info for LPCR/LPIDR changes */
2797 split_info.lpcr_req = vc->lpcr;
2798 split_info.lpidr_req = vc->kvm->arch.lpid;
2799 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2800 split_info.do_set = 1;
2801 }
2802 }
2803
2804 /* order writes to split_info before kvm_split_mode pointer */
2805 smp_wmb();
2806 }
2807
2808 for (thr = 0; thr < controlled_threads; ++thr) {
2809 paca[pcpu + thr].kvm_hstate.tid = thr;
2810 paca[pcpu + thr].kvm_hstate.napping = 0;
2811 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2812 }
2813
2814 /* Initiate micro-threading (split-core) on POWER8 if required */
2815 if (cmd_bit) {
2816 unsigned long hid0 = mfspr(SPRN_HID0);
2817
2818 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2819 mb();
2820 mtspr(SPRN_HID0, hid0);
2821 isync();
2822 for (;;) {
2823 hid0 = mfspr(SPRN_HID0);
2824 if (hid0 & stat_bit)
2825 break;
2826 cpu_relax();
2827 }
2828 }
2829
2830 /* Start all the threads */
2831 active = 0;
2832 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2833 thr = is_power8 ? subcore_thread_map[sub] : sub;
2834 thr0_done = false;
2835 active |= 1 << thr;
2836 pvc = core_info.vc[sub];
2837 pvc->pcpu = pcpu + thr;
2838 for_each_runnable_thread(i, vcpu, pvc) {
2839 kvmppc_start_thread(vcpu, pvc);
2840 kvmppc_create_dtl_entry(vcpu, pvc);
2841 trace_kvm_guest_enter(vcpu);
2842 if (!vcpu->arch.ptid)
2843 thr0_done = true;
2844 active |= 1 << (thr + vcpu->arch.ptid);
2845 }
2846 /*
2847 * We need to start the first thread of each subcore
2848 * even if it doesn't have a vcpu.
2849 */
2850 if (!thr0_done)
2851 kvmppc_start_thread(NULL, pvc);
2852 }
2853
2854 /*
2855 * Ensure that split_info.do_nap is set after setting
2856 * the vcore pointer in the PACA of the secondaries.
2857 */
2858 smp_mb();
2859
2860 /*
2861 * When doing micro-threading, poke the inactive threads as well.
2862 * This gets them to the nap instruction after kvm_do_nap,
2863 * which reduces the time taken to unsplit later.
2864 * For POWER9 HPT guest on radix host, we need all the secondary
2865 * threads woken up so they can do the LPCR/LPIDR change.
2866 */
2867 if (cmd_bit || hpt_on_radix) {
2868 split_info.do_nap = 1; /* ask secondaries to nap when done */
2869 for (thr = 1; thr < threads_per_subcore; ++thr)
2870 if (!(active & (1 << thr)))
2871 kvmppc_ipi_thread(pcpu + thr);
2872 }
2873
2874 vc->vcore_state = VCORE_RUNNING;
2875 preempt_disable();
2876
2877 trace_kvmppc_run_core(vc, 0);
2878
2879 for (sub = 0; sub < core_info.n_subcores; ++sub)
2880 spin_unlock(&core_info.vc[sub]->lock);
2881
2882 /*
2883 * Interrupts will be enabled once we get into the guest,
2884 * so tell lockdep that we're about to enable interrupts.
2885 */
2886 trace_hardirqs_on();
2887
2888 guest_enter();
2889
2890 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2891
2892 trap = __kvmppc_vcore_entry();
2893
2894 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2895
2896 guest_exit();
2897
2898 trace_hardirqs_off();
2899 set_irq_happened(trap);
2900
2901 spin_lock(&vc->lock);
2902 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2903 vc->vcore_state = VCORE_EXITING;
2904
2905 /* wait for secondary threads to finish writing their state to memory */
2906 kvmppc_wait_for_nap(controlled_threads);
2907
2908 /* Return to whole-core mode if we split the core earlier */
2909 if (cmd_bit) {
2910 unsigned long hid0 = mfspr(SPRN_HID0);
2911 unsigned long loops = 0;
2912
2913 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2914 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2915 mb();
2916 mtspr(SPRN_HID0, hid0);
2917 isync();
2918 for (;;) {
2919 hid0 = mfspr(SPRN_HID0);
2920 if (!(hid0 & stat_bit))
2921 break;
2922 cpu_relax();
2923 ++loops;
2924 }
2925 } else if (hpt_on_radix) {
2926 /* Wait for all threads to have seen final sync */
2927 for (thr = 1; thr < controlled_threads; ++thr) {
2928 while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2929 HMT_low();
2930 barrier();
2931 }
2932 HMT_medium();
2933 }
2934 }
2935 split_info.do_nap = 0;
2936
2937 kvmppc_set_host_core(pcpu);
2938
2939 local_irq_enable();
2940
2941 /* Let secondaries go back to the offline loop */
2942 for (i = 0; i < controlled_threads; ++i) {
2943 kvmppc_release_hwthread(pcpu + i);
2944 if (sip && sip->napped[i])
2945 kvmppc_ipi_thread(pcpu + i);
2946 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2947 }
2948
2949 spin_unlock(&vc->lock);
2950
2951 /* make sure updates to secondary vcpu structs are visible now */
2952 smp_mb();
2953
2954 preempt_enable();
2955
2956 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2957 pvc = core_info.vc[sub];
2958 post_guest_process(pvc, pvc == vc);
2959 }
2960
2961 spin_lock(&vc->lock);
2962
2963 out:
2964 vc->vcore_state = VCORE_INACTIVE;
2965 trace_kvmppc_run_core(vc, 1);
2966 }
2967
2968 /*
2969 * Wait for some other vcpu thread to execute us, and
2970 * wake us up when we need to handle something in the host.
2971 */
2972 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2973 struct kvm_vcpu *vcpu, int wait_state)
2974 {
2975 DEFINE_WAIT(wait);
2976
2977 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2978 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2979 spin_unlock(&vc->lock);
2980 schedule();
2981 spin_lock(&vc->lock);
2982 }
2983 finish_wait(&vcpu->arch.cpu_run, &wait);
2984 }
2985
2986 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2987 {
2988 /* 10us base */
2989 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2990 vc->halt_poll_ns = 10000;
2991 else
2992 vc->halt_poll_ns *= halt_poll_ns_grow;
2993 }
2994
2995 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2996 {
2997 if (halt_poll_ns_shrink == 0)
2998 vc->halt_poll_ns = 0;
2999 else
3000 vc->halt_poll_ns /= halt_poll_ns_shrink;
3001 }
3002
3003 #ifdef CONFIG_KVM_XICS
3004 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3005 {
3006 if (!xive_enabled())
3007 return false;
3008 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3009 vcpu->arch.xive_saved_state.cppr;
3010 }
3011 #else
3012 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3013 {
3014 return false;
3015 }
3016 #endif /* CONFIG_KVM_XICS */
3017
3018 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3019 {
3020 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3021 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3022 return true;
3023
3024 return false;
3025 }
3026
3027 /*
3028 * Check to see if any of the runnable vcpus on the vcore have pending
3029 * exceptions or are no longer ceded
3030 */
3031 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3032 {
3033 struct kvm_vcpu *vcpu;
3034 int i;
3035
3036 for_each_runnable_thread(i, vcpu, vc) {
3037 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * All the vcpus in this vcore are idle, so wait for a decrementer
3046 * or external interrupt to one of the vcpus. vc->lock is held.
3047 */
3048 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3049 {
3050 ktime_t cur, start_poll, start_wait;
3051 int do_sleep = 1;
3052 u64 block_ns;
3053 DECLARE_SWAITQUEUE(wait);
3054
3055 /* Poll for pending exceptions and ceded state */
3056 cur = start_poll = ktime_get();
3057 if (vc->halt_poll_ns) {
3058 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3059 ++vc->runner->stat.halt_attempted_poll;
3060
3061 vc->vcore_state = VCORE_POLLING;
3062 spin_unlock(&vc->lock);
3063
3064 do {
3065 if (kvmppc_vcore_check_block(vc)) {
3066 do_sleep = 0;
3067 break;
3068 }
3069 cur = ktime_get();
3070 } while (single_task_running() && ktime_before(cur, stop));
3071
3072 spin_lock(&vc->lock);
3073 vc->vcore_state = VCORE_INACTIVE;
3074
3075 if (!do_sleep) {
3076 ++vc->runner->stat.halt_successful_poll;
3077 goto out;
3078 }
3079 }
3080
3081 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3082
3083 if (kvmppc_vcore_check_block(vc)) {
3084 finish_swait(&vc->wq, &wait);
3085 do_sleep = 0;
3086 /* If we polled, count this as a successful poll */
3087 if (vc->halt_poll_ns)
3088 ++vc->runner->stat.halt_successful_poll;
3089 goto out;
3090 }
3091
3092 start_wait = ktime_get();
3093
3094 vc->vcore_state = VCORE_SLEEPING;
3095 trace_kvmppc_vcore_blocked(vc, 0);
3096 spin_unlock(&vc->lock);
3097 schedule();
3098 finish_swait(&vc->wq, &wait);
3099 spin_lock(&vc->lock);
3100 vc->vcore_state = VCORE_INACTIVE;
3101 trace_kvmppc_vcore_blocked(vc, 1);
3102 ++vc->runner->stat.halt_successful_wait;
3103
3104 cur = ktime_get();
3105
3106 out:
3107 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3108
3109 /* Attribute wait time */
3110 if (do_sleep) {
3111 vc->runner->stat.halt_wait_ns +=
3112 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3113 /* Attribute failed poll time */
3114 if (vc->halt_poll_ns)
3115 vc->runner->stat.halt_poll_fail_ns +=
3116 ktime_to_ns(start_wait) -
3117 ktime_to_ns(start_poll);
3118 } else {
3119 /* Attribute successful poll time */
3120 if (vc->halt_poll_ns)
3121 vc->runner->stat.halt_poll_success_ns +=
3122 ktime_to_ns(cur) -
3123 ktime_to_ns(start_poll);
3124 }
3125
3126 /* Adjust poll time */
3127 if (halt_poll_ns) {
3128 if (block_ns <= vc->halt_poll_ns)
3129 ;
3130 /* We slept and blocked for longer than the max halt time */
3131 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3132 shrink_halt_poll_ns(vc);
3133 /* We slept and our poll time is too small */
3134 else if (vc->halt_poll_ns < halt_poll_ns &&
3135 block_ns < halt_poll_ns)
3136 grow_halt_poll_ns(vc);
3137 if (vc->halt_poll_ns > halt_poll_ns)
3138 vc->halt_poll_ns = halt_poll_ns;
3139 } else
3140 vc->halt_poll_ns = 0;
3141
3142 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3143 }
3144
3145 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3146 {
3147 int r = 0;
3148 struct kvm *kvm = vcpu->kvm;
3149
3150 mutex_lock(&kvm->lock);
3151 if (!kvm->arch.mmu_ready) {
3152 if (!kvm_is_radix(kvm))
3153 r = kvmppc_hv_setup_htab_rma(vcpu);
3154 if (!r) {
3155 if (cpu_has_feature(CPU_FTR_ARCH_300))
3156 kvmppc_setup_partition_table(kvm);
3157 kvm->arch.mmu_ready = 1;
3158 }
3159 }
3160 mutex_unlock(&kvm->lock);
3161 return r;
3162 }
3163
3164 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3165 {
3166 int n_ceded, i, r;
3167 struct kvmppc_vcore *vc;
3168 struct kvm_vcpu *v;
3169
3170 trace_kvmppc_run_vcpu_enter(vcpu);
3171
3172 kvm_run->exit_reason = 0;
3173 vcpu->arch.ret = RESUME_GUEST;
3174 vcpu->arch.trap = 0;
3175 kvmppc_update_vpas(vcpu);
3176
3177 /*
3178 * Synchronize with other threads in this virtual core
3179 */
3180 vc = vcpu->arch.vcore;
3181 spin_lock(&vc->lock);
3182 vcpu->arch.ceded = 0;
3183 vcpu->arch.run_task = current;
3184 vcpu->arch.kvm_run = kvm_run;
3185 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3186 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3187 vcpu->arch.busy_preempt = TB_NIL;
3188 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3189 ++vc->n_runnable;
3190
3191 /*
3192 * This happens the first time this is called for a vcpu.
3193 * If the vcore is already running, we may be able to start
3194 * this thread straight away and have it join in.
3195 */
3196 if (!signal_pending(current)) {
3197 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3198 vc->vcore_state == VCORE_RUNNING) &&
3199 !VCORE_IS_EXITING(vc)) {
3200 kvmppc_create_dtl_entry(vcpu, vc);
3201 kvmppc_start_thread(vcpu, vc);
3202 trace_kvm_guest_enter(vcpu);
3203 } else if (vc->vcore_state == VCORE_SLEEPING) {
3204 swake_up(&vc->wq);
3205 }
3206
3207 }
3208
3209 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3210 !signal_pending(current)) {
3211 /* See if the MMU is ready to go */
3212 if (!vcpu->kvm->arch.mmu_ready) {
3213 spin_unlock(&vc->lock);
3214 r = kvmhv_setup_mmu(vcpu);
3215 spin_lock(&vc->lock);
3216 if (r) {
3217 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3218 kvm_run->fail_entry.
3219 hardware_entry_failure_reason = 0;
3220 vcpu->arch.ret = r;
3221 break;
3222 }
3223 }
3224
3225 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3226 kvmppc_vcore_end_preempt(vc);
3227
3228 if (vc->vcore_state != VCORE_INACTIVE) {
3229 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3230 continue;
3231 }
3232 for_each_runnable_thread(i, v, vc) {
3233 kvmppc_core_prepare_to_enter(v);
3234 if (signal_pending(v->arch.run_task)) {
3235 kvmppc_remove_runnable(vc, v);
3236 v->stat.signal_exits++;
3237 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3238 v->arch.ret = -EINTR;
3239 wake_up(&v->arch.cpu_run);
3240 }
3241 }
3242 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3243 break;
3244 n_ceded = 0;
3245 for_each_runnable_thread(i, v, vc) {
3246 if (!kvmppc_vcpu_woken(v))
3247 n_ceded += v->arch.ceded;
3248 else
3249 v->arch.ceded = 0;
3250 }
3251 vc->runner = vcpu;
3252 if (n_ceded == vc->n_runnable) {
3253 kvmppc_vcore_blocked(vc);
3254 } else if (need_resched()) {
3255 kvmppc_vcore_preempt(vc);
3256 /* Let something else run */
3257 cond_resched_lock(&vc->lock);
3258 if (vc->vcore_state == VCORE_PREEMPT)
3259 kvmppc_vcore_end_preempt(vc);
3260 } else {
3261 kvmppc_run_core(vc);
3262 }
3263 vc->runner = NULL;
3264 }
3265
3266 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3267 (vc->vcore_state == VCORE_RUNNING ||
3268 vc->vcore_state == VCORE_EXITING ||
3269 vc->vcore_state == VCORE_PIGGYBACK))
3270 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3271
3272 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3273 kvmppc_vcore_end_preempt(vc);
3274
3275 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3276 kvmppc_remove_runnable(vc, vcpu);
3277 vcpu->stat.signal_exits++;
3278 kvm_run->exit_reason = KVM_EXIT_INTR;
3279 vcpu->arch.ret = -EINTR;
3280 }
3281
3282 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3283 /* Wake up some vcpu to run the core */
3284 i = -1;
3285 v = next_runnable_thread(vc, &i);
3286 wake_up(&v->arch.cpu_run);
3287 }
3288
3289 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3290 spin_unlock(&vc->lock);
3291 return vcpu->arch.ret;
3292 }
3293
3294 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3295 {
3296 int r;
3297 int srcu_idx;
3298 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3299 unsigned long user_tar = 0;
3300 unsigned int user_vrsave;
3301 struct kvm *kvm;
3302
3303 if (!vcpu->arch.sane) {
3304 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3305 return -EINVAL;
3306 }
3307
3308 /*
3309 * Don't allow entry with a suspended transaction, because
3310 * the guest entry/exit code will lose it.
3311 * If the guest has TM enabled, save away their TM-related SPRs
3312 * (they will get restored by the TM unavailable interrupt).
3313 */
3314 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3315 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3316 (current->thread.regs->msr & MSR_TM)) {
3317 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3318 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3319 run->fail_entry.hardware_entry_failure_reason = 0;
3320 return -EINVAL;
3321 }
3322 /* Enable TM so we can read the TM SPRs */
3323 mtmsr(mfmsr() | MSR_TM);
3324 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3325 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3326 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3327 current->thread.regs->msr &= ~MSR_TM;
3328 }
3329 #endif
3330
3331 kvmppc_core_prepare_to_enter(vcpu);
3332
3333 /* No need to go into the guest when all we'll do is come back out */
3334 if (signal_pending(current)) {
3335 run->exit_reason = KVM_EXIT_INTR;
3336 return -EINTR;
3337 }
3338
3339 kvm = vcpu->kvm;
3340 atomic_inc(&kvm->arch.vcpus_running);
3341 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3342 smp_mb();
3343
3344 flush_all_to_thread(current);
3345
3346 /* Save userspace EBB and other register values */
3347 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3348 ebb_regs[0] = mfspr(SPRN_EBBHR);
3349 ebb_regs[1] = mfspr(SPRN_EBBRR);
3350 ebb_regs[2] = mfspr(SPRN_BESCR);
3351 user_tar = mfspr(SPRN_TAR);
3352 }
3353 user_vrsave = mfspr(SPRN_VRSAVE);
3354
3355 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3356 vcpu->arch.pgdir = current->mm->pgd;
3357 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3358
3359 do {
3360 r = kvmppc_run_vcpu(run, vcpu);
3361
3362 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3363 !(vcpu->arch.shregs.msr & MSR_PR)) {
3364 trace_kvm_hcall_enter(vcpu);
3365 r = kvmppc_pseries_do_hcall(vcpu);
3366 trace_kvm_hcall_exit(vcpu, r);
3367 kvmppc_core_prepare_to_enter(vcpu);
3368 } else if (r == RESUME_PAGE_FAULT) {
3369 srcu_idx = srcu_read_lock(&kvm->srcu);
3370 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3371 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3372 srcu_read_unlock(&kvm->srcu, srcu_idx);
3373 } else if (r == RESUME_PASSTHROUGH) {
3374 if (WARN_ON(xive_enabled()))
3375 r = H_SUCCESS;
3376 else
3377 r = kvmppc_xics_rm_complete(vcpu, 0);
3378 }
3379 } while (is_kvmppc_resume_guest(r));
3380
3381 /* Restore userspace EBB and other register values */
3382 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3383 mtspr(SPRN_EBBHR, ebb_regs[0]);
3384 mtspr(SPRN_EBBRR, ebb_regs[1]);
3385 mtspr(SPRN_BESCR, ebb_regs[2]);
3386 mtspr(SPRN_TAR, user_tar);
3387 mtspr(SPRN_FSCR, current->thread.fscr);
3388 }
3389 mtspr(SPRN_VRSAVE, user_vrsave);
3390
3391 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3392 atomic_dec(&kvm->arch.vcpus_running);
3393 return r;
3394 }
3395
3396 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3397 int shift, int sllp)
3398 {
3399 (*sps)->page_shift = shift;
3400 (*sps)->slb_enc = sllp;
3401 (*sps)->enc[0].page_shift = shift;
3402 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3403 /*
3404 * Add 16MB MPSS support (may get filtered out by userspace)
3405 */
3406 if (shift != 24) {
3407 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3408 if (penc != -1) {
3409 (*sps)->enc[1].page_shift = 24;
3410 (*sps)->enc[1].pte_enc = penc;
3411 }
3412 }
3413 (*sps)++;
3414 }
3415
3416 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3417 struct kvm_ppc_smmu_info *info)
3418 {
3419 struct kvm_ppc_one_seg_page_size *sps;
3420
3421 /*
3422 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3423 * POWER7 doesn't support keys for instruction accesses,
3424 * POWER8 and POWER9 do.
3425 */
3426 info->data_keys = 32;
3427 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3428
3429 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3430 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3431 info->slb_size = 32;
3432
3433 /* We only support these sizes for now, and no muti-size segments */
3434 sps = &info->sps[0];
3435 kvmppc_add_seg_page_size(&sps, 12, 0);
3436 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3437 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3438
3439 return 0;
3440 }
3441
3442 /*
3443 * Get (and clear) the dirty memory log for a memory slot.
3444 */
3445 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3446 struct kvm_dirty_log *log)
3447 {
3448 struct kvm_memslots *slots;
3449 struct kvm_memory_slot *memslot;
3450 int i, r;
3451 unsigned long n;
3452 unsigned long *buf, *p;
3453 struct kvm_vcpu *vcpu;
3454
3455 mutex_lock(&kvm->slots_lock);
3456
3457 r = -EINVAL;
3458 if (log->slot >= KVM_USER_MEM_SLOTS)
3459 goto out;
3460
3461 slots = kvm_memslots(kvm);
3462 memslot = id_to_memslot(slots, log->slot);
3463 r = -ENOENT;
3464 if (!memslot->dirty_bitmap)
3465 goto out;
3466
3467 /*
3468 * Use second half of bitmap area because both HPT and radix
3469 * accumulate bits in the first half.
3470 */
3471 n = kvm_dirty_bitmap_bytes(memslot);
3472 buf = memslot->dirty_bitmap + n / sizeof(long);
3473 memset(buf, 0, n);
3474
3475 if (kvm_is_radix(kvm))
3476 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3477 else
3478 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3479 if (r)
3480 goto out;
3481
3482 /*
3483 * We accumulate dirty bits in the first half of the
3484 * memslot's dirty_bitmap area, for when pages are paged
3485 * out or modified by the host directly. Pick up these
3486 * bits and add them to the map.
3487 */
3488 p = memslot->dirty_bitmap;
3489 for (i = 0; i < n / sizeof(long); ++i)
3490 buf[i] |= xchg(&p[i], 0);
3491
3492 /* Harvest dirty bits from VPA and DTL updates */
3493 /* Note: we never modify the SLB shadow buffer areas */
3494 kvm_for_each_vcpu(i, vcpu, kvm) {
3495 spin_lock(&vcpu->arch.vpa_update_lock);
3496 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3497 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3498 spin_unlock(&vcpu->arch.vpa_update_lock);
3499 }
3500
3501 r = -EFAULT;
3502 if (copy_to_user(log->dirty_bitmap, buf, n))
3503 goto out;
3504
3505 r = 0;
3506 out:
3507 mutex_unlock(&kvm->slots_lock);
3508 return r;
3509 }
3510
3511 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3512 struct kvm_memory_slot *dont)
3513 {
3514 if (!dont || free->arch.rmap != dont->arch.rmap) {
3515 vfree(free->arch.rmap);
3516 free->arch.rmap = NULL;
3517 }
3518 }
3519
3520 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3521 unsigned long npages)
3522 {
3523 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3524 if (!slot->arch.rmap)
3525 return -ENOMEM;
3526
3527 return 0;
3528 }
3529
3530 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3531 struct kvm_memory_slot *memslot,
3532 const struct kvm_userspace_memory_region *mem)
3533 {
3534 return 0;
3535 }
3536
3537 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3538 const struct kvm_userspace_memory_region *mem,
3539 const struct kvm_memory_slot *old,
3540 const struct kvm_memory_slot *new)
3541 {
3542 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3543
3544 /*
3545 * If we are making a new memslot, it might make
3546 * some address that was previously cached as emulated
3547 * MMIO be no longer emulated MMIO, so invalidate
3548 * all the caches of emulated MMIO translations.
3549 */
3550 if (npages)
3551 atomic64_inc(&kvm->arch.mmio_update);
3552 }
3553
3554 /*
3555 * Update LPCR values in kvm->arch and in vcores.
3556 * Caller must hold kvm->lock.
3557 */
3558 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3559 {
3560 long int i;
3561 u32 cores_done = 0;
3562
3563 if ((kvm->arch.lpcr & mask) == lpcr)
3564 return;
3565
3566 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3567
3568 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3569 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3570 if (!vc)
3571 continue;
3572 spin_lock(&vc->lock);
3573 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3574 spin_unlock(&vc->lock);
3575 if (++cores_done >= kvm->arch.online_vcores)
3576 break;
3577 }
3578 }
3579
3580 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3581 {
3582 return;
3583 }
3584
3585 void kvmppc_setup_partition_table(struct kvm *kvm)
3586 {
3587 unsigned long dw0, dw1;
3588
3589 if (!kvm_is_radix(kvm)) {
3590 /* PS field - page size for VRMA */
3591 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3592 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3593 /* HTABSIZE and HTABORG fields */
3594 dw0 |= kvm->arch.sdr1;
3595
3596 /* Second dword as set by userspace */
3597 dw1 = kvm->arch.process_table;
3598 } else {
3599 dw0 = PATB_HR | radix__get_tree_size() |
3600 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3601 dw1 = PATB_GR | kvm->arch.process_table;
3602 }
3603
3604 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3605 }
3606
3607 /*
3608 * Set up HPT (hashed page table) and RMA (real-mode area).
3609 * Must be called with kvm->lock held.
3610 */
3611 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3612 {
3613 int err = 0;
3614 struct kvm *kvm = vcpu->kvm;
3615 unsigned long hva;
3616 struct kvm_memory_slot *memslot;
3617 struct vm_area_struct *vma;
3618 unsigned long lpcr = 0, senc;
3619 unsigned long psize, porder;
3620 int srcu_idx;
3621
3622 /* Allocate hashed page table (if not done already) and reset it */
3623 if (!kvm->arch.hpt.virt) {
3624 int order = KVM_DEFAULT_HPT_ORDER;
3625 struct kvm_hpt_info info;
3626
3627 err = kvmppc_allocate_hpt(&info, order);
3628 /* If we get here, it means userspace didn't specify a
3629 * size explicitly. So, try successively smaller
3630 * sizes if the default failed. */
3631 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3632 err = kvmppc_allocate_hpt(&info, order);
3633
3634 if (err < 0) {
3635 pr_err("KVM: Couldn't alloc HPT\n");
3636 goto out;
3637 }
3638
3639 kvmppc_set_hpt(kvm, &info);
3640 }
3641
3642 /* Look up the memslot for guest physical address 0 */
3643 srcu_idx = srcu_read_lock(&kvm->srcu);
3644 memslot = gfn_to_memslot(kvm, 0);
3645
3646 /* We must have some memory at 0 by now */
3647 err = -EINVAL;
3648 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3649 goto out_srcu;
3650
3651 /* Look up the VMA for the start of this memory slot */
3652 hva = memslot->userspace_addr;
3653 down_read(&current->mm->mmap_sem);
3654 vma = find_vma(current->mm, hva);
3655 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3656 goto up_out;
3657
3658 psize = vma_kernel_pagesize(vma);
3659 porder = __ilog2(psize);
3660
3661 up_read(&current->mm->mmap_sem);
3662
3663 /* We can handle 4k, 64k or 16M pages in the VRMA */
3664 err = -EINVAL;
3665 if (!(psize == 0x1000 || psize == 0x10000 ||
3666 psize == 0x1000000))
3667 goto out_srcu;
3668
3669 senc = slb_pgsize_encoding(psize);
3670 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3671 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3672 /* Create HPTEs in the hash page table for the VRMA */
3673 kvmppc_map_vrma(vcpu, memslot, porder);
3674
3675 /* Update VRMASD field in the LPCR */
3676 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3677 /* the -4 is to account for senc values starting at 0x10 */
3678 lpcr = senc << (LPCR_VRMASD_SH - 4);
3679 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3680 }
3681
3682 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3683 smp_wmb();
3684 err = 0;
3685 out_srcu:
3686 srcu_read_unlock(&kvm->srcu, srcu_idx);
3687 out:
3688 return err;
3689
3690 up_out:
3691 up_read(&current->mm->mmap_sem);
3692 goto out_srcu;
3693 }
3694
3695 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3696 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3697 {
3698 kvmppc_free_radix(kvm);
3699 kvmppc_update_lpcr(kvm, LPCR_VPM1,
3700 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3701 kvmppc_rmap_reset(kvm);
3702 kvm->arch.radix = 0;
3703 kvm->arch.process_table = 0;
3704 return 0;
3705 }
3706
3707 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3708 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3709 {
3710 int err;
3711
3712 err = kvmppc_init_vm_radix(kvm);
3713 if (err)
3714 return err;
3715
3716 kvmppc_free_hpt(&kvm->arch.hpt);
3717 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3718 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3719 kvm->arch.radix = 1;
3720 return 0;
3721 }
3722
3723 #ifdef CONFIG_KVM_XICS
3724 /*
3725 * Allocate a per-core structure for managing state about which cores are
3726 * running in the host versus the guest and for exchanging data between
3727 * real mode KVM and CPU running in the host.
3728 * This is only done for the first VM.
3729 * The allocated structure stays even if all VMs have stopped.
3730 * It is only freed when the kvm-hv module is unloaded.
3731 * It's OK for this routine to fail, we just don't support host
3732 * core operations like redirecting H_IPI wakeups.
3733 */
3734 void kvmppc_alloc_host_rm_ops(void)
3735 {
3736 struct kvmppc_host_rm_ops *ops;
3737 unsigned long l_ops;
3738 int cpu, core;
3739 int size;
3740
3741 /* Not the first time here ? */
3742 if (kvmppc_host_rm_ops_hv != NULL)
3743 return;
3744
3745 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3746 if (!ops)
3747 return;
3748
3749 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3750 ops->rm_core = kzalloc(size, GFP_KERNEL);
3751
3752 if (!ops->rm_core) {
3753 kfree(ops);
3754 return;
3755 }
3756
3757 cpus_read_lock();
3758
3759 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3760 if (!cpu_online(cpu))
3761 continue;
3762
3763 core = cpu >> threads_shift;
3764 ops->rm_core[core].rm_state.in_host = 1;
3765 }
3766
3767 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3768
3769 /*
3770 * Make the contents of the kvmppc_host_rm_ops structure visible
3771 * to other CPUs before we assign it to the global variable.
3772 * Do an atomic assignment (no locks used here), but if someone
3773 * beats us to it, just free our copy and return.
3774 */
3775 smp_wmb();
3776 l_ops = (unsigned long) ops;
3777
3778 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3779 cpus_read_unlock();
3780 kfree(ops->rm_core);
3781 kfree(ops);
3782 return;
3783 }
3784
3785 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3786 "ppc/kvm_book3s:prepare",
3787 kvmppc_set_host_core,
3788 kvmppc_clear_host_core);
3789 cpus_read_unlock();
3790 }
3791
3792 void kvmppc_free_host_rm_ops(void)
3793 {
3794 if (kvmppc_host_rm_ops_hv) {
3795 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3796 kfree(kvmppc_host_rm_ops_hv->rm_core);
3797 kfree(kvmppc_host_rm_ops_hv);
3798 kvmppc_host_rm_ops_hv = NULL;
3799 }
3800 }
3801 #endif
3802
3803 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3804 {
3805 unsigned long lpcr, lpid;
3806 char buf[32];
3807 int ret;
3808
3809 /* Allocate the guest's logical partition ID */
3810
3811 lpid = kvmppc_alloc_lpid();
3812 if ((long)lpid < 0)
3813 return -ENOMEM;
3814 kvm->arch.lpid = lpid;
3815
3816 kvmppc_alloc_host_rm_ops();
3817
3818 /*
3819 * Since we don't flush the TLB when tearing down a VM,
3820 * and this lpid might have previously been used,
3821 * make sure we flush on each core before running the new VM.
3822 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3823 * does this flush for us.
3824 */
3825 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3826 cpumask_setall(&kvm->arch.need_tlb_flush);
3827
3828 /* Start out with the default set of hcalls enabled */
3829 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3830 sizeof(kvm->arch.enabled_hcalls));
3831
3832 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3833 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3834
3835 /* Init LPCR for virtual RMA mode */
3836 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3837 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3838 lpcr &= LPCR_PECE | LPCR_LPES;
3839 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3840 LPCR_VPM0 | LPCR_VPM1;
3841 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3842 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3843 /* On POWER8 turn on online bit to enable PURR/SPURR */
3844 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3845 lpcr |= LPCR_ONL;
3846 /*
3847 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3848 * Set HVICE bit to enable hypervisor virtualization interrupts.
3849 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3850 * be unnecessary but better safe than sorry in case we re-enable
3851 * EE in HV mode with this LPCR still set)
3852 */
3853 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3854 lpcr &= ~LPCR_VPM0;
3855 lpcr |= LPCR_HVICE | LPCR_HEIC;
3856
3857 /*
3858 * If xive is enabled, we route 0x500 interrupts directly
3859 * to the guest.
3860 */
3861 if (xive_enabled())
3862 lpcr |= LPCR_LPES;
3863 }
3864
3865 /*
3866 * If the host uses radix, the guest starts out as radix.
3867 */
3868 if (radix_enabled()) {
3869 kvm->arch.radix = 1;
3870 kvm->arch.mmu_ready = 1;
3871 lpcr &= ~LPCR_VPM1;
3872 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3873 ret = kvmppc_init_vm_radix(kvm);
3874 if (ret) {
3875 kvmppc_free_lpid(kvm->arch.lpid);
3876 return ret;
3877 }
3878 kvmppc_setup_partition_table(kvm);
3879 }
3880
3881 kvm->arch.lpcr = lpcr;
3882
3883 /* Initialization for future HPT resizes */
3884 kvm->arch.resize_hpt = NULL;
3885
3886 /*
3887 * Work out how many sets the TLB has, for the use of
3888 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3889 */
3890 if (radix_enabled())
3891 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3892 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3893 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3894 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3895 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3896 else
3897 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3898
3899 /*
3900 * Track that we now have a HV mode VM active. This blocks secondary
3901 * CPU threads from coming online.
3902 * On POWER9, we only need to do this if the "indep_threads_mode"
3903 * module parameter has been set to N.
3904 */
3905 if (cpu_has_feature(CPU_FTR_ARCH_300))
3906 kvm->arch.threads_indep = indep_threads_mode;
3907 if (!kvm->arch.threads_indep)
3908 kvm_hv_vm_activated();
3909
3910 /*
3911 * Initialize smt_mode depending on processor.
3912 * POWER8 and earlier have to use "strict" threading, where
3913 * all vCPUs in a vcore have to run on the same (sub)core,
3914 * whereas on POWER9 the threads can each run a different
3915 * guest.
3916 */
3917 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3918 kvm->arch.smt_mode = threads_per_subcore;
3919 else
3920 kvm->arch.smt_mode = 1;
3921 kvm->arch.emul_smt_mode = 1;
3922
3923 /*
3924 * Create a debugfs directory for the VM
3925 */
3926 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3927 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3928 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3929 kvmppc_mmu_debugfs_init(kvm);
3930
3931 return 0;
3932 }
3933
3934 static void kvmppc_free_vcores(struct kvm *kvm)
3935 {
3936 long int i;
3937
3938 for (i = 0; i < KVM_MAX_VCORES; ++i)
3939 kfree(kvm->arch.vcores[i]);
3940 kvm->arch.online_vcores = 0;
3941 }
3942
3943 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3944 {
3945 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3946
3947 if (!kvm->arch.threads_indep)
3948 kvm_hv_vm_deactivated();
3949
3950 kvmppc_free_vcores(kvm);
3951
3952 kvmppc_free_lpid(kvm->arch.lpid);
3953
3954 if (kvm_is_radix(kvm))
3955 kvmppc_free_radix(kvm);
3956 else
3957 kvmppc_free_hpt(&kvm->arch.hpt);
3958
3959 kvmppc_free_pimap(kvm);
3960 }
3961
3962 /* We don't need to emulate any privileged instructions or dcbz */
3963 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3964 unsigned int inst, int *advance)
3965 {
3966 return EMULATE_FAIL;
3967 }
3968
3969 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3970 ulong spr_val)
3971 {
3972 return EMULATE_FAIL;
3973 }
3974
3975 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3976 ulong *spr_val)
3977 {
3978 return EMULATE_FAIL;
3979 }
3980
3981 static int kvmppc_core_check_processor_compat_hv(void)
3982 {
3983 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3984 !cpu_has_feature(CPU_FTR_ARCH_206))
3985 return -EIO;
3986
3987 return 0;
3988 }
3989
3990 #ifdef CONFIG_KVM_XICS
3991
3992 void kvmppc_free_pimap(struct kvm *kvm)
3993 {
3994 kfree(kvm->arch.pimap);
3995 }
3996
3997 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3998 {
3999 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4000 }
4001
4002 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4003 {
4004 struct irq_desc *desc;
4005 struct kvmppc_irq_map *irq_map;
4006 struct kvmppc_passthru_irqmap *pimap;
4007 struct irq_chip *chip;
4008 int i, rc = 0;
4009
4010 if (!kvm_irq_bypass)
4011 return 1;
4012
4013 desc = irq_to_desc(host_irq);
4014 if (!desc)
4015 return -EIO;
4016
4017 mutex_lock(&kvm->lock);
4018
4019 pimap = kvm->arch.pimap;
4020 if (pimap == NULL) {
4021 /* First call, allocate structure to hold IRQ map */
4022 pimap = kvmppc_alloc_pimap();
4023 if (pimap == NULL) {
4024 mutex_unlock(&kvm->lock);
4025 return -ENOMEM;
4026 }
4027 kvm->arch.pimap = pimap;
4028 }
4029
4030 /*
4031 * For now, we only support interrupts for which the EOI operation
4032 * is an OPAL call followed by a write to XIRR, since that's
4033 * what our real-mode EOI code does, or a XIVE interrupt
4034 */
4035 chip = irq_data_get_irq_chip(&desc->irq_data);
4036 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4037 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4038 host_irq, guest_gsi);
4039 mutex_unlock(&kvm->lock);
4040 return -ENOENT;
4041 }
4042
4043 /*
4044 * See if we already have an entry for this guest IRQ number.
4045 * If it's mapped to a hardware IRQ number, that's an error,
4046 * otherwise re-use this entry.
4047 */
4048 for (i = 0; i < pimap->n_mapped; i++) {
4049 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4050 if (pimap->mapped[i].r_hwirq) {
4051 mutex_unlock(&kvm->lock);
4052 return -EINVAL;
4053 }
4054 break;
4055 }
4056 }
4057
4058 if (i == KVMPPC_PIRQ_MAPPED) {
4059 mutex_unlock(&kvm->lock);
4060 return -EAGAIN; /* table is full */
4061 }
4062
4063 irq_map = &pimap->mapped[i];
4064
4065 irq_map->v_hwirq = guest_gsi;
4066 irq_map->desc = desc;
4067
4068 /*
4069 * Order the above two stores before the next to serialize with
4070 * the KVM real mode handler.
4071 */
4072 smp_wmb();
4073 irq_map->r_hwirq = desc->irq_data.hwirq;
4074
4075 if (i == pimap->n_mapped)
4076 pimap->n_mapped++;
4077
4078 if (xive_enabled())
4079 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4080 else
4081 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4082 if (rc)
4083 irq_map->r_hwirq = 0;
4084
4085 mutex_unlock(&kvm->lock);
4086
4087 return 0;
4088 }
4089
4090 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4091 {
4092 struct irq_desc *desc;
4093 struct kvmppc_passthru_irqmap *pimap;
4094 int i, rc = 0;
4095
4096 if (!kvm_irq_bypass)
4097 return 0;
4098
4099 desc = irq_to_desc(host_irq);
4100 if (!desc)
4101 return -EIO;
4102
4103 mutex_lock(&kvm->lock);
4104 if (!kvm->arch.pimap)
4105 goto unlock;
4106
4107 pimap = kvm->arch.pimap;
4108
4109 for (i = 0; i < pimap->n_mapped; i++) {
4110 if (guest_gsi == pimap->mapped[i].v_hwirq)
4111 break;
4112 }
4113
4114 if (i == pimap->n_mapped) {
4115 mutex_unlock(&kvm->lock);
4116 return -ENODEV;
4117 }
4118
4119 if (xive_enabled())
4120 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4121 else
4122 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4123
4124 /* invalidate the entry (what do do on error from the above ?) */
4125 pimap->mapped[i].r_hwirq = 0;
4126
4127 /*
4128 * We don't free this structure even when the count goes to
4129 * zero. The structure is freed when we destroy the VM.
4130 */
4131 unlock:
4132 mutex_unlock(&kvm->lock);
4133 return rc;
4134 }
4135
4136 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4137 struct irq_bypass_producer *prod)
4138 {
4139 int ret = 0;
4140 struct kvm_kernel_irqfd *irqfd =
4141 container_of(cons, struct kvm_kernel_irqfd, consumer);
4142
4143 irqfd->producer = prod;
4144
4145 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4146 if (ret)
4147 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4148 prod->irq, irqfd->gsi, ret);
4149
4150 return ret;
4151 }
4152
4153 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4154 struct irq_bypass_producer *prod)
4155 {
4156 int ret;
4157 struct kvm_kernel_irqfd *irqfd =
4158 container_of(cons, struct kvm_kernel_irqfd, consumer);
4159
4160 irqfd->producer = NULL;
4161
4162 /*
4163 * When producer of consumer is unregistered, we change back to
4164 * default external interrupt handling mode - KVM real mode
4165 * will switch back to host.
4166 */
4167 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4168 if (ret)
4169 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4170 prod->irq, irqfd->gsi, ret);
4171 }
4172 #endif
4173
4174 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4175 unsigned int ioctl, unsigned long arg)
4176 {
4177 struct kvm *kvm __maybe_unused = filp->private_data;
4178 void __user *argp = (void __user *)arg;
4179 long r;
4180
4181 switch (ioctl) {
4182
4183 case KVM_PPC_ALLOCATE_HTAB: {
4184 u32 htab_order;
4185
4186 r = -EFAULT;
4187 if (get_user(htab_order, (u32 __user *)argp))
4188 break;
4189 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4190 if (r)
4191 break;
4192 r = 0;
4193 break;
4194 }
4195
4196 case KVM_PPC_GET_HTAB_FD: {
4197 struct kvm_get_htab_fd ghf;
4198
4199 r = -EFAULT;
4200 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4201 break;
4202 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4203 break;
4204 }
4205
4206 case KVM_PPC_RESIZE_HPT_PREPARE: {
4207 struct kvm_ppc_resize_hpt rhpt;
4208
4209 r = -EFAULT;
4210 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4211 break;
4212
4213 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4214 break;
4215 }
4216
4217 case KVM_PPC_RESIZE_HPT_COMMIT: {
4218 struct kvm_ppc_resize_hpt rhpt;
4219
4220 r = -EFAULT;
4221 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4222 break;
4223
4224 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4225 break;
4226 }
4227
4228 default:
4229 r = -ENOTTY;
4230 }
4231
4232 return r;
4233 }
4234
4235 /*
4236 * List of hcall numbers to enable by default.
4237 * For compatibility with old userspace, we enable by default
4238 * all hcalls that were implemented before the hcall-enabling
4239 * facility was added. Note this list should not include H_RTAS.
4240 */
4241 static unsigned int default_hcall_list[] = {
4242 H_REMOVE,
4243 H_ENTER,
4244 H_READ,
4245 H_PROTECT,
4246 H_BULK_REMOVE,
4247 H_GET_TCE,
4248 H_PUT_TCE,
4249 H_SET_DABR,
4250 H_SET_XDABR,
4251 H_CEDE,
4252 H_PROD,
4253 H_CONFER,
4254 H_REGISTER_VPA,
4255 #ifdef CONFIG_KVM_XICS
4256 H_EOI,
4257 H_CPPR,
4258 H_IPI,
4259 H_IPOLL,
4260 H_XIRR,
4261 H_XIRR_X,
4262 #endif
4263 0
4264 };
4265
4266 static void init_default_hcalls(void)
4267 {
4268 int i;
4269 unsigned int hcall;
4270
4271 for (i = 0; default_hcall_list[i]; ++i) {
4272 hcall = default_hcall_list[i];
4273 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4274 __set_bit(hcall / 4, default_enabled_hcalls);
4275 }
4276 }
4277
4278 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4279 {
4280 unsigned long lpcr;
4281 int radix;
4282 int err;
4283
4284 /* If not on a POWER9, reject it */
4285 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4286 return -ENODEV;
4287
4288 /* If any unknown flags set, reject it */
4289 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4290 return -EINVAL;
4291
4292 /* GR (guest radix) bit in process_table field must match */
4293 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4294 if (!!(cfg->process_table & PATB_GR) != radix)
4295 return -EINVAL;
4296
4297 /* Process table size field must be reasonable, i.e. <= 24 */
4298 if ((cfg->process_table & PRTS_MASK) > 24)
4299 return -EINVAL;
4300
4301 /* We can change a guest to/from radix now, if the host is radix */
4302 if (radix && !radix_enabled())
4303 return -EINVAL;
4304
4305 mutex_lock(&kvm->lock);
4306 if (radix != kvm_is_radix(kvm)) {
4307 if (kvm->arch.mmu_ready) {
4308 kvm->arch.mmu_ready = 0;
4309 /* order mmu_ready vs. vcpus_running */
4310 smp_mb();
4311 if (atomic_read(&kvm->arch.vcpus_running)) {
4312 kvm->arch.mmu_ready = 1;
4313 err = -EBUSY;
4314 goto out_unlock;
4315 }
4316 }
4317 if (radix)
4318 err = kvmppc_switch_mmu_to_radix(kvm);
4319 else
4320 err = kvmppc_switch_mmu_to_hpt(kvm);
4321 if (err)
4322 goto out_unlock;
4323 }
4324
4325 kvm->arch.process_table = cfg->process_table;
4326 kvmppc_setup_partition_table(kvm);
4327
4328 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4329 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4330 err = 0;
4331
4332 out_unlock:
4333 mutex_unlock(&kvm->lock);
4334 return err;
4335 }
4336
4337 static struct kvmppc_ops kvm_ops_hv = {
4338 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4339 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4340 .get_one_reg = kvmppc_get_one_reg_hv,
4341 .set_one_reg = kvmppc_set_one_reg_hv,
4342 .vcpu_load = kvmppc_core_vcpu_load_hv,
4343 .vcpu_put = kvmppc_core_vcpu_put_hv,
4344 .set_msr = kvmppc_set_msr_hv,
4345 .vcpu_run = kvmppc_vcpu_run_hv,
4346 .vcpu_create = kvmppc_core_vcpu_create_hv,
4347 .vcpu_free = kvmppc_core_vcpu_free_hv,
4348 .check_requests = kvmppc_core_check_requests_hv,
4349 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4350 .flush_memslot = kvmppc_core_flush_memslot_hv,
4351 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4352 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4353 .unmap_hva = kvm_unmap_hva_hv,
4354 .unmap_hva_range = kvm_unmap_hva_range_hv,
4355 .age_hva = kvm_age_hva_hv,
4356 .test_age_hva = kvm_test_age_hva_hv,
4357 .set_spte_hva = kvm_set_spte_hva_hv,
4358 .mmu_destroy = kvmppc_mmu_destroy_hv,
4359 .free_memslot = kvmppc_core_free_memslot_hv,
4360 .create_memslot = kvmppc_core_create_memslot_hv,
4361 .init_vm = kvmppc_core_init_vm_hv,
4362 .destroy_vm = kvmppc_core_destroy_vm_hv,
4363 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4364 .emulate_op = kvmppc_core_emulate_op_hv,
4365 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4366 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4367 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4368 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4369 .hcall_implemented = kvmppc_hcall_impl_hv,
4370 #ifdef CONFIG_KVM_XICS
4371 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4372 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4373 #endif
4374 .configure_mmu = kvmhv_configure_mmu,
4375 .get_rmmu_info = kvmhv_get_rmmu_info,
4376 .set_smt_mode = kvmhv_set_smt_mode,
4377 };
4378
4379 static int kvm_init_subcore_bitmap(void)
4380 {
4381 int i, j;
4382 int nr_cores = cpu_nr_cores();
4383 struct sibling_subcore_state *sibling_subcore_state;
4384
4385 for (i = 0; i < nr_cores; i++) {
4386 int first_cpu = i * threads_per_core;
4387 int node = cpu_to_node(first_cpu);
4388
4389 /* Ignore if it is already allocated. */
4390 if (paca[first_cpu].sibling_subcore_state)
4391 continue;
4392
4393 sibling_subcore_state =
4394 kmalloc_node(sizeof(struct sibling_subcore_state),
4395 GFP_KERNEL, node);
4396 if (!sibling_subcore_state)
4397 return -ENOMEM;
4398
4399 memset(sibling_subcore_state, 0,
4400 sizeof(struct sibling_subcore_state));
4401
4402 for (j = 0; j < threads_per_core; j++) {
4403 int cpu = first_cpu + j;
4404
4405 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4406 }
4407 }
4408 return 0;
4409 }
4410
4411 static int kvmppc_radix_possible(void)
4412 {
4413 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4414 }
4415
4416 static int kvmppc_book3s_init_hv(void)
4417 {
4418 int r;
4419 /*
4420 * FIXME!! Do we need to check on all cpus ?
4421 */
4422 r = kvmppc_core_check_processor_compat_hv();
4423 if (r < 0)
4424 return -ENODEV;
4425
4426 r = kvm_init_subcore_bitmap();
4427 if (r)
4428 return r;
4429
4430 /*
4431 * We need a way of accessing the XICS interrupt controller,
4432 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4433 * indirectly, via OPAL.
4434 */
4435 #ifdef CONFIG_SMP
4436 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4437 struct device_node *np;
4438
4439 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4440 if (!np) {
4441 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4442 return -ENODEV;
4443 }
4444 }
4445 #endif
4446
4447 kvm_ops_hv.owner = THIS_MODULE;
4448 kvmppc_hv_ops = &kvm_ops_hv;
4449
4450 init_default_hcalls();
4451
4452 init_vcore_lists();
4453
4454 r = kvmppc_mmu_hv_init();
4455 if (r)
4456 return r;
4457
4458 if (kvmppc_radix_possible())
4459 r = kvmppc_radix_init();
4460
4461 /*
4462 * POWER9 chips before version 2.02 can't have some threads in
4463 * HPT mode and some in radix mode on the same core.
4464 */
4465 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4466 unsigned int pvr = mfspr(SPRN_PVR);
4467 if ((pvr >> 16) == PVR_POWER9 &&
4468 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4469 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4470 no_mixing_hpt_and_radix = true;
4471 }
4472
4473 return r;
4474 }
4475
4476 static void kvmppc_book3s_exit_hv(void)
4477 {
4478 kvmppc_free_host_rm_ops();
4479 if (kvmppc_radix_possible())
4480 kvmppc_radix_exit();
4481 kvmppc_hv_ops = NULL;
4482 }
4483
4484 module_init(kvmppc_book3s_init_hv);
4485 module_exit(kvmppc_book3s_exit_hv);
4486 MODULE_LICENSE("GPL");
4487 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4488 MODULE_ALIAS("devname:kvm");