]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'cris-for-3.12' of git://jni.nu/cris
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71 int me;
72 int cpu = vcpu->cpu;
73 wait_queue_head_t *wqp;
74
75 wqp = kvm_arch_vcpu_wq(vcpu);
76 if (waitqueue_active(wqp)) {
77 wake_up_interruptible(wqp);
78 ++vcpu->stat.halt_wakeup;
79 }
80
81 me = get_cpu();
82
83 /* CPU points to the first thread of the core */
84 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85 int real_cpu = cpu + vcpu->arch.ptid;
86 if (paca[real_cpu].kvm_hstate.xics_phys)
87 xics_wake_cpu(real_cpu);
88 else if (cpu_online(cpu))
89 smp_send_reschedule(cpu);
90 }
91 put_cpu();
92 }
93
94 /*
95 * We use the vcpu_load/put functions to measure stolen time.
96 * Stolen time is counted as time when either the vcpu is able to
97 * run as part of a virtual core, but the task running the vcore
98 * is preempted or sleeping, or when the vcpu needs something done
99 * in the kernel by the task running the vcpu, but that task is
100 * preempted or sleeping. Those two things have to be counted
101 * separately, since one of the vcpu tasks will take on the job
102 * of running the core, and the other vcpu tasks in the vcore will
103 * sleep waiting for it to do that, but that sleep shouldn't count
104 * as stolen time.
105 *
106 * Hence we accumulate stolen time when the vcpu can run as part of
107 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108 * needs its task to do other things in the kernel (for example,
109 * service a page fault) in busy_stolen. We don't accumulate
110 * stolen time for a vcore when it is inactive, or for a vcpu
111 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
112 * a misnomer; it means that the vcpu task is not executing in
113 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114 * the kernel. We don't have any way of dividing up that time
115 * between time that the vcpu is genuinely stopped, time that
116 * the task is actively working on behalf of the vcpu, and time
117 * that the task is preempted, so we don't count any of it as
118 * stolen.
119 *
120 * Updates to busy_stolen are protected by arch.tbacct_lock;
121 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122 * of the vcpu that has taken responsibility for running the vcore
123 * (i.e. vc->runner). The stolen times are measured in units of
124 * timebase ticks. (Note that the != TB_NIL checks below are
125 * purely defensive; they should never fail.)
126 */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130 struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132 spin_lock(&vcpu->arch.tbacct_lock);
133 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134 vc->preempt_tb != TB_NIL) {
135 vc->stolen_tb += mftb() - vc->preempt_tb;
136 vc->preempt_tb = TB_NIL;
137 }
138 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139 vcpu->arch.busy_preempt != TB_NIL) {
140 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141 vcpu->arch.busy_preempt = TB_NIL;
142 }
143 spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150 spin_lock(&vcpu->arch.tbacct_lock);
151 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152 vc->preempt_tb = mftb();
153 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154 vcpu->arch.busy_preempt = mftb();
155 spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160 vcpu->arch.shregs.msr = msr;
161 kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166 vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171 int r;
172
173 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
175 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176 for (r = 0; r < 16; ++r)
177 pr_err("r%2d = %.16lx r%d = %.16lx\n",
178 r, kvmppc_get_gpr(vcpu, r),
179 r+16, kvmppc_get_gpr(vcpu, r+16));
180 pr_err("ctr = %.16lx lr = %.16lx\n",
181 vcpu->arch.ctr, vcpu->arch.lr);
182 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
189 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191 pr_err("fault dar = %.16lx dsisr = %.8x\n",
192 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194 for (r = 0; r < vcpu->arch.slb_max; ++r)
195 pr_err(" ESID = %.16llx VSID = %.16llx\n",
196 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199 vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204 int r;
205 struct kvm_vcpu *v, *ret = NULL;
206
207 mutex_lock(&kvm->lock);
208 kvm_for_each_vcpu(r, v, kvm) {
209 if (v->vcpu_id == id) {
210 ret = v;
211 break;
212 }
213 }
214 mutex_unlock(&kvm->lock);
215 return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
221 vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225 unsigned long addr, unsigned long len)
226 {
227 /* check address is cacheline aligned */
228 if (addr & (L1_CACHE_BYTES - 1))
229 return -EINVAL;
230 spin_lock(&vcpu->arch.vpa_update_lock);
231 if (v->next_gpa != addr || v->len != len) {
232 v->next_gpa = addr;
233 v->len = addr ? len : 0;
234 v->update_pending = 1;
235 }
236 spin_unlock(&vcpu->arch.vpa_update_lock);
237 return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242 u32 dummy;
243 union {
244 u16 hword;
245 u32 word;
246 } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251 if (vpap->update_pending)
252 return vpap->next_gpa != 0;
253 return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257 unsigned long flags,
258 unsigned long vcpuid, unsigned long vpa)
259 {
260 struct kvm *kvm = vcpu->kvm;
261 unsigned long len, nb;
262 void *va;
263 struct kvm_vcpu *tvcpu;
264 int err;
265 int subfunc;
266 struct kvmppc_vpa *vpap;
267
268 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269 if (!tvcpu)
270 return H_PARAMETER;
271
272 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274 subfunc == H_VPA_REG_SLB) {
275 /* Registering new area - address must be cache-line aligned */
276 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277 return H_PARAMETER;
278
279 /* convert logical addr to kernel addr and read length */
280 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281 if (va == NULL)
282 return H_PARAMETER;
283 if (subfunc == H_VPA_REG_VPA)
284 len = ((struct reg_vpa *)va)->length.hword;
285 else
286 len = ((struct reg_vpa *)va)->length.word;
287 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289 /* Check length */
290 if (len > nb || len < sizeof(struct reg_vpa))
291 return H_PARAMETER;
292 } else {
293 vpa = 0;
294 len = 0;
295 }
296
297 err = H_PARAMETER;
298 vpap = NULL;
299 spin_lock(&tvcpu->arch.vpa_update_lock);
300
301 switch (subfunc) {
302 case H_VPA_REG_VPA: /* register VPA */
303 if (len < sizeof(struct lppaca))
304 break;
305 vpap = &tvcpu->arch.vpa;
306 err = 0;
307 break;
308
309 case H_VPA_REG_DTL: /* register DTL */
310 if (len < sizeof(struct dtl_entry))
311 break;
312 len -= len % sizeof(struct dtl_entry);
313
314 /* Check that they have previously registered a VPA */
315 err = H_RESOURCE;
316 if (!vpa_is_registered(&tvcpu->arch.vpa))
317 break;
318
319 vpap = &tvcpu->arch.dtl;
320 err = 0;
321 break;
322
323 case H_VPA_REG_SLB: /* register SLB shadow buffer */
324 /* Check that they have previously registered a VPA */
325 err = H_RESOURCE;
326 if (!vpa_is_registered(&tvcpu->arch.vpa))
327 break;
328
329 vpap = &tvcpu->arch.slb_shadow;
330 err = 0;
331 break;
332
333 case H_VPA_DEREG_VPA: /* deregister VPA */
334 /* Check they don't still have a DTL or SLB buf registered */
335 err = H_RESOURCE;
336 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337 vpa_is_registered(&tvcpu->arch.slb_shadow))
338 break;
339
340 vpap = &tvcpu->arch.vpa;
341 err = 0;
342 break;
343
344 case H_VPA_DEREG_DTL: /* deregister DTL */
345 vpap = &tvcpu->arch.dtl;
346 err = 0;
347 break;
348
349 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
350 vpap = &tvcpu->arch.slb_shadow;
351 err = 0;
352 break;
353 }
354
355 if (vpap) {
356 vpap->next_gpa = vpa;
357 vpap->len = len;
358 vpap->update_pending = 1;
359 }
360
361 spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363 return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368 struct kvm *kvm = vcpu->kvm;
369 void *va;
370 unsigned long nb;
371 unsigned long gpa;
372
373 /*
374 * We need to pin the page pointed to by vpap->next_gpa,
375 * but we can't call kvmppc_pin_guest_page under the lock
376 * as it does get_user_pages() and down_read(). So we
377 * have to drop the lock, pin the page, then get the lock
378 * again and check that a new area didn't get registered
379 * in the meantime.
380 */
381 for (;;) {
382 gpa = vpap->next_gpa;
383 spin_unlock(&vcpu->arch.vpa_update_lock);
384 va = NULL;
385 nb = 0;
386 if (gpa)
387 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388 spin_lock(&vcpu->arch.vpa_update_lock);
389 if (gpa == vpap->next_gpa)
390 break;
391 /* sigh... unpin that one and try again */
392 if (va)
393 kvmppc_unpin_guest_page(kvm, va, gpa, false);
394 }
395
396 vpap->update_pending = 0;
397 if (va && nb < vpap->len) {
398 /*
399 * If it's now too short, it must be that userspace
400 * has changed the mappings underlying guest memory,
401 * so unregister the region.
402 */
403 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404 va = NULL;
405 }
406 if (vpap->pinned_addr)
407 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408 vpap->dirty);
409 vpap->gpa = gpa;
410 vpap->pinned_addr = va;
411 vpap->dirty = false;
412 if (va)
413 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418 if (!(vcpu->arch.vpa.update_pending ||
419 vcpu->arch.slb_shadow.update_pending ||
420 vcpu->arch.dtl.update_pending))
421 return;
422
423 spin_lock(&vcpu->arch.vpa_update_lock);
424 if (vcpu->arch.vpa.update_pending) {
425 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426 if (vcpu->arch.vpa.pinned_addr)
427 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428 }
429 if (vcpu->arch.dtl.update_pending) {
430 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432 vcpu->arch.dtl_index = 0;
433 }
434 if (vcpu->arch.slb_shadow.update_pending)
435 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436 spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440 * Return the accumulated stolen time for the vcore up until `now'.
441 * The caller should hold the vcore lock.
442 */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445 u64 p;
446
447 /*
448 * If we are the task running the vcore, then since we hold
449 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450 * can't be updated, so we don't need the tbacct_lock.
451 * If the vcore is inactive, it can't become active (since we
452 * hold the vcore lock), so the vcpu load/put functions won't
453 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454 */
455 if (vc->vcore_state != VCORE_INACTIVE &&
456 vc->runner->arch.run_task != current) {
457 spin_lock(&vc->runner->arch.tbacct_lock);
458 p = vc->stolen_tb;
459 if (vc->preempt_tb != TB_NIL)
460 p += now - vc->preempt_tb;
461 spin_unlock(&vc->runner->arch.tbacct_lock);
462 } else {
463 p = vc->stolen_tb;
464 }
465 return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469 struct kvmppc_vcore *vc)
470 {
471 struct dtl_entry *dt;
472 struct lppaca *vpa;
473 unsigned long stolen;
474 unsigned long core_stolen;
475 u64 now;
476
477 dt = vcpu->arch.dtl_ptr;
478 vpa = vcpu->arch.vpa.pinned_addr;
479 now = mftb();
480 core_stolen = vcore_stolen_time(vc, now);
481 stolen = core_stolen - vcpu->arch.stolen_logged;
482 vcpu->arch.stolen_logged = core_stolen;
483 spin_lock(&vcpu->arch.tbacct_lock);
484 stolen += vcpu->arch.busy_stolen;
485 vcpu->arch.busy_stolen = 0;
486 spin_unlock(&vcpu->arch.tbacct_lock);
487 if (!dt || !vpa)
488 return;
489 memset(dt, 0, sizeof(struct dtl_entry));
490 dt->dispatch_reason = 7;
491 dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492 dt->timebase = now;
493 dt->enqueue_to_dispatch_time = stolen;
494 dt->srr0 = kvmppc_get_pc(vcpu);
495 dt->srr1 = vcpu->arch.shregs.msr;
496 ++dt;
497 if (dt == vcpu->arch.dtl.pinned_end)
498 dt = vcpu->arch.dtl.pinned_addr;
499 vcpu->arch.dtl_ptr = dt;
500 /* order writing *dt vs. writing vpa->dtl_idx */
501 smp_wmb();
502 vpa->dtl_idx = ++vcpu->arch.dtl_index;
503 vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508 unsigned long req = kvmppc_get_gpr(vcpu, 3);
509 unsigned long target, ret = H_SUCCESS;
510 struct kvm_vcpu *tvcpu;
511 int idx, rc;
512
513 switch (req) {
514 case H_ENTER:
515 idx = srcu_read_lock(&vcpu->kvm->srcu);
516 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517 kvmppc_get_gpr(vcpu, 5),
518 kvmppc_get_gpr(vcpu, 6),
519 kvmppc_get_gpr(vcpu, 7));
520 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521 break;
522 case H_CEDE:
523 break;
524 case H_PROD:
525 target = kvmppc_get_gpr(vcpu, 4);
526 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527 if (!tvcpu) {
528 ret = H_PARAMETER;
529 break;
530 }
531 tvcpu->arch.prodded = 1;
532 smp_mb();
533 if (vcpu->arch.ceded) {
534 if (waitqueue_active(&vcpu->wq)) {
535 wake_up_interruptible(&vcpu->wq);
536 vcpu->stat.halt_wakeup++;
537 }
538 }
539 break;
540 case H_CONFER:
541 break;
542 case H_REGISTER_VPA:
543 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544 kvmppc_get_gpr(vcpu, 5),
545 kvmppc_get_gpr(vcpu, 6));
546 break;
547 case H_RTAS:
548 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549 return RESUME_HOST;
550
551 rc = kvmppc_rtas_hcall(vcpu);
552
553 if (rc == -ENOENT)
554 return RESUME_HOST;
555 else if (rc == 0)
556 break;
557
558 /* Send the error out to userspace via KVM_RUN */
559 return rc;
560
561 case H_XIRR:
562 case H_CPPR:
563 case H_EOI:
564 case H_IPI:
565 case H_IPOLL:
566 case H_XIRR_X:
567 if (kvmppc_xics_enabled(vcpu)) {
568 ret = kvmppc_xics_hcall(vcpu, req);
569 break;
570 } /* fallthrough */
571 default:
572 return RESUME_HOST;
573 }
574 kvmppc_set_gpr(vcpu, 3, ret);
575 vcpu->arch.hcall_needed = 0;
576 return RESUME_GUEST;
577 }
578
579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
580 struct task_struct *tsk)
581 {
582 int r = RESUME_HOST;
583
584 vcpu->stat.sum_exits++;
585
586 run->exit_reason = KVM_EXIT_UNKNOWN;
587 run->ready_for_interrupt_injection = 1;
588 switch (vcpu->arch.trap) {
589 /* We're good on these - the host merely wanted to get our attention */
590 case BOOK3S_INTERRUPT_HV_DECREMENTER:
591 vcpu->stat.dec_exits++;
592 r = RESUME_GUEST;
593 break;
594 case BOOK3S_INTERRUPT_EXTERNAL:
595 vcpu->stat.ext_intr_exits++;
596 r = RESUME_GUEST;
597 break;
598 case BOOK3S_INTERRUPT_PERFMON:
599 r = RESUME_GUEST;
600 break;
601 case BOOK3S_INTERRUPT_MACHINE_CHECK:
602 /*
603 * Deliver a machine check interrupt to the guest.
604 * We have to do this, even if the host has handled the
605 * machine check, because machine checks use SRR0/1 and
606 * the interrupt might have trashed guest state in them.
607 */
608 kvmppc_book3s_queue_irqprio(vcpu,
609 BOOK3S_INTERRUPT_MACHINE_CHECK);
610 r = RESUME_GUEST;
611 break;
612 case BOOK3S_INTERRUPT_PROGRAM:
613 {
614 ulong flags;
615 /*
616 * Normally program interrupts are delivered directly
617 * to the guest by the hardware, but we can get here
618 * as a result of a hypervisor emulation interrupt
619 * (e40) getting turned into a 700 by BML RTAS.
620 */
621 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
622 kvmppc_core_queue_program(vcpu, flags);
623 r = RESUME_GUEST;
624 break;
625 }
626 case BOOK3S_INTERRUPT_SYSCALL:
627 {
628 /* hcall - punt to userspace */
629 int i;
630
631 if (vcpu->arch.shregs.msr & MSR_PR) {
632 /* sc 1 from userspace - reflect to guest syscall */
633 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
634 r = RESUME_GUEST;
635 break;
636 }
637 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
638 for (i = 0; i < 9; ++i)
639 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
640 run->exit_reason = KVM_EXIT_PAPR_HCALL;
641 vcpu->arch.hcall_needed = 1;
642 r = RESUME_HOST;
643 break;
644 }
645 /*
646 * We get these next two if the guest accesses a page which it thinks
647 * it has mapped but which is not actually present, either because
648 * it is for an emulated I/O device or because the corresonding
649 * host page has been paged out. Any other HDSI/HISI interrupts
650 * have been handled already.
651 */
652 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
653 r = RESUME_PAGE_FAULT;
654 break;
655 case BOOK3S_INTERRUPT_H_INST_STORAGE:
656 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
657 vcpu->arch.fault_dsisr = 0;
658 r = RESUME_PAGE_FAULT;
659 break;
660 /*
661 * This occurs if the guest executes an illegal instruction.
662 * We just generate a program interrupt to the guest, since
663 * we don't emulate any guest instructions at this stage.
664 */
665 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
666 kvmppc_core_queue_program(vcpu, 0x80000);
667 r = RESUME_GUEST;
668 break;
669 default:
670 kvmppc_dump_regs(vcpu);
671 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
672 vcpu->arch.trap, kvmppc_get_pc(vcpu),
673 vcpu->arch.shregs.msr);
674 r = RESUME_HOST;
675 BUG();
676 break;
677 }
678
679 return r;
680 }
681
682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
683 struct kvm_sregs *sregs)
684 {
685 int i;
686
687 memset(sregs, 0, sizeof(struct kvm_sregs));
688 sregs->pvr = vcpu->arch.pvr;
689 for (i = 0; i < vcpu->arch.slb_max; i++) {
690 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
691 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
692 }
693
694 return 0;
695 }
696
697 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
698 struct kvm_sregs *sregs)
699 {
700 int i, j;
701
702 kvmppc_set_pvr(vcpu, sregs->pvr);
703
704 j = 0;
705 for (i = 0; i < vcpu->arch.slb_nr; i++) {
706 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
707 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
708 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
709 ++j;
710 }
711 }
712 vcpu->arch.slb_max = j;
713
714 return 0;
715 }
716
717 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
718 {
719 int r = 0;
720 long int i;
721
722 switch (id) {
723 case KVM_REG_PPC_HIOR:
724 *val = get_reg_val(id, 0);
725 break;
726 case KVM_REG_PPC_DABR:
727 *val = get_reg_val(id, vcpu->arch.dabr);
728 break;
729 case KVM_REG_PPC_DSCR:
730 *val = get_reg_val(id, vcpu->arch.dscr);
731 break;
732 case KVM_REG_PPC_PURR:
733 *val = get_reg_val(id, vcpu->arch.purr);
734 break;
735 case KVM_REG_PPC_SPURR:
736 *val = get_reg_val(id, vcpu->arch.spurr);
737 break;
738 case KVM_REG_PPC_AMR:
739 *val = get_reg_val(id, vcpu->arch.amr);
740 break;
741 case KVM_REG_PPC_UAMOR:
742 *val = get_reg_val(id, vcpu->arch.uamor);
743 break;
744 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
745 i = id - KVM_REG_PPC_MMCR0;
746 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
747 break;
748 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
749 i = id - KVM_REG_PPC_PMC1;
750 *val = get_reg_val(id, vcpu->arch.pmc[i]);
751 break;
752 #ifdef CONFIG_VSX
753 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
754 if (cpu_has_feature(CPU_FTR_VSX)) {
755 /* VSX => FP reg i is stored in arch.vsr[2*i] */
756 long int i = id - KVM_REG_PPC_FPR0;
757 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
758 } else {
759 /* let generic code handle it */
760 r = -EINVAL;
761 }
762 break;
763 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
764 if (cpu_has_feature(CPU_FTR_VSX)) {
765 long int i = id - KVM_REG_PPC_VSR0;
766 val->vsxval[0] = vcpu->arch.vsr[2 * i];
767 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
768 } else {
769 r = -ENXIO;
770 }
771 break;
772 #endif /* CONFIG_VSX */
773 case KVM_REG_PPC_VPA_ADDR:
774 spin_lock(&vcpu->arch.vpa_update_lock);
775 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
776 spin_unlock(&vcpu->arch.vpa_update_lock);
777 break;
778 case KVM_REG_PPC_VPA_SLB:
779 spin_lock(&vcpu->arch.vpa_update_lock);
780 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
781 val->vpaval.length = vcpu->arch.slb_shadow.len;
782 spin_unlock(&vcpu->arch.vpa_update_lock);
783 break;
784 case KVM_REG_PPC_VPA_DTL:
785 spin_lock(&vcpu->arch.vpa_update_lock);
786 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
787 val->vpaval.length = vcpu->arch.dtl.len;
788 spin_unlock(&vcpu->arch.vpa_update_lock);
789 break;
790 default:
791 r = -EINVAL;
792 break;
793 }
794
795 return r;
796 }
797
798 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
799 {
800 int r = 0;
801 long int i;
802 unsigned long addr, len;
803
804 switch (id) {
805 case KVM_REG_PPC_HIOR:
806 /* Only allow this to be set to zero */
807 if (set_reg_val(id, *val))
808 r = -EINVAL;
809 break;
810 case KVM_REG_PPC_DABR:
811 vcpu->arch.dabr = set_reg_val(id, *val);
812 break;
813 case KVM_REG_PPC_DSCR:
814 vcpu->arch.dscr = set_reg_val(id, *val);
815 break;
816 case KVM_REG_PPC_PURR:
817 vcpu->arch.purr = set_reg_val(id, *val);
818 break;
819 case KVM_REG_PPC_SPURR:
820 vcpu->arch.spurr = set_reg_val(id, *val);
821 break;
822 case KVM_REG_PPC_AMR:
823 vcpu->arch.amr = set_reg_val(id, *val);
824 break;
825 case KVM_REG_PPC_UAMOR:
826 vcpu->arch.uamor = set_reg_val(id, *val);
827 break;
828 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
829 i = id - KVM_REG_PPC_MMCR0;
830 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
831 break;
832 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
833 i = id - KVM_REG_PPC_PMC1;
834 vcpu->arch.pmc[i] = set_reg_val(id, *val);
835 break;
836 #ifdef CONFIG_VSX
837 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
838 if (cpu_has_feature(CPU_FTR_VSX)) {
839 /* VSX => FP reg i is stored in arch.vsr[2*i] */
840 long int i = id - KVM_REG_PPC_FPR0;
841 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
842 } else {
843 /* let generic code handle it */
844 r = -EINVAL;
845 }
846 break;
847 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
848 if (cpu_has_feature(CPU_FTR_VSX)) {
849 long int i = id - KVM_REG_PPC_VSR0;
850 vcpu->arch.vsr[2 * i] = val->vsxval[0];
851 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
852 } else {
853 r = -ENXIO;
854 }
855 break;
856 #endif /* CONFIG_VSX */
857 case KVM_REG_PPC_VPA_ADDR:
858 addr = set_reg_val(id, *val);
859 r = -EINVAL;
860 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
861 vcpu->arch.dtl.next_gpa))
862 break;
863 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
864 break;
865 case KVM_REG_PPC_VPA_SLB:
866 addr = val->vpaval.addr;
867 len = val->vpaval.length;
868 r = -EINVAL;
869 if (addr && !vcpu->arch.vpa.next_gpa)
870 break;
871 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
872 break;
873 case KVM_REG_PPC_VPA_DTL:
874 addr = val->vpaval.addr;
875 len = val->vpaval.length;
876 r = -EINVAL;
877 if (addr && (len < sizeof(struct dtl_entry) ||
878 !vcpu->arch.vpa.next_gpa))
879 break;
880 len -= len % sizeof(struct dtl_entry);
881 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
882 break;
883 default:
884 r = -EINVAL;
885 break;
886 }
887
888 return r;
889 }
890
891 int kvmppc_core_check_processor_compat(void)
892 {
893 if (cpu_has_feature(CPU_FTR_HVMODE))
894 return 0;
895 return -EIO;
896 }
897
898 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
899 {
900 struct kvm_vcpu *vcpu;
901 int err = -EINVAL;
902 int core;
903 struct kvmppc_vcore *vcore;
904
905 core = id / threads_per_core;
906 if (core >= KVM_MAX_VCORES)
907 goto out;
908
909 err = -ENOMEM;
910 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
911 if (!vcpu)
912 goto out;
913
914 err = kvm_vcpu_init(vcpu, kvm, id);
915 if (err)
916 goto free_vcpu;
917
918 vcpu->arch.shared = &vcpu->arch.shregs;
919 vcpu->arch.mmcr[0] = MMCR0_FC;
920 vcpu->arch.ctrl = CTRL_RUNLATCH;
921 /* default to host PVR, since we can't spoof it */
922 vcpu->arch.pvr = mfspr(SPRN_PVR);
923 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
924 spin_lock_init(&vcpu->arch.vpa_update_lock);
925 spin_lock_init(&vcpu->arch.tbacct_lock);
926 vcpu->arch.busy_preempt = TB_NIL;
927
928 kvmppc_mmu_book3s_hv_init(vcpu);
929
930 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
931
932 init_waitqueue_head(&vcpu->arch.cpu_run);
933
934 mutex_lock(&kvm->lock);
935 vcore = kvm->arch.vcores[core];
936 if (!vcore) {
937 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
938 if (vcore) {
939 INIT_LIST_HEAD(&vcore->runnable_threads);
940 spin_lock_init(&vcore->lock);
941 init_waitqueue_head(&vcore->wq);
942 vcore->preempt_tb = TB_NIL;
943 }
944 kvm->arch.vcores[core] = vcore;
945 kvm->arch.online_vcores++;
946 }
947 mutex_unlock(&kvm->lock);
948
949 if (!vcore)
950 goto free_vcpu;
951
952 spin_lock(&vcore->lock);
953 ++vcore->num_threads;
954 spin_unlock(&vcore->lock);
955 vcpu->arch.vcore = vcore;
956
957 vcpu->arch.cpu_type = KVM_CPU_3S_64;
958 kvmppc_sanity_check(vcpu);
959
960 return vcpu;
961
962 free_vcpu:
963 kmem_cache_free(kvm_vcpu_cache, vcpu);
964 out:
965 return ERR_PTR(err);
966 }
967
968 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
969 {
970 if (vpa->pinned_addr)
971 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
972 vpa->dirty);
973 }
974
975 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
976 {
977 spin_lock(&vcpu->arch.vpa_update_lock);
978 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
979 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
980 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
981 spin_unlock(&vcpu->arch.vpa_update_lock);
982 kvm_vcpu_uninit(vcpu);
983 kmem_cache_free(kvm_vcpu_cache, vcpu);
984 }
985
986 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
987 {
988 unsigned long dec_nsec, now;
989
990 now = get_tb();
991 if (now > vcpu->arch.dec_expires) {
992 /* decrementer has already gone negative */
993 kvmppc_core_queue_dec(vcpu);
994 kvmppc_core_prepare_to_enter(vcpu);
995 return;
996 }
997 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
998 / tb_ticks_per_sec;
999 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1000 HRTIMER_MODE_REL);
1001 vcpu->arch.timer_running = 1;
1002 }
1003
1004 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1005 {
1006 vcpu->arch.ceded = 0;
1007 if (vcpu->arch.timer_running) {
1008 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1009 vcpu->arch.timer_running = 0;
1010 }
1011 }
1012
1013 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1014
1015 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1016 struct kvm_vcpu *vcpu)
1017 {
1018 u64 now;
1019
1020 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1021 return;
1022 spin_lock(&vcpu->arch.tbacct_lock);
1023 now = mftb();
1024 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1025 vcpu->arch.stolen_logged;
1026 vcpu->arch.busy_preempt = now;
1027 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1028 spin_unlock(&vcpu->arch.tbacct_lock);
1029 --vc->n_runnable;
1030 list_del(&vcpu->arch.run_list);
1031 }
1032
1033 static int kvmppc_grab_hwthread(int cpu)
1034 {
1035 struct paca_struct *tpaca;
1036 long timeout = 1000;
1037
1038 tpaca = &paca[cpu];
1039
1040 /* Ensure the thread won't go into the kernel if it wakes */
1041 tpaca->kvm_hstate.hwthread_req = 1;
1042 tpaca->kvm_hstate.kvm_vcpu = NULL;
1043
1044 /*
1045 * If the thread is already executing in the kernel (e.g. handling
1046 * a stray interrupt), wait for it to get back to nap mode.
1047 * The smp_mb() is to ensure that our setting of hwthread_req
1048 * is visible before we look at hwthread_state, so if this
1049 * races with the code at system_reset_pSeries and the thread
1050 * misses our setting of hwthread_req, we are sure to see its
1051 * setting of hwthread_state, and vice versa.
1052 */
1053 smp_mb();
1054 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1055 if (--timeout <= 0) {
1056 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1057 return -EBUSY;
1058 }
1059 udelay(1);
1060 }
1061 return 0;
1062 }
1063
1064 static void kvmppc_release_hwthread(int cpu)
1065 {
1066 struct paca_struct *tpaca;
1067
1068 tpaca = &paca[cpu];
1069 tpaca->kvm_hstate.hwthread_req = 0;
1070 tpaca->kvm_hstate.kvm_vcpu = NULL;
1071 }
1072
1073 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1074 {
1075 int cpu;
1076 struct paca_struct *tpaca;
1077 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1078
1079 if (vcpu->arch.timer_running) {
1080 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1081 vcpu->arch.timer_running = 0;
1082 }
1083 cpu = vc->pcpu + vcpu->arch.ptid;
1084 tpaca = &paca[cpu];
1085 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1086 tpaca->kvm_hstate.kvm_vcore = vc;
1087 tpaca->kvm_hstate.napping = 0;
1088 vcpu->cpu = vc->pcpu;
1089 smp_wmb();
1090 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1091 if (vcpu->arch.ptid) {
1092 xics_wake_cpu(cpu);
1093 ++vc->n_woken;
1094 }
1095 #endif
1096 }
1097
1098 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1099 {
1100 int i;
1101
1102 HMT_low();
1103 i = 0;
1104 while (vc->nap_count < vc->n_woken) {
1105 if (++i >= 1000000) {
1106 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1107 vc->nap_count, vc->n_woken);
1108 break;
1109 }
1110 cpu_relax();
1111 }
1112 HMT_medium();
1113 }
1114
1115 /*
1116 * Check that we are on thread 0 and that any other threads in
1117 * this core are off-line. Then grab the threads so they can't
1118 * enter the kernel.
1119 */
1120 static int on_primary_thread(void)
1121 {
1122 int cpu = smp_processor_id();
1123 int thr = cpu_thread_in_core(cpu);
1124
1125 if (thr)
1126 return 0;
1127 while (++thr < threads_per_core)
1128 if (cpu_online(cpu + thr))
1129 return 0;
1130
1131 /* Grab all hw threads so they can't go into the kernel */
1132 for (thr = 1; thr < threads_per_core; ++thr) {
1133 if (kvmppc_grab_hwthread(cpu + thr)) {
1134 /* Couldn't grab one; let the others go */
1135 do {
1136 kvmppc_release_hwthread(cpu + thr);
1137 } while (--thr > 0);
1138 return 0;
1139 }
1140 }
1141 return 1;
1142 }
1143
1144 /*
1145 * Run a set of guest threads on a physical core.
1146 * Called with vc->lock held.
1147 */
1148 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1149 {
1150 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1151 long ret;
1152 u64 now;
1153 int ptid, i, need_vpa_update;
1154 int srcu_idx;
1155 struct kvm_vcpu *vcpus_to_update[threads_per_core];
1156
1157 /* don't start if any threads have a signal pending */
1158 need_vpa_update = 0;
1159 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1160 if (signal_pending(vcpu->arch.run_task))
1161 return;
1162 if (vcpu->arch.vpa.update_pending ||
1163 vcpu->arch.slb_shadow.update_pending ||
1164 vcpu->arch.dtl.update_pending)
1165 vcpus_to_update[need_vpa_update++] = vcpu;
1166 }
1167
1168 /*
1169 * Initialize *vc, in particular vc->vcore_state, so we can
1170 * drop the vcore lock if necessary.
1171 */
1172 vc->n_woken = 0;
1173 vc->nap_count = 0;
1174 vc->entry_exit_count = 0;
1175 vc->vcore_state = VCORE_STARTING;
1176 vc->in_guest = 0;
1177 vc->napping_threads = 0;
1178
1179 /*
1180 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1181 * which can't be called with any spinlocks held.
1182 */
1183 if (need_vpa_update) {
1184 spin_unlock(&vc->lock);
1185 for (i = 0; i < need_vpa_update; ++i)
1186 kvmppc_update_vpas(vcpus_to_update[i]);
1187 spin_lock(&vc->lock);
1188 }
1189
1190 /*
1191 * Assign physical thread IDs, first to non-ceded vcpus
1192 * and then to ceded ones.
1193 */
1194 ptid = 0;
1195 vcpu0 = NULL;
1196 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1197 if (!vcpu->arch.ceded) {
1198 if (!ptid)
1199 vcpu0 = vcpu;
1200 vcpu->arch.ptid = ptid++;
1201 }
1202 }
1203 if (!vcpu0)
1204 goto out; /* nothing to run; should never happen */
1205 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1206 if (vcpu->arch.ceded)
1207 vcpu->arch.ptid = ptid++;
1208
1209 /*
1210 * Make sure we are running on thread 0, and that
1211 * secondary threads are offline.
1212 */
1213 if (threads_per_core > 1 && !on_primary_thread()) {
1214 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1215 vcpu->arch.ret = -EBUSY;
1216 goto out;
1217 }
1218
1219 vc->pcpu = smp_processor_id();
1220 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1221 kvmppc_start_thread(vcpu);
1222 kvmppc_create_dtl_entry(vcpu, vc);
1223 }
1224
1225 vc->vcore_state = VCORE_RUNNING;
1226 preempt_disable();
1227 spin_unlock(&vc->lock);
1228
1229 kvm_guest_enter();
1230
1231 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1232
1233 __kvmppc_vcore_entry(NULL, vcpu0);
1234
1235 spin_lock(&vc->lock);
1236 /* disable sending of IPIs on virtual external irqs */
1237 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1238 vcpu->cpu = -1;
1239 /* wait for secondary threads to finish writing their state to memory */
1240 if (vc->nap_count < vc->n_woken)
1241 kvmppc_wait_for_nap(vc);
1242 for (i = 0; i < threads_per_core; ++i)
1243 kvmppc_release_hwthread(vc->pcpu + i);
1244 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1245 vc->vcore_state = VCORE_EXITING;
1246 spin_unlock(&vc->lock);
1247
1248 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1249
1250 /* make sure updates to secondary vcpu structs are visible now */
1251 smp_mb();
1252 kvm_guest_exit();
1253
1254 preempt_enable();
1255 kvm_resched(vcpu);
1256
1257 spin_lock(&vc->lock);
1258 now = get_tb();
1259 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1260 /* cancel pending dec exception if dec is positive */
1261 if (now < vcpu->arch.dec_expires &&
1262 kvmppc_core_pending_dec(vcpu))
1263 kvmppc_core_dequeue_dec(vcpu);
1264
1265 ret = RESUME_GUEST;
1266 if (vcpu->arch.trap)
1267 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1268 vcpu->arch.run_task);
1269
1270 vcpu->arch.ret = ret;
1271 vcpu->arch.trap = 0;
1272
1273 if (vcpu->arch.ceded) {
1274 if (ret != RESUME_GUEST)
1275 kvmppc_end_cede(vcpu);
1276 else
1277 kvmppc_set_timer(vcpu);
1278 }
1279 }
1280
1281 out:
1282 vc->vcore_state = VCORE_INACTIVE;
1283 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1284 arch.run_list) {
1285 if (vcpu->arch.ret != RESUME_GUEST) {
1286 kvmppc_remove_runnable(vc, vcpu);
1287 wake_up(&vcpu->arch.cpu_run);
1288 }
1289 }
1290 }
1291
1292 /*
1293 * Wait for some other vcpu thread to execute us, and
1294 * wake us up when we need to handle something in the host.
1295 */
1296 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1297 {
1298 DEFINE_WAIT(wait);
1299
1300 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1301 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1302 schedule();
1303 finish_wait(&vcpu->arch.cpu_run, &wait);
1304 }
1305
1306 /*
1307 * All the vcpus in this vcore are idle, so wait for a decrementer
1308 * or external interrupt to one of the vcpus. vc->lock is held.
1309 */
1310 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1311 {
1312 DEFINE_WAIT(wait);
1313
1314 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1315 vc->vcore_state = VCORE_SLEEPING;
1316 spin_unlock(&vc->lock);
1317 schedule();
1318 finish_wait(&vc->wq, &wait);
1319 spin_lock(&vc->lock);
1320 vc->vcore_state = VCORE_INACTIVE;
1321 }
1322
1323 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1324 {
1325 int n_ceded;
1326 struct kvmppc_vcore *vc;
1327 struct kvm_vcpu *v, *vn;
1328
1329 kvm_run->exit_reason = 0;
1330 vcpu->arch.ret = RESUME_GUEST;
1331 vcpu->arch.trap = 0;
1332 kvmppc_update_vpas(vcpu);
1333
1334 /*
1335 * Synchronize with other threads in this virtual core
1336 */
1337 vc = vcpu->arch.vcore;
1338 spin_lock(&vc->lock);
1339 vcpu->arch.ceded = 0;
1340 vcpu->arch.run_task = current;
1341 vcpu->arch.kvm_run = kvm_run;
1342 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1343 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1344 vcpu->arch.busy_preempt = TB_NIL;
1345 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1346 ++vc->n_runnable;
1347
1348 /*
1349 * This happens the first time this is called for a vcpu.
1350 * If the vcore is already running, we may be able to start
1351 * this thread straight away and have it join in.
1352 */
1353 if (!signal_pending(current)) {
1354 if (vc->vcore_state == VCORE_RUNNING &&
1355 VCORE_EXIT_COUNT(vc) == 0) {
1356 vcpu->arch.ptid = vc->n_runnable - 1;
1357 kvmppc_create_dtl_entry(vcpu, vc);
1358 kvmppc_start_thread(vcpu);
1359 } else if (vc->vcore_state == VCORE_SLEEPING) {
1360 wake_up(&vc->wq);
1361 }
1362
1363 }
1364
1365 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1366 !signal_pending(current)) {
1367 if (vc->vcore_state != VCORE_INACTIVE) {
1368 spin_unlock(&vc->lock);
1369 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1370 spin_lock(&vc->lock);
1371 continue;
1372 }
1373 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1374 arch.run_list) {
1375 kvmppc_core_prepare_to_enter(v);
1376 if (signal_pending(v->arch.run_task)) {
1377 kvmppc_remove_runnable(vc, v);
1378 v->stat.signal_exits++;
1379 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1380 v->arch.ret = -EINTR;
1381 wake_up(&v->arch.cpu_run);
1382 }
1383 }
1384 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1385 break;
1386 vc->runner = vcpu;
1387 n_ceded = 0;
1388 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1389 if (!v->arch.pending_exceptions)
1390 n_ceded += v->arch.ceded;
1391 else
1392 v->arch.ceded = 0;
1393 }
1394 if (n_ceded == vc->n_runnable)
1395 kvmppc_vcore_blocked(vc);
1396 else
1397 kvmppc_run_core(vc);
1398 vc->runner = NULL;
1399 }
1400
1401 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1402 (vc->vcore_state == VCORE_RUNNING ||
1403 vc->vcore_state == VCORE_EXITING)) {
1404 spin_unlock(&vc->lock);
1405 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1406 spin_lock(&vc->lock);
1407 }
1408
1409 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1410 kvmppc_remove_runnable(vc, vcpu);
1411 vcpu->stat.signal_exits++;
1412 kvm_run->exit_reason = KVM_EXIT_INTR;
1413 vcpu->arch.ret = -EINTR;
1414 }
1415
1416 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1417 /* Wake up some vcpu to run the core */
1418 v = list_first_entry(&vc->runnable_threads,
1419 struct kvm_vcpu, arch.run_list);
1420 wake_up(&v->arch.cpu_run);
1421 }
1422
1423 spin_unlock(&vc->lock);
1424 return vcpu->arch.ret;
1425 }
1426
1427 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1428 {
1429 int r;
1430 int srcu_idx;
1431
1432 if (!vcpu->arch.sane) {
1433 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1434 return -EINVAL;
1435 }
1436
1437 kvmppc_core_prepare_to_enter(vcpu);
1438
1439 /* No need to go into the guest when all we'll do is come back out */
1440 if (signal_pending(current)) {
1441 run->exit_reason = KVM_EXIT_INTR;
1442 return -EINTR;
1443 }
1444
1445 atomic_inc(&vcpu->kvm->arch.vcpus_running);
1446 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1447 smp_mb();
1448
1449 /* On the first time here, set up HTAB and VRMA or RMA */
1450 if (!vcpu->kvm->arch.rma_setup_done) {
1451 r = kvmppc_hv_setup_htab_rma(vcpu);
1452 if (r)
1453 goto out;
1454 }
1455
1456 flush_fp_to_thread(current);
1457 flush_altivec_to_thread(current);
1458 flush_vsx_to_thread(current);
1459 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1460 vcpu->arch.pgdir = current->mm->pgd;
1461 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1462
1463 do {
1464 r = kvmppc_run_vcpu(run, vcpu);
1465
1466 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1467 !(vcpu->arch.shregs.msr & MSR_PR)) {
1468 r = kvmppc_pseries_do_hcall(vcpu);
1469 kvmppc_core_prepare_to_enter(vcpu);
1470 } else if (r == RESUME_PAGE_FAULT) {
1471 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1472 r = kvmppc_book3s_hv_page_fault(run, vcpu,
1473 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1474 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1475 }
1476 } while (r == RESUME_GUEST);
1477
1478 out:
1479 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1480 atomic_dec(&vcpu->kvm->arch.vcpus_running);
1481 return r;
1482 }
1483
1484
1485 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1486 Assumes POWER7 or PPC970. */
1487 static inline int lpcr_rmls(unsigned long rma_size)
1488 {
1489 switch (rma_size) {
1490 case 32ul << 20: /* 32 MB */
1491 if (cpu_has_feature(CPU_FTR_ARCH_206))
1492 return 8; /* only supported on POWER7 */
1493 return -1;
1494 case 64ul << 20: /* 64 MB */
1495 return 3;
1496 case 128ul << 20: /* 128 MB */
1497 return 7;
1498 case 256ul << 20: /* 256 MB */
1499 return 4;
1500 case 1ul << 30: /* 1 GB */
1501 return 2;
1502 case 16ul << 30: /* 16 GB */
1503 return 1;
1504 case 256ul << 30: /* 256 GB */
1505 return 0;
1506 default:
1507 return -1;
1508 }
1509 }
1510
1511 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1512 {
1513 struct page *page;
1514 struct kvm_rma_info *ri = vma->vm_file->private_data;
1515
1516 if (vmf->pgoff >= kvm_rma_pages)
1517 return VM_FAULT_SIGBUS;
1518
1519 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1520 get_page(page);
1521 vmf->page = page;
1522 return 0;
1523 }
1524
1525 static const struct vm_operations_struct kvm_rma_vm_ops = {
1526 .fault = kvm_rma_fault,
1527 };
1528
1529 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1530 {
1531 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1532 vma->vm_ops = &kvm_rma_vm_ops;
1533 return 0;
1534 }
1535
1536 static int kvm_rma_release(struct inode *inode, struct file *filp)
1537 {
1538 struct kvm_rma_info *ri = filp->private_data;
1539
1540 kvm_release_rma(ri);
1541 return 0;
1542 }
1543
1544 static const struct file_operations kvm_rma_fops = {
1545 .mmap = kvm_rma_mmap,
1546 .release = kvm_rma_release,
1547 };
1548
1549 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1550 {
1551 long fd;
1552 struct kvm_rma_info *ri;
1553 /*
1554 * Only do this on PPC970 in HV mode
1555 */
1556 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1557 !cpu_has_feature(CPU_FTR_ARCH_201))
1558 return -EINVAL;
1559
1560 if (!kvm_rma_pages)
1561 return -EINVAL;
1562
1563 ri = kvm_alloc_rma();
1564 if (!ri)
1565 return -ENOMEM;
1566
1567 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1568 if (fd < 0)
1569 kvm_release_rma(ri);
1570
1571 ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1572 return fd;
1573 }
1574
1575 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1576 int linux_psize)
1577 {
1578 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1579
1580 if (!def->shift)
1581 return;
1582 (*sps)->page_shift = def->shift;
1583 (*sps)->slb_enc = def->sllp;
1584 (*sps)->enc[0].page_shift = def->shift;
1585 /*
1586 * Only return base page encoding. We don't want to return
1587 * all the supporting pte_enc, because our H_ENTER doesn't
1588 * support MPSS yet. Once they do, we can start passing all
1589 * support pte_enc here
1590 */
1591 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1592 (*sps)++;
1593 }
1594
1595 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1596 {
1597 struct kvm_ppc_one_seg_page_size *sps;
1598
1599 info->flags = KVM_PPC_PAGE_SIZES_REAL;
1600 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1601 info->flags |= KVM_PPC_1T_SEGMENTS;
1602 info->slb_size = mmu_slb_size;
1603
1604 /* We only support these sizes for now, and no muti-size segments */
1605 sps = &info->sps[0];
1606 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1607 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1608 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1609
1610 return 0;
1611 }
1612
1613 /*
1614 * Get (and clear) the dirty memory log for a memory slot.
1615 */
1616 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1617 {
1618 struct kvm_memory_slot *memslot;
1619 int r;
1620 unsigned long n;
1621
1622 mutex_lock(&kvm->slots_lock);
1623
1624 r = -EINVAL;
1625 if (log->slot >= KVM_USER_MEM_SLOTS)
1626 goto out;
1627
1628 memslot = id_to_memslot(kvm->memslots, log->slot);
1629 r = -ENOENT;
1630 if (!memslot->dirty_bitmap)
1631 goto out;
1632
1633 n = kvm_dirty_bitmap_bytes(memslot);
1634 memset(memslot->dirty_bitmap, 0, n);
1635
1636 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1637 if (r)
1638 goto out;
1639
1640 r = -EFAULT;
1641 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1642 goto out;
1643
1644 r = 0;
1645 out:
1646 mutex_unlock(&kvm->slots_lock);
1647 return r;
1648 }
1649
1650 static void unpin_slot(struct kvm_memory_slot *memslot)
1651 {
1652 unsigned long *physp;
1653 unsigned long j, npages, pfn;
1654 struct page *page;
1655
1656 physp = memslot->arch.slot_phys;
1657 npages = memslot->npages;
1658 if (!physp)
1659 return;
1660 for (j = 0; j < npages; j++) {
1661 if (!(physp[j] & KVMPPC_GOT_PAGE))
1662 continue;
1663 pfn = physp[j] >> PAGE_SHIFT;
1664 page = pfn_to_page(pfn);
1665 SetPageDirty(page);
1666 put_page(page);
1667 }
1668 }
1669
1670 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1671 struct kvm_memory_slot *dont)
1672 {
1673 if (!dont || free->arch.rmap != dont->arch.rmap) {
1674 vfree(free->arch.rmap);
1675 free->arch.rmap = NULL;
1676 }
1677 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1678 unpin_slot(free);
1679 vfree(free->arch.slot_phys);
1680 free->arch.slot_phys = NULL;
1681 }
1682 }
1683
1684 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1685 unsigned long npages)
1686 {
1687 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1688 if (!slot->arch.rmap)
1689 return -ENOMEM;
1690 slot->arch.slot_phys = NULL;
1691
1692 return 0;
1693 }
1694
1695 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1696 struct kvm_memory_slot *memslot,
1697 struct kvm_userspace_memory_region *mem)
1698 {
1699 unsigned long *phys;
1700
1701 /* Allocate a slot_phys array if needed */
1702 phys = memslot->arch.slot_phys;
1703 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1704 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1705 if (!phys)
1706 return -ENOMEM;
1707 memslot->arch.slot_phys = phys;
1708 }
1709
1710 return 0;
1711 }
1712
1713 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1714 struct kvm_userspace_memory_region *mem,
1715 const struct kvm_memory_slot *old)
1716 {
1717 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1718 struct kvm_memory_slot *memslot;
1719
1720 if (npages && old->npages) {
1721 /*
1722 * If modifying a memslot, reset all the rmap dirty bits.
1723 * If this is a new memslot, we don't need to do anything
1724 * since the rmap array starts out as all zeroes,
1725 * i.e. no pages are dirty.
1726 */
1727 memslot = id_to_memslot(kvm->memslots, mem->slot);
1728 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1729 }
1730 }
1731
1732 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1733 {
1734 int err = 0;
1735 struct kvm *kvm = vcpu->kvm;
1736 struct kvm_rma_info *ri = NULL;
1737 unsigned long hva;
1738 struct kvm_memory_slot *memslot;
1739 struct vm_area_struct *vma;
1740 unsigned long lpcr, senc;
1741 unsigned long psize, porder;
1742 unsigned long rma_size;
1743 unsigned long rmls;
1744 unsigned long *physp;
1745 unsigned long i, npages;
1746 int srcu_idx;
1747
1748 mutex_lock(&kvm->lock);
1749 if (kvm->arch.rma_setup_done)
1750 goto out; /* another vcpu beat us to it */
1751
1752 /* Allocate hashed page table (if not done already) and reset it */
1753 if (!kvm->arch.hpt_virt) {
1754 err = kvmppc_alloc_hpt(kvm, NULL);
1755 if (err) {
1756 pr_err("KVM: Couldn't alloc HPT\n");
1757 goto out;
1758 }
1759 }
1760
1761 /* Look up the memslot for guest physical address 0 */
1762 srcu_idx = srcu_read_lock(&kvm->srcu);
1763 memslot = gfn_to_memslot(kvm, 0);
1764
1765 /* We must have some memory at 0 by now */
1766 err = -EINVAL;
1767 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1768 goto out_srcu;
1769
1770 /* Look up the VMA for the start of this memory slot */
1771 hva = memslot->userspace_addr;
1772 down_read(&current->mm->mmap_sem);
1773 vma = find_vma(current->mm, hva);
1774 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1775 goto up_out;
1776
1777 psize = vma_kernel_pagesize(vma);
1778 porder = __ilog2(psize);
1779
1780 /* Is this one of our preallocated RMAs? */
1781 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1782 hva == vma->vm_start)
1783 ri = vma->vm_file->private_data;
1784
1785 up_read(&current->mm->mmap_sem);
1786
1787 if (!ri) {
1788 /* On POWER7, use VRMA; on PPC970, give up */
1789 err = -EPERM;
1790 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1791 pr_err("KVM: CPU requires an RMO\n");
1792 goto out_srcu;
1793 }
1794
1795 /* We can handle 4k, 64k or 16M pages in the VRMA */
1796 err = -EINVAL;
1797 if (!(psize == 0x1000 || psize == 0x10000 ||
1798 psize == 0x1000000))
1799 goto out_srcu;
1800
1801 /* Update VRMASD field in the LPCR */
1802 senc = slb_pgsize_encoding(psize);
1803 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1804 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1805 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1806 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1807 kvm->arch.lpcr = lpcr;
1808
1809 /* Create HPTEs in the hash page table for the VRMA */
1810 kvmppc_map_vrma(vcpu, memslot, porder);
1811
1812 } else {
1813 /* Set up to use an RMO region */
1814 rma_size = kvm_rma_pages;
1815 if (rma_size > memslot->npages)
1816 rma_size = memslot->npages;
1817 rma_size <<= PAGE_SHIFT;
1818 rmls = lpcr_rmls(rma_size);
1819 err = -EINVAL;
1820 if ((long)rmls < 0) {
1821 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1822 goto out_srcu;
1823 }
1824 atomic_inc(&ri->use_count);
1825 kvm->arch.rma = ri;
1826
1827 /* Update LPCR and RMOR */
1828 lpcr = kvm->arch.lpcr;
1829 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1830 /* PPC970; insert RMLS value (split field) in HID4 */
1831 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1832 (3ul << HID4_RMLS2_SH));
1833 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1834 ((rmls & 3) << HID4_RMLS2_SH);
1835 /* RMOR is also in HID4 */
1836 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1837 << HID4_RMOR_SH;
1838 } else {
1839 /* POWER7 */
1840 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1841 lpcr |= rmls << LPCR_RMLS_SH;
1842 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1843 }
1844 kvm->arch.lpcr = lpcr;
1845 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1846 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1847
1848 /* Initialize phys addrs of pages in RMO */
1849 npages = kvm_rma_pages;
1850 porder = __ilog2(npages);
1851 physp = memslot->arch.slot_phys;
1852 if (physp) {
1853 if (npages > memslot->npages)
1854 npages = memslot->npages;
1855 spin_lock(&kvm->arch.slot_phys_lock);
1856 for (i = 0; i < npages; ++i)
1857 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1858 porder;
1859 spin_unlock(&kvm->arch.slot_phys_lock);
1860 }
1861 }
1862
1863 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1864 smp_wmb();
1865 kvm->arch.rma_setup_done = 1;
1866 err = 0;
1867 out_srcu:
1868 srcu_read_unlock(&kvm->srcu, srcu_idx);
1869 out:
1870 mutex_unlock(&kvm->lock);
1871 return err;
1872
1873 up_out:
1874 up_read(&current->mm->mmap_sem);
1875 goto out_srcu;
1876 }
1877
1878 int kvmppc_core_init_vm(struct kvm *kvm)
1879 {
1880 unsigned long lpcr, lpid;
1881
1882 /* Allocate the guest's logical partition ID */
1883
1884 lpid = kvmppc_alloc_lpid();
1885 if ((long)lpid < 0)
1886 return -ENOMEM;
1887 kvm->arch.lpid = lpid;
1888
1889 /*
1890 * Since we don't flush the TLB when tearing down a VM,
1891 * and this lpid might have previously been used,
1892 * make sure we flush on each core before running the new VM.
1893 */
1894 cpumask_setall(&kvm->arch.need_tlb_flush);
1895
1896 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1897 INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1898
1899 kvm->arch.rma = NULL;
1900
1901 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1902
1903 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1904 /* PPC970; HID4 is effectively the LPCR */
1905 kvm->arch.host_lpid = 0;
1906 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1907 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1908 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1909 ((lpid & 0xf) << HID4_LPID5_SH);
1910 } else {
1911 /* POWER7; init LPCR for virtual RMA mode */
1912 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1913 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1914 lpcr &= LPCR_PECE | LPCR_LPES;
1915 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1916 LPCR_VPM0 | LPCR_VPM1;
1917 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1918 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1919 }
1920 kvm->arch.lpcr = lpcr;
1921
1922 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1923 spin_lock_init(&kvm->arch.slot_phys_lock);
1924
1925 /*
1926 * Don't allow secondary CPU threads to come online
1927 * while any KVM VMs exist.
1928 */
1929 inhibit_secondary_onlining();
1930
1931 return 0;
1932 }
1933
1934 void kvmppc_core_destroy_vm(struct kvm *kvm)
1935 {
1936 uninhibit_secondary_onlining();
1937
1938 if (kvm->arch.rma) {
1939 kvm_release_rma(kvm->arch.rma);
1940 kvm->arch.rma = NULL;
1941 }
1942
1943 kvmppc_rtas_tokens_free(kvm);
1944
1945 kvmppc_free_hpt(kvm);
1946 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1947 }
1948
1949 /* These are stubs for now */
1950 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1951 {
1952 }
1953
1954 /* We don't need to emulate any privileged instructions or dcbz */
1955 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1956 unsigned int inst, int *advance)
1957 {
1958 return EMULATE_FAIL;
1959 }
1960
1961 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1962 {
1963 return EMULATE_FAIL;
1964 }
1965
1966 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1967 {
1968 return EMULATE_FAIL;
1969 }
1970
1971 static int kvmppc_book3s_hv_init(void)
1972 {
1973 int r;
1974
1975 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1976
1977 if (r)
1978 return r;
1979
1980 r = kvmppc_mmu_hv_init();
1981
1982 return r;
1983 }
1984
1985 static void kvmppc_book3s_hv_exit(void)
1986 {
1987 kvm_exit();
1988 }
1989
1990 module_init(kvmppc_book3s_hv_init);
1991 module_exit(kvmppc_book3s_hv_exit);