]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge branch 'next-integrity' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorri...
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <asm/tlbflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76
77 #include "book3s.h"
78
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
90
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL (~(u64)0)
93
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109 .set = param_set_int,
110 .get = param_get_int,
111 };
112
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125
126 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
127 int *ip)
128 {
129 int i = *ip;
130 struct kvm_vcpu *vcpu;
131
132 while (++i < MAX_SMT_THREADS) {
133 vcpu = READ_ONCE(vc->runnable_threads[i]);
134 if (vcpu) {
135 *ip = i;
136 return vcpu;
137 }
138 }
139 return NULL;
140 }
141
142 /* Used to traverse the list of runnable threads for a given vcore */
143 #define for_each_runnable_thread(i, vcpu, vc) \
144 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
145
146 static bool kvmppc_ipi_thread(int cpu)
147 {
148 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
149
150 /* On POWER9 we can use msgsnd to IPI any cpu */
151 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
152 msg |= get_hard_smp_processor_id(cpu);
153 smp_mb();
154 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
155 return true;
156 }
157
158 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
159 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
160 preempt_disable();
161 if (cpu_first_thread_sibling(cpu) ==
162 cpu_first_thread_sibling(smp_processor_id())) {
163 msg |= cpu_thread_in_core(cpu);
164 smp_mb();
165 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
166 preempt_enable();
167 return true;
168 }
169 preempt_enable();
170 }
171
172 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
173 if (cpu >= 0 && cpu < nr_cpu_ids) {
174 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
175 xics_wake_cpu(cpu);
176 return true;
177 }
178 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
179 return true;
180 }
181 #endif
182
183 return false;
184 }
185
186 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
187 {
188 int cpu;
189 struct swait_queue_head *wqp;
190
191 wqp = kvm_arch_vcpu_wq(vcpu);
192 if (swq_has_sleeper(wqp)) {
193 swake_up(wqp);
194 ++vcpu->stat.halt_wakeup;
195 }
196
197 cpu = READ_ONCE(vcpu->arch.thread_cpu);
198 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
199 return;
200
201 /* CPU points to the first thread of the core */
202 cpu = vcpu->cpu;
203 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
204 smp_send_reschedule(cpu);
205 }
206
207 /*
208 * We use the vcpu_load/put functions to measure stolen time.
209 * Stolen time is counted as time when either the vcpu is able to
210 * run as part of a virtual core, but the task running the vcore
211 * is preempted or sleeping, or when the vcpu needs something done
212 * in the kernel by the task running the vcpu, but that task is
213 * preempted or sleeping. Those two things have to be counted
214 * separately, since one of the vcpu tasks will take on the job
215 * of running the core, and the other vcpu tasks in the vcore will
216 * sleep waiting for it to do that, but that sleep shouldn't count
217 * as stolen time.
218 *
219 * Hence we accumulate stolen time when the vcpu can run as part of
220 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
221 * needs its task to do other things in the kernel (for example,
222 * service a page fault) in busy_stolen. We don't accumulate
223 * stolen time for a vcore when it is inactive, or for a vcpu
224 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
225 * a misnomer; it means that the vcpu task is not executing in
226 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
227 * the kernel. We don't have any way of dividing up that time
228 * between time that the vcpu is genuinely stopped, time that
229 * the task is actively working on behalf of the vcpu, and time
230 * that the task is preempted, so we don't count any of it as
231 * stolen.
232 *
233 * Updates to busy_stolen are protected by arch.tbacct_lock;
234 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
235 * lock. The stolen times are measured in units of timebase ticks.
236 * (Note that the != TB_NIL checks below are purely defensive;
237 * they should never fail.)
238 */
239
240 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
241 {
242 unsigned long flags;
243
244 spin_lock_irqsave(&vc->stoltb_lock, flags);
245 vc->preempt_tb = mftb();
246 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
247 }
248
249 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
250 {
251 unsigned long flags;
252
253 spin_lock_irqsave(&vc->stoltb_lock, flags);
254 if (vc->preempt_tb != TB_NIL) {
255 vc->stolen_tb += mftb() - vc->preempt_tb;
256 vc->preempt_tb = TB_NIL;
257 }
258 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
259 }
260
261 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
262 {
263 struct kvmppc_vcore *vc = vcpu->arch.vcore;
264 unsigned long flags;
265
266 /*
267 * We can test vc->runner without taking the vcore lock,
268 * because only this task ever sets vc->runner to this
269 * vcpu, and once it is set to this vcpu, only this task
270 * ever sets it to NULL.
271 */
272 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
273 kvmppc_core_end_stolen(vc);
274
275 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
276 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
277 vcpu->arch.busy_preempt != TB_NIL) {
278 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
279 vcpu->arch.busy_preempt = TB_NIL;
280 }
281 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
282 }
283
284 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
285 {
286 struct kvmppc_vcore *vc = vcpu->arch.vcore;
287 unsigned long flags;
288
289 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
290 kvmppc_core_start_stolen(vc);
291
292 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
293 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
294 vcpu->arch.busy_preempt = mftb();
295 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
296 }
297
298 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
299 {
300 /*
301 * Check for illegal transactional state bit combination
302 * and if we find it, force the TS field to a safe state.
303 */
304 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
305 msr &= ~MSR_TS_MASK;
306 vcpu->arch.shregs.msr = msr;
307 kvmppc_end_cede(vcpu);
308 }
309
310 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
311 {
312 vcpu->arch.pvr = pvr;
313 }
314
315 /* Dummy value used in computing PCR value below */
316 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
317
318 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
319 {
320 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
321 struct kvmppc_vcore *vc = vcpu->arch.vcore;
322
323 /* We can (emulate) our own architecture version and anything older */
324 if (cpu_has_feature(CPU_FTR_ARCH_300))
325 host_pcr_bit = PCR_ARCH_300;
326 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
327 host_pcr_bit = PCR_ARCH_207;
328 else if (cpu_has_feature(CPU_FTR_ARCH_206))
329 host_pcr_bit = PCR_ARCH_206;
330 else
331 host_pcr_bit = PCR_ARCH_205;
332
333 /* Determine lowest PCR bit needed to run guest in given PVR level */
334 guest_pcr_bit = host_pcr_bit;
335 if (arch_compat) {
336 switch (arch_compat) {
337 case PVR_ARCH_205:
338 guest_pcr_bit = PCR_ARCH_205;
339 break;
340 case PVR_ARCH_206:
341 case PVR_ARCH_206p:
342 guest_pcr_bit = PCR_ARCH_206;
343 break;
344 case PVR_ARCH_207:
345 guest_pcr_bit = PCR_ARCH_207;
346 break;
347 case PVR_ARCH_300:
348 guest_pcr_bit = PCR_ARCH_300;
349 break;
350 default:
351 return -EINVAL;
352 }
353 }
354
355 /* Check requested PCR bits don't exceed our capabilities */
356 if (guest_pcr_bit > host_pcr_bit)
357 return -EINVAL;
358
359 spin_lock(&vc->lock);
360 vc->arch_compat = arch_compat;
361 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
362 vc->pcr = host_pcr_bit - guest_pcr_bit;
363 spin_unlock(&vc->lock);
364
365 return 0;
366 }
367
368 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
369 {
370 int r;
371
372 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
373 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
374 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
375 for (r = 0; r < 16; ++r)
376 pr_err("r%2d = %.16lx r%d = %.16lx\n",
377 r, kvmppc_get_gpr(vcpu, r),
378 r+16, kvmppc_get_gpr(vcpu, r+16));
379 pr_err("ctr = %.16lx lr = %.16lx\n",
380 vcpu->arch.ctr, vcpu->arch.lr);
381 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
382 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
383 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
384 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
385 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
386 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
387 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
388 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
389 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
390 pr_err("fault dar = %.16lx dsisr = %.8x\n",
391 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
392 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
393 for (r = 0; r < vcpu->arch.slb_max; ++r)
394 pr_err(" ESID = %.16llx VSID = %.16llx\n",
395 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
396 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
397 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
398 vcpu->arch.last_inst);
399 }
400
401 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
402 {
403 struct kvm_vcpu *ret;
404
405 mutex_lock(&kvm->lock);
406 ret = kvm_get_vcpu_by_id(kvm, id);
407 mutex_unlock(&kvm->lock);
408 return ret;
409 }
410
411 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
412 {
413 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
414 vpa->yield_count = cpu_to_be32(1);
415 }
416
417 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
418 unsigned long addr, unsigned long len)
419 {
420 /* check address is cacheline aligned */
421 if (addr & (L1_CACHE_BYTES - 1))
422 return -EINVAL;
423 spin_lock(&vcpu->arch.vpa_update_lock);
424 if (v->next_gpa != addr || v->len != len) {
425 v->next_gpa = addr;
426 v->len = addr ? len : 0;
427 v->update_pending = 1;
428 }
429 spin_unlock(&vcpu->arch.vpa_update_lock);
430 return 0;
431 }
432
433 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
434 struct reg_vpa {
435 u32 dummy;
436 union {
437 __be16 hword;
438 __be32 word;
439 } length;
440 };
441
442 static int vpa_is_registered(struct kvmppc_vpa *vpap)
443 {
444 if (vpap->update_pending)
445 return vpap->next_gpa != 0;
446 return vpap->pinned_addr != NULL;
447 }
448
449 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
450 unsigned long flags,
451 unsigned long vcpuid, unsigned long vpa)
452 {
453 struct kvm *kvm = vcpu->kvm;
454 unsigned long len, nb;
455 void *va;
456 struct kvm_vcpu *tvcpu;
457 int err;
458 int subfunc;
459 struct kvmppc_vpa *vpap;
460
461 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
462 if (!tvcpu)
463 return H_PARAMETER;
464
465 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
466 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
467 subfunc == H_VPA_REG_SLB) {
468 /* Registering new area - address must be cache-line aligned */
469 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
470 return H_PARAMETER;
471
472 /* convert logical addr to kernel addr and read length */
473 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
474 if (va == NULL)
475 return H_PARAMETER;
476 if (subfunc == H_VPA_REG_VPA)
477 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
478 else
479 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
480 kvmppc_unpin_guest_page(kvm, va, vpa, false);
481
482 /* Check length */
483 if (len > nb || len < sizeof(struct reg_vpa))
484 return H_PARAMETER;
485 } else {
486 vpa = 0;
487 len = 0;
488 }
489
490 err = H_PARAMETER;
491 vpap = NULL;
492 spin_lock(&tvcpu->arch.vpa_update_lock);
493
494 switch (subfunc) {
495 case H_VPA_REG_VPA: /* register VPA */
496 /*
497 * The size of our lppaca is 1kB because of the way we align
498 * it for the guest to avoid crossing a 4kB boundary. We only
499 * use 640 bytes of the structure though, so we should accept
500 * clients that set a size of 640.
501 */
502 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
503 if (len < sizeof(struct lppaca))
504 break;
505 vpap = &tvcpu->arch.vpa;
506 err = 0;
507 break;
508
509 case H_VPA_REG_DTL: /* register DTL */
510 if (len < sizeof(struct dtl_entry))
511 break;
512 len -= len % sizeof(struct dtl_entry);
513
514 /* Check that they have previously registered a VPA */
515 err = H_RESOURCE;
516 if (!vpa_is_registered(&tvcpu->arch.vpa))
517 break;
518
519 vpap = &tvcpu->arch.dtl;
520 err = 0;
521 break;
522
523 case H_VPA_REG_SLB: /* register SLB shadow buffer */
524 /* Check that they have previously registered a VPA */
525 err = H_RESOURCE;
526 if (!vpa_is_registered(&tvcpu->arch.vpa))
527 break;
528
529 vpap = &tvcpu->arch.slb_shadow;
530 err = 0;
531 break;
532
533 case H_VPA_DEREG_VPA: /* deregister VPA */
534 /* Check they don't still have a DTL or SLB buf registered */
535 err = H_RESOURCE;
536 if (vpa_is_registered(&tvcpu->arch.dtl) ||
537 vpa_is_registered(&tvcpu->arch.slb_shadow))
538 break;
539
540 vpap = &tvcpu->arch.vpa;
541 err = 0;
542 break;
543
544 case H_VPA_DEREG_DTL: /* deregister DTL */
545 vpap = &tvcpu->arch.dtl;
546 err = 0;
547 break;
548
549 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
550 vpap = &tvcpu->arch.slb_shadow;
551 err = 0;
552 break;
553 }
554
555 if (vpap) {
556 vpap->next_gpa = vpa;
557 vpap->len = len;
558 vpap->update_pending = 1;
559 }
560
561 spin_unlock(&tvcpu->arch.vpa_update_lock);
562
563 return err;
564 }
565
566 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
567 {
568 struct kvm *kvm = vcpu->kvm;
569 void *va;
570 unsigned long nb;
571 unsigned long gpa;
572
573 /*
574 * We need to pin the page pointed to by vpap->next_gpa,
575 * but we can't call kvmppc_pin_guest_page under the lock
576 * as it does get_user_pages() and down_read(). So we
577 * have to drop the lock, pin the page, then get the lock
578 * again and check that a new area didn't get registered
579 * in the meantime.
580 */
581 for (;;) {
582 gpa = vpap->next_gpa;
583 spin_unlock(&vcpu->arch.vpa_update_lock);
584 va = NULL;
585 nb = 0;
586 if (gpa)
587 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
588 spin_lock(&vcpu->arch.vpa_update_lock);
589 if (gpa == vpap->next_gpa)
590 break;
591 /* sigh... unpin that one and try again */
592 if (va)
593 kvmppc_unpin_guest_page(kvm, va, gpa, false);
594 }
595
596 vpap->update_pending = 0;
597 if (va && nb < vpap->len) {
598 /*
599 * If it's now too short, it must be that userspace
600 * has changed the mappings underlying guest memory,
601 * so unregister the region.
602 */
603 kvmppc_unpin_guest_page(kvm, va, gpa, false);
604 va = NULL;
605 }
606 if (vpap->pinned_addr)
607 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
608 vpap->dirty);
609 vpap->gpa = gpa;
610 vpap->pinned_addr = va;
611 vpap->dirty = false;
612 if (va)
613 vpap->pinned_end = va + vpap->len;
614 }
615
616 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
617 {
618 if (!(vcpu->arch.vpa.update_pending ||
619 vcpu->arch.slb_shadow.update_pending ||
620 vcpu->arch.dtl.update_pending))
621 return;
622
623 spin_lock(&vcpu->arch.vpa_update_lock);
624 if (vcpu->arch.vpa.update_pending) {
625 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
626 if (vcpu->arch.vpa.pinned_addr)
627 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
628 }
629 if (vcpu->arch.dtl.update_pending) {
630 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
631 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
632 vcpu->arch.dtl_index = 0;
633 }
634 if (vcpu->arch.slb_shadow.update_pending)
635 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
636 spin_unlock(&vcpu->arch.vpa_update_lock);
637 }
638
639 /*
640 * Return the accumulated stolen time for the vcore up until `now'.
641 * The caller should hold the vcore lock.
642 */
643 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
644 {
645 u64 p;
646 unsigned long flags;
647
648 spin_lock_irqsave(&vc->stoltb_lock, flags);
649 p = vc->stolen_tb;
650 if (vc->vcore_state != VCORE_INACTIVE &&
651 vc->preempt_tb != TB_NIL)
652 p += now - vc->preempt_tb;
653 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
654 return p;
655 }
656
657 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
658 struct kvmppc_vcore *vc)
659 {
660 struct dtl_entry *dt;
661 struct lppaca *vpa;
662 unsigned long stolen;
663 unsigned long core_stolen;
664 u64 now;
665 unsigned long flags;
666
667 dt = vcpu->arch.dtl_ptr;
668 vpa = vcpu->arch.vpa.pinned_addr;
669 now = mftb();
670 core_stolen = vcore_stolen_time(vc, now);
671 stolen = core_stolen - vcpu->arch.stolen_logged;
672 vcpu->arch.stolen_logged = core_stolen;
673 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
674 stolen += vcpu->arch.busy_stolen;
675 vcpu->arch.busy_stolen = 0;
676 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
677 if (!dt || !vpa)
678 return;
679 memset(dt, 0, sizeof(struct dtl_entry));
680 dt->dispatch_reason = 7;
681 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
682 dt->timebase = cpu_to_be64(now + vc->tb_offset);
683 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
684 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
685 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
686 ++dt;
687 if (dt == vcpu->arch.dtl.pinned_end)
688 dt = vcpu->arch.dtl.pinned_addr;
689 vcpu->arch.dtl_ptr = dt;
690 /* order writing *dt vs. writing vpa->dtl_idx */
691 smp_wmb();
692 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
693 vcpu->arch.dtl.dirty = true;
694 }
695
696 /* See if there is a doorbell interrupt pending for a vcpu */
697 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
698 {
699 int thr;
700 struct kvmppc_vcore *vc;
701
702 if (vcpu->arch.doorbell_request)
703 return true;
704 /*
705 * Ensure that the read of vcore->dpdes comes after the read
706 * of vcpu->doorbell_request. This barrier matches the
707 * lwsync in book3s_hv_rmhandlers.S just before the
708 * fast_guest_return label.
709 */
710 smp_rmb();
711 vc = vcpu->arch.vcore;
712 thr = vcpu->vcpu_id - vc->first_vcpuid;
713 return !!(vc->dpdes & (1 << thr));
714 }
715
716 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
717 {
718 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
719 return true;
720 if ((!vcpu->arch.vcore->arch_compat) &&
721 cpu_has_feature(CPU_FTR_ARCH_207S))
722 return true;
723 return false;
724 }
725
726 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
727 unsigned long resource, unsigned long value1,
728 unsigned long value2)
729 {
730 switch (resource) {
731 case H_SET_MODE_RESOURCE_SET_CIABR:
732 if (!kvmppc_power8_compatible(vcpu))
733 return H_P2;
734 if (value2)
735 return H_P4;
736 if (mflags)
737 return H_UNSUPPORTED_FLAG_START;
738 /* Guests can't breakpoint the hypervisor */
739 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
740 return H_P3;
741 vcpu->arch.ciabr = value1;
742 return H_SUCCESS;
743 case H_SET_MODE_RESOURCE_SET_DAWR:
744 if (!kvmppc_power8_compatible(vcpu))
745 return H_P2;
746 if (!ppc_breakpoint_available())
747 return H_P2;
748 if (mflags)
749 return H_UNSUPPORTED_FLAG_START;
750 if (value2 & DABRX_HYP)
751 return H_P4;
752 vcpu->arch.dawr = value1;
753 vcpu->arch.dawrx = value2;
754 return H_SUCCESS;
755 default:
756 return H_TOO_HARD;
757 }
758 }
759
760 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
761 {
762 struct kvmppc_vcore *vcore = target->arch.vcore;
763
764 /*
765 * We expect to have been called by the real mode handler
766 * (kvmppc_rm_h_confer()) which would have directly returned
767 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
768 * have useful work to do and should not confer) so we don't
769 * recheck that here.
770 */
771
772 spin_lock(&vcore->lock);
773 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
774 vcore->vcore_state != VCORE_INACTIVE &&
775 vcore->runner)
776 target = vcore->runner;
777 spin_unlock(&vcore->lock);
778
779 return kvm_vcpu_yield_to(target);
780 }
781
782 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
783 {
784 int yield_count = 0;
785 struct lppaca *lppaca;
786
787 spin_lock(&vcpu->arch.vpa_update_lock);
788 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
789 if (lppaca)
790 yield_count = be32_to_cpu(lppaca->yield_count);
791 spin_unlock(&vcpu->arch.vpa_update_lock);
792 return yield_count;
793 }
794
795 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
796 {
797 unsigned long req = kvmppc_get_gpr(vcpu, 3);
798 unsigned long target, ret = H_SUCCESS;
799 int yield_count;
800 struct kvm_vcpu *tvcpu;
801 int idx, rc;
802
803 if (req <= MAX_HCALL_OPCODE &&
804 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
805 return RESUME_HOST;
806
807 switch (req) {
808 case H_CEDE:
809 break;
810 case H_PROD:
811 target = kvmppc_get_gpr(vcpu, 4);
812 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
813 if (!tvcpu) {
814 ret = H_PARAMETER;
815 break;
816 }
817 tvcpu->arch.prodded = 1;
818 smp_mb();
819 if (tvcpu->arch.ceded)
820 kvmppc_fast_vcpu_kick_hv(tvcpu);
821 break;
822 case H_CONFER:
823 target = kvmppc_get_gpr(vcpu, 4);
824 if (target == -1)
825 break;
826 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
827 if (!tvcpu) {
828 ret = H_PARAMETER;
829 break;
830 }
831 yield_count = kvmppc_get_gpr(vcpu, 5);
832 if (kvmppc_get_yield_count(tvcpu) != yield_count)
833 break;
834 kvm_arch_vcpu_yield_to(tvcpu);
835 break;
836 case H_REGISTER_VPA:
837 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
838 kvmppc_get_gpr(vcpu, 5),
839 kvmppc_get_gpr(vcpu, 6));
840 break;
841 case H_RTAS:
842 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
843 return RESUME_HOST;
844
845 idx = srcu_read_lock(&vcpu->kvm->srcu);
846 rc = kvmppc_rtas_hcall(vcpu);
847 srcu_read_unlock(&vcpu->kvm->srcu, idx);
848
849 if (rc == -ENOENT)
850 return RESUME_HOST;
851 else if (rc == 0)
852 break;
853
854 /* Send the error out to userspace via KVM_RUN */
855 return rc;
856 case H_LOGICAL_CI_LOAD:
857 ret = kvmppc_h_logical_ci_load(vcpu);
858 if (ret == H_TOO_HARD)
859 return RESUME_HOST;
860 break;
861 case H_LOGICAL_CI_STORE:
862 ret = kvmppc_h_logical_ci_store(vcpu);
863 if (ret == H_TOO_HARD)
864 return RESUME_HOST;
865 break;
866 case H_SET_MODE:
867 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
868 kvmppc_get_gpr(vcpu, 5),
869 kvmppc_get_gpr(vcpu, 6),
870 kvmppc_get_gpr(vcpu, 7));
871 if (ret == H_TOO_HARD)
872 return RESUME_HOST;
873 break;
874 case H_XIRR:
875 case H_CPPR:
876 case H_EOI:
877 case H_IPI:
878 case H_IPOLL:
879 case H_XIRR_X:
880 if (kvmppc_xics_enabled(vcpu)) {
881 if (xive_enabled()) {
882 ret = H_NOT_AVAILABLE;
883 return RESUME_GUEST;
884 }
885 ret = kvmppc_xics_hcall(vcpu, req);
886 break;
887 }
888 return RESUME_HOST;
889 case H_PUT_TCE:
890 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
891 kvmppc_get_gpr(vcpu, 5),
892 kvmppc_get_gpr(vcpu, 6));
893 if (ret == H_TOO_HARD)
894 return RESUME_HOST;
895 break;
896 case H_PUT_TCE_INDIRECT:
897 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
898 kvmppc_get_gpr(vcpu, 5),
899 kvmppc_get_gpr(vcpu, 6),
900 kvmppc_get_gpr(vcpu, 7));
901 if (ret == H_TOO_HARD)
902 return RESUME_HOST;
903 break;
904 case H_STUFF_TCE:
905 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
906 kvmppc_get_gpr(vcpu, 5),
907 kvmppc_get_gpr(vcpu, 6),
908 kvmppc_get_gpr(vcpu, 7));
909 if (ret == H_TOO_HARD)
910 return RESUME_HOST;
911 break;
912 default:
913 return RESUME_HOST;
914 }
915 kvmppc_set_gpr(vcpu, 3, ret);
916 vcpu->arch.hcall_needed = 0;
917 return RESUME_GUEST;
918 }
919
920 static int kvmppc_hcall_impl_hv(unsigned long cmd)
921 {
922 switch (cmd) {
923 case H_CEDE:
924 case H_PROD:
925 case H_CONFER:
926 case H_REGISTER_VPA:
927 case H_SET_MODE:
928 case H_LOGICAL_CI_LOAD:
929 case H_LOGICAL_CI_STORE:
930 #ifdef CONFIG_KVM_XICS
931 case H_XIRR:
932 case H_CPPR:
933 case H_EOI:
934 case H_IPI:
935 case H_IPOLL:
936 case H_XIRR_X:
937 #endif
938 return 1;
939 }
940
941 /* See if it's in the real-mode table */
942 return kvmppc_hcall_impl_hv_realmode(cmd);
943 }
944
945 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
946 struct kvm_vcpu *vcpu)
947 {
948 u32 last_inst;
949
950 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
951 EMULATE_DONE) {
952 /*
953 * Fetch failed, so return to guest and
954 * try executing it again.
955 */
956 return RESUME_GUEST;
957 }
958
959 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
960 run->exit_reason = KVM_EXIT_DEBUG;
961 run->debug.arch.address = kvmppc_get_pc(vcpu);
962 return RESUME_HOST;
963 } else {
964 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
965 return RESUME_GUEST;
966 }
967 }
968
969 static void do_nothing(void *x)
970 {
971 }
972
973 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
974 {
975 int thr, cpu, pcpu, nthreads;
976 struct kvm_vcpu *v;
977 unsigned long dpdes;
978
979 nthreads = vcpu->kvm->arch.emul_smt_mode;
980 dpdes = 0;
981 cpu = vcpu->vcpu_id & ~(nthreads - 1);
982 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
983 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
984 if (!v)
985 continue;
986 /*
987 * If the vcpu is currently running on a physical cpu thread,
988 * interrupt it in order to pull it out of the guest briefly,
989 * which will update its vcore->dpdes value.
990 */
991 pcpu = READ_ONCE(v->cpu);
992 if (pcpu >= 0)
993 smp_call_function_single(pcpu, do_nothing, NULL, 1);
994 if (kvmppc_doorbell_pending(v))
995 dpdes |= 1 << thr;
996 }
997 return dpdes;
998 }
999
1000 /*
1001 * On POWER9, emulate doorbell-related instructions in order to
1002 * give the guest the illusion of running on a multi-threaded core.
1003 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1004 * and mfspr DPDES.
1005 */
1006 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1007 {
1008 u32 inst, rb, thr;
1009 unsigned long arg;
1010 struct kvm *kvm = vcpu->kvm;
1011 struct kvm_vcpu *tvcpu;
1012
1013 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1014 return RESUME_GUEST;
1015 if (get_op(inst) != 31)
1016 return EMULATE_FAIL;
1017 rb = get_rb(inst);
1018 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1019 switch (get_xop(inst)) {
1020 case OP_31_XOP_MSGSNDP:
1021 arg = kvmppc_get_gpr(vcpu, rb);
1022 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1023 break;
1024 arg &= 0x3f;
1025 if (arg >= kvm->arch.emul_smt_mode)
1026 break;
1027 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1028 if (!tvcpu)
1029 break;
1030 if (!tvcpu->arch.doorbell_request) {
1031 tvcpu->arch.doorbell_request = 1;
1032 kvmppc_fast_vcpu_kick_hv(tvcpu);
1033 }
1034 break;
1035 case OP_31_XOP_MSGCLRP:
1036 arg = kvmppc_get_gpr(vcpu, rb);
1037 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1038 break;
1039 vcpu->arch.vcore->dpdes = 0;
1040 vcpu->arch.doorbell_request = 0;
1041 break;
1042 case OP_31_XOP_MFSPR:
1043 switch (get_sprn(inst)) {
1044 case SPRN_TIR:
1045 arg = thr;
1046 break;
1047 case SPRN_DPDES:
1048 arg = kvmppc_read_dpdes(vcpu);
1049 break;
1050 default:
1051 return EMULATE_FAIL;
1052 }
1053 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1054 break;
1055 default:
1056 return EMULATE_FAIL;
1057 }
1058 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1059 return RESUME_GUEST;
1060 }
1061
1062 /* Called with vcpu->arch.vcore->lock held */
1063 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1064 struct task_struct *tsk)
1065 {
1066 int r = RESUME_HOST;
1067
1068 vcpu->stat.sum_exits++;
1069
1070 /*
1071 * This can happen if an interrupt occurs in the last stages
1072 * of guest entry or the first stages of guest exit (i.e. after
1073 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1074 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1075 * That can happen due to a bug, or due to a machine check
1076 * occurring at just the wrong time.
1077 */
1078 if (vcpu->arch.shregs.msr & MSR_HV) {
1079 printk(KERN_EMERG "KVM trap in HV mode!\n");
1080 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1081 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1082 vcpu->arch.shregs.msr);
1083 kvmppc_dump_regs(vcpu);
1084 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1085 run->hw.hardware_exit_reason = vcpu->arch.trap;
1086 return RESUME_HOST;
1087 }
1088 run->exit_reason = KVM_EXIT_UNKNOWN;
1089 run->ready_for_interrupt_injection = 1;
1090 switch (vcpu->arch.trap) {
1091 /* We're good on these - the host merely wanted to get our attention */
1092 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1093 vcpu->stat.dec_exits++;
1094 r = RESUME_GUEST;
1095 break;
1096 case BOOK3S_INTERRUPT_EXTERNAL:
1097 case BOOK3S_INTERRUPT_H_DOORBELL:
1098 case BOOK3S_INTERRUPT_H_VIRT:
1099 vcpu->stat.ext_intr_exits++;
1100 r = RESUME_GUEST;
1101 break;
1102 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1103 case BOOK3S_INTERRUPT_HMI:
1104 case BOOK3S_INTERRUPT_PERFMON:
1105 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1106 r = RESUME_GUEST;
1107 break;
1108 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1109 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1110 run->exit_reason = KVM_EXIT_NMI;
1111 run->hw.hardware_exit_reason = vcpu->arch.trap;
1112 /* Clear out the old NMI status from run->flags */
1113 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1114 /* Now set the NMI status */
1115 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1116 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1117 else
1118 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1119
1120 r = RESUME_HOST;
1121 /* Print the MCE event to host console. */
1122 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1123 break;
1124 case BOOK3S_INTERRUPT_PROGRAM:
1125 {
1126 ulong flags;
1127 /*
1128 * Normally program interrupts are delivered directly
1129 * to the guest by the hardware, but we can get here
1130 * as a result of a hypervisor emulation interrupt
1131 * (e40) getting turned into a 700 by BML RTAS.
1132 */
1133 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1134 kvmppc_core_queue_program(vcpu, flags);
1135 r = RESUME_GUEST;
1136 break;
1137 }
1138 case BOOK3S_INTERRUPT_SYSCALL:
1139 {
1140 /* hcall - punt to userspace */
1141 int i;
1142
1143 /* hypercall with MSR_PR has already been handled in rmode,
1144 * and never reaches here.
1145 */
1146
1147 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1148 for (i = 0; i < 9; ++i)
1149 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1150 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1151 vcpu->arch.hcall_needed = 1;
1152 r = RESUME_HOST;
1153 break;
1154 }
1155 /*
1156 * We get these next two if the guest accesses a page which it thinks
1157 * it has mapped but which is not actually present, either because
1158 * it is for an emulated I/O device or because the corresonding
1159 * host page has been paged out. Any other HDSI/HISI interrupts
1160 * have been handled already.
1161 */
1162 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1163 r = RESUME_PAGE_FAULT;
1164 break;
1165 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1166 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1167 vcpu->arch.fault_dsisr = 0;
1168 r = RESUME_PAGE_FAULT;
1169 break;
1170 /*
1171 * This occurs if the guest executes an illegal instruction.
1172 * If the guest debug is disabled, generate a program interrupt
1173 * to the guest. If guest debug is enabled, we need to check
1174 * whether the instruction is a software breakpoint instruction.
1175 * Accordingly return to Guest or Host.
1176 */
1177 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1178 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1179 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1180 swab32(vcpu->arch.emul_inst) :
1181 vcpu->arch.emul_inst;
1182 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1183 /* Need vcore unlocked to call kvmppc_get_last_inst */
1184 spin_unlock(&vcpu->arch.vcore->lock);
1185 r = kvmppc_emulate_debug_inst(run, vcpu);
1186 spin_lock(&vcpu->arch.vcore->lock);
1187 } else {
1188 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1189 r = RESUME_GUEST;
1190 }
1191 break;
1192 /*
1193 * This occurs if the guest (kernel or userspace), does something that
1194 * is prohibited by HFSCR.
1195 * On POWER9, this could be a doorbell instruction that we need
1196 * to emulate.
1197 * Otherwise, we just generate a program interrupt to the guest.
1198 */
1199 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1200 r = EMULATE_FAIL;
1201 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1202 cpu_has_feature(CPU_FTR_ARCH_300)) {
1203 /* Need vcore unlocked to call kvmppc_get_last_inst */
1204 spin_unlock(&vcpu->arch.vcore->lock);
1205 r = kvmppc_emulate_doorbell_instr(vcpu);
1206 spin_lock(&vcpu->arch.vcore->lock);
1207 }
1208 if (r == EMULATE_FAIL) {
1209 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1210 r = RESUME_GUEST;
1211 }
1212 break;
1213
1214 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1215 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1216 /*
1217 * This occurs for various TM-related instructions that
1218 * we need to emulate on POWER9 DD2.2. We have already
1219 * handled the cases where the guest was in real-suspend
1220 * mode and was transitioning to transactional state.
1221 */
1222 r = kvmhv_p9_tm_emulation(vcpu);
1223 break;
1224 #endif
1225
1226 case BOOK3S_INTERRUPT_HV_RM_HARD:
1227 r = RESUME_PASSTHROUGH;
1228 break;
1229 default:
1230 kvmppc_dump_regs(vcpu);
1231 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1232 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1233 vcpu->arch.shregs.msr);
1234 run->hw.hardware_exit_reason = vcpu->arch.trap;
1235 r = RESUME_HOST;
1236 break;
1237 }
1238
1239 return r;
1240 }
1241
1242 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1243 struct kvm_sregs *sregs)
1244 {
1245 int i;
1246
1247 memset(sregs, 0, sizeof(struct kvm_sregs));
1248 sregs->pvr = vcpu->arch.pvr;
1249 for (i = 0; i < vcpu->arch.slb_max; i++) {
1250 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1251 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1258 struct kvm_sregs *sregs)
1259 {
1260 int i, j;
1261
1262 /* Only accept the same PVR as the host's, since we can't spoof it */
1263 if (sregs->pvr != vcpu->arch.pvr)
1264 return -EINVAL;
1265
1266 j = 0;
1267 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1268 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1269 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1270 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1271 ++j;
1272 }
1273 }
1274 vcpu->arch.slb_max = j;
1275
1276 return 0;
1277 }
1278
1279 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1280 bool preserve_top32)
1281 {
1282 struct kvm *kvm = vcpu->kvm;
1283 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1284 u64 mask;
1285
1286 mutex_lock(&kvm->lock);
1287 spin_lock(&vc->lock);
1288 /*
1289 * If ILE (interrupt little-endian) has changed, update the
1290 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1291 */
1292 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1293 struct kvm_vcpu *vcpu;
1294 int i;
1295
1296 kvm_for_each_vcpu(i, vcpu, kvm) {
1297 if (vcpu->arch.vcore != vc)
1298 continue;
1299 if (new_lpcr & LPCR_ILE)
1300 vcpu->arch.intr_msr |= MSR_LE;
1301 else
1302 vcpu->arch.intr_msr &= ~MSR_LE;
1303 }
1304 }
1305
1306 /*
1307 * Userspace can only modify DPFD (default prefetch depth),
1308 * ILE (interrupt little-endian) and TC (translation control).
1309 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1310 */
1311 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1312 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1313 mask |= LPCR_AIL;
1314 /*
1315 * On POWER9, allow userspace to enable large decrementer for the
1316 * guest, whether or not the host has it enabled.
1317 */
1318 if (cpu_has_feature(CPU_FTR_ARCH_300))
1319 mask |= LPCR_LD;
1320
1321 /* Broken 32-bit version of LPCR must not clear top bits */
1322 if (preserve_top32)
1323 mask &= 0xFFFFFFFF;
1324 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1325 spin_unlock(&vc->lock);
1326 mutex_unlock(&kvm->lock);
1327 }
1328
1329 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1330 union kvmppc_one_reg *val)
1331 {
1332 int r = 0;
1333 long int i;
1334
1335 switch (id) {
1336 case KVM_REG_PPC_DEBUG_INST:
1337 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1338 break;
1339 case KVM_REG_PPC_HIOR:
1340 *val = get_reg_val(id, 0);
1341 break;
1342 case KVM_REG_PPC_DABR:
1343 *val = get_reg_val(id, vcpu->arch.dabr);
1344 break;
1345 case KVM_REG_PPC_DABRX:
1346 *val = get_reg_val(id, vcpu->arch.dabrx);
1347 break;
1348 case KVM_REG_PPC_DSCR:
1349 *val = get_reg_val(id, vcpu->arch.dscr);
1350 break;
1351 case KVM_REG_PPC_PURR:
1352 *val = get_reg_val(id, vcpu->arch.purr);
1353 break;
1354 case KVM_REG_PPC_SPURR:
1355 *val = get_reg_val(id, vcpu->arch.spurr);
1356 break;
1357 case KVM_REG_PPC_AMR:
1358 *val = get_reg_val(id, vcpu->arch.amr);
1359 break;
1360 case KVM_REG_PPC_UAMOR:
1361 *val = get_reg_val(id, vcpu->arch.uamor);
1362 break;
1363 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1364 i = id - KVM_REG_PPC_MMCR0;
1365 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1366 break;
1367 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1368 i = id - KVM_REG_PPC_PMC1;
1369 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1370 break;
1371 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1372 i = id - KVM_REG_PPC_SPMC1;
1373 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1374 break;
1375 case KVM_REG_PPC_SIAR:
1376 *val = get_reg_val(id, vcpu->arch.siar);
1377 break;
1378 case KVM_REG_PPC_SDAR:
1379 *val = get_reg_val(id, vcpu->arch.sdar);
1380 break;
1381 case KVM_REG_PPC_SIER:
1382 *val = get_reg_val(id, vcpu->arch.sier);
1383 break;
1384 case KVM_REG_PPC_IAMR:
1385 *val = get_reg_val(id, vcpu->arch.iamr);
1386 break;
1387 case KVM_REG_PPC_PSPB:
1388 *val = get_reg_val(id, vcpu->arch.pspb);
1389 break;
1390 case KVM_REG_PPC_DPDES:
1391 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1392 break;
1393 case KVM_REG_PPC_VTB:
1394 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1395 break;
1396 case KVM_REG_PPC_DAWR:
1397 *val = get_reg_val(id, vcpu->arch.dawr);
1398 break;
1399 case KVM_REG_PPC_DAWRX:
1400 *val = get_reg_val(id, vcpu->arch.dawrx);
1401 break;
1402 case KVM_REG_PPC_CIABR:
1403 *val = get_reg_val(id, vcpu->arch.ciabr);
1404 break;
1405 case KVM_REG_PPC_CSIGR:
1406 *val = get_reg_val(id, vcpu->arch.csigr);
1407 break;
1408 case KVM_REG_PPC_TACR:
1409 *val = get_reg_val(id, vcpu->arch.tacr);
1410 break;
1411 case KVM_REG_PPC_TCSCR:
1412 *val = get_reg_val(id, vcpu->arch.tcscr);
1413 break;
1414 case KVM_REG_PPC_PID:
1415 *val = get_reg_val(id, vcpu->arch.pid);
1416 break;
1417 case KVM_REG_PPC_ACOP:
1418 *val = get_reg_val(id, vcpu->arch.acop);
1419 break;
1420 case KVM_REG_PPC_WORT:
1421 *val = get_reg_val(id, vcpu->arch.wort);
1422 break;
1423 case KVM_REG_PPC_TIDR:
1424 *val = get_reg_val(id, vcpu->arch.tid);
1425 break;
1426 case KVM_REG_PPC_PSSCR:
1427 *val = get_reg_val(id, vcpu->arch.psscr);
1428 break;
1429 case KVM_REG_PPC_VPA_ADDR:
1430 spin_lock(&vcpu->arch.vpa_update_lock);
1431 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1432 spin_unlock(&vcpu->arch.vpa_update_lock);
1433 break;
1434 case KVM_REG_PPC_VPA_SLB:
1435 spin_lock(&vcpu->arch.vpa_update_lock);
1436 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1437 val->vpaval.length = vcpu->arch.slb_shadow.len;
1438 spin_unlock(&vcpu->arch.vpa_update_lock);
1439 break;
1440 case KVM_REG_PPC_VPA_DTL:
1441 spin_lock(&vcpu->arch.vpa_update_lock);
1442 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1443 val->vpaval.length = vcpu->arch.dtl.len;
1444 spin_unlock(&vcpu->arch.vpa_update_lock);
1445 break;
1446 case KVM_REG_PPC_TB_OFFSET:
1447 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1448 break;
1449 case KVM_REG_PPC_LPCR:
1450 case KVM_REG_PPC_LPCR_64:
1451 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1452 break;
1453 case KVM_REG_PPC_PPR:
1454 *val = get_reg_val(id, vcpu->arch.ppr);
1455 break;
1456 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1457 case KVM_REG_PPC_TFHAR:
1458 *val = get_reg_val(id, vcpu->arch.tfhar);
1459 break;
1460 case KVM_REG_PPC_TFIAR:
1461 *val = get_reg_val(id, vcpu->arch.tfiar);
1462 break;
1463 case KVM_REG_PPC_TEXASR:
1464 *val = get_reg_val(id, vcpu->arch.texasr);
1465 break;
1466 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1467 i = id - KVM_REG_PPC_TM_GPR0;
1468 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1469 break;
1470 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1471 {
1472 int j;
1473 i = id - KVM_REG_PPC_TM_VSR0;
1474 if (i < 32)
1475 for (j = 0; j < TS_FPRWIDTH; j++)
1476 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1477 else {
1478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1479 val->vval = vcpu->arch.vr_tm.vr[i-32];
1480 else
1481 r = -ENXIO;
1482 }
1483 break;
1484 }
1485 case KVM_REG_PPC_TM_CR:
1486 *val = get_reg_val(id, vcpu->arch.cr_tm);
1487 break;
1488 case KVM_REG_PPC_TM_XER:
1489 *val = get_reg_val(id, vcpu->arch.xer_tm);
1490 break;
1491 case KVM_REG_PPC_TM_LR:
1492 *val = get_reg_val(id, vcpu->arch.lr_tm);
1493 break;
1494 case KVM_REG_PPC_TM_CTR:
1495 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1496 break;
1497 case KVM_REG_PPC_TM_FPSCR:
1498 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1499 break;
1500 case KVM_REG_PPC_TM_AMR:
1501 *val = get_reg_val(id, vcpu->arch.amr_tm);
1502 break;
1503 case KVM_REG_PPC_TM_PPR:
1504 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1505 break;
1506 case KVM_REG_PPC_TM_VRSAVE:
1507 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1508 break;
1509 case KVM_REG_PPC_TM_VSCR:
1510 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1511 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1512 else
1513 r = -ENXIO;
1514 break;
1515 case KVM_REG_PPC_TM_DSCR:
1516 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1517 break;
1518 case KVM_REG_PPC_TM_TAR:
1519 *val = get_reg_val(id, vcpu->arch.tar_tm);
1520 break;
1521 #endif
1522 case KVM_REG_PPC_ARCH_COMPAT:
1523 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1524 break;
1525 case KVM_REG_PPC_DEC_EXPIRY:
1526 *val = get_reg_val(id, vcpu->arch.dec_expires +
1527 vcpu->arch.vcore->tb_offset);
1528 break;
1529 default:
1530 r = -EINVAL;
1531 break;
1532 }
1533
1534 return r;
1535 }
1536
1537 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1538 union kvmppc_one_reg *val)
1539 {
1540 int r = 0;
1541 long int i;
1542 unsigned long addr, len;
1543
1544 switch (id) {
1545 case KVM_REG_PPC_HIOR:
1546 /* Only allow this to be set to zero */
1547 if (set_reg_val(id, *val))
1548 r = -EINVAL;
1549 break;
1550 case KVM_REG_PPC_DABR:
1551 vcpu->arch.dabr = set_reg_val(id, *val);
1552 break;
1553 case KVM_REG_PPC_DABRX:
1554 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1555 break;
1556 case KVM_REG_PPC_DSCR:
1557 vcpu->arch.dscr = set_reg_val(id, *val);
1558 break;
1559 case KVM_REG_PPC_PURR:
1560 vcpu->arch.purr = set_reg_val(id, *val);
1561 break;
1562 case KVM_REG_PPC_SPURR:
1563 vcpu->arch.spurr = set_reg_val(id, *val);
1564 break;
1565 case KVM_REG_PPC_AMR:
1566 vcpu->arch.amr = set_reg_val(id, *val);
1567 break;
1568 case KVM_REG_PPC_UAMOR:
1569 vcpu->arch.uamor = set_reg_val(id, *val);
1570 break;
1571 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1572 i = id - KVM_REG_PPC_MMCR0;
1573 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1574 break;
1575 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1576 i = id - KVM_REG_PPC_PMC1;
1577 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1578 break;
1579 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1580 i = id - KVM_REG_PPC_SPMC1;
1581 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1582 break;
1583 case KVM_REG_PPC_SIAR:
1584 vcpu->arch.siar = set_reg_val(id, *val);
1585 break;
1586 case KVM_REG_PPC_SDAR:
1587 vcpu->arch.sdar = set_reg_val(id, *val);
1588 break;
1589 case KVM_REG_PPC_SIER:
1590 vcpu->arch.sier = set_reg_val(id, *val);
1591 break;
1592 case KVM_REG_PPC_IAMR:
1593 vcpu->arch.iamr = set_reg_val(id, *val);
1594 break;
1595 case KVM_REG_PPC_PSPB:
1596 vcpu->arch.pspb = set_reg_val(id, *val);
1597 break;
1598 case KVM_REG_PPC_DPDES:
1599 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1600 break;
1601 case KVM_REG_PPC_VTB:
1602 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1603 break;
1604 case KVM_REG_PPC_DAWR:
1605 vcpu->arch.dawr = set_reg_val(id, *val);
1606 break;
1607 case KVM_REG_PPC_DAWRX:
1608 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1609 break;
1610 case KVM_REG_PPC_CIABR:
1611 vcpu->arch.ciabr = set_reg_val(id, *val);
1612 /* Don't allow setting breakpoints in hypervisor code */
1613 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1614 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1615 break;
1616 case KVM_REG_PPC_CSIGR:
1617 vcpu->arch.csigr = set_reg_val(id, *val);
1618 break;
1619 case KVM_REG_PPC_TACR:
1620 vcpu->arch.tacr = set_reg_val(id, *val);
1621 break;
1622 case KVM_REG_PPC_TCSCR:
1623 vcpu->arch.tcscr = set_reg_val(id, *val);
1624 break;
1625 case KVM_REG_PPC_PID:
1626 vcpu->arch.pid = set_reg_val(id, *val);
1627 break;
1628 case KVM_REG_PPC_ACOP:
1629 vcpu->arch.acop = set_reg_val(id, *val);
1630 break;
1631 case KVM_REG_PPC_WORT:
1632 vcpu->arch.wort = set_reg_val(id, *val);
1633 break;
1634 case KVM_REG_PPC_TIDR:
1635 vcpu->arch.tid = set_reg_val(id, *val);
1636 break;
1637 case KVM_REG_PPC_PSSCR:
1638 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1639 break;
1640 case KVM_REG_PPC_VPA_ADDR:
1641 addr = set_reg_val(id, *val);
1642 r = -EINVAL;
1643 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1644 vcpu->arch.dtl.next_gpa))
1645 break;
1646 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1647 break;
1648 case KVM_REG_PPC_VPA_SLB:
1649 addr = val->vpaval.addr;
1650 len = val->vpaval.length;
1651 r = -EINVAL;
1652 if (addr && !vcpu->arch.vpa.next_gpa)
1653 break;
1654 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1655 break;
1656 case KVM_REG_PPC_VPA_DTL:
1657 addr = val->vpaval.addr;
1658 len = val->vpaval.length;
1659 r = -EINVAL;
1660 if (addr && (len < sizeof(struct dtl_entry) ||
1661 !vcpu->arch.vpa.next_gpa))
1662 break;
1663 len -= len % sizeof(struct dtl_entry);
1664 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1665 break;
1666 case KVM_REG_PPC_TB_OFFSET:
1667 /*
1668 * POWER9 DD1 has an erratum where writing TBU40 causes
1669 * the timebase to lose ticks. So we don't let the
1670 * timebase offset be changed on P9 DD1. (It is
1671 * initialized to zero.)
1672 */
1673 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1674 break;
1675 /* round up to multiple of 2^24 */
1676 vcpu->arch.vcore->tb_offset =
1677 ALIGN(set_reg_val(id, *val), 1UL << 24);
1678 break;
1679 case KVM_REG_PPC_LPCR:
1680 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1681 break;
1682 case KVM_REG_PPC_LPCR_64:
1683 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1684 break;
1685 case KVM_REG_PPC_PPR:
1686 vcpu->arch.ppr = set_reg_val(id, *val);
1687 break;
1688 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1689 case KVM_REG_PPC_TFHAR:
1690 vcpu->arch.tfhar = set_reg_val(id, *val);
1691 break;
1692 case KVM_REG_PPC_TFIAR:
1693 vcpu->arch.tfiar = set_reg_val(id, *val);
1694 break;
1695 case KVM_REG_PPC_TEXASR:
1696 vcpu->arch.texasr = set_reg_val(id, *val);
1697 break;
1698 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1699 i = id - KVM_REG_PPC_TM_GPR0;
1700 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1701 break;
1702 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1703 {
1704 int j;
1705 i = id - KVM_REG_PPC_TM_VSR0;
1706 if (i < 32)
1707 for (j = 0; j < TS_FPRWIDTH; j++)
1708 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1709 else
1710 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1711 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1712 else
1713 r = -ENXIO;
1714 break;
1715 }
1716 case KVM_REG_PPC_TM_CR:
1717 vcpu->arch.cr_tm = set_reg_val(id, *val);
1718 break;
1719 case KVM_REG_PPC_TM_XER:
1720 vcpu->arch.xer_tm = set_reg_val(id, *val);
1721 break;
1722 case KVM_REG_PPC_TM_LR:
1723 vcpu->arch.lr_tm = set_reg_val(id, *val);
1724 break;
1725 case KVM_REG_PPC_TM_CTR:
1726 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1727 break;
1728 case KVM_REG_PPC_TM_FPSCR:
1729 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1730 break;
1731 case KVM_REG_PPC_TM_AMR:
1732 vcpu->arch.amr_tm = set_reg_val(id, *val);
1733 break;
1734 case KVM_REG_PPC_TM_PPR:
1735 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1736 break;
1737 case KVM_REG_PPC_TM_VRSAVE:
1738 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1739 break;
1740 case KVM_REG_PPC_TM_VSCR:
1741 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1742 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1743 else
1744 r = - ENXIO;
1745 break;
1746 case KVM_REG_PPC_TM_DSCR:
1747 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1748 break;
1749 case KVM_REG_PPC_TM_TAR:
1750 vcpu->arch.tar_tm = set_reg_val(id, *val);
1751 break;
1752 #endif
1753 case KVM_REG_PPC_ARCH_COMPAT:
1754 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1755 break;
1756 case KVM_REG_PPC_DEC_EXPIRY:
1757 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1758 vcpu->arch.vcore->tb_offset;
1759 break;
1760 default:
1761 r = -EINVAL;
1762 break;
1763 }
1764
1765 return r;
1766 }
1767
1768 /*
1769 * On POWER9, threads are independent and can be in different partitions.
1770 * Therefore we consider each thread to be a subcore.
1771 * There is a restriction that all threads have to be in the same
1772 * MMU mode (radix or HPT), unfortunately, but since we only support
1773 * HPT guests on a HPT host so far, that isn't an impediment yet.
1774 */
1775 static int threads_per_vcore(struct kvm *kvm)
1776 {
1777 if (kvm->arch.threads_indep)
1778 return 1;
1779 return threads_per_subcore;
1780 }
1781
1782 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1783 {
1784 struct kvmppc_vcore *vcore;
1785
1786 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1787
1788 if (vcore == NULL)
1789 return NULL;
1790
1791 spin_lock_init(&vcore->lock);
1792 spin_lock_init(&vcore->stoltb_lock);
1793 init_swait_queue_head(&vcore->wq);
1794 vcore->preempt_tb = TB_NIL;
1795 vcore->lpcr = kvm->arch.lpcr;
1796 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1797 vcore->kvm = kvm;
1798 INIT_LIST_HEAD(&vcore->preempt_list);
1799
1800 return vcore;
1801 }
1802
1803 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1804 static struct debugfs_timings_element {
1805 const char *name;
1806 size_t offset;
1807 } timings[] = {
1808 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1809 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1810 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1811 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1812 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1813 };
1814
1815 #define N_TIMINGS (ARRAY_SIZE(timings))
1816
1817 struct debugfs_timings_state {
1818 struct kvm_vcpu *vcpu;
1819 unsigned int buflen;
1820 char buf[N_TIMINGS * 100];
1821 };
1822
1823 static int debugfs_timings_open(struct inode *inode, struct file *file)
1824 {
1825 struct kvm_vcpu *vcpu = inode->i_private;
1826 struct debugfs_timings_state *p;
1827
1828 p = kzalloc(sizeof(*p), GFP_KERNEL);
1829 if (!p)
1830 return -ENOMEM;
1831
1832 kvm_get_kvm(vcpu->kvm);
1833 p->vcpu = vcpu;
1834 file->private_data = p;
1835
1836 return nonseekable_open(inode, file);
1837 }
1838
1839 static int debugfs_timings_release(struct inode *inode, struct file *file)
1840 {
1841 struct debugfs_timings_state *p = file->private_data;
1842
1843 kvm_put_kvm(p->vcpu->kvm);
1844 kfree(p);
1845 return 0;
1846 }
1847
1848 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1849 size_t len, loff_t *ppos)
1850 {
1851 struct debugfs_timings_state *p = file->private_data;
1852 struct kvm_vcpu *vcpu = p->vcpu;
1853 char *s, *buf_end;
1854 struct kvmhv_tb_accumulator tb;
1855 u64 count;
1856 loff_t pos;
1857 ssize_t n;
1858 int i, loops;
1859 bool ok;
1860
1861 if (!p->buflen) {
1862 s = p->buf;
1863 buf_end = s + sizeof(p->buf);
1864 for (i = 0; i < N_TIMINGS; ++i) {
1865 struct kvmhv_tb_accumulator *acc;
1866
1867 acc = (struct kvmhv_tb_accumulator *)
1868 ((unsigned long)vcpu + timings[i].offset);
1869 ok = false;
1870 for (loops = 0; loops < 1000; ++loops) {
1871 count = acc->seqcount;
1872 if (!(count & 1)) {
1873 smp_rmb();
1874 tb = *acc;
1875 smp_rmb();
1876 if (count == acc->seqcount) {
1877 ok = true;
1878 break;
1879 }
1880 }
1881 udelay(1);
1882 }
1883 if (!ok)
1884 snprintf(s, buf_end - s, "%s: stuck\n",
1885 timings[i].name);
1886 else
1887 snprintf(s, buf_end - s,
1888 "%s: %llu %llu %llu %llu\n",
1889 timings[i].name, count / 2,
1890 tb_to_ns(tb.tb_total),
1891 tb_to_ns(tb.tb_min),
1892 tb_to_ns(tb.tb_max));
1893 s += strlen(s);
1894 }
1895 p->buflen = s - p->buf;
1896 }
1897
1898 pos = *ppos;
1899 if (pos >= p->buflen)
1900 return 0;
1901 if (len > p->buflen - pos)
1902 len = p->buflen - pos;
1903 n = copy_to_user(buf, p->buf + pos, len);
1904 if (n) {
1905 if (n == len)
1906 return -EFAULT;
1907 len -= n;
1908 }
1909 *ppos = pos + len;
1910 return len;
1911 }
1912
1913 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1914 size_t len, loff_t *ppos)
1915 {
1916 return -EACCES;
1917 }
1918
1919 static const struct file_operations debugfs_timings_ops = {
1920 .owner = THIS_MODULE,
1921 .open = debugfs_timings_open,
1922 .release = debugfs_timings_release,
1923 .read = debugfs_timings_read,
1924 .write = debugfs_timings_write,
1925 .llseek = generic_file_llseek,
1926 };
1927
1928 /* Create a debugfs directory for the vcpu */
1929 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1930 {
1931 char buf[16];
1932 struct kvm *kvm = vcpu->kvm;
1933
1934 snprintf(buf, sizeof(buf), "vcpu%u", id);
1935 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1936 return;
1937 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1938 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1939 return;
1940 vcpu->arch.debugfs_timings =
1941 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1942 vcpu, &debugfs_timings_ops);
1943 }
1944
1945 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1946 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1947 {
1948 }
1949 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1950
1951 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1952 unsigned int id)
1953 {
1954 struct kvm_vcpu *vcpu;
1955 int err;
1956 int core;
1957 struct kvmppc_vcore *vcore;
1958
1959 err = -ENOMEM;
1960 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1961 if (!vcpu)
1962 goto out;
1963
1964 err = kvm_vcpu_init(vcpu, kvm, id);
1965 if (err)
1966 goto free_vcpu;
1967
1968 vcpu->arch.shared = &vcpu->arch.shregs;
1969 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1970 /*
1971 * The shared struct is never shared on HV,
1972 * so we can always use host endianness
1973 */
1974 #ifdef __BIG_ENDIAN__
1975 vcpu->arch.shared_big_endian = true;
1976 #else
1977 vcpu->arch.shared_big_endian = false;
1978 #endif
1979 #endif
1980 vcpu->arch.mmcr[0] = MMCR0_FC;
1981 vcpu->arch.ctrl = CTRL_RUNLATCH;
1982 /* default to host PVR, since we can't spoof it */
1983 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1984 spin_lock_init(&vcpu->arch.vpa_update_lock);
1985 spin_lock_init(&vcpu->arch.tbacct_lock);
1986 vcpu->arch.busy_preempt = TB_NIL;
1987 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1988
1989 /*
1990 * Set the default HFSCR for the guest from the host value.
1991 * This value is only used on POWER9.
1992 * On POWER9 DD1, TM doesn't work, so we make sure to
1993 * prevent the guest from using it.
1994 * On POWER9, we want to virtualize the doorbell facility, so we
1995 * turn off the HFSCR bit, which causes those instructions to trap.
1996 */
1997 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1998 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
1999 vcpu->arch.hfscr |= HFSCR_TM;
2000 else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2001 vcpu->arch.hfscr &= ~HFSCR_TM;
2002 if (cpu_has_feature(CPU_FTR_ARCH_300))
2003 vcpu->arch.hfscr &= ~HFSCR_MSGP;
2004
2005 kvmppc_mmu_book3s_hv_init(vcpu);
2006
2007 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2008
2009 init_waitqueue_head(&vcpu->arch.cpu_run);
2010
2011 mutex_lock(&kvm->lock);
2012 vcore = NULL;
2013 err = -EINVAL;
2014 core = id / kvm->arch.smt_mode;
2015 if (core < KVM_MAX_VCORES) {
2016 vcore = kvm->arch.vcores[core];
2017 if (!vcore) {
2018 err = -ENOMEM;
2019 vcore = kvmppc_vcore_create(kvm, core);
2020 kvm->arch.vcores[core] = vcore;
2021 kvm->arch.online_vcores++;
2022 }
2023 }
2024 mutex_unlock(&kvm->lock);
2025
2026 if (!vcore)
2027 goto free_vcpu;
2028
2029 spin_lock(&vcore->lock);
2030 ++vcore->num_threads;
2031 spin_unlock(&vcore->lock);
2032 vcpu->arch.vcore = vcore;
2033 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2034 vcpu->arch.thread_cpu = -1;
2035 vcpu->arch.prev_cpu = -1;
2036
2037 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2038 kvmppc_sanity_check(vcpu);
2039
2040 debugfs_vcpu_init(vcpu, id);
2041
2042 return vcpu;
2043
2044 free_vcpu:
2045 kmem_cache_free(kvm_vcpu_cache, vcpu);
2046 out:
2047 return ERR_PTR(err);
2048 }
2049
2050 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2051 unsigned long flags)
2052 {
2053 int err;
2054 int esmt = 0;
2055
2056 if (flags)
2057 return -EINVAL;
2058 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2059 return -EINVAL;
2060 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2061 /*
2062 * On POWER8 (or POWER7), the threading mode is "strict",
2063 * so we pack smt_mode vcpus per vcore.
2064 */
2065 if (smt_mode > threads_per_subcore)
2066 return -EINVAL;
2067 } else {
2068 /*
2069 * On POWER9, the threading mode is "loose",
2070 * so each vcpu gets its own vcore.
2071 */
2072 esmt = smt_mode;
2073 smt_mode = 1;
2074 }
2075 mutex_lock(&kvm->lock);
2076 err = -EBUSY;
2077 if (!kvm->arch.online_vcores) {
2078 kvm->arch.smt_mode = smt_mode;
2079 kvm->arch.emul_smt_mode = esmt;
2080 err = 0;
2081 }
2082 mutex_unlock(&kvm->lock);
2083
2084 return err;
2085 }
2086
2087 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2088 {
2089 if (vpa->pinned_addr)
2090 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2091 vpa->dirty);
2092 }
2093
2094 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2095 {
2096 spin_lock(&vcpu->arch.vpa_update_lock);
2097 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2098 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2099 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2100 spin_unlock(&vcpu->arch.vpa_update_lock);
2101 kvm_vcpu_uninit(vcpu);
2102 kmem_cache_free(kvm_vcpu_cache, vcpu);
2103 }
2104
2105 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2106 {
2107 /* Indicate we want to get back into the guest */
2108 return 1;
2109 }
2110
2111 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2112 {
2113 unsigned long dec_nsec, now;
2114
2115 now = get_tb();
2116 if (now > vcpu->arch.dec_expires) {
2117 /* decrementer has already gone negative */
2118 kvmppc_core_queue_dec(vcpu);
2119 kvmppc_core_prepare_to_enter(vcpu);
2120 return;
2121 }
2122 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2123 / tb_ticks_per_sec;
2124 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2125 vcpu->arch.timer_running = 1;
2126 }
2127
2128 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2129 {
2130 vcpu->arch.ceded = 0;
2131 if (vcpu->arch.timer_running) {
2132 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2133 vcpu->arch.timer_running = 0;
2134 }
2135 }
2136
2137 extern int __kvmppc_vcore_entry(void);
2138
2139 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2140 struct kvm_vcpu *vcpu)
2141 {
2142 u64 now;
2143
2144 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2145 return;
2146 spin_lock_irq(&vcpu->arch.tbacct_lock);
2147 now = mftb();
2148 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2149 vcpu->arch.stolen_logged;
2150 vcpu->arch.busy_preempt = now;
2151 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2152 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2153 --vc->n_runnable;
2154 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2155 }
2156
2157 static int kvmppc_grab_hwthread(int cpu)
2158 {
2159 struct paca_struct *tpaca;
2160 long timeout = 10000;
2161
2162 tpaca = paca_ptrs[cpu];
2163
2164 /* Ensure the thread won't go into the kernel if it wakes */
2165 tpaca->kvm_hstate.kvm_vcpu = NULL;
2166 tpaca->kvm_hstate.kvm_vcore = NULL;
2167 tpaca->kvm_hstate.napping = 0;
2168 smp_wmb();
2169 tpaca->kvm_hstate.hwthread_req = 1;
2170
2171 /*
2172 * If the thread is already executing in the kernel (e.g. handling
2173 * a stray interrupt), wait for it to get back to nap mode.
2174 * The smp_mb() is to ensure that our setting of hwthread_req
2175 * is visible before we look at hwthread_state, so if this
2176 * races with the code at system_reset_pSeries and the thread
2177 * misses our setting of hwthread_req, we are sure to see its
2178 * setting of hwthread_state, and vice versa.
2179 */
2180 smp_mb();
2181 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2182 if (--timeout <= 0) {
2183 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2184 return -EBUSY;
2185 }
2186 udelay(1);
2187 }
2188 return 0;
2189 }
2190
2191 static void kvmppc_release_hwthread(int cpu)
2192 {
2193 struct paca_struct *tpaca;
2194
2195 tpaca = paca_ptrs[cpu];
2196 tpaca->kvm_hstate.hwthread_req = 0;
2197 tpaca->kvm_hstate.kvm_vcpu = NULL;
2198 tpaca->kvm_hstate.kvm_vcore = NULL;
2199 tpaca->kvm_hstate.kvm_split_mode = NULL;
2200 }
2201
2202 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2203 {
2204 int i;
2205
2206 cpu = cpu_first_thread_sibling(cpu);
2207 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2208 /*
2209 * Make sure setting of bit in need_tlb_flush precedes
2210 * testing of cpu_in_guest bits. The matching barrier on
2211 * the other side is the first smp_mb() in kvmppc_run_core().
2212 */
2213 smp_mb();
2214 for (i = 0; i < threads_per_core; ++i)
2215 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2216 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2217 }
2218
2219 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2220 {
2221 struct kvm *kvm = vcpu->kvm;
2222
2223 /*
2224 * With radix, the guest can do TLB invalidations itself,
2225 * and it could choose to use the local form (tlbiel) if
2226 * it is invalidating a translation that has only ever been
2227 * used on one vcpu. However, that doesn't mean it has
2228 * only ever been used on one physical cpu, since vcpus
2229 * can move around between pcpus. To cope with this, when
2230 * a vcpu moves from one pcpu to another, we need to tell
2231 * any vcpus running on the same core as this vcpu previously
2232 * ran to flush the TLB. The TLB is shared between threads,
2233 * so we use a single bit in .need_tlb_flush for all 4 threads.
2234 */
2235 if (vcpu->arch.prev_cpu != pcpu) {
2236 if (vcpu->arch.prev_cpu >= 0 &&
2237 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2238 cpu_first_thread_sibling(pcpu))
2239 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2240 vcpu->arch.prev_cpu = pcpu;
2241 }
2242 }
2243
2244 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2245 {
2246 int cpu;
2247 struct paca_struct *tpaca;
2248 struct kvm *kvm = vc->kvm;
2249
2250 cpu = vc->pcpu;
2251 if (vcpu) {
2252 if (vcpu->arch.timer_running) {
2253 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2254 vcpu->arch.timer_running = 0;
2255 }
2256 cpu += vcpu->arch.ptid;
2257 vcpu->cpu = vc->pcpu;
2258 vcpu->arch.thread_cpu = cpu;
2259 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2260 }
2261 tpaca = paca_ptrs[cpu];
2262 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2263 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2264 tpaca->kvm_hstate.fake_suspend = 0;
2265 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2266 smp_wmb();
2267 tpaca->kvm_hstate.kvm_vcore = vc;
2268 if (cpu != smp_processor_id())
2269 kvmppc_ipi_thread(cpu);
2270 }
2271
2272 static void kvmppc_wait_for_nap(int n_threads)
2273 {
2274 int cpu = smp_processor_id();
2275 int i, loops;
2276
2277 if (n_threads <= 1)
2278 return;
2279 for (loops = 0; loops < 1000000; ++loops) {
2280 /*
2281 * Check if all threads are finished.
2282 * We set the vcore pointer when starting a thread
2283 * and the thread clears it when finished, so we look
2284 * for any threads that still have a non-NULL vcore ptr.
2285 */
2286 for (i = 1; i < n_threads; ++i)
2287 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2288 break;
2289 if (i == n_threads) {
2290 HMT_medium();
2291 return;
2292 }
2293 HMT_low();
2294 }
2295 HMT_medium();
2296 for (i = 1; i < n_threads; ++i)
2297 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2298 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2299 }
2300
2301 /*
2302 * Check that we are on thread 0 and that any other threads in
2303 * this core are off-line. Then grab the threads so they can't
2304 * enter the kernel.
2305 */
2306 static int on_primary_thread(void)
2307 {
2308 int cpu = smp_processor_id();
2309 int thr;
2310
2311 /* Are we on a primary subcore? */
2312 if (cpu_thread_in_subcore(cpu))
2313 return 0;
2314
2315 thr = 0;
2316 while (++thr < threads_per_subcore)
2317 if (cpu_online(cpu + thr))
2318 return 0;
2319
2320 /* Grab all hw threads so they can't go into the kernel */
2321 for (thr = 1; thr < threads_per_subcore; ++thr) {
2322 if (kvmppc_grab_hwthread(cpu + thr)) {
2323 /* Couldn't grab one; let the others go */
2324 do {
2325 kvmppc_release_hwthread(cpu + thr);
2326 } while (--thr > 0);
2327 return 0;
2328 }
2329 }
2330 return 1;
2331 }
2332
2333 /*
2334 * A list of virtual cores for each physical CPU.
2335 * These are vcores that could run but their runner VCPU tasks are
2336 * (or may be) preempted.
2337 */
2338 struct preempted_vcore_list {
2339 struct list_head list;
2340 spinlock_t lock;
2341 };
2342
2343 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2344
2345 static void init_vcore_lists(void)
2346 {
2347 int cpu;
2348
2349 for_each_possible_cpu(cpu) {
2350 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2351 spin_lock_init(&lp->lock);
2352 INIT_LIST_HEAD(&lp->list);
2353 }
2354 }
2355
2356 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2357 {
2358 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2359
2360 vc->vcore_state = VCORE_PREEMPT;
2361 vc->pcpu = smp_processor_id();
2362 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2363 spin_lock(&lp->lock);
2364 list_add_tail(&vc->preempt_list, &lp->list);
2365 spin_unlock(&lp->lock);
2366 }
2367
2368 /* Start accumulating stolen time */
2369 kvmppc_core_start_stolen(vc);
2370 }
2371
2372 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2373 {
2374 struct preempted_vcore_list *lp;
2375
2376 kvmppc_core_end_stolen(vc);
2377 if (!list_empty(&vc->preempt_list)) {
2378 lp = &per_cpu(preempted_vcores, vc->pcpu);
2379 spin_lock(&lp->lock);
2380 list_del_init(&vc->preempt_list);
2381 spin_unlock(&lp->lock);
2382 }
2383 vc->vcore_state = VCORE_INACTIVE;
2384 }
2385
2386 /*
2387 * This stores information about the virtual cores currently
2388 * assigned to a physical core.
2389 */
2390 struct core_info {
2391 int n_subcores;
2392 int max_subcore_threads;
2393 int total_threads;
2394 int subcore_threads[MAX_SUBCORES];
2395 struct kvmppc_vcore *vc[MAX_SUBCORES];
2396 };
2397
2398 /*
2399 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2400 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2401 */
2402 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2403
2404 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2405 {
2406 memset(cip, 0, sizeof(*cip));
2407 cip->n_subcores = 1;
2408 cip->max_subcore_threads = vc->num_threads;
2409 cip->total_threads = vc->num_threads;
2410 cip->subcore_threads[0] = vc->num_threads;
2411 cip->vc[0] = vc;
2412 }
2413
2414 static bool subcore_config_ok(int n_subcores, int n_threads)
2415 {
2416 /*
2417 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2418 * split-core mode, with one thread per subcore.
2419 */
2420 if (cpu_has_feature(CPU_FTR_ARCH_300))
2421 return n_subcores <= 4 && n_threads == 1;
2422
2423 /* On POWER8, can only dynamically split if unsplit to begin with */
2424 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2425 return false;
2426 if (n_subcores > MAX_SUBCORES)
2427 return false;
2428 if (n_subcores > 1) {
2429 if (!(dynamic_mt_modes & 2))
2430 n_subcores = 4;
2431 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2432 return false;
2433 }
2434
2435 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2436 }
2437
2438 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2439 {
2440 vc->entry_exit_map = 0;
2441 vc->in_guest = 0;
2442 vc->napping_threads = 0;
2443 vc->conferring_threads = 0;
2444 }
2445
2446 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2447 {
2448 int n_threads = vc->num_threads;
2449 int sub;
2450
2451 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2452 return false;
2453
2454 /* Some POWER9 chips require all threads to be in the same MMU mode */
2455 if (no_mixing_hpt_and_radix &&
2456 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2457 return false;
2458
2459 if (n_threads < cip->max_subcore_threads)
2460 n_threads = cip->max_subcore_threads;
2461 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2462 return false;
2463 cip->max_subcore_threads = n_threads;
2464
2465 sub = cip->n_subcores;
2466 ++cip->n_subcores;
2467 cip->total_threads += vc->num_threads;
2468 cip->subcore_threads[sub] = vc->num_threads;
2469 cip->vc[sub] = vc;
2470 init_vcore_to_run(vc);
2471 list_del_init(&vc->preempt_list);
2472
2473 return true;
2474 }
2475
2476 /*
2477 * Work out whether it is possible to piggyback the execution of
2478 * vcore *pvc onto the execution of the other vcores described in *cip.
2479 */
2480 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2481 int target_threads)
2482 {
2483 if (cip->total_threads + pvc->num_threads > target_threads)
2484 return false;
2485
2486 return can_dynamic_split(pvc, cip);
2487 }
2488
2489 static void prepare_threads(struct kvmppc_vcore *vc)
2490 {
2491 int i;
2492 struct kvm_vcpu *vcpu;
2493
2494 for_each_runnable_thread(i, vcpu, vc) {
2495 if (signal_pending(vcpu->arch.run_task))
2496 vcpu->arch.ret = -EINTR;
2497 else if (vcpu->arch.vpa.update_pending ||
2498 vcpu->arch.slb_shadow.update_pending ||
2499 vcpu->arch.dtl.update_pending)
2500 vcpu->arch.ret = RESUME_GUEST;
2501 else
2502 continue;
2503 kvmppc_remove_runnable(vc, vcpu);
2504 wake_up(&vcpu->arch.cpu_run);
2505 }
2506 }
2507
2508 static void collect_piggybacks(struct core_info *cip, int target_threads)
2509 {
2510 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2511 struct kvmppc_vcore *pvc, *vcnext;
2512
2513 spin_lock(&lp->lock);
2514 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2515 if (!spin_trylock(&pvc->lock))
2516 continue;
2517 prepare_threads(pvc);
2518 if (!pvc->n_runnable) {
2519 list_del_init(&pvc->preempt_list);
2520 if (pvc->runner == NULL) {
2521 pvc->vcore_state = VCORE_INACTIVE;
2522 kvmppc_core_end_stolen(pvc);
2523 }
2524 spin_unlock(&pvc->lock);
2525 continue;
2526 }
2527 if (!can_piggyback(pvc, cip, target_threads)) {
2528 spin_unlock(&pvc->lock);
2529 continue;
2530 }
2531 kvmppc_core_end_stolen(pvc);
2532 pvc->vcore_state = VCORE_PIGGYBACK;
2533 if (cip->total_threads >= target_threads)
2534 break;
2535 }
2536 spin_unlock(&lp->lock);
2537 }
2538
2539 static bool recheck_signals(struct core_info *cip)
2540 {
2541 int sub, i;
2542 struct kvm_vcpu *vcpu;
2543
2544 for (sub = 0; sub < cip->n_subcores; ++sub)
2545 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2546 if (signal_pending(vcpu->arch.run_task))
2547 return true;
2548 return false;
2549 }
2550
2551 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2552 {
2553 int still_running = 0, i;
2554 u64 now;
2555 long ret;
2556 struct kvm_vcpu *vcpu;
2557
2558 spin_lock(&vc->lock);
2559 now = get_tb();
2560 for_each_runnable_thread(i, vcpu, vc) {
2561 /* cancel pending dec exception if dec is positive */
2562 if (now < vcpu->arch.dec_expires &&
2563 kvmppc_core_pending_dec(vcpu))
2564 kvmppc_core_dequeue_dec(vcpu);
2565
2566 trace_kvm_guest_exit(vcpu);
2567
2568 ret = RESUME_GUEST;
2569 if (vcpu->arch.trap)
2570 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2571 vcpu->arch.run_task);
2572
2573 vcpu->arch.ret = ret;
2574 vcpu->arch.trap = 0;
2575
2576 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2577 if (vcpu->arch.pending_exceptions)
2578 kvmppc_core_prepare_to_enter(vcpu);
2579 if (vcpu->arch.ceded)
2580 kvmppc_set_timer(vcpu);
2581 else
2582 ++still_running;
2583 } else {
2584 kvmppc_remove_runnable(vc, vcpu);
2585 wake_up(&vcpu->arch.cpu_run);
2586 }
2587 }
2588 if (!is_master) {
2589 if (still_running > 0) {
2590 kvmppc_vcore_preempt(vc);
2591 } else if (vc->runner) {
2592 vc->vcore_state = VCORE_PREEMPT;
2593 kvmppc_core_start_stolen(vc);
2594 } else {
2595 vc->vcore_state = VCORE_INACTIVE;
2596 }
2597 if (vc->n_runnable > 0 && vc->runner == NULL) {
2598 /* make sure there's a candidate runner awake */
2599 i = -1;
2600 vcpu = next_runnable_thread(vc, &i);
2601 wake_up(&vcpu->arch.cpu_run);
2602 }
2603 }
2604 spin_unlock(&vc->lock);
2605 }
2606
2607 /*
2608 * Clear core from the list of active host cores as we are about to
2609 * enter the guest. Only do this if it is the primary thread of the
2610 * core (not if a subcore) that is entering the guest.
2611 */
2612 static inline int kvmppc_clear_host_core(unsigned int cpu)
2613 {
2614 int core;
2615
2616 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2617 return 0;
2618 /*
2619 * Memory barrier can be omitted here as we will do a smp_wmb()
2620 * later in kvmppc_start_thread and we need ensure that state is
2621 * visible to other CPUs only after we enter guest.
2622 */
2623 core = cpu >> threads_shift;
2624 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2625 return 0;
2626 }
2627
2628 /*
2629 * Advertise this core as an active host core since we exited the guest
2630 * Only need to do this if it is the primary thread of the core that is
2631 * exiting.
2632 */
2633 static inline int kvmppc_set_host_core(unsigned int cpu)
2634 {
2635 int core;
2636
2637 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2638 return 0;
2639
2640 /*
2641 * Memory barrier can be omitted here because we do a spin_unlock
2642 * immediately after this which provides the memory barrier.
2643 */
2644 core = cpu >> threads_shift;
2645 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2646 return 0;
2647 }
2648
2649 static void set_irq_happened(int trap)
2650 {
2651 switch (trap) {
2652 case BOOK3S_INTERRUPT_EXTERNAL:
2653 local_paca->irq_happened |= PACA_IRQ_EE;
2654 break;
2655 case BOOK3S_INTERRUPT_H_DOORBELL:
2656 local_paca->irq_happened |= PACA_IRQ_DBELL;
2657 break;
2658 case BOOK3S_INTERRUPT_HMI:
2659 local_paca->irq_happened |= PACA_IRQ_HMI;
2660 break;
2661 case BOOK3S_INTERRUPT_SYSTEM_RESET:
2662 replay_system_reset();
2663 break;
2664 }
2665 }
2666
2667 /*
2668 * Run a set of guest threads on a physical core.
2669 * Called with vc->lock held.
2670 */
2671 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2672 {
2673 struct kvm_vcpu *vcpu;
2674 int i;
2675 int srcu_idx;
2676 struct core_info core_info;
2677 struct kvmppc_vcore *pvc;
2678 struct kvm_split_mode split_info, *sip;
2679 int split, subcore_size, active;
2680 int sub;
2681 bool thr0_done;
2682 unsigned long cmd_bit, stat_bit;
2683 int pcpu, thr;
2684 int target_threads;
2685 int controlled_threads;
2686 int trap;
2687 bool is_power8;
2688 bool hpt_on_radix;
2689
2690 /*
2691 * Remove from the list any threads that have a signal pending
2692 * or need a VPA update done
2693 */
2694 prepare_threads(vc);
2695
2696 /* if the runner is no longer runnable, let the caller pick a new one */
2697 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2698 return;
2699
2700 /*
2701 * Initialize *vc.
2702 */
2703 init_vcore_to_run(vc);
2704 vc->preempt_tb = TB_NIL;
2705
2706 /*
2707 * Number of threads that we will be controlling: the same as
2708 * the number of threads per subcore, except on POWER9,
2709 * where it's 1 because the threads are (mostly) independent.
2710 */
2711 controlled_threads = threads_per_vcore(vc->kvm);
2712
2713 /*
2714 * Make sure we are running on primary threads, and that secondary
2715 * threads are offline. Also check if the number of threads in this
2716 * guest are greater than the current system threads per guest.
2717 * On POWER9, we need to be not in independent-threads mode if
2718 * this is a HPT guest on a radix host machine where the
2719 * CPU threads may not be in different MMU modes.
2720 */
2721 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2722 !kvm_is_radix(vc->kvm);
2723 if (((controlled_threads > 1) &&
2724 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2725 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2726 for_each_runnable_thread(i, vcpu, vc) {
2727 vcpu->arch.ret = -EBUSY;
2728 kvmppc_remove_runnable(vc, vcpu);
2729 wake_up(&vcpu->arch.cpu_run);
2730 }
2731 goto out;
2732 }
2733
2734 /*
2735 * See if we could run any other vcores on the physical core
2736 * along with this one.
2737 */
2738 init_core_info(&core_info, vc);
2739 pcpu = smp_processor_id();
2740 target_threads = controlled_threads;
2741 if (target_smt_mode && target_smt_mode < target_threads)
2742 target_threads = target_smt_mode;
2743 if (vc->num_threads < target_threads)
2744 collect_piggybacks(&core_info, target_threads);
2745
2746 /*
2747 * On radix, arrange for TLB flushing if necessary.
2748 * This has to be done before disabling interrupts since
2749 * it uses smp_call_function().
2750 */
2751 pcpu = smp_processor_id();
2752 if (kvm_is_radix(vc->kvm)) {
2753 for (sub = 0; sub < core_info.n_subcores; ++sub)
2754 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2755 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2756 }
2757
2758 /*
2759 * Hard-disable interrupts, and check resched flag and signals.
2760 * If we need to reschedule or deliver a signal, clean up
2761 * and return without going into the guest(s).
2762 * If the mmu_ready flag has been cleared, don't go into the
2763 * guest because that means a HPT resize operation is in progress.
2764 */
2765 local_irq_disable();
2766 hard_irq_disable();
2767 if (lazy_irq_pending() || need_resched() ||
2768 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2769 local_irq_enable();
2770 vc->vcore_state = VCORE_INACTIVE;
2771 /* Unlock all except the primary vcore */
2772 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2773 pvc = core_info.vc[sub];
2774 /* Put back on to the preempted vcores list */
2775 kvmppc_vcore_preempt(pvc);
2776 spin_unlock(&pvc->lock);
2777 }
2778 for (i = 0; i < controlled_threads; ++i)
2779 kvmppc_release_hwthread(pcpu + i);
2780 return;
2781 }
2782
2783 kvmppc_clear_host_core(pcpu);
2784
2785 /* Decide on micro-threading (split-core) mode */
2786 subcore_size = threads_per_subcore;
2787 cmd_bit = stat_bit = 0;
2788 split = core_info.n_subcores;
2789 sip = NULL;
2790 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2791 && !cpu_has_feature(CPU_FTR_ARCH_300);
2792
2793 if (split > 1 || hpt_on_radix) {
2794 sip = &split_info;
2795 memset(&split_info, 0, sizeof(split_info));
2796 for (sub = 0; sub < core_info.n_subcores; ++sub)
2797 split_info.vc[sub] = core_info.vc[sub];
2798
2799 if (is_power8) {
2800 if (split == 2 && (dynamic_mt_modes & 2)) {
2801 cmd_bit = HID0_POWER8_1TO2LPAR;
2802 stat_bit = HID0_POWER8_2LPARMODE;
2803 } else {
2804 split = 4;
2805 cmd_bit = HID0_POWER8_1TO4LPAR;
2806 stat_bit = HID0_POWER8_4LPARMODE;
2807 }
2808 subcore_size = MAX_SMT_THREADS / split;
2809 split_info.rpr = mfspr(SPRN_RPR);
2810 split_info.pmmar = mfspr(SPRN_PMMAR);
2811 split_info.ldbar = mfspr(SPRN_LDBAR);
2812 split_info.subcore_size = subcore_size;
2813 } else {
2814 split_info.subcore_size = 1;
2815 if (hpt_on_radix) {
2816 /* Use the split_info for LPCR/LPIDR changes */
2817 split_info.lpcr_req = vc->lpcr;
2818 split_info.lpidr_req = vc->kvm->arch.lpid;
2819 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2820 split_info.do_set = 1;
2821 }
2822 }
2823
2824 /* order writes to split_info before kvm_split_mode pointer */
2825 smp_wmb();
2826 }
2827
2828 for (thr = 0; thr < controlled_threads; ++thr) {
2829 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2830
2831 paca->kvm_hstate.tid = thr;
2832 paca->kvm_hstate.napping = 0;
2833 paca->kvm_hstate.kvm_split_mode = sip;
2834 }
2835
2836 /* Initiate micro-threading (split-core) on POWER8 if required */
2837 if (cmd_bit) {
2838 unsigned long hid0 = mfspr(SPRN_HID0);
2839
2840 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2841 mb();
2842 mtspr(SPRN_HID0, hid0);
2843 isync();
2844 for (;;) {
2845 hid0 = mfspr(SPRN_HID0);
2846 if (hid0 & stat_bit)
2847 break;
2848 cpu_relax();
2849 }
2850 }
2851
2852 /* Start all the threads */
2853 active = 0;
2854 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2855 thr = is_power8 ? subcore_thread_map[sub] : sub;
2856 thr0_done = false;
2857 active |= 1 << thr;
2858 pvc = core_info.vc[sub];
2859 pvc->pcpu = pcpu + thr;
2860 for_each_runnable_thread(i, vcpu, pvc) {
2861 kvmppc_start_thread(vcpu, pvc);
2862 kvmppc_create_dtl_entry(vcpu, pvc);
2863 trace_kvm_guest_enter(vcpu);
2864 if (!vcpu->arch.ptid)
2865 thr0_done = true;
2866 active |= 1 << (thr + vcpu->arch.ptid);
2867 }
2868 /*
2869 * We need to start the first thread of each subcore
2870 * even if it doesn't have a vcpu.
2871 */
2872 if (!thr0_done)
2873 kvmppc_start_thread(NULL, pvc);
2874 }
2875
2876 /*
2877 * Ensure that split_info.do_nap is set after setting
2878 * the vcore pointer in the PACA of the secondaries.
2879 */
2880 smp_mb();
2881
2882 /*
2883 * When doing micro-threading, poke the inactive threads as well.
2884 * This gets them to the nap instruction after kvm_do_nap,
2885 * which reduces the time taken to unsplit later.
2886 * For POWER9 HPT guest on radix host, we need all the secondary
2887 * threads woken up so they can do the LPCR/LPIDR change.
2888 */
2889 if (cmd_bit || hpt_on_radix) {
2890 split_info.do_nap = 1; /* ask secondaries to nap when done */
2891 for (thr = 1; thr < threads_per_subcore; ++thr)
2892 if (!(active & (1 << thr)))
2893 kvmppc_ipi_thread(pcpu + thr);
2894 }
2895
2896 vc->vcore_state = VCORE_RUNNING;
2897 preempt_disable();
2898
2899 trace_kvmppc_run_core(vc, 0);
2900
2901 for (sub = 0; sub < core_info.n_subcores; ++sub)
2902 spin_unlock(&core_info.vc[sub]->lock);
2903
2904 /*
2905 * Interrupts will be enabled once we get into the guest,
2906 * so tell lockdep that we're about to enable interrupts.
2907 */
2908 trace_hardirqs_on();
2909
2910 guest_enter_irqoff();
2911
2912 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2913
2914 trap = __kvmppc_vcore_entry();
2915
2916 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2917
2918 trace_hardirqs_off();
2919 set_irq_happened(trap);
2920
2921 spin_lock(&vc->lock);
2922 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2923 vc->vcore_state = VCORE_EXITING;
2924
2925 /* wait for secondary threads to finish writing their state to memory */
2926 kvmppc_wait_for_nap(controlled_threads);
2927
2928 /* Return to whole-core mode if we split the core earlier */
2929 if (cmd_bit) {
2930 unsigned long hid0 = mfspr(SPRN_HID0);
2931 unsigned long loops = 0;
2932
2933 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2934 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2935 mb();
2936 mtspr(SPRN_HID0, hid0);
2937 isync();
2938 for (;;) {
2939 hid0 = mfspr(SPRN_HID0);
2940 if (!(hid0 & stat_bit))
2941 break;
2942 cpu_relax();
2943 ++loops;
2944 }
2945 } else if (hpt_on_radix) {
2946 /* Wait for all threads to have seen final sync */
2947 for (thr = 1; thr < controlled_threads; ++thr) {
2948 struct paca_struct *paca = paca_ptrs[pcpu + thr];
2949
2950 while (paca->kvm_hstate.kvm_split_mode) {
2951 HMT_low();
2952 barrier();
2953 }
2954 HMT_medium();
2955 }
2956 }
2957 split_info.do_nap = 0;
2958
2959 kvmppc_set_host_core(pcpu);
2960
2961 local_irq_enable();
2962 guest_exit();
2963
2964 /* Let secondaries go back to the offline loop */
2965 for (i = 0; i < controlled_threads; ++i) {
2966 kvmppc_release_hwthread(pcpu + i);
2967 if (sip && sip->napped[i])
2968 kvmppc_ipi_thread(pcpu + i);
2969 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2970 }
2971
2972 spin_unlock(&vc->lock);
2973
2974 /* make sure updates to secondary vcpu structs are visible now */
2975 smp_mb();
2976
2977 preempt_enable();
2978
2979 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2980 pvc = core_info.vc[sub];
2981 post_guest_process(pvc, pvc == vc);
2982 }
2983
2984 spin_lock(&vc->lock);
2985
2986 out:
2987 vc->vcore_state = VCORE_INACTIVE;
2988 trace_kvmppc_run_core(vc, 1);
2989 }
2990
2991 /*
2992 * Wait for some other vcpu thread to execute us, and
2993 * wake us up when we need to handle something in the host.
2994 */
2995 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2996 struct kvm_vcpu *vcpu, int wait_state)
2997 {
2998 DEFINE_WAIT(wait);
2999
3000 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3001 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3002 spin_unlock(&vc->lock);
3003 schedule();
3004 spin_lock(&vc->lock);
3005 }
3006 finish_wait(&vcpu->arch.cpu_run, &wait);
3007 }
3008
3009 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3010 {
3011 /* 10us base */
3012 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3013 vc->halt_poll_ns = 10000;
3014 else
3015 vc->halt_poll_ns *= halt_poll_ns_grow;
3016 }
3017
3018 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3019 {
3020 if (halt_poll_ns_shrink == 0)
3021 vc->halt_poll_ns = 0;
3022 else
3023 vc->halt_poll_ns /= halt_poll_ns_shrink;
3024 }
3025
3026 #ifdef CONFIG_KVM_XICS
3027 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3028 {
3029 if (!xive_enabled())
3030 return false;
3031 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3032 vcpu->arch.xive_saved_state.cppr;
3033 }
3034 #else
3035 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3036 {
3037 return false;
3038 }
3039 #endif /* CONFIG_KVM_XICS */
3040
3041 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3042 {
3043 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3044 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3045 return true;
3046
3047 return false;
3048 }
3049
3050 /*
3051 * Check to see if any of the runnable vcpus on the vcore have pending
3052 * exceptions or are no longer ceded
3053 */
3054 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3055 {
3056 struct kvm_vcpu *vcpu;
3057 int i;
3058
3059 for_each_runnable_thread(i, vcpu, vc) {
3060 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3061 return 1;
3062 }
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * All the vcpus in this vcore are idle, so wait for a decrementer
3069 * or external interrupt to one of the vcpus. vc->lock is held.
3070 */
3071 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3072 {
3073 ktime_t cur, start_poll, start_wait;
3074 int do_sleep = 1;
3075 u64 block_ns;
3076 DECLARE_SWAITQUEUE(wait);
3077
3078 /* Poll for pending exceptions and ceded state */
3079 cur = start_poll = ktime_get();
3080 if (vc->halt_poll_ns) {
3081 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3082 ++vc->runner->stat.halt_attempted_poll;
3083
3084 vc->vcore_state = VCORE_POLLING;
3085 spin_unlock(&vc->lock);
3086
3087 do {
3088 if (kvmppc_vcore_check_block(vc)) {
3089 do_sleep = 0;
3090 break;
3091 }
3092 cur = ktime_get();
3093 } while (single_task_running() && ktime_before(cur, stop));
3094
3095 spin_lock(&vc->lock);
3096 vc->vcore_state = VCORE_INACTIVE;
3097
3098 if (!do_sleep) {
3099 ++vc->runner->stat.halt_successful_poll;
3100 goto out;
3101 }
3102 }
3103
3104 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3105
3106 if (kvmppc_vcore_check_block(vc)) {
3107 finish_swait(&vc->wq, &wait);
3108 do_sleep = 0;
3109 /* If we polled, count this as a successful poll */
3110 if (vc->halt_poll_ns)
3111 ++vc->runner->stat.halt_successful_poll;
3112 goto out;
3113 }
3114
3115 start_wait = ktime_get();
3116
3117 vc->vcore_state = VCORE_SLEEPING;
3118 trace_kvmppc_vcore_blocked(vc, 0);
3119 spin_unlock(&vc->lock);
3120 schedule();
3121 finish_swait(&vc->wq, &wait);
3122 spin_lock(&vc->lock);
3123 vc->vcore_state = VCORE_INACTIVE;
3124 trace_kvmppc_vcore_blocked(vc, 1);
3125 ++vc->runner->stat.halt_successful_wait;
3126
3127 cur = ktime_get();
3128
3129 out:
3130 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3131
3132 /* Attribute wait time */
3133 if (do_sleep) {
3134 vc->runner->stat.halt_wait_ns +=
3135 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3136 /* Attribute failed poll time */
3137 if (vc->halt_poll_ns)
3138 vc->runner->stat.halt_poll_fail_ns +=
3139 ktime_to_ns(start_wait) -
3140 ktime_to_ns(start_poll);
3141 } else {
3142 /* Attribute successful poll time */
3143 if (vc->halt_poll_ns)
3144 vc->runner->stat.halt_poll_success_ns +=
3145 ktime_to_ns(cur) -
3146 ktime_to_ns(start_poll);
3147 }
3148
3149 /* Adjust poll time */
3150 if (halt_poll_ns) {
3151 if (block_ns <= vc->halt_poll_ns)
3152 ;
3153 /* We slept and blocked for longer than the max halt time */
3154 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3155 shrink_halt_poll_ns(vc);
3156 /* We slept and our poll time is too small */
3157 else if (vc->halt_poll_ns < halt_poll_ns &&
3158 block_ns < halt_poll_ns)
3159 grow_halt_poll_ns(vc);
3160 if (vc->halt_poll_ns > halt_poll_ns)
3161 vc->halt_poll_ns = halt_poll_ns;
3162 } else
3163 vc->halt_poll_ns = 0;
3164
3165 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3166 }
3167
3168 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3169 {
3170 int r = 0;
3171 struct kvm *kvm = vcpu->kvm;
3172
3173 mutex_lock(&kvm->lock);
3174 if (!kvm->arch.mmu_ready) {
3175 if (!kvm_is_radix(kvm))
3176 r = kvmppc_hv_setup_htab_rma(vcpu);
3177 if (!r) {
3178 if (cpu_has_feature(CPU_FTR_ARCH_300))
3179 kvmppc_setup_partition_table(kvm);
3180 kvm->arch.mmu_ready = 1;
3181 }
3182 }
3183 mutex_unlock(&kvm->lock);
3184 return r;
3185 }
3186
3187 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3188 {
3189 int n_ceded, i, r;
3190 struct kvmppc_vcore *vc;
3191 struct kvm_vcpu *v;
3192
3193 trace_kvmppc_run_vcpu_enter(vcpu);
3194
3195 kvm_run->exit_reason = 0;
3196 vcpu->arch.ret = RESUME_GUEST;
3197 vcpu->arch.trap = 0;
3198 kvmppc_update_vpas(vcpu);
3199
3200 /*
3201 * Synchronize with other threads in this virtual core
3202 */
3203 vc = vcpu->arch.vcore;
3204 spin_lock(&vc->lock);
3205 vcpu->arch.ceded = 0;
3206 vcpu->arch.run_task = current;
3207 vcpu->arch.kvm_run = kvm_run;
3208 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3209 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3210 vcpu->arch.busy_preempt = TB_NIL;
3211 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3212 ++vc->n_runnable;
3213
3214 /*
3215 * This happens the first time this is called for a vcpu.
3216 * If the vcore is already running, we may be able to start
3217 * this thread straight away and have it join in.
3218 */
3219 if (!signal_pending(current)) {
3220 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3221 vc->vcore_state == VCORE_RUNNING) &&
3222 !VCORE_IS_EXITING(vc)) {
3223 kvmppc_create_dtl_entry(vcpu, vc);
3224 kvmppc_start_thread(vcpu, vc);
3225 trace_kvm_guest_enter(vcpu);
3226 } else if (vc->vcore_state == VCORE_SLEEPING) {
3227 swake_up(&vc->wq);
3228 }
3229
3230 }
3231
3232 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3233 !signal_pending(current)) {
3234 /* See if the MMU is ready to go */
3235 if (!vcpu->kvm->arch.mmu_ready) {
3236 spin_unlock(&vc->lock);
3237 r = kvmhv_setup_mmu(vcpu);
3238 spin_lock(&vc->lock);
3239 if (r) {
3240 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3241 kvm_run->fail_entry.
3242 hardware_entry_failure_reason = 0;
3243 vcpu->arch.ret = r;
3244 break;
3245 }
3246 }
3247
3248 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3249 kvmppc_vcore_end_preempt(vc);
3250
3251 if (vc->vcore_state != VCORE_INACTIVE) {
3252 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3253 continue;
3254 }
3255 for_each_runnable_thread(i, v, vc) {
3256 kvmppc_core_prepare_to_enter(v);
3257 if (signal_pending(v->arch.run_task)) {
3258 kvmppc_remove_runnable(vc, v);
3259 v->stat.signal_exits++;
3260 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3261 v->arch.ret = -EINTR;
3262 wake_up(&v->arch.cpu_run);
3263 }
3264 }
3265 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3266 break;
3267 n_ceded = 0;
3268 for_each_runnable_thread(i, v, vc) {
3269 if (!kvmppc_vcpu_woken(v))
3270 n_ceded += v->arch.ceded;
3271 else
3272 v->arch.ceded = 0;
3273 }
3274 vc->runner = vcpu;
3275 if (n_ceded == vc->n_runnable) {
3276 kvmppc_vcore_blocked(vc);
3277 } else if (need_resched()) {
3278 kvmppc_vcore_preempt(vc);
3279 /* Let something else run */
3280 cond_resched_lock(&vc->lock);
3281 if (vc->vcore_state == VCORE_PREEMPT)
3282 kvmppc_vcore_end_preempt(vc);
3283 } else {
3284 kvmppc_run_core(vc);
3285 }
3286 vc->runner = NULL;
3287 }
3288
3289 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3290 (vc->vcore_state == VCORE_RUNNING ||
3291 vc->vcore_state == VCORE_EXITING ||
3292 vc->vcore_state == VCORE_PIGGYBACK))
3293 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3294
3295 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3296 kvmppc_vcore_end_preempt(vc);
3297
3298 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3299 kvmppc_remove_runnable(vc, vcpu);
3300 vcpu->stat.signal_exits++;
3301 kvm_run->exit_reason = KVM_EXIT_INTR;
3302 vcpu->arch.ret = -EINTR;
3303 }
3304
3305 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3306 /* Wake up some vcpu to run the core */
3307 i = -1;
3308 v = next_runnable_thread(vc, &i);
3309 wake_up(&v->arch.cpu_run);
3310 }
3311
3312 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3313 spin_unlock(&vc->lock);
3314 return vcpu->arch.ret;
3315 }
3316
3317 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3318 {
3319 int r;
3320 int srcu_idx;
3321 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3322 unsigned long user_tar = 0;
3323 unsigned int user_vrsave;
3324 struct kvm *kvm;
3325
3326 if (!vcpu->arch.sane) {
3327 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3328 return -EINVAL;
3329 }
3330
3331 /*
3332 * Don't allow entry with a suspended transaction, because
3333 * the guest entry/exit code will lose it.
3334 * If the guest has TM enabled, save away their TM-related SPRs
3335 * (they will get restored by the TM unavailable interrupt).
3336 */
3337 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3338 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3339 (current->thread.regs->msr & MSR_TM)) {
3340 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3341 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3342 run->fail_entry.hardware_entry_failure_reason = 0;
3343 return -EINVAL;
3344 }
3345 /* Enable TM so we can read the TM SPRs */
3346 mtmsr(mfmsr() | MSR_TM);
3347 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3348 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3349 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3350 current->thread.regs->msr &= ~MSR_TM;
3351 }
3352 #endif
3353
3354 kvmppc_core_prepare_to_enter(vcpu);
3355
3356 /* No need to go into the guest when all we'll do is come back out */
3357 if (signal_pending(current)) {
3358 run->exit_reason = KVM_EXIT_INTR;
3359 return -EINTR;
3360 }
3361
3362 kvm = vcpu->kvm;
3363 atomic_inc(&kvm->arch.vcpus_running);
3364 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3365 smp_mb();
3366
3367 flush_all_to_thread(current);
3368
3369 /* Save userspace EBB and other register values */
3370 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3371 ebb_regs[0] = mfspr(SPRN_EBBHR);
3372 ebb_regs[1] = mfspr(SPRN_EBBRR);
3373 ebb_regs[2] = mfspr(SPRN_BESCR);
3374 user_tar = mfspr(SPRN_TAR);
3375 }
3376 user_vrsave = mfspr(SPRN_VRSAVE);
3377
3378 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3379 vcpu->arch.pgdir = current->mm->pgd;
3380 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3381
3382 do {
3383 r = kvmppc_run_vcpu(run, vcpu);
3384
3385 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3386 !(vcpu->arch.shregs.msr & MSR_PR)) {
3387 trace_kvm_hcall_enter(vcpu);
3388 r = kvmppc_pseries_do_hcall(vcpu);
3389 trace_kvm_hcall_exit(vcpu, r);
3390 kvmppc_core_prepare_to_enter(vcpu);
3391 } else if (r == RESUME_PAGE_FAULT) {
3392 srcu_idx = srcu_read_lock(&kvm->srcu);
3393 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3394 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3395 srcu_read_unlock(&kvm->srcu, srcu_idx);
3396 } else if (r == RESUME_PASSTHROUGH) {
3397 if (WARN_ON(xive_enabled()))
3398 r = H_SUCCESS;
3399 else
3400 r = kvmppc_xics_rm_complete(vcpu, 0);
3401 }
3402 } while (is_kvmppc_resume_guest(r));
3403
3404 /* Restore userspace EBB and other register values */
3405 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3406 mtspr(SPRN_EBBHR, ebb_regs[0]);
3407 mtspr(SPRN_EBBRR, ebb_regs[1]);
3408 mtspr(SPRN_BESCR, ebb_regs[2]);
3409 mtspr(SPRN_TAR, user_tar);
3410 mtspr(SPRN_FSCR, current->thread.fscr);
3411 }
3412 mtspr(SPRN_VRSAVE, user_vrsave);
3413
3414 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3415 atomic_dec(&kvm->arch.vcpus_running);
3416 return r;
3417 }
3418
3419 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3420 int shift, int sllp)
3421 {
3422 (*sps)->page_shift = shift;
3423 (*sps)->slb_enc = sllp;
3424 (*sps)->enc[0].page_shift = shift;
3425 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3426 /*
3427 * Add 16MB MPSS support (may get filtered out by userspace)
3428 */
3429 if (shift != 24) {
3430 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3431 if (penc != -1) {
3432 (*sps)->enc[1].page_shift = 24;
3433 (*sps)->enc[1].pte_enc = penc;
3434 }
3435 }
3436 (*sps)++;
3437 }
3438
3439 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3440 struct kvm_ppc_smmu_info *info)
3441 {
3442 struct kvm_ppc_one_seg_page_size *sps;
3443
3444 /*
3445 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3446 * POWER7 doesn't support keys for instruction accesses,
3447 * POWER8 and POWER9 do.
3448 */
3449 info->data_keys = 32;
3450 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3451
3452 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3453 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3454 info->slb_size = 32;
3455
3456 /* We only support these sizes for now, and no muti-size segments */
3457 sps = &info->sps[0];
3458 kvmppc_add_seg_page_size(&sps, 12, 0);
3459 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3460 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3461
3462 return 0;
3463 }
3464
3465 /*
3466 * Get (and clear) the dirty memory log for a memory slot.
3467 */
3468 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3469 struct kvm_dirty_log *log)
3470 {
3471 struct kvm_memslots *slots;
3472 struct kvm_memory_slot *memslot;
3473 int i, r;
3474 unsigned long n;
3475 unsigned long *buf, *p;
3476 struct kvm_vcpu *vcpu;
3477
3478 mutex_lock(&kvm->slots_lock);
3479
3480 r = -EINVAL;
3481 if (log->slot >= KVM_USER_MEM_SLOTS)
3482 goto out;
3483
3484 slots = kvm_memslots(kvm);
3485 memslot = id_to_memslot(slots, log->slot);
3486 r = -ENOENT;
3487 if (!memslot->dirty_bitmap)
3488 goto out;
3489
3490 /*
3491 * Use second half of bitmap area because both HPT and radix
3492 * accumulate bits in the first half.
3493 */
3494 n = kvm_dirty_bitmap_bytes(memslot);
3495 buf = memslot->dirty_bitmap + n / sizeof(long);
3496 memset(buf, 0, n);
3497
3498 if (kvm_is_radix(kvm))
3499 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3500 else
3501 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3502 if (r)
3503 goto out;
3504
3505 /*
3506 * We accumulate dirty bits in the first half of the
3507 * memslot's dirty_bitmap area, for when pages are paged
3508 * out or modified by the host directly. Pick up these
3509 * bits and add them to the map.
3510 */
3511 p = memslot->dirty_bitmap;
3512 for (i = 0; i < n / sizeof(long); ++i)
3513 buf[i] |= xchg(&p[i], 0);
3514
3515 /* Harvest dirty bits from VPA and DTL updates */
3516 /* Note: we never modify the SLB shadow buffer areas */
3517 kvm_for_each_vcpu(i, vcpu, kvm) {
3518 spin_lock(&vcpu->arch.vpa_update_lock);
3519 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3520 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3521 spin_unlock(&vcpu->arch.vpa_update_lock);
3522 }
3523
3524 r = -EFAULT;
3525 if (copy_to_user(log->dirty_bitmap, buf, n))
3526 goto out;
3527
3528 r = 0;
3529 out:
3530 mutex_unlock(&kvm->slots_lock);
3531 return r;
3532 }
3533
3534 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3535 struct kvm_memory_slot *dont)
3536 {
3537 if (!dont || free->arch.rmap != dont->arch.rmap) {
3538 vfree(free->arch.rmap);
3539 free->arch.rmap = NULL;
3540 }
3541 }
3542
3543 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3544 unsigned long npages)
3545 {
3546 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3547 if (!slot->arch.rmap)
3548 return -ENOMEM;
3549
3550 return 0;
3551 }
3552
3553 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3554 struct kvm_memory_slot *memslot,
3555 const struct kvm_userspace_memory_region *mem)
3556 {
3557 return 0;
3558 }
3559
3560 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3561 const struct kvm_userspace_memory_region *mem,
3562 const struct kvm_memory_slot *old,
3563 const struct kvm_memory_slot *new)
3564 {
3565 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3566
3567 /*
3568 * If we are making a new memslot, it might make
3569 * some address that was previously cached as emulated
3570 * MMIO be no longer emulated MMIO, so invalidate
3571 * all the caches of emulated MMIO translations.
3572 */
3573 if (npages)
3574 atomic64_inc(&kvm->arch.mmio_update);
3575 }
3576
3577 /*
3578 * Update LPCR values in kvm->arch and in vcores.
3579 * Caller must hold kvm->lock.
3580 */
3581 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3582 {
3583 long int i;
3584 u32 cores_done = 0;
3585
3586 if ((kvm->arch.lpcr & mask) == lpcr)
3587 return;
3588
3589 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3590
3591 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3592 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3593 if (!vc)
3594 continue;
3595 spin_lock(&vc->lock);
3596 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3597 spin_unlock(&vc->lock);
3598 if (++cores_done >= kvm->arch.online_vcores)
3599 break;
3600 }
3601 }
3602
3603 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3604 {
3605 return;
3606 }
3607
3608 void kvmppc_setup_partition_table(struct kvm *kvm)
3609 {
3610 unsigned long dw0, dw1;
3611
3612 if (!kvm_is_radix(kvm)) {
3613 /* PS field - page size for VRMA */
3614 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3615 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3616 /* HTABSIZE and HTABORG fields */
3617 dw0 |= kvm->arch.sdr1;
3618
3619 /* Second dword as set by userspace */
3620 dw1 = kvm->arch.process_table;
3621 } else {
3622 dw0 = PATB_HR | radix__get_tree_size() |
3623 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3624 dw1 = PATB_GR | kvm->arch.process_table;
3625 }
3626
3627 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3628 }
3629
3630 /*
3631 * Set up HPT (hashed page table) and RMA (real-mode area).
3632 * Must be called with kvm->lock held.
3633 */
3634 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3635 {
3636 int err = 0;
3637 struct kvm *kvm = vcpu->kvm;
3638 unsigned long hva;
3639 struct kvm_memory_slot *memslot;
3640 struct vm_area_struct *vma;
3641 unsigned long lpcr = 0, senc;
3642 unsigned long psize, porder;
3643 int srcu_idx;
3644
3645 /* Allocate hashed page table (if not done already) and reset it */
3646 if (!kvm->arch.hpt.virt) {
3647 int order = KVM_DEFAULT_HPT_ORDER;
3648 struct kvm_hpt_info info;
3649
3650 err = kvmppc_allocate_hpt(&info, order);
3651 /* If we get here, it means userspace didn't specify a
3652 * size explicitly. So, try successively smaller
3653 * sizes if the default failed. */
3654 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3655 err = kvmppc_allocate_hpt(&info, order);
3656
3657 if (err < 0) {
3658 pr_err("KVM: Couldn't alloc HPT\n");
3659 goto out;
3660 }
3661
3662 kvmppc_set_hpt(kvm, &info);
3663 }
3664
3665 /* Look up the memslot for guest physical address 0 */
3666 srcu_idx = srcu_read_lock(&kvm->srcu);
3667 memslot = gfn_to_memslot(kvm, 0);
3668
3669 /* We must have some memory at 0 by now */
3670 err = -EINVAL;
3671 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3672 goto out_srcu;
3673
3674 /* Look up the VMA for the start of this memory slot */
3675 hva = memslot->userspace_addr;
3676 down_read(&current->mm->mmap_sem);
3677 vma = find_vma(current->mm, hva);
3678 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3679 goto up_out;
3680
3681 psize = vma_kernel_pagesize(vma);
3682
3683 up_read(&current->mm->mmap_sem);
3684
3685 /* We can handle 4k, 64k or 16M pages in the VRMA */
3686 if (psize >= 0x1000000)
3687 psize = 0x1000000;
3688 else if (psize >= 0x10000)
3689 psize = 0x10000;
3690 else
3691 psize = 0x1000;
3692 porder = __ilog2(psize);
3693
3694 senc = slb_pgsize_encoding(psize);
3695 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3696 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3697 /* Create HPTEs in the hash page table for the VRMA */
3698 kvmppc_map_vrma(vcpu, memslot, porder);
3699
3700 /* Update VRMASD field in the LPCR */
3701 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3702 /* the -4 is to account for senc values starting at 0x10 */
3703 lpcr = senc << (LPCR_VRMASD_SH - 4);
3704 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3705 }
3706
3707 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3708 smp_wmb();
3709 err = 0;
3710 out_srcu:
3711 srcu_read_unlock(&kvm->srcu, srcu_idx);
3712 out:
3713 return err;
3714
3715 up_out:
3716 up_read(&current->mm->mmap_sem);
3717 goto out_srcu;
3718 }
3719
3720 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3721 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3722 {
3723 kvmppc_free_radix(kvm);
3724 kvmppc_update_lpcr(kvm, LPCR_VPM1,
3725 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3726 kvmppc_rmap_reset(kvm);
3727 kvm->arch.radix = 0;
3728 kvm->arch.process_table = 0;
3729 return 0;
3730 }
3731
3732 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3733 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3734 {
3735 int err;
3736
3737 err = kvmppc_init_vm_radix(kvm);
3738 if (err)
3739 return err;
3740
3741 kvmppc_free_hpt(&kvm->arch.hpt);
3742 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3743 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3744 kvm->arch.radix = 1;
3745 return 0;
3746 }
3747
3748 #ifdef CONFIG_KVM_XICS
3749 /*
3750 * Allocate a per-core structure for managing state about which cores are
3751 * running in the host versus the guest and for exchanging data between
3752 * real mode KVM and CPU running in the host.
3753 * This is only done for the first VM.
3754 * The allocated structure stays even if all VMs have stopped.
3755 * It is only freed when the kvm-hv module is unloaded.
3756 * It's OK for this routine to fail, we just don't support host
3757 * core operations like redirecting H_IPI wakeups.
3758 */
3759 void kvmppc_alloc_host_rm_ops(void)
3760 {
3761 struct kvmppc_host_rm_ops *ops;
3762 unsigned long l_ops;
3763 int cpu, core;
3764 int size;
3765
3766 /* Not the first time here ? */
3767 if (kvmppc_host_rm_ops_hv != NULL)
3768 return;
3769
3770 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3771 if (!ops)
3772 return;
3773
3774 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3775 ops->rm_core = kzalloc(size, GFP_KERNEL);
3776
3777 if (!ops->rm_core) {
3778 kfree(ops);
3779 return;
3780 }
3781
3782 cpus_read_lock();
3783
3784 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3785 if (!cpu_online(cpu))
3786 continue;
3787
3788 core = cpu >> threads_shift;
3789 ops->rm_core[core].rm_state.in_host = 1;
3790 }
3791
3792 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3793
3794 /*
3795 * Make the contents of the kvmppc_host_rm_ops structure visible
3796 * to other CPUs before we assign it to the global variable.
3797 * Do an atomic assignment (no locks used here), but if someone
3798 * beats us to it, just free our copy and return.
3799 */
3800 smp_wmb();
3801 l_ops = (unsigned long) ops;
3802
3803 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3804 cpus_read_unlock();
3805 kfree(ops->rm_core);
3806 kfree(ops);
3807 return;
3808 }
3809
3810 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3811 "ppc/kvm_book3s:prepare",
3812 kvmppc_set_host_core,
3813 kvmppc_clear_host_core);
3814 cpus_read_unlock();
3815 }
3816
3817 void kvmppc_free_host_rm_ops(void)
3818 {
3819 if (kvmppc_host_rm_ops_hv) {
3820 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3821 kfree(kvmppc_host_rm_ops_hv->rm_core);
3822 kfree(kvmppc_host_rm_ops_hv);
3823 kvmppc_host_rm_ops_hv = NULL;
3824 }
3825 }
3826 #endif
3827
3828 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3829 {
3830 unsigned long lpcr, lpid;
3831 char buf[32];
3832 int ret;
3833
3834 /* Allocate the guest's logical partition ID */
3835
3836 lpid = kvmppc_alloc_lpid();
3837 if ((long)lpid < 0)
3838 return -ENOMEM;
3839 kvm->arch.lpid = lpid;
3840
3841 kvmppc_alloc_host_rm_ops();
3842
3843 /*
3844 * Since we don't flush the TLB when tearing down a VM,
3845 * and this lpid might have previously been used,
3846 * make sure we flush on each core before running the new VM.
3847 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3848 * does this flush for us.
3849 */
3850 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3851 cpumask_setall(&kvm->arch.need_tlb_flush);
3852
3853 /* Start out with the default set of hcalls enabled */
3854 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3855 sizeof(kvm->arch.enabled_hcalls));
3856
3857 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3858 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3859
3860 /* Init LPCR for virtual RMA mode */
3861 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3862 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3863 lpcr &= LPCR_PECE | LPCR_LPES;
3864 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3865 LPCR_VPM0 | LPCR_VPM1;
3866 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3867 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3868 /* On POWER8 turn on online bit to enable PURR/SPURR */
3869 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3870 lpcr |= LPCR_ONL;
3871 /*
3872 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3873 * Set HVICE bit to enable hypervisor virtualization interrupts.
3874 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3875 * be unnecessary but better safe than sorry in case we re-enable
3876 * EE in HV mode with this LPCR still set)
3877 */
3878 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3879 lpcr &= ~LPCR_VPM0;
3880 lpcr |= LPCR_HVICE | LPCR_HEIC;
3881
3882 /*
3883 * If xive is enabled, we route 0x500 interrupts directly
3884 * to the guest.
3885 */
3886 if (xive_enabled())
3887 lpcr |= LPCR_LPES;
3888 }
3889
3890 /*
3891 * If the host uses radix, the guest starts out as radix.
3892 */
3893 if (radix_enabled()) {
3894 kvm->arch.radix = 1;
3895 kvm->arch.mmu_ready = 1;
3896 lpcr &= ~LPCR_VPM1;
3897 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3898 ret = kvmppc_init_vm_radix(kvm);
3899 if (ret) {
3900 kvmppc_free_lpid(kvm->arch.lpid);
3901 return ret;
3902 }
3903 kvmppc_setup_partition_table(kvm);
3904 }
3905
3906 kvm->arch.lpcr = lpcr;
3907
3908 /* Initialization for future HPT resizes */
3909 kvm->arch.resize_hpt = NULL;
3910
3911 /*
3912 * Work out how many sets the TLB has, for the use of
3913 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3914 */
3915 if (radix_enabled())
3916 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3917 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3918 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3919 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3920 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3921 else
3922 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3923
3924 /*
3925 * Track that we now have a HV mode VM active. This blocks secondary
3926 * CPU threads from coming online.
3927 * On POWER9, we only need to do this if the "indep_threads_mode"
3928 * module parameter has been set to N.
3929 */
3930 if (cpu_has_feature(CPU_FTR_ARCH_300))
3931 kvm->arch.threads_indep = indep_threads_mode;
3932 if (!kvm->arch.threads_indep)
3933 kvm_hv_vm_activated();
3934
3935 /*
3936 * Initialize smt_mode depending on processor.
3937 * POWER8 and earlier have to use "strict" threading, where
3938 * all vCPUs in a vcore have to run on the same (sub)core,
3939 * whereas on POWER9 the threads can each run a different
3940 * guest.
3941 */
3942 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3943 kvm->arch.smt_mode = threads_per_subcore;
3944 else
3945 kvm->arch.smt_mode = 1;
3946 kvm->arch.emul_smt_mode = 1;
3947
3948 /*
3949 * Create a debugfs directory for the VM
3950 */
3951 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3952 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3953 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3954 kvmppc_mmu_debugfs_init(kvm);
3955
3956 return 0;
3957 }
3958
3959 static void kvmppc_free_vcores(struct kvm *kvm)
3960 {
3961 long int i;
3962
3963 for (i = 0; i < KVM_MAX_VCORES; ++i)
3964 kfree(kvm->arch.vcores[i]);
3965 kvm->arch.online_vcores = 0;
3966 }
3967
3968 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3969 {
3970 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3971
3972 if (!kvm->arch.threads_indep)
3973 kvm_hv_vm_deactivated();
3974
3975 kvmppc_free_vcores(kvm);
3976
3977 kvmppc_free_lpid(kvm->arch.lpid);
3978
3979 if (kvm_is_radix(kvm))
3980 kvmppc_free_radix(kvm);
3981 else
3982 kvmppc_free_hpt(&kvm->arch.hpt);
3983
3984 kvmppc_free_pimap(kvm);
3985 }
3986
3987 /* We don't need to emulate any privileged instructions or dcbz */
3988 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3989 unsigned int inst, int *advance)
3990 {
3991 return EMULATE_FAIL;
3992 }
3993
3994 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3995 ulong spr_val)
3996 {
3997 return EMULATE_FAIL;
3998 }
3999
4000 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4001 ulong *spr_val)
4002 {
4003 return EMULATE_FAIL;
4004 }
4005
4006 static int kvmppc_core_check_processor_compat_hv(void)
4007 {
4008 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4009 !cpu_has_feature(CPU_FTR_ARCH_206))
4010 return -EIO;
4011
4012 return 0;
4013 }
4014
4015 #ifdef CONFIG_KVM_XICS
4016
4017 void kvmppc_free_pimap(struct kvm *kvm)
4018 {
4019 kfree(kvm->arch.pimap);
4020 }
4021
4022 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4023 {
4024 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4025 }
4026
4027 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4028 {
4029 struct irq_desc *desc;
4030 struct kvmppc_irq_map *irq_map;
4031 struct kvmppc_passthru_irqmap *pimap;
4032 struct irq_chip *chip;
4033 int i, rc = 0;
4034
4035 if (!kvm_irq_bypass)
4036 return 1;
4037
4038 desc = irq_to_desc(host_irq);
4039 if (!desc)
4040 return -EIO;
4041
4042 mutex_lock(&kvm->lock);
4043
4044 pimap = kvm->arch.pimap;
4045 if (pimap == NULL) {
4046 /* First call, allocate structure to hold IRQ map */
4047 pimap = kvmppc_alloc_pimap();
4048 if (pimap == NULL) {
4049 mutex_unlock(&kvm->lock);
4050 return -ENOMEM;
4051 }
4052 kvm->arch.pimap = pimap;
4053 }
4054
4055 /*
4056 * For now, we only support interrupts for which the EOI operation
4057 * is an OPAL call followed by a write to XIRR, since that's
4058 * what our real-mode EOI code does, or a XIVE interrupt
4059 */
4060 chip = irq_data_get_irq_chip(&desc->irq_data);
4061 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4062 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4063 host_irq, guest_gsi);
4064 mutex_unlock(&kvm->lock);
4065 return -ENOENT;
4066 }
4067
4068 /*
4069 * See if we already have an entry for this guest IRQ number.
4070 * If it's mapped to a hardware IRQ number, that's an error,
4071 * otherwise re-use this entry.
4072 */
4073 for (i = 0; i < pimap->n_mapped; i++) {
4074 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4075 if (pimap->mapped[i].r_hwirq) {
4076 mutex_unlock(&kvm->lock);
4077 return -EINVAL;
4078 }
4079 break;
4080 }
4081 }
4082
4083 if (i == KVMPPC_PIRQ_MAPPED) {
4084 mutex_unlock(&kvm->lock);
4085 return -EAGAIN; /* table is full */
4086 }
4087
4088 irq_map = &pimap->mapped[i];
4089
4090 irq_map->v_hwirq = guest_gsi;
4091 irq_map->desc = desc;
4092
4093 /*
4094 * Order the above two stores before the next to serialize with
4095 * the KVM real mode handler.
4096 */
4097 smp_wmb();
4098 irq_map->r_hwirq = desc->irq_data.hwirq;
4099
4100 if (i == pimap->n_mapped)
4101 pimap->n_mapped++;
4102
4103 if (xive_enabled())
4104 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4105 else
4106 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4107 if (rc)
4108 irq_map->r_hwirq = 0;
4109
4110 mutex_unlock(&kvm->lock);
4111
4112 return 0;
4113 }
4114
4115 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4116 {
4117 struct irq_desc *desc;
4118 struct kvmppc_passthru_irqmap *pimap;
4119 int i, rc = 0;
4120
4121 if (!kvm_irq_bypass)
4122 return 0;
4123
4124 desc = irq_to_desc(host_irq);
4125 if (!desc)
4126 return -EIO;
4127
4128 mutex_lock(&kvm->lock);
4129 if (!kvm->arch.pimap)
4130 goto unlock;
4131
4132 pimap = kvm->arch.pimap;
4133
4134 for (i = 0; i < pimap->n_mapped; i++) {
4135 if (guest_gsi == pimap->mapped[i].v_hwirq)
4136 break;
4137 }
4138
4139 if (i == pimap->n_mapped) {
4140 mutex_unlock(&kvm->lock);
4141 return -ENODEV;
4142 }
4143
4144 if (xive_enabled())
4145 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4146 else
4147 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4148
4149 /* invalidate the entry (what do do on error from the above ?) */
4150 pimap->mapped[i].r_hwirq = 0;
4151
4152 /*
4153 * We don't free this structure even when the count goes to
4154 * zero. The structure is freed when we destroy the VM.
4155 */
4156 unlock:
4157 mutex_unlock(&kvm->lock);
4158 return rc;
4159 }
4160
4161 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4162 struct irq_bypass_producer *prod)
4163 {
4164 int ret = 0;
4165 struct kvm_kernel_irqfd *irqfd =
4166 container_of(cons, struct kvm_kernel_irqfd, consumer);
4167
4168 irqfd->producer = prod;
4169
4170 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4171 if (ret)
4172 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4173 prod->irq, irqfd->gsi, ret);
4174
4175 return ret;
4176 }
4177
4178 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4179 struct irq_bypass_producer *prod)
4180 {
4181 int ret;
4182 struct kvm_kernel_irqfd *irqfd =
4183 container_of(cons, struct kvm_kernel_irqfd, consumer);
4184
4185 irqfd->producer = NULL;
4186
4187 /*
4188 * When producer of consumer is unregistered, we change back to
4189 * default external interrupt handling mode - KVM real mode
4190 * will switch back to host.
4191 */
4192 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4193 if (ret)
4194 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4195 prod->irq, irqfd->gsi, ret);
4196 }
4197 #endif
4198
4199 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4200 unsigned int ioctl, unsigned long arg)
4201 {
4202 struct kvm *kvm __maybe_unused = filp->private_data;
4203 void __user *argp = (void __user *)arg;
4204 long r;
4205
4206 switch (ioctl) {
4207
4208 case KVM_PPC_ALLOCATE_HTAB: {
4209 u32 htab_order;
4210
4211 r = -EFAULT;
4212 if (get_user(htab_order, (u32 __user *)argp))
4213 break;
4214 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4215 if (r)
4216 break;
4217 r = 0;
4218 break;
4219 }
4220
4221 case KVM_PPC_GET_HTAB_FD: {
4222 struct kvm_get_htab_fd ghf;
4223
4224 r = -EFAULT;
4225 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4226 break;
4227 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4228 break;
4229 }
4230
4231 case KVM_PPC_RESIZE_HPT_PREPARE: {
4232 struct kvm_ppc_resize_hpt rhpt;
4233
4234 r = -EFAULT;
4235 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4236 break;
4237
4238 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4239 break;
4240 }
4241
4242 case KVM_PPC_RESIZE_HPT_COMMIT: {
4243 struct kvm_ppc_resize_hpt rhpt;
4244
4245 r = -EFAULT;
4246 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4247 break;
4248
4249 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4250 break;
4251 }
4252
4253 default:
4254 r = -ENOTTY;
4255 }
4256
4257 return r;
4258 }
4259
4260 /*
4261 * List of hcall numbers to enable by default.
4262 * For compatibility with old userspace, we enable by default
4263 * all hcalls that were implemented before the hcall-enabling
4264 * facility was added. Note this list should not include H_RTAS.
4265 */
4266 static unsigned int default_hcall_list[] = {
4267 H_REMOVE,
4268 H_ENTER,
4269 H_READ,
4270 H_PROTECT,
4271 H_BULK_REMOVE,
4272 H_GET_TCE,
4273 H_PUT_TCE,
4274 H_SET_DABR,
4275 H_SET_XDABR,
4276 H_CEDE,
4277 H_PROD,
4278 H_CONFER,
4279 H_REGISTER_VPA,
4280 #ifdef CONFIG_KVM_XICS
4281 H_EOI,
4282 H_CPPR,
4283 H_IPI,
4284 H_IPOLL,
4285 H_XIRR,
4286 H_XIRR_X,
4287 #endif
4288 0
4289 };
4290
4291 static void init_default_hcalls(void)
4292 {
4293 int i;
4294 unsigned int hcall;
4295
4296 for (i = 0; default_hcall_list[i]; ++i) {
4297 hcall = default_hcall_list[i];
4298 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4299 __set_bit(hcall / 4, default_enabled_hcalls);
4300 }
4301 }
4302
4303 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4304 {
4305 unsigned long lpcr;
4306 int radix;
4307 int err;
4308
4309 /* If not on a POWER9, reject it */
4310 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4311 return -ENODEV;
4312
4313 /* If any unknown flags set, reject it */
4314 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4315 return -EINVAL;
4316
4317 /* GR (guest radix) bit in process_table field must match */
4318 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4319 if (!!(cfg->process_table & PATB_GR) != radix)
4320 return -EINVAL;
4321
4322 /* Process table size field must be reasonable, i.e. <= 24 */
4323 if ((cfg->process_table & PRTS_MASK) > 24)
4324 return -EINVAL;
4325
4326 /* We can change a guest to/from radix now, if the host is radix */
4327 if (radix && !radix_enabled())
4328 return -EINVAL;
4329
4330 mutex_lock(&kvm->lock);
4331 if (radix != kvm_is_radix(kvm)) {
4332 if (kvm->arch.mmu_ready) {
4333 kvm->arch.mmu_ready = 0;
4334 /* order mmu_ready vs. vcpus_running */
4335 smp_mb();
4336 if (atomic_read(&kvm->arch.vcpus_running)) {
4337 kvm->arch.mmu_ready = 1;
4338 err = -EBUSY;
4339 goto out_unlock;
4340 }
4341 }
4342 if (radix)
4343 err = kvmppc_switch_mmu_to_radix(kvm);
4344 else
4345 err = kvmppc_switch_mmu_to_hpt(kvm);
4346 if (err)
4347 goto out_unlock;
4348 }
4349
4350 kvm->arch.process_table = cfg->process_table;
4351 kvmppc_setup_partition_table(kvm);
4352
4353 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4354 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4355 err = 0;
4356
4357 out_unlock:
4358 mutex_unlock(&kvm->lock);
4359 return err;
4360 }
4361
4362 static struct kvmppc_ops kvm_ops_hv = {
4363 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4364 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4365 .get_one_reg = kvmppc_get_one_reg_hv,
4366 .set_one_reg = kvmppc_set_one_reg_hv,
4367 .vcpu_load = kvmppc_core_vcpu_load_hv,
4368 .vcpu_put = kvmppc_core_vcpu_put_hv,
4369 .set_msr = kvmppc_set_msr_hv,
4370 .vcpu_run = kvmppc_vcpu_run_hv,
4371 .vcpu_create = kvmppc_core_vcpu_create_hv,
4372 .vcpu_free = kvmppc_core_vcpu_free_hv,
4373 .check_requests = kvmppc_core_check_requests_hv,
4374 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4375 .flush_memslot = kvmppc_core_flush_memslot_hv,
4376 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4377 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4378 .unmap_hva = kvm_unmap_hva_hv,
4379 .unmap_hva_range = kvm_unmap_hva_range_hv,
4380 .age_hva = kvm_age_hva_hv,
4381 .test_age_hva = kvm_test_age_hva_hv,
4382 .set_spte_hva = kvm_set_spte_hva_hv,
4383 .mmu_destroy = kvmppc_mmu_destroy_hv,
4384 .free_memslot = kvmppc_core_free_memslot_hv,
4385 .create_memslot = kvmppc_core_create_memslot_hv,
4386 .init_vm = kvmppc_core_init_vm_hv,
4387 .destroy_vm = kvmppc_core_destroy_vm_hv,
4388 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4389 .emulate_op = kvmppc_core_emulate_op_hv,
4390 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4391 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4392 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4393 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4394 .hcall_implemented = kvmppc_hcall_impl_hv,
4395 #ifdef CONFIG_KVM_XICS
4396 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4397 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4398 #endif
4399 .configure_mmu = kvmhv_configure_mmu,
4400 .get_rmmu_info = kvmhv_get_rmmu_info,
4401 .set_smt_mode = kvmhv_set_smt_mode,
4402 };
4403
4404 static int kvm_init_subcore_bitmap(void)
4405 {
4406 int i, j;
4407 int nr_cores = cpu_nr_cores();
4408 struct sibling_subcore_state *sibling_subcore_state;
4409
4410 for (i = 0; i < nr_cores; i++) {
4411 int first_cpu = i * threads_per_core;
4412 int node = cpu_to_node(first_cpu);
4413
4414 /* Ignore if it is already allocated. */
4415 if (paca_ptrs[first_cpu]->sibling_subcore_state)
4416 continue;
4417
4418 sibling_subcore_state =
4419 kmalloc_node(sizeof(struct sibling_subcore_state),
4420 GFP_KERNEL, node);
4421 if (!sibling_subcore_state)
4422 return -ENOMEM;
4423
4424 memset(sibling_subcore_state, 0,
4425 sizeof(struct sibling_subcore_state));
4426
4427 for (j = 0; j < threads_per_core; j++) {
4428 int cpu = first_cpu + j;
4429
4430 paca_ptrs[cpu]->sibling_subcore_state =
4431 sibling_subcore_state;
4432 }
4433 }
4434 return 0;
4435 }
4436
4437 static int kvmppc_radix_possible(void)
4438 {
4439 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4440 }
4441
4442 static int kvmppc_book3s_init_hv(void)
4443 {
4444 int r;
4445 /*
4446 * FIXME!! Do we need to check on all cpus ?
4447 */
4448 r = kvmppc_core_check_processor_compat_hv();
4449 if (r < 0)
4450 return -ENODEV;
4451
4452 r = kvm_init_subcore_bitmap();
4453 if (r)
4454 return r;
4455
4456 /*
4457 * We need a way of accessing the XICS interrupt controller,
4458 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4459 * indirectly, via OPAL.
4460 */
4461 #ifdef CONFIG_SMP
4462 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4463 struct device_node *np;
4464
4465 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4466 if (!np) {
4467 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4468 return -ENODEV;
4469 }
4470 }
4471 #endif
4472
4473 kvm_ops_hv.owner = THIS_MODULE;
4474 kvmppc_hv_ops = &kvm_ops_hv;
4475
4476 init_default_hcalls();
4477
4478 init_vcore_lists();
4479
4480 r = kvmppc_mmu_hv_init();
4481 if (r)
4482 return r;
4483
4484 if (kvmppc_radix_possible())
4485 r = kvmppc_radix_init();
4486
4487 /*
4488 * POWER9 chips before version 2.02 can't have some threads in
4489 * HPT mode and some in radix mode on the same core.
4490 */
4491 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4492 unsigned int pvr = mfspr(SPRN_PVR);
4493 if ((pvr >> 16) == PVR_POWER9 &&
4494 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4495 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4496 no_mixing_hpt_and_radix = true;
4497 }
4498
4499 return r;
4500 }
4501
4502 static void kvmppc_book3s_exit_hv(void)
4503 {
4504 kvmppc_free_host_rm_ops();
4505 if (kvmppc_radix_possible())
4506 kvmppc_radix_exit();
4507 kvmppc_hv_ops = NULL;
4508 }
4509
4510 module_init(kvmppc_book3s_init_hv);
4511 module_exit(kvmppc_book3s_exit_hv);
4512 MODULE_LICENSE("GPL");
4513 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4514 MODULE_ALIAS("devname:kvm");