]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/book3s_hv_builtin.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_hv_builtin.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 #include <asm/io.h>
29 #include <asm/opal.h>
30 #include <asm/smp.h>
31
32 #define KVM_CMA_CHUNK_ORDER 18
33
34 /*
35 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
36 * should be power of 2.
37 */
38 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
39 /*
40 * By default we reserve 5% of memory for hash pagetable allocation.
41 */
42 static unsigned long kvm_cma_resv_ratio = 5;
43
44 static struct cma *kvm_cma;
45
46 static int __init early_parse_kvm_cma_resv(char *p)
47 {
48 pr_debug("%s(%s)\n", __func__, p);
49 if (!p)
50 return -EINVAL;
51 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
52 }
53 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
54
55 struct page *kvm_alloc_hpt(unsigned long nr_pages)
56 {
57 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
58
59 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
60 }
61 EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
62
63 void kvm_release_hpt(struct page *page, unsigned long nr_pages)
64 {
65 cma_release(kvm_cma, page, nr_pages);
66 }
67 EXPORT_SYMBOL_GPL(kvm_release_hpt);
68
69 /**
70 * kvm_cma_reserve() - reserve area for kvm hash pagetable
71 *
72 * This function reserves memory from early allocator. It should be
73 * called by arch specific code once the memblock allocator
74 * has been activated and all other subsystems have already allocated/reserved
75 * memory.
76 */
77 void __init kvm_cma_reserve(void)
78 {
79 unsigned long align_size;
80 struct memblock_region *reg;
81 phys_addr_t selected_size = 0;
82
83 /*
84 * We need CMA reservation only when we are in HV mode
85 */
86 if (!cpu_has_feature(CPU_FTR_HVMODE))
87 return;
88 /*
89 * We cannot use memblock_phys_mem_size() here, because
90 * memblock_analyze() has not been called yet.
91 */
92 for_each_memblock(memory, reg)
93 selected_size += memblock_region_memory_end_pfn(reg) -
94 memblock_region_memory_base_pfn(reg);
95
96 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
97 if (selected_size) {
98 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
99 (unsigned long)selected_size / SZ_1M);
100 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
101 cma_declare_contiguous(0, selected_size, 0, align_size,
102 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
103 }
104 }
105
106 /*
107 * Real-mode H_CONFER implementation.
108 * We check if we are the only vcpu out of this virtual core
109 * still running in the guest and not ceded. If so, we pop up
110 * to the virtual-mode implementation; if not, just return to
111 * the guest.
112 */
113 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
114 unsigned int yield_count)
115 {
116 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
117 int ptid = local_paca->kvm_hstate.ptid;
118 int threads_running;
119 int threads_ceded;
120 int threads_conferring;
121 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
122 int rv = H_SUCCESS; /* => don't yield */
123
124 set_bit(ptid, &vc->conferring_threads);
125 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
126 threads_running = VCORE_ENTRY_MAP(vc);
127 threads_ceded = vc->napping_threads;
128 threads_conferring = vc->conferring_threads;
129 if ((threads_ceded | threads_conferring) == threads_running) {
130 rv = H_TOO_HARD; /* => do yield */
131 break;
132 }
133 }
134 clear_bit(ptid, &vc->conferring_threads);
135 return rv;
136 }
137
138 /*
139 * When running HV mode KVM we need to block certain operations while KVM VMs
140 * exist in the system. We use a counter of VMs to track this.
141 *
142 * One of the operations we need to block is onlining of secondaries, so we
143 * protect hv_vm_count with get/put_online_cpus().
144 */
145 static atomic_t hv_vm_count;
146
147 void kvm_hv_vm_activated(void)
148 {
149 get_online_cpus();
150 atomic_inc(&hv_vm_count);
151 put_online_cpus();
152 }
153 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
154
155 void kvm_hv_vm_deactivated(void)
156 {
157 get_online_cpus();
158 atomic_dec(&hv_vm_count);
159 put_online_cpus();
160 }
161 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
162
163 bool kvm_hv_mode_active(void)
164 {
165 return atomic_read(&hv_vm_count) != 0;
166 }
167
168 extern int hcall_real_table[], hcall_real_table_end[];
169
170 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
171 {
172 cmd /= 4;
173 if (cmd < hcall_real_table_end - hcall_real_table &&
174 hcall_real_table[cmd])
175 return 1;
176
177 return 0;
178 }
179 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
180
181 int kvmppc_hwrng_present(void)
182 {
183 return powernv_hwrng_present();
184 }
185 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
186
187 long kvmppc_h_random(struct kvm_vcpu *vcpu)
188 {
189 if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
190 return H_SUCCESS;
191
192 return H_HARDWARE;
193 }
194
195 static inline void rm_writeb(unsigned long paddr, u8 val)
196 {
197 __asm__ __volatile__("stbcix %0,0,%1"
198 : : "r" (val), "r" (paddr) : "memory");
199 }
200
201 /*
202 * Send an interrupt or message to another CPU.
203 * This can only be called in real mode.
204 * The caller needs to include any barrier needed to order writes
205 * to memory vs. the IPI/message.
206 */
207 void kvmhv_rm_send_ipi(int cpu)
208 {
209 unsigned long xics_phys;
210 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
211
212 /* On POWER9 we can use msgsnd for any destination cpu. */
213 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
214 msg |= get_hard_smp_processor_id(cpu);
215 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
216 return;
217 }
218 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
219 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
220 cpu_first_thread_sibling(cpu) ==
221 cpu_first_thread_sibling(raw_smp_processor_id())) {
222 msg |= cpu_thread_in_core(cpu);
223 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
224 return;
225 }
226
227 /* Else poke the target with an IPI */
228 xics_phys = paca[cpu].kvm_hstate.xics_phys;
229 if (xics_phys)
230 rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
231 else
232 opal_rm_int_set_mfrr(get_hard_smp_processor_id(cpu),
233 IPI_PRIORITY);
234 }
235
236 /*
237 * The following functions are called from the assembly code
238 * in book3s_hv_rmhandlers.S.
239 */
240 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
241 {
242 int cpu = vc->pcpu;
243
244 /* Order setting of exit map vs. msgsnd/IPI */
245 smp_mb();
246 for (; active; active >>= 1, ++cpu)
247 if (active & 1)
248 kvmhv_rm_send_ipi(cpu);
249 }
250
251 void kvmhv_commence_exit(int trap)
252 {
253 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
254 int ptid = local_paca->kvm_hstate.ptid;
255 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
256 int me, ee, i;
257
258 /* Set our bit in the threads-exiting-guest map in the 0xff00
259 bits of vcore->entry_exit_map */
260 me = 0x100 << ptid;
261 do {
262 ee = vc->entry_exit_map;
263 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
264
265 /* Are we the first here? */
266 if ((ee >> 8) != 0)
267 return;
268
269 /*
270 * Trigger the other threads in this vcore to exit the guest.
271 * If this is a hypervisor decrementer interrupt then they
272 * will be already on their way out of the guest.
273 */
274 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
275 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
276
277 /*
278 * If we are doing dynamic micro-threading, interrupt the other
279 * subcores to pull them out of their guests too.
280 */
281 if (!sip)
282 return;
283
284 for (i = 0; i < MAX_SUBCORES; ++i) {
285 vc = sip->master_vcs[i];
286 if (!vc)
287 break;
288 do {
289 ee = vc->entry_exit_map;
290 /* Already asked to exit? */
291 if ((ee >> 8) != 0)
292 break;
293 } while (cmpxchg(&vc->entry_exit_map, ee,
294 ee | VCORE_EXIT_REQ) != ee);
295 if ((ee >> 8) == 0)
296 kvmhv_interrupt_vcore(vc, ee);
297 }
298 }
299
300 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
301 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
302
303 #ifdef CONFIG_KVM_XICS
304 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
305 u32 xisr)
306 {
307 int i;
308
309 /*
310 * We access the mapped array here without a lock. That
311 * is safe because we never reduce the number of entries
312 * in the array and we never change the v_hwirq field of
313 * an entry once it is set.
314 *
315 * We have also carefully ordered the stores in the writer
316 * and the loads here in the reader, so that if we find a matching
317 * hwirq here, the associated GSI and irq_desc fields are valid.
318 */
319 for (i = 0; i < pimap->n_mapped; i++) {
320 if (xisr == pimap->mapped[i].r_hwirq) {
321 /*
322 * Order subsequent reads in the caller to serialize
323 * with the writer.
324 */
325 smp_rmb();
326 return &pimap->mapped[i];
327 }
328 }
329 return NULL;
330 }
331
332 /*
333 * If we have an interrupt that's not an IPI, check if we have a
334 * passthrough adapter and if so, check if this external interrupt
335 * is for the adapter.
336 * We will attempt to deliver the IRQ directly to the target VCPU's
337 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
338 *
339 * If the delivery fails or if this is not for a passthrough adapter,
340 * return to the host to handle this interrupt. We earlier
341 * saved a copy of the XIRR in the PACA, it will be picked up by
342 * the host ICP driver.
343 */
344 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
345 {
346 struct kvmppc_passthru_irqmap *pimap;
347 struct kvmppc_irq_map *irq_map;
348 struct kvm_vcpu *vcpu;
349
350 vcpu = local_paca->kvm_hstate.kvm_vcpu;
351 if (!vcpu)
352 return 1;
353 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
354 if (!pimap)
355 return 1;
356 irq_map = get_irqmap(pimap, xisr);
357 if (!irq_map)
358 return 1;
359
360 /* We're handling this interrupt, generic code doesn't need to */
361 local_paca->kvm_hstate.saved_xirr = 0;
362
363 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
364 }
365
366 #else
367 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
368 {
369 return 1;
370 }
371 #endif
372
373 /*
374 * Determine what sort of external interrupt is pending (if any).
375 * Returns:
376 * 0 if no interrupt is pending
377 * 1 if an interrupt is pending that needs to be handled by the host
378 * 2 Passthrough that needs completion in the host
379 * -1 if there was a guest wakeup IPI (which has now been cleared)
380 * -2 if there is PCI passthrough external interrupt that was handled
381 */
382 static long kvmppc_read_one_intr(bool *again);
383
384 long kvmppc_read_intr(void)
385 {
386 long ret = 0;
387 long rc;
388 bool again;
389
390 do {
391 again = false;
392 rc = kvmppc_read_one_intr(&again);
393 if (rc && (ret == 0 || rc > ret))
394 ret = rc;
395 } while (again);
396 return ret;
397 }
398
399 static long kvmppc_read_one_intr(bool *again)
400 {
401 unsigned long xics_phys;
402 u32 h_xirr;
403 __be32 xirr;
404 u32 xisr;
405 u8 host_ipi;
406 int64_t rc;
407
408 /* see if a host IPI is pending */
409 host_ipi = local_paca->kvm_hstate.host_ipi;
410 if (host_ipi)
411 return 1;
412
413 /* Now read the interrupt from the ICP */
414 xics_phys = local_paca->kvm_hstate.xics_phys;
415 if (!xics_phys) {
416 /* Use OPAL to read the XIRR */
417 rc = opal_rm_int_get_xirr(&xirr, false);
418 if (rc < 0)
419 return 1;
420 } else {
421 xirr = _lwzcix(xics_phys + XICS_XIRR);
422 }
423
424 /*
425 * Save XIRR for later. Since we get control in reverse endian
426 * on LE systems, save it byte reversed and fetch it back in
427 * host endian. Note that xirr is the value read from the
428 * XIRR register, while h_xirr is the host endian version.
429 */
430 h_xirr = be32_to_cpu(xirr);
431 local_paca->kvm_hstate.saved_xirr = h_xirr;
432 xisr = h_xirr & 0xffffff;
433 /*
434 * Ensure that the store/load complete to guarantee all side
435 * effects of loading from XIRR has completed
436 */
437 smp_mb();
438
439 /* if nothing pending in the ICP */
440 if (!xisr)
441 return 0;
442
443 /* We found something in the ICP...
444 *
445 * If it is an IPI, clear the MFRR and EOI it.
446 */
447 if (xisr == XICS_IPI) {
448 if (xics_phys) {
449 _stbcix(xics_phys + XICS_MFRR, 0xff);
450 _stwcix(xics_phys + XICS_XIRR, xirr);
451 } else {
452 opal_rm_int_set_mfrr(hard_smp_processor_id(), 0xff);
453 rc = opal_rm_int_eoi(h_xirr);
454 /* If rc > 0, there is another interrupt pending */
455 *again = rc > 0;
456 }
457
458 /*
459 * Need to ensure side effects of above stores
460 * complete before proceeding.
461 */
462 smp_mb();
463
464 /*
465 * We need to re-check host IPI now in case it got set in the
466 * meantime. If it's clear, we bounce the interrupt to the
467 * guest
468 */
469 host_ipi = local_paca->kvm_hstate.host_ipi;
470 if (unlikely(host_ipi != 0)) {
471 /* We raced with the host,
472 * we need to resend that IPI, bummer
473 */
474 if (xics_phys)
475 _stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
476 else
477 opal_rm_int_set_mfrr(hard_smp_processor_id(),
478 IPI_PRIORITY);
479 /* Let side effects complete */
480 smp_mb();
481 return 1;
482 }
483
484 /* OK, it's an IPI for us */
485 local_paca->kvm_hstate.saved_xirr = 0;
486 return -1;
487 }
488
489 return kvmppc_check_passthru(xisr, xirr, again);
490 }