]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_hv_builtin.c
ARM: at91: remove atmel_nand_data
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_hv_builtin.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/xive.h>
27 #include <asm/dbell.h>
28 #include <asm/cputhreads.h>
29 #include <asm/io.h>
30 #include <asm/opal.h>
31 #include <asm/smp.h>
32
33 #define KVM_CMA_CHUNK_ORDER 18
34
35 #include "book3s_xics.h"
36 #include "book3s_xive.h"
37
38 /*
39 * The XIVE module will populate these when it loads
40 */
41 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
42 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
43 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
44 unsigned long mfrr);
45 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
46 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
51 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
52
53 /*
54 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
55 * should be power of 2.
56 */
57 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
58 /*
59 * By default we reserve 5% of memory for hash pagetable allocation.
60 */
61 static unsigned long kvm_cma_resv_ratio = 5;
62
63 static struct cma *kvm_cma;
64
65 static int __init early_parse_kvm_cma_resv(char *p)
66 {
67 pr_debug("%s(%s)\n", __func__, p);
68 if (!p)
69 return -EINVAL;
70 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
71 }
72 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
73
74 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
75 {
76 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
77
78 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
79 GFP_KERNEL);
80 }
81 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
82
83 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
84 {
85 cma_release(kvm_cma, page, nr_pages);
86 }
87 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
88
89 /**
90 * kvm_cma_reserve() - reserve area for kvm hash pagetable
91 *
92 * This function reserves memory from early allocator. It should be
93 * called by arch specific code once the memblock allocator
94 * has been activated and all other subsystems have already allocated/reserved
95 * memory.
96 */
97 void __init kvm_cma_reserve(void)
98 {
99 unsigned long align_size;
100 struct memblock_region *reg;
101 phys_addr_t selected_size = 0;
102
103 /*
104 * We need CMA reservation only when we are in HV mode
105 */
106 if (!cpu_has_feature(CPU_FTR_HVMODE))
107 return;
108 /*
109 * We cannot use memblock_phys_mem_size() here, because
110 * memblock_analyze() has not been called yet.
111 */
112 for_each_memblock(memory, reg)
113 selected_size += memblock_region_memory_end_pfn(reg) -
114 memblock_region_memory_base_pfn(reg);
115
116 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
117 if (selected_size) {
118 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
119 (unsigned long)selected_size / SZ_1M);
120 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
121 cma_declare_contiguous(0, selected_size, 0, align_size,
122 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
123 &kvm_cma);
124 }
125 }
126
127 /*
128 * Real-mode H_CONFER implementation.
129 * We check if we are the only vcpu out of this virtual core
130 * still running in the guest and not ceded. If so, we pop up
131 * to the virtual-mode implementation; if not, just return to
132 * the guest.
133 */
134 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
135 unsigned int yield_count)
136 {
137 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
138 int ptid = local_paca->kvm_hstate.ptid;
139 int threads_running;
140 int threads_ceded;
141 int threads_conferring;
142 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
143 int rv = H_SUCCESS; /* => don't yield */
144
145 set_bit(ptid, &vc->conferring_threads);
146 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
147 threads_running = VCORE_ENTRY_MAP(vc);
148 threads_ceded = vc->napping_threads;
149 threads_conferring = vc->conferring_threads;
150 if ((threads_ceded | threads_conferring) == threads_running) {
151 rv = H_TOO_HARD; /* => do yield */
152 break;
153 }
154 }
155 clear_bit(ptid, &vc->conferring_threads);
156 return rv;
157 }
158
159 /*
160 * When running HV mode KVM we need to block certain operations while KVM VMs
161 * exist in the system. We use a counter of VMs to track this.
162 *
163 * One of the operations we need to block is onlining of secondaries, so we
164 * protect hv_vm_count with get/put_online_cpus().
165 */
166 static atomic_t hv_vm_count;
167
168 void kvm_hv_vm_activated(void)
169 {
170 get_online_cpus();
171 atomic_inc(&hv_vm_count);
172 put_online_cpus();
173 }
174 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
175
176 void kvm_hv_vm_deactivated(void)
177 {
178 get_online_cpus();
179 atomic_dec(&hv_vm_count);
180 put_online_cpus();
181 }
182 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
183
184 bool kvm_hv_mode_active(void)
185 {
186 return atomic_read(&hv_vm_count) != 0;
187 }
188
189 extern int hcall_real_table[], hcall_real_table_end[];
190
191 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
192 {
193 cmd /= 4;
194 if (cmd < hcall_real_table_end - hcall_real_table &&
195 hcall_real_table[cmd])
196 return 1;
197
198 return 0;
199 }
200 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
201
202 int kvmppc_hwrng_present(void)
203 {
204 return powernv_hwrng_present();
205 }
206 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
207
208 long kvmppc_h_random(struct kvm_vcpu *vcpu)
209 {
210 if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
211 return H_SUCCESS;
212
213 return H_HARDWARE;
214 }
215
216 /*
217 * Send an interrupt or message to another CPU.
218 * The caller needs to include any barrier needed to order writes
219 * to memory vs. the IPI/message.
220 */
221 void kvmhv_rm_send_ipi(int cpu)
222 {
223 void __iomem *xics_phys;
224 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
225
226 /* On POWER9 we can use msgsnd for any destination cpu. */
227 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
228 msg |= get_hard_smp_processor_id(cpu);
229 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
230 return;
231 }
232
233 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
234 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
235 cpu_first_thread_sibling(cpu) ==
236 cpu_first_thread_sibling(raw_smp_processor_id())) {
237 msg |= cpu_thread_in_core(cpu);
238 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
239 return;
240 }
241
242 /* We should never reach this */
243 if (WARN_ON_ONCE(xive_enabled()))
244 return;
245
246 /* Else poke the target with an IPI */
247 xics_phys = paca[cpu].kvm_hstate.xics_phys;
248 if (xics_phys)
249 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
250 else
251 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
252 }
253
254 /*
255 * The following functions are called from the assembly code
256 * in book3s_hv_rmhandlers.S.
257 */
258 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
259 {
260 int cpu = vc->pcpu;
261
262 /* Order setting of exit map vs. msgsnd/IPI */
263 smp_mb();
264 for (; active; active >>= 1, ++cpu)
265 if (active & 1)
266 kvmhv_rm_send_ipi(cpu);
267 }
268
269 void kvmhv_commence_exit(int trap)
270 {
271 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
272 int ptid = local_paca->kvm_hstate.ptid;
273 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
274 int me, ee, i;
275
276 /* Set our bit in the threads-exiting-guest map in the 0xff00
277 bits of vcore->entry_exit_map */
278 me = 0x100 << ptid;
279 do {
280 ee = vc->entry_exit_map;
281 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
282
283 /* Are we the first here? */
284 if ((ee >> 8) != 0)
285 return;
286
287 /*
288 * Trigger the other threads in this vcore to exit the guest.
289 * If this is a hypervisor decrementer interrupt then they
290 * will be already on their way out of the guest.
291 */
292 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
293 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
294
295 /*
296 * If we are doing dynamic micro-threading, interrupt the other
297 * subcores to pull them out of their guests too.
298 */
299 if (!sip)
300 return;
301
302 for (i = 0; i < MAX_SUBCORES; ++i) {
303 vc = sip->master_vcs[i];
304 if (!vc)
305 break;
306 do {
307 ee = vc->entry_exit_map;
308 /* Already asked to exit? */
309 if ((ee >> 8) != 0)
310 break;
311 } while (cmpxchg(&vc->entry_exit_map, ee,
312 ee | VCORE_EXIT_REQ) != ee);
313 if ((ee >> 8) == 0)
314 kvmhv_interrupt_vcore(vc, ee);
315 }
316 }
317
318 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
319 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
320
321 #ifdef CONFIG_KVM_XICS
322 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
323 u32 xisr)
324 {
325 int i;
326
327 /*
328 * We access the mapped array here without a lock. That
329 * is safe because we never reduce the number of entries
330 * in the array and we never change the v_hwirq field of
331 * an entry once it is set.
332 *
333 * We have also carefully ordered the stores in the writer
334 * and the loads here in the reader, so that if we find a matching
335 * hwirq here, the associated GSI and irq_desc fields are valid.
336 */
337 for (i = 0; i < pimap->n_mapped; i++) {
338 if (xisr == pimap->mapped[i].r_hwirq) {
339 /*
340 * Order subsequent reads in the caller to serialize
341 * with the writer.
342 */
343 smp_rmb();
344 return &pimap->mapped[i];
345 }
346 }
347 return NULL;
348 }
349
350 /*
351 * If we have an interrupt that's not an IPI, check if we have a
352 * passthrough adapter and if so, check if this external interrupt
353 * is for the adapter.
354 * We will attempt to deliver the IRQ directly to the target VCPU's
355 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
356 *
357 * If the delivery fails or if this is not for a passthrough adapter,
358 * return to the host to handle this interrupt. We earlier
359 * saved a copy of the XIRR in the PACA, it will be picked up by
360 * the host ICP driver.
361 */
362 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
363 {
364 struct kvmppc_passthru_irqmap *pimap;
365 struct kvmppc_irq_map *irq_map;
366 struct kvm_vcpu *vcpu;
367
368 vcpu = local_paca->kvm_hstate.kvm_vcpu;
369 if (!vcpu)
370 return 1;
371 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
372 if (!pimap)
373 return 1;
374 irq_map = get_irqmap(pimap, xisr);
375 if (!irq_map)
376 return 1;
377
378 /* We're handling this interrupt, generic code doesn't need to */
379 local_paca->kvm_hstate.saved_xirr = 0;
380
381 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
382 }
383
384 #else
385 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
386 {
387 return 1;
388 }
389 #endif
390
391 /*
392 * Determine what sort of external interrupt is pending (if any).
393 * Returns:
394 * 0 if no interrupt is pending
395 * 1 if an interrupt is pending that needs to be handled by the host
396 * 2 Passthrough that needs completion in the host
397 * -1 if there was a guest wakeup IPI (which has now been cleared)
398 * -2 if there is PCI passthrough external interrupt that was handled
399 */
400 static long kvmppc_read_one_intr(bool *again);
401
402 long kvmppc_read_intr(void)
403 {
404 long ret = 0;
405 long rc;
406 bool again;
407
408 if (xive_enabled())
409 return 1;
410
411 do {
412 again = false;
413 rc = kvmppc_read_one_intr(&again);
414 if (rc && (ret == 0 || rc > ret))
415 ret = rc;
416 } while (again);
417 return ret;
418 }
419
420 static long kvmppc_read_one_intr(bool *again)
421 {
422 void __iomem *xics_phys;
423 u32 h_xirr;
424 __be32 xirr;
425 u32 xisr;
426 u8 host_ipi;
427 int64_t rc;
428
429 if (xive_enabled())
430 return 1;
431
432 /* see if a host IPI is pending */
433 host_ipi = local_paca->kvm_hstate.host_ipi;
434 if (host_ipi)
435 return 1;
436
437 /* Now read the interrupt from the ICP */
438 xics_phys = local_paca->kvm_hstate.xics_phys;
439 rc = 0;
440 if (!xics_phys)
441 rc = opal_int_get_xirr(&xirr, false);
442 else
443 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
444 if (rc < 0)
445 return 1;
446
447 /*
448 * Save XIRR for later. Since we get control in reverse endian
449 * on LE systems, save it byte reversed and fetch it back in
450 * host endian. Note that xirr is the value read from the
451 * XIRR register, while h_xirr is the host endian version.
452 */
453 h_xirr = be32_to_cpu(xirr);
454 local_paca->kvm_hstate.saved_xirr = h_xirr;
455 xisr = h_xirr & 0xffffff;
456 /*
457 * Ensure that the store/load complete to guarantee all side
458 * effects of loading from XIRR has completed
459 */
460 smp_mb();
461
462 /* if nothing pending in the ICP */
463 if (!xisr)
464 return 0;
465
466 /* We found something in the ICP...
467 *
468 * If it is an IPI, clear the MFRR and EOI it.
469 */
470 if (xisr == XICS_IPI) {
471 rc = 0;
472 if (xics_phys) {
473 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
474 __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
475 } else {
476 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
477 rc = opal_int_eoi(h_xirr);
478 }
479 /* If rc > 0, there is another interrupt pending */
480 *again = rc > 0;
481
482 /*
483 * Need to ensure side effects of above stores
484 * complete before proceeding.
485 */
486 smp_mb();
487
488 /*
489 * We need to re-check host IPI now in case it got set in the
490 * meantime. If it's clear, we bounce the interrupt to the
491 * guest
492 */
493 host_ipi = local_paca->kvm_hstate.host_ipi;
494 if (unlikely(host_ipi != 0)) {
495 /* We raced with the host,
496 * we need to resend that IPI, bummer
497 */
498 if (xics_phys)
499 __raw_rm_writeb(IPI_PRIORITY,
500 xics_phys + XICS_MFRR);
501 else
502 opal_int_set_mfrr(hard_smp_processor_id(),
503 IPI_PRIORITY);
504 /* Let side effects complete */
505 smp_mb();
506 return 1;
507 }
508
509 /* OK, it's an IPI for us */
510 local_paca->kvm_hstate.saved_xirr = 0;
511 return -1;
512 }
513
514 return kvmppc_check_passthru(xisr, xirr, again);
515 }
516
517 #ifdef CONFIG_KVM_XICS
518 static inline bool is_rm(void)
519 {
520 return !(mfmsr() & MSR_DR);
521 }
522
523 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
524 {
525 if (xive_enabled()) {
526 if (is_rm())
527 return xive_rm_h_xirr(vcpu);
528 if (unlikely(!__xive_vm_h_xirr))
529 return H_NOT_AVAILABLE;
530 return __xive_vm_h_xirr(vcpu);
531 } else
532 return xics_rm_h_xirr(vcpu);
533 }
534
535 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
536 {
537 vcpu->arch.gpr[5] = get_tb();
538 if (xive_enabled()) {
539 if (is_rm())
540 return xive_rm_h_xirr(vcpu);
541 if (unlikely(!__xive_vm_h_xirr))
542 return H_NOT_AVAILABLE;
543 return __xive_vm_h_xirr(vcpu);
544 } else
545 return xics_rm_h_xirr(vcpu);
546 }
547
548 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
549 {
550 if (xive_enabled()) {
551 if (is_rm())
552 return xive_rm_h_ipoll(vcpu, server);
553 if (unlikely(!__xive_vm_h_ipoll))
554 return H_NOT_AVAILABLE;
555 return __xive_vm_h_ipoll(vcpu, server);
556 } else
557 return H_TOO_HARD;
558 }
559
560 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
561 unsigned long mfrr)
562 {
563 if (xive_enabled()) {
564 if (is_rm())
565 return xive_rm_h_ipi(vcpu, server, mfrr);
566 if (unlikely(!__xive_vm_h_ipi))
567 return H_NOT_AVAILABLE;
568 return __xive_vm_h_ipi(vcpu, server, mfrr);
569 } else
570 return xics_rm_h_ipi(vcpu, server, mfrr);
571 }
572
573 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
574 {
575 if (xive_enabled()) {
576 if (is_rm())
577 return xive_rm_h_cppr(vcpu, cppr);
578 if (unlikely(!__xive_vm_h_cppr))
579 return H_NOT_AVAILABLE;
580 return __xive_vm_h_cppr(vcpu, cppr);
581 } else
582 return xics_rm_h_cppr(vcpu, cppr);
583 }
584
585 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
586 {
587 if (xive_enabled()) {
588 if (is_rm())
589 return xive_rm_h_eoi(vcpu, xirr);
590 if (unlikely(!__xive_vm_h_eoi))
591 return H_NOT_AVAILABLE;
592 return __xive_vm_h_eoi(vcpu, xirr);
593 } else
594 return xics_rm_h_eoi(vcpu, xirr);
595 }
596 #endif /* CONFIG_KVM_XICS */