]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_hv_builtin.c
e38cc2df6d2a8a48a479b00b25c05b90c9394a7c
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_hv_builtin.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/xive.h>
27 #include <asm/dbell.h>
28 #include <asm/cputhreads.h>
29 #include <asm/io.h>
30 #include <asm/opal.h>
31 #include <asm/smp.h>
32
33 #define KVM_CMA_CHUNK_ORDER 18
34
35 #include "book3s_xics.h"
36 #include "book3s_xive.h"
37
38 /*
39 * The XIVE module will populate these when it loads
40 */
41 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
42 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
43 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
44 unsigned long mfrr);
45 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
46 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
51 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
52
53 /*
54 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
55 * should be power of 2.
56 */
57 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
58 /*
59 * By default we reserve 5% of memory for hash pagetable allocation.
60 */
61 static unsigned long kvm_cma_resv_ratio = 5;
62
63 static struct cma *kvm_cma;
64
65 static int __init early_parse_kvm_cma_resv(char *p)
66 {
67 pr_debug("%s(%s)\n", __func__, p);
68 if (!p)
69 return -EINVAL;
70 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
71 }
72 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
73
74 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
75 {
76 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
77
78 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
79 GFP_KERNEL);
80 }
81 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
82
83 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
84 {
85 cma_release(kvm_cma, page, nr_pages);
86 }
87 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
88
89 /**
90 * kvm_cma_reserve() - reserve area for kvm hash pagetable
91 *
92 * This function reserves memory from early allocator. It should be
93 * called by arch specific code once the memblock allocator
94 * has been activated and all other subsystems have already allocated/reserved
95 * memory.
96 */
97 void __init kvm_cma_reserve(void)
98 {
99 unsigned long align_size;
100 struct memblock_region *reg;
101 phys_addr_t selected_size = 0;
102
103 /*
104 * We need CMA reservation only when we are in HV mode
105 */
106 if (!cpu_has_feature(CPU_FTR_HVMODE))
107 return;
108 /*
109 * We cannot use memblock_phys_mem_size() here, because
110 * memblock_analyze() has not been called yet.
111 */
112 for_each_memblock(memory, reg)
113 selected_size += memblock_region_memory_end_pfn(reg) -
114 memblock_region_memory_base_pfn(reg);
115
116 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
117 if (selected_size) {
118 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
119 (unsigned long)selected_size / SZ_1M);
120 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
121 cma_declare_contiguous(0, selected_size, 0, align_size,
122 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
123 &kvm_cma);
124 }
125 }
126
127 /*
128 * Real-mode H_CONFER implementation.
129 * We check if we are the only vcpu out of this virtual core
130 * still running in the guest and not ceded. If so, we pop up
131 * to the virtual-mode implementation; if not, just return to
132 * the guest.
133 */
134 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
135 unsigned int yield_count)
136 {
137 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
138 int ptid = local_paca->kvm_hstate.ptid;
139 int threads_running;
140 int threads_ceded;
141 int threads_conferring;
142 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
143 int rv = H_SUCCESS; /* => don't yield */
144
145 set_bit(ptid, &vc->conferring_threads);
146 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
147 threads_running = VCORE_ENTRY_MAP(vc);
148 threads_ceded = vc->napping_threads;
149 threads_conferring = vc->conferring_threads;
150 if ((threads_ceded | threads_conferring) == threads_running) {
151 rv = H_TOO_HARD; /* => do yield */
152 break;
153 }
154 }
155 clear_bit(ptid, &vc->conferring_threads);
156 return rv;
157 }
158
159 /*
160 * When running HV mode KVM we need to block certain operations while KVM VMs
161 * exist in the system. We use a counter of VMs to track this.
162 *
163 * One of the operations we need to block is onlining of secondaries, so we
164 * protect hv_vm_count with get/put_online_cpus().
165 */
166 static atomic_t hv_vm_count;
167
168 void kvm_hv_vm_activated(void)
169 {
170 get_online_cpus();
171 atomic_inc(&hv_vm_count);
172 put_online_cpus();
173 }
174 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
175
176 void kvm_hv_vm_deactivated(void)
177 {
178 get_online_cpus();
179 atomic_dec(&hv_vm_count);
180 put_online_cpus();
181 }
182 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
183
184 bool kvm_hv_mode_active(void)
185 {
186 return atomic_read(&hv_vm_count) != 0;
187 }
188
189 extern int hcall_real_table[], hcall_real_table_end[];
190
191 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
192 {
193 cmd /= 4;
194 if (cmd < hcall_real_table_end - hcall_real_table &&
195 hcall_real_table[cmd])
196 return 1;
197
198 return 0;
199 }
200 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
201
202 int kvmppc_hwrng_present(void)
203 {
204 return powernv_hwrng_present();
205 }
206 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
207
208 long kvmppc_h_random(struct kvm_vcpu *vcpu)
209 {
210 int r;
211
212 /* Only need to do the expensive mfmsr() on radix */
213 if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
214 r = powernv_get_random_long(&vcpu->arch.gpr[4]);
215 else
216 r = powernv_get_random_real_mode(&vcpu->arch.gpr[4]);
217 if (r)
218 return H_SUCCESS;
219
220 return H_HARDWARE;
221 }
222
223 /*
224 * Send an interrupt or message to another CPU.
225 * The caller needs to include any barrier needed to order writes
226 * to memory vs. the IPI/message.
227 */
228 void kvmhv_rm_send_ipi(int cpu)
229 {
230 void __iomem *xics_phys;
231 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
232
233 /* On POWER9 we can use msgsnd for any destination cpu. */
234 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
235 msg |= get_hard_smp_processor_id(cpu);
236 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
237 return;
238 }
239
240 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
241 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
242 cpu_first_thread_sibling(cpu) ==
243 cpu_first_thread_sibling(raw_smp_processor_id())) {
244 msg |= cpu_thread_in_core(cpu);
245 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
246 return;
247 }
248
249 /* We should never reach this */
250 if (WARN_ON_ONCE(xive_enabled()))
251 return;
252
253 /* Else poke the target with an IPI */
254 xics_phys = paca[cpu].kvm_hstate.xics_phys;
255 if (xics_phys)
256 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
257 else
258 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
259 }
260
261 /*
262 * The following functions are called from the assembly code
263 * in book3s_hv_rmhandlers.S.
264 */
265 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
266 {
267 int cpu = vc->pcpu;
268
269 /* Order setting of exit map vs. msgsnd/IPI */
270 smp_mb();
271 for (; active; active >>= 1, ++cpu)
272 if (active & 1)
273 kvmhv_rm_send_ipi(cpu);
274 }
275
276 void kvmhv_commence_exit(int trap)
277 {
278 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
279 int ptid = local_paca->kvm_hstate.ptid;
280 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
281 int me, ee, i;
282
283 /* Set our bit in the threads-exiting-guest map in the 0xff00
284 bits of vcore->entry_exit_map */
285 me = 0x100 << ptid;
286 do {
287 ee = vc->entry_exit_map;
288 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
289
290 /* Are we the first here? */
291 if ((ee >> 8) != 0)
292 return;
293
294 /*
295 * Trigger the other threads in this vcore to exit the guest.
296 * If this is a hypervisor decrementer interrupt then they
297 * will be already on their way out of the guest.
298 */
299 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
300 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
301
302 /*
303 * If we are doing dynamic micro-threading, interrupt the other
304 * subcores to pull them out of their guests too.
305 */
306 if (!sip)
307 return;
308
309 for (i = 0; i < MAX_SUBCORES; ++i) {
310 vc = sip->vc[i];
311 if (!vc)
312 break;
313 do {
314 ee = vc->entry_exit_map;
315 /* Already asked to exit? */
316 if ((ee >> 8) != 0)
317 break;
318 } while (cmpxchg(&vc->entry_exit_map, ee,
319 ee | VCORE_EXIT_REQ) != ee);
320 if ((ee >> 8) == 0)
321 kvmhv_interrupt_vcore(vc, ee);
322 }
323 }
324
325 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
326 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
327
328 #ifdef CONFIG_KVM_XICS
329 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
330 u32 xisr)
331 {
332 int i;
333
334 /*
335 * We access the mapped array here without a lock. That
336 * is safe because we never reduce the number of entries
337 * in the array and we never change the v_hwirq field of
338 * an entry once it is set.
339 *
340 * We have also carefully ordered the stores in the writer
341 * and the loads here in the reader, so that if we find a matching
342 * hwirq here, the associated GSI and irq_desc fields are valid.
343 */
344 for (i = 0; i < pimap->n_mapped; i++) {
345 if (xisr == pimap->mapped[i].r_hwirq) {
346 /*
347 * Order subsequent reads in the caller to serialize
348 * with the writer.
349 */
350 smp_rmb();
351 return &pimap->mapped[i];
352 }
353 }
354 return NULL;
355 }
356
357 /*
358 * If we have an interrupt that's not an IPI, check if we have a
359 * passthrough adapter and if so, check if this external interrupt
360 * is for the adapter.
361 * We will attempt to deliver the IRQ directly to the target VCPU's
362 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
363 *
364 * If the delivery fails or if this is not for a passthrough adapter,
365 * return to the host to handle this interrupt. We earlier
366 * saved a copy of the XIRR in the PACA, it will be picked up by
367 * the host ICP driver.
368 */
369 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
370 {
371 struct kvmppc_passthru_irqmap *pimap;
372 struct kvmppc_irq_map *irq_map;
373 struct kvm_vcpu *vcpu;
374
375 vcpu = local_paca->kvm_hstate.kvm_vcpu;
376 if (!vcpu)
377 return 1;
378 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
379 if (!pimap)
380 return 1;
381 irq_map = get_irqmap(pimap, xisr);
382 if (!irq_map)
383 return 1;
384
385 /* We're handling this interrupt, generic code doesn't need to */
386 local_paca->kvm_hstate.saved_xirr = 0;
387
388 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
389 }
390
391 #else
392 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
393 {
394 return 1;
395 }
396 #endif
397
398 /*
399 * Determine what sort of external interrupt is pending (if any).
400 * Returns:
401 * 0 if no interrupt is pending
402 * 1 if an interrupt is pending that needs to be handled by the host
403 * 2 Passthrough that needs completion in the host
404 * -1 if there was a guest wakeup IPI (which has now been cleared)
405 * -2 if there is PCI passthrough external interrupt that was handled
406 */
407 static long kvmppc_read_one_intr(bool *again);
408
409 long kvmppc_read_intr(void)
410 {
411 long ret = 0;
412 long rc;
413 bool again;
414
415 if (xive_enabled())
416 return 1;
417
418 do {
419 again = false;
420 rc = kvmppc_read_one_intr(&again);
421 if (rc && (ret == 0 || rc > ret))
422 ret = rc;
423 } while (again);
424 return ret;
425 }
426
427 static long kvmppc_read_one_intr(bool *again)
428 {
429 void __iomem *xics_phys;
430 u32 h_xirr;
431 __be32 xirr;
432 u32 xisr;
433 u8 host_ipi;
434 int64_t rc;
435
436 if (xive_enabled())
437 return 1;
438
439 /* see if a host IPI is pending */
440 host_ipi = local_paca->kvm_hstate.host_ipi;
441 if (host_ipi)
442 return 1;
443
444 /* Now read the interrupt from the ICP */
445 xics_phys = local_paca->kvm_hstate.xics_phys;
446 rc = 0;
447 if (!xics_phys)
448 rc = opal_int_get_xirr(&xirr, false);
449 else
450 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
451 if (rc < 0)
452 return 1;
453
454 /*
455 * Save XIRR for later. Since we get control in reverse endian
456 * on LE systems, save it byte reversed and fetch it back in
457 * host endian. Note that xirr is the value read from the
458 * XIRR register, while h_xirr is the host endian version.
459 */
460 h_xirr = be32_to_cpu(xirr);
461 local_paca->kvm_hstate.saved_xirr = h_xirr;
462 xisr = h_xirr & 0xffffff;
463 /*
464 * Ensure that the store/load complete to guarantee all side
465 * effects of loading from XIRR has completed
466 */
467 smp_mb();
468
469 /* if nothing pending in the ICP */
470 if (!xisr)
471 return 0;
472
473 /* We found something in the ICP...
474 *
475 * If it is an IPI, clear the MFRR and EOI it.
476 */
477 if (xisr == XICS_IPI) {
478 rc = 0;
479 if (xics_phys) {
480 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
481 __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
482 } else {
483 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
484 rc = opal_int_eoi(h_xirr);
485 }
486 /* If rc > 0, there is another interrupt pending */
487 *again = rc > 0;
488
489 /*
490 * Need to ensure side effects of above stores
491 * complete before proceeding.
492 */
493 smp_mb();
494
495 /*
496 * We need to re-check host IPI now in case it got set in the
497 * meantime. If it's clear, we bounce the interrupt to the
498 * guest
499 */
500 host_ipi = local_paca->kvm_hstate.host_ipi;
501 if (unlikely(host_ipi != 0)) {
502 /* We raced with the host,
503 * we need to resend that IPI, bummer
504 */
505 if (xics_phys)
506 __raw_rm_writeb(IPI_PRIORITY,
507 xics_phys + XICS_MFRR);
508 else
509 opal_int_set_mfrr(hard_smp_processor_id(),
510 IPI_PRIORITY);
511 /* Let side effects complete */
512 smp_mb();
513 return 1;
514 }
515
516 /* OK, it's an IPI for us */
517 local_paca->kvm_hstate.saved_xirr = 0;
518 return -1;
519 }
520
521 return kvmppc_check_passthru(xisr, xirr, again);
522 }
523
524 #ifdef CONFIG_KVM_XICS
525 static inline bool is_rm(void)
526 {
527 return !(mfmsr() & MSR_DR);
528 }
529
530 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
531 {
532 if (!kvmppc_xics_enabled(vcpu))
533 return H_TOO_HARD;
534 if (xive_enabled()) {
535 if (is_rm())
536 return xive_rm_h_xirr(vcpu);
537 if (unlikely(!__xive_vm_h_xirr))
538 return H_NOT_AVAILABLE;
539 return __xive_vm_h_xirr(vcpu);
540 } else
541 return xics_rm_h_xirr(vcpu);
542 }
543
544 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
545 {
546 if (!kvmppc_xics_enabled(vcpu))
547 return H_TOO_HARD;
548 vcpu->arch.gpr[5] = get_tb();
549 if (xive_enabled()) {
550 if (is_rm())
551 return xive_rm_h_xirr(vcpu);
552 if (unlikely(!__xive_vm_h_xirr))
553 return H_NOT_AVAILABLE;
554 return __xive_vm_h_xirr(vcpu);
555 } else
556 return xics_rm_h_xirr(vcpu);
557 }
558
559 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
560 {
561 if (!kvmppc_xics_enabled(vcpu))
562 return H_TOO_HARD;
563 if (xive_enabled()) {
564 if (is_rm())
565 return xive_rm_h_ipoll(vcpu, server);
566 if (unlikely(!__xive_vm_h_ipoll))
567 return H_NOT_AVAILABLE;
568 return __xive_vm_h_ipoll(vcpu, server);
569 } else
570 return H_TOO_HARD;
571 }
572
573 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
574 unsigned long mfrr)
575 {
576 if (!kvmppc_xics_enabled(vcpu))
577 return H_TOO_HARD;
578 if (xive_enabled()) {
579 if (is_rm())
580 return xive_rm_h_ipi(vcpu, server, mfrr);
581 if (unlikely(!__xive_vm_h_ipi))
582 return H_NOT_AVAILABLE;
583 return __xive_vm_h_ipi(vcpu, server, mfrr);
584 } else
585 return xics_rm_h_ipi(vcpu, server, mfrr);
586 }
587
588 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
589 {
590 if (!kvmppc_xics_enabled(vcpu))
591 return H_TOO_HARD;
592 if (xive_enabled()) {
593 if (is_rm())
594 return xive_rm_h_cppr(vcpu, cppr);
595 if (unlikely(!__xive_vm_h_cppr))
596 return H_NOT_AVAILABLE;
597 return __xive_vm_h_cppr(vcpu, cppr);
598 } else
599 return xics_rm_h_cppr(vcpu, cppr);
600 }
601
602 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
603 {
604 if (!kvmppc_xics_enabled(vcpu))
605 return H_TOO_HARD;
606 if (xive_enabled()) {
607 if (is_rm())
608 return xive_rm_h_eoi(vcpu, xirr);
609 if (unlikely(!__xive_vm_h_eoi))
610 return H_NOT_AVAILABLE;
611 return __xive_vm_h_eoi(vcpu, xirr);
612 } else
613 return xics_rm_h_eoi(vcpu, xirr);
614 }
615 #endif /* CONFIG_KVM_XICS */
616
617 void kvmppc_bad_interrupt(struct pt_regs *regs)
618 {
619 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
620 panic("Bad KVM trap");
621 }