]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/kvm/book3s_hv_nested.c
KVM: PPC: Book3S HV Nested: Sanitise H_ENTER_NESTED TM state
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kvm / book3s_hv_nested.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corporation, 2018
4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
5 * Paul Mackerras <paulus@ozlabs.org>
6 *
7 * Description: KVM functions specific to running nested KVM-HV guests
8 * on Book3S processors (specifically POWER9 and later).
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/llist.h>
14 #include <linux/pgtable.h>
15
16 #include <asm/kvm_ppc.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/mmu.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pte-walk.h>
21 #include <asm/reg.h>
22 #include <asm/plpar_wrappers.h>
23
24 static struct patb_entry *pseries_partition_tb;
25
26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
28
29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
30 {
31 struct kvmppc_vcore *vc = vcpu->arch.vcore;
32
33 hr->pcr = vc->pcr | PCR_MASK;
34 hr->dpdes = vc->dpdes;
35 hr->hfscr = vcpu->arch.hfscr;
36 hr->tb_offset = vc->tb_offset;
37 hr->dawr0 = vcpu->arch.dawr0;
38 hr->dawrx0 = vcpu->arch.dawrx0;
39 hr->ciabr = vcpu->arch.ciabr;
40 hr->purr = vcpu->arch.purr;
41 hr->spurr = vcpu->arch.spurr;
42 hr->ic = vcpu->arch.ic;
43 hr->vtb = vc->vtb;
44 hr->srr0 = vcpu->arch.shregs.srr0;
45 hr->srr1 = vcpu->arch.shregs.srr1;
46 hr->sprg[0] = vcpu->arch.shregs.sprg0;
47 hr->sprg[1] = vcpu->arch.shregs.sprg1;
48 hr->sprg[2] = vcpu->arch.shregs.sprg2;
49 hr->sprg[3] = vcpu->arch.shregs.sprg3;
50 hr->pidr = vcpu->arch.pid;
51 hr->cfar = vcpu->arch.cfar;
52 hr->ppr = vcpu->arch.ppr;
53 hr->dawr1 = vcpu->arch.dawr1;
54 hr->dawrx1 = vcpu->arch.dawrx1;
55 }
56
57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
59 {
60 unsigned long *addr = (unsigned long *) regs;
61
62 for (; addr < ((unsigned long *) (regs + 1)); addr++)
63 *addr = swab64(*addr);
64 }
65
66 static void byteswap_hv_regs(struct hv_guest_state *hr)
67 {
68 hr->version = swab64(hr->version);
69 hr->lpid = swab32(hr->lpid);
70 hr->vcpu_token = swab32(hr->vcpu_token);
71 hr->lpcr = swab64(hr->lpcr);
72 hr->pcr = swab64(hr->pcr) | PCR_MASK;
73 hr->amor = swab64(hr->amor);
74 hr->dpdes = swab64(hr->dpdes);
75 hr->hfscr = swab64(hr->hfscr);
76 hr->tb_offset = swab64(hr->tb_offset);
77 hr->dawr0 = swab64(hr->dawr0);
78 hr->dawrx0 = swab64(hr->dawrx0);
79 hr->ciabr = swab64(hr->ciabr);
80 hr->hdec_expiry = swab64(hr->hdec_expiry);
81 hr->purr = swab64(hr->purr);
82 hr->spurr = swab64(hr->spurr);
83 hr->ic = swab64(hr->ic);
84 hr->vtb = swab64(hr->vtb);
85 hr->hdar = swab64(hr->hdar);
86 hr->hdsisr = swab64(hr->hdsisr);
87 hr->heir = swab64(hr->heir);
88 hr->asdr = swab64(hr->asdr);
89 hr->srr0 = swab64(hr->srr0);
90 hr->srr1 = swab64(hr->srr1);
91 hr->sprg[0] = swab64(hr->sprg[0]);
92 hr->sprg[1] = swab64(hr->sprg[1]);
93 hr->sprg[2] = swab64(hr->sprg[2]);
94 hr->sprg[3] = swab64(hr->sprg[3]);
95 hr->pidr = swab64(hr->pidr);
96 hr->cfar = swab64(hr->cfar);
97 hr->ppr = swab64(hr->ppr);
98 hr->dawr1 = swab64(hr->dawr1);
99 hr->dawrx1 = swab64(hr->dawrx1);
100 }
101
102 static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap,
103 struct hv_guest_state *hr)
104 {
105 struct kvmppc_vcore *vc = vcpu->arch.vcore;
106
107 hr->dpdes = vc->dpdes;
108 hr->hfscr = vcpu->arch.hfscr;
109 hr->purr = vcpu->arch.purr;
110 hr->spurr = vcpu->arch.spurr;
111 hr->ic = vcpu->arch.ic;
112 hr->vtb = vc->vtb;
113 hr->srr0 = vcpu->arch.shregs.srr0;
114 hr->srr1 = vcpu->arch.shregs.srr1;
115 hr->sprg[0] = vcpu->arch.shregs.sprg0;
116 hr->sprg[1] = vcpu->arch.shregs.sprg1;
117 hr->sprg[2] = vcpu->arch.shregs.sprg2;
118 hr->sprg[3] = vcpu->arch.shregs.sprg3;
119 hr->pidr = vcpu->arch.pid;
120 hr->cfar = vcpu->arch.cfar;
121 hr->ppr = vcpu->arch.ppr;
122 switch (trap) {
123 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
124 hr->hdar = vcpu->arch.fault_dar;
125 hr->hdsisr = vcpu->arch.fault_dsisr;
126 hr->asdr = vcpu->arch.fault_gpa;
127 break;
128 case BOOK3S_INTERRUPT_H_INST_STORAGE:
129 hr->asdr = vcpu->arch.fault_gpa;
130 break;
131 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
132 hr->heir = vcpu->arch.emul_inst;
133 break;
134 }
135 }
136
137 /*
138 * This can result in some L0 HV register state being leaked to an L1
139 * hypervisor when the hv_guest_state is copied back to the guest after
140 * being modified here.
141 *
142 * There is no known problem with such a leak, and in many cases these
143 * register settings could be derived by the guest by observing behaviour
144 * and timing, interrupts, etc., but it is an issue to consider.
145 */
146 static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
147 {
148 struct kvmppc_vcore *vc = vcpu->arch.vcore;
149 u64 mask;
150
151 /*
152 * Don't let L1 change LPCR bits for the L2 except these:
153 */
154 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD |
155 LPCR_LPES | LPCR_MER;
156
157 /*
158 * Additional filtering is required depending on hardware
159 * and configuration.
160 */
161 hr->lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
162 (vc->lpcr & ~mask) | (hr->lpcr & mask));
163
164 /*
165 * Don't let L1 enable features for L2 which we've disabled for L1,
166 * but preserve the interrupt cause field.
167 */
168 hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr);
169
170 /* Don't let data address watchpoint match in hypervisor state */
171 hr->dawrx0 &= ~DAWRX_HYP;
172 hr->dawrx1 &= ~DAWRX_HYP;
173
174 /* Don't let completed instruction address breakpt match in HV state */
175 if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
176 hr->ciabr &= ~CIABR_PRIV;
177 }
178
179 static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
180 {
181 struct kvmppc_vcore *vc = vcpu->arch.vcore;
182
183 vc->pcr = hr->pcr | PCR_MASK;
184 vc->dpdes = hr->dpdes;
185 vcpu->arch.hfscr = hr->hfscr;
186 vcpu->arch.dawr0 = hr->dawr0;
187 vcpu->arch.dawrx0 = hr->dawrx0;
188 vcpu->arch.ciabr = hr->ciabr;
189 vcpu->arch.purr = hr->purr;
190 vcpu->arch.spurr = hr->spurr;
191 vcpu->arch.ic = hr->ic;
192 vc->vtb = hr->vtb;
193 vcpu->arch.shregs.srr0 = hr->srr0;
194 vcpu->arch.shregs.srr1 = hr->srr1;
195 vcpu->arch.shregs.sprg0 = hr->sprg[0];
196 vcpu->arch.shregs.sprg1 = hr->sprg[1];
197 vcpu->arch.shregs.sprg2 = hr->sprg[2];
198 vcpu->arch.shregs.sprg3 = hr->sprg[3];
199 vcpu->arch.pid = hr->pidr;
200 vcpu->arch.cfar = hr->cfar;
201 vcpu->arch.ppr = hr->ppr;
202 vcpu->arch.dawr1 = hr->dawr1;
203 vcpu->arch.dawrx1 = hr->dawrx1;
204 }
205
206 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
207 struct hv_guest_state *hr)
208 {
209 struct kvmppc_vcore *vc = vcpu->arch.vcore;
210
211 vc->dpdes = hr->dpdes;
212 vcpu->arch.hfscr = hr->hfscr;
213 vcpu->arch.purr = hr->purr;
214 vcpu->arch.spurr = hr->spurr;
215 vcpu->arch.ic = hr->ic;
216 vc->vtb = hr->vtb;
217 vcpu->arch.fault_dar = hr->hdar;
218 vcpu->arch.fault_dsisr = hr->hdsisr;
219 vcpu->arch.fault_gpa = hr->asdr;
220 vcpu->arch.emul_inst = hr->heir;
221 vcpu->arch.shregs.srr0 = hr->srr0;
222 vcpu->arch.shregs.srr1 = hr->srr1;
223 vcpu->arch.shregs.sprg0 = hr->sprg[0];
224 vcpu->arch.shregs.sprg1 = hr->sprg[1];
225 vcpu->arch.shregs.sprg2 = hr->sprg[2];
226 vcpu->arch.shregs.sprg3 = hr->sprg[3];
227 vcpu->arch.pid = hr->pidr;
228 vcpu->arch.cfar = hr->cfar;
229 vcpu->arch.ppr = hr->ppr;
230 }
231
232 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
233 {
234 /* No need to reflect the page fault to L1, we've handled it */
235 vcpu->arch.trap = 0;
236
237 /*
238 * Since the L2 gprs have already been written back into L1 memory when
239 * we complete the mmio, store the L1 memory location of the L2 gpr
240 * being loaded into by the mmio so that the loaded value can be
241 * written there in kvmppc_complete_mmio_load()
242 */
243 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
244 && (vcpu->mmio_is_write == 0)) {
245 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
246 offsetof(struct pt_regs,
247 gpr[vcpu->arch.io_gpr]);
248 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
249 }
250 }
251
252 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
253 struct hv_guest_state *l2_hv,
254 struct pt_regs *l2_regs,
255 u64 hv_ptr, u64 regs_ptr)
256 {
257 int size;
258
259 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
260 sizeof(l2_hv->version)))
261 return -1;
262
263 if (kvmppc_need_byteswap(vcpu))
264 l2_hv->version = swab64(l2_hv->version);
265
266 size = hv_guest_state_size(l2_hv->version);
267 if (size < 0)
268 return -1;
269
270 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
271 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
272 sizeof(struct pt_regs));
273 }
274
275 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
276 struct hv_guest_state *l2_hv,
277 struct pt_regs *l2_regs,
278 u64 hv_ptr, u64 regs_ptr)
279 {
280 int size;
281
282 size = hv_guest_state_size(l2_hv->version);
283 if (size < 0)
284 return -1;
285
286 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
287 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
288 sizeof(struct pt_regs));
289 }
290
291 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
292 {
293 long int err, r;
294 struct kvm_nested_guest *l2;
295 struct pt_regs l2_regs, saved_l1_regs;
296 struct hv_guest_state l2_hv = {0}, saved_l1_hv;
297 struct kvmppc_vcore *vc = vcpu->arch.vcore;
298 u64 hv_ptr, regs_ptr;
299 u64 hdec_exp;
300 s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
301
302 if (vcpu->kvm->arch.l1_ptcr == 0)
303 return H_NOT_AVAILABLE;
304
305 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
306 return H_BAD_MODE;
307
308 /* copy parameters in */
309 hv_ptr = kvmppc_get_gpr(vcpu, 4);
310 regs_ptr = kvmppc_get_gpr(vcpu, 5);
311 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
312 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
313 hv_ptr, regs_ptr);
314 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
315 if (err)
316 return H_PARAMETER;
317
318 if (kvmppc_need_byteswap(vcpu))
319 byteswap_hv_regs(&l2_hv);
320 if (l2_hv.version > HV_GUEST_STATE_VERSION)
321 return H_P2;
322
323 if (kvmppc_need_byteswap(vcpu))
324 byteswap_pt_regs(&l2_regs);
325 if (l2_hv.vcpu_token >= NR_CPUS)
326 return H_PARAMETER;
327
328 /*
329 * L1 must have set up a suspended state to enter the L2 in a
330 * transactional state, and only in that case. These have to be
331 * filtered out here to prevent causing a TM Bad Thing in the
332 * host HRFID. We could synthesize a TM Bad Thing back to the L1
333 * here but there doesn't seem like much point.
334 */
335 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
336 if (!MSR_TM_ACTIVE(l2_regs.msr))
337 return H_BAD_MODE;
338 } else {
339 if (l2_regs.msr & MSR_TS_MASK)
340 return H_BAD_MODE;
341 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
342 return H_BAD_MODE;
343 }
344
345 /* translate lpid */
346 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
347 if (!l2)
348 return H_PARAMETER;
349 if (!l2->l1_gr_to_hr) {
350 mutex_lock(&l2->tlb_lock);
351 kvmhv_update_ptbl_cache(l2);
352 mutex_unlock(&l2->tlb_lock);
353 }
354
355 /* save l1 values of things */
356 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
357 saved_l1_regs = vcpu->arch.regs;
358 kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
359
360 /* convert TB values/offsets to host (L0) values */
361 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
362 vc->tb_offset += l2_hv.tb_offset;
363
364 /* set L1 state to L2 state */
365 vcpu->arch.nested = l2;
366 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
367 vcpu->arch.regs = l2_regs;
368
369 /* Guest must always run with ME enabled, HV disabled. */
370 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
371
372 sanitise_hv_regs(vcpu, &l2_hv);
373 restore_hv_regs(vcpu, &l2_hv);
374
375 vcpu->arch.ret = RESUME_GUEST;
376 vcpu->arch.trap = 0;
377 do {
378 if (mftb() >= hdec_exp) {
379 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
380 r = RESUME_HOST;
381 break;
382 }
383 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, l2_hv.lpcr);
384 } while (is_kvmppc_resume_guest(r));
385
386 /* save L2 state for return */
387 l2_regs = vcpu->arch.regs;
388 l2_regs.msr = vcpu->arch.shregs.msr;
389 delta_purr = vcpu->arch.purr - l2_hv.purr;
390 delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
391 delta_ic = vcpu->arch.ic - l2_hv.ic;
392 delta_vtb = vc->vtb - l2_hv.vtb;
393 save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv);
394
395 /* restore L1 state */
396 vcpu->arch.nested = NULL;
397 vcpu->arch.regs = saved_l1_regs;
398 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
399 /* set L1 MSR TS field according to L2 transaction state */
400 if (l2_regs.msr & MSR_TS_MASK)
401 vcpu->arch.shregs.msr |= MSR_TS_S;
402 vc->tb_offset = saved_l1_hv.tb_offset;
403 restore_hv_regs(vcpu, &saved_l1_hv);
404 vcpu->arch.purr += delta_purr;
405 vcpu->arch.spurr += delta_spurr;
406 vcpu->arch.ic += delta_ic;
407 vc->vtb += delta_vtb;
408
409 kvmhv_put_nested(l2);
410
411 /* copy l2_hv_state and regs back to guest */
412 if (kvmppc_need_byteswap(vcpu)) {
413 byteswap_hv_regs(&l2_hv);
414 byteswap_pt_regs(&l2_regs);
415 }
416 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
417 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
418 hv_ptr, regs_ptr);
419 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
420 if (err)
421 return H_AUTHORITY;
422
423 if (r == -EINTR)
424 return H_INTERRUPT;
425
426 if (vcpu->mmio_needed) {
427 kvmhv_nested_mmio_needed(vcpu, regs_ptr);
428 return H_TOO_HARD;
429 }
430
431 return vcpu->arch.trap;
432 }
433
434 long kvmhv_nested_init(void)
435 {
436 long int ptb_order;
437 unsigned long ptcr;
438 long rc;
439
440 if (!kvmhv_on_pseries())
441 return 0;
442 if (!radix_enabled())
443 return -ENODEV;
444
445 /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */
446 ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1;
447 if (ptb_order < 8)
448 ptb_order = 8;
449 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
450 GFP_KERNEL);
451 if (!pseries_partition_tb) {
452 pr_err("kvm-hv: failed to allocated nested partition table\n");
453 return -ENOMEM;
454 }
455
456 ptcr = __pa(pseries_partition_tb) | (ptb_order - 8);
457 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
458 if (rc != H_SUCCESS) {
459 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
460 rc);
461 kfree(pseries_partition_tb);
462 pseries_partition_tb = NULL;
463 return -ENODEV;
464 }
465
466 return 0;
467 }
468
469 void kvmhv_nested_exit(void)
470 {
471 /*
472 * N.B. the kvmhv_on_pseries() test is there because it enables
473 * the compiler to remove the call to plpar_hcall_norets()
474 * when CONFIG_PPC_PSERIES=n.
475 */
476 if (kvmhv_on_pseries() && pseries_partition_tb) {
477 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
478 kfree(pseries_partition_tb);
479 pseries_partition_tb = NULL;
480 }
481 }
482
483 static void kvmhv_flush_lpid(unsigned int lpid)
484 {
485 long rc;
486
487 if (!kvmhv_on_pseries()) {
488 radix__flush_all_lpid(lpid);
489 return;
490 }
491
492 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
493 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
494 lpid, TLBIEL_INVAL_SET_LPID);
495 else
496 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
497 H_RPTI_TYPE_NESTED |
498 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
499 H_RPTI_TYPE_PAT,
500 H_RPTI_PAGE_ALL, 0, -1UL);
501 if (rc)
502 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
503 }
504
505 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
506 {
507 if (!kvmhv_on_pseries()) {
508 mmu_partition_table_set_entry(lpid, dw0, dw1, true);
509 return;
510 }
511
512 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
513 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
514 /* L0 will do the necessary barriers */
515 kvmhv_flush_lpid(lpid);
516 }
517
518 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
519 {
520 unsigned long dw0;
521
522 dw0 = PATB_HR | radix__get_tree_size() |
523 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
524 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
525 }
526
527 void kvmhv_vm_nested_init(struct kvm *kvm)
528 {
529 kvm->arch.max_nested_lpid = -1;
530 }
531
532 /*
533 * Handle the H_SET_PARTITION_TABLE hcall.
534 * r4 = guest real address of partition table + log_2(size) - 12
535 * (formatted as for the PTCR).
536 */
537 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
538 {
539 struct kvm *kvm = vcpu->kvm;
540 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
541 int srcu_idx;
542 long ret = H_SUCCESS;
543
544 srcu_idx = srcu_read_lock(&kvm->srcu);
545 /*
546 * Limit the partition table to 4096 entries (because that's what
547 * hardware supports), and check the base address.
548 */
549 if ((ptcr & PRTS_MASK) > 12 - 8 ||
550 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
551 ret = H_PARAMETER;
552 srcu_read_unlock(&kvm->srcu, srcu_idx);
553 if (ret == H_SUCCESS)
554 kvm->arch.l1_ptcr = ptcr;
555 return ret;
556 }
557
558 /*
559 * Handle the H_COPY_TOFROM_GUEST hcall.
560 * r4 = L1 lpid of nested guest
561 * r5 = pid
562 * r6 = eaddr to access
563 * r7 = to buffer (L1 gpa)
564 * r8 = from buffer (L1 gpa)
565 * r9 = n bytes to copy
566 */
567 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
568 {
569 struct kvm_nested_guest *gp;
570 int l1_lpid = kvmppc_get_gpr(vcpu, 4);
571 int pid = kvmppc_get_gpr(vcpu, 5);
572 gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
573 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
574 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
575 void *buf;
576 unsigned long n = kvmppc_get_gpr(vcpu, 9);
577 bool is_load = !!gp_to;
578 long rc;
579
580 if (gp_to && gp_from) /* One must be NULL to determine the direction */
581 return H_PARAMETER;
582
583 if (eaddr & (0xFFFUL << 52))
584 return H_PARAMETER;
585
586 buf = kzalloc(n, GFP_KERNEL);
587 if (!buf)
588 return H_NO_MEM;
589
590 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
591 if (!gp) {
592 rc = H_PARAMETER;
593 goto out_free;
594 }
595
596 mutex_lock(&gp->tlb_lock);
597
598 if (is_load) {
599 /* Load from the nested guest into our buffer */
600 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
601 eaddr, buf, NULL, n);
602 if (rc)
603 goto not_found;
604
605 /* Write what was loaded into our buffer back to the L1 guest */
606 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
607 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
608 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
609 if (rc)
610 goto not_found;
611 } else {
612 /* Load the data to be stored from the L1 guest into our buf */
613 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
614 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
615 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
616 if (rc)
617 goto not_found;
618
619 /* Store from our buffer into the nested guest */
620 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
621 eaddr, NULL, buf, n);
622 if (rc)
623 goto not_found;
624 }
625
626 out_unlock:
627 mutex_unlock(&gp->tlb_lock);
628 kvmhv_put_nested(gp);
629 out_free:
630 kfree(buf);
631 return rc;
632 not_found:
633 rc = H_NOT_FOUND;
634 goto out_unlock;
635 }
636
637 /*
638 * Reload the partition table entry for a guest.
639 * Caller must hold gp->tlb_lock.
640 */
641 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
642 {
643 int ret;
644 struct patb_entry ptbl_entry;
645 unsigned long ptbl_addr;
646 struct kvm *kvm = gp->l1_host;
647
648 ret = -EFAULT;
649 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
650 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) {
651 int srcu_idx = srcu_read_lock(&kvm->srcu);
652 ret = kvm_read_guest(kvm, ptbl_addr,
653 &ptbl_entry, sizeof(ptbl_entry));
654 srcu_read_unlock(&kvm->srcu, srcu_idx);
655 }
656 if (ret) {
657 gp->l1_gr_to_hr = 0;
658 gp->process_table = 0;
659 } else {
660 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
661 gp->process_table = be64_to_cpu(ptbl_entry.patb1);
662 }
663 kvmhv_set_nested_ptbl(gp);
664 }
665
666 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
667 {
668 struct kvm_nested_guest *gp;
669 long shadow_lpid;
670
671 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
672 if (!gp)
673 return NULL;
674 gp->l1_host = kvm;
675 gp->l1_lpid = lpid;
676 mutex_init(&gp->tlb_lock);
677 gp->shadow_pgtable = pgd_alloc(kvm->mm);
678 if (!gp->shadow_pgtable)
679 goto out_free;
680 shadow_lpid = kvmppc_alloc_lpid();
681 if (shadow_lpid < 0)
682 goto out_free2;
683 gp->shadow_lpid = shadow_lpid;
684 gp->radix = 1;
685
686 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
687
688 return gp;
689
690 out_free2:
691 pgd_free(kvm->mm, gp->shadow_pgtable);
692 out_free:
693 kfree(gp);
694 return NULL;
695 }
696
697 /*
698 * Free up any resources allocated for a nested guest.
699 */
700 static void kvmhv_release_nested(struct kvm_nested_guest *gp)
701 {
702 struct kvm *kvm = gp->l1_host;
703
704 if (gp->shadow_pgtable) {
705 /*
706 * No vcpu is using this struct and no call to
707 * kvmhv_get_nested can find this struct,
708 * so we don't need to hold kvm->mmu_lock.
709 */
710 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
711 gp->shadow_lpid);
712 pgd_free(kvm->mm, gp->shadow_pgtable);
713 }
714 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
715 kvmppc_free_lpid(gp->shadow_lpid);
716 kfree(gp);
717 }
718
719 static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
720 {
721 struct kvm *kvm = gp->l1_host;
722 int lpid = gp->l1_lpid;
723 long ref;
724
725 spin_lock(&kvm->mmu_lock);
726 if (gp == kvm->arch.nested_guests[lpid]) {
727 kvm->arch.nested_guests[lpid] = NULL;
728 if (lpid == kvm->arch.max_nested_lpid) {
729 while (--lpid >= 0 && !kvm->arch.nested_guests[lpid])
730 ;
731 kvm->arch.max_nested_lpid = lpid;
732 }
733 --gp->refcnt;
734 }
735 ref = gp->refcnt;
736 spin_unlock(&kvm->mmu_lock);
737 if (ref == 0)
738 kvmhv_release_nested(gp);
739 }
740
741 /*
742 * Free up all nested resources allocated for this guest.
743 * This is called with no vcpus of the guest running, when
744 * switching the guest to HPT mode or when destroying the
745 * guest.
746 */
747 void kvmhv_release_all_nested(struct kvm *kvm)
748 {
749 int i;
750 struct kvm_nested_guest *gp;
751 struct kvm_nested_guest *freelist = NULL;
752 struct kvm_memory_slot *memslot;
753 int srcu_idx;
754
755 spin_lock(&kvm->mmu_lock);
756 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
757 gp = kvm->arch.nested_guests[i];
758 if (!gp)
759 continue;
760 kvm->arch.nested_guests[i] = NULL;
761 if (--gp->refcnt == 0) {
762 gp->next = freelist;
763 freelist = gp;
764 }
765 }
766 kvm->arch.max_nested_lpid = -1;
767 spin_unlock(&kvm->mmu_lock);
768 while ((gp = freelist) != NULL) {
769 freelist = gp->next;
770 kvmhv_release_nested(gp);
771 }
772
773 srcu_idx = srcu_read_lock(&kvm->srcu);
774 kvm_for_each_memslot(memslot, kvm_memslots(kvm))
775 kvmhv_free_memslot_nest_rmap(memslot);
776 srcu_read_unlock(&kvm->srcu, srcu_idx);
777 }
778
779 /* caller must hold gp->tlb_lock */
780 static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
781 {
782 struct kvm *kvm = gp->l1_host;
783
784 spin_lock(&kvm->mmu_lock);
785 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
786 spin_unlock(&kvm->mmu_lock);
787 kvmhv_flush_lpid(gp->shadow_lpid);
788 kvmhv_update_ptbl_cache(gp);
789 if (gp->l1_gr_to_hr == 0)
790 kvmhv_remove_nested(gp);
791 }
792
793 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
794 bool create)
795 {
796 struct kvm_nested_guest *gp, *newgp;
797
798 if (l1_lpid >= KVM_MAX_NESTED_GUESTS ||
799 l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
800 return NULL;
801
802 spin_lock(&kvm->mmu_lock);
803 gp = kvm->arch.nested_guests[l1_lpid];
804 if (gp)
805 ++gp->refcnt;
806 spin_unlock(&kvm->mmu_lock);
807
808 if (gp || !create)
809 return gp;
810
811 newgp = kvmhv_alloc_nested(kvm, l1_lpid);
812 if (!newgp)
813 return NULL;
814 spin_lock(&kvm->mmu_lock);
815 if (kvm->arch.nested_guests[l1_lpid]) {
816 /* someone else beat us to it */
817 gp = kvm->arch.nested_guests[l1_lpid];
818 } else {
819 kvm->arch.nested_guests[l1_lpid] = newgp;
820 ++newgp->refcnt;
821 gp = newgp;
822 newgp = NULL;
823 if (l1_lpid > kvm->arch.max_nested_lpid)
824 kvm->arch.max_nested_lpid = l1_lpid;
825 }
826 ++gp->refcnt;
827 spin_unlock(&kvm->mmu_lock);
828
829 if (newgp)
830 kvmhv_release_nested(newgp);
831
832 return gp;
833 }
834
835 void kvmhv_put_nested(struct kvm_nested_guest *gp)
836 {
837 struct kvm *kvm = gp->l1_host;
838 long ref;
839
840 spin_lock(&kvm->mmu_lock);
841 ref = --gp->refcnt;
842 spin_unlock(&kvm->mmu_lock);
843 if (ref == 0)
844 kvmhv_release_nested(gp);
845 }
846
847 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid)
848 {
849 if (lpid > kvm->arch.max_nested_lpid)
850 return NULL;
851 return kvm->arch.nested_guests[lpid];
852 }
853
854 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
855 unsigned long ea, unsigned *hshift)
856 {
857 struct kvm_nested_guest *gp;
858 pte_t *pte;
859
860 gp = kvmhv_find_nested(kvm, lpid);
861 if (!gp)
862 return NULL;
863
864 VM_WARN(!spin_is_locked(&kvm->mmu_lock),
865 "%s called with kvm mmu_lock not held \n", __func__);
866 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
867
868 return pte;
869 }
870
871 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
872 {
873 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
874 RMAP_NESTED_GPA_MASK));
875 }
876
877 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
878 struct rmap_nested **n_rmap)
879 {
880 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
881 struct rmap_nested *cursor;
882 u64 rmap, new_rmap = (*n_rmap)->rmap;
883
884 /* Are there any existing entries? */
885 if (!(*rmapp)) {
886 /* No -> use the rmap as a single entry */
887 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
888 return;
889 }
890
891 /* Do any entries match what we're trying to insert? */
892 for_each_nest_rmap_safe(cursor, entry, &rmap) {
893 if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
894 return;
895 }
896
897 /* Do we need to create a list or just add the new entry? */
898 rmap = *rmapp;
899 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
900 *rmapp = 0UL;
901 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
902 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
903 (*n_rmap)->list.next = (struct llist_node *) rmap;
904
905 /* Set NULL so not freed by caller */
906 *n_rmap = NULL;
907 }
908
909 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
910 unsigned long clr, unsigned long set,
911 unsigned long hpa, unsigned long mask)
912 {
913 unsigned long gpa;
914 unsigned int shift, lpid;
915 pte_t *ptep;
916
917 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
918 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
919
920 /* Find the pte */
921 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
922 /*
923 * If the pte is present and the pfn is still the same, update the pte.
924 * If the pfn has changed then this is a stale rmap entry, the nested
925 * gpa actually points somewhere else now, and there is nothing to do.
926 * XXX A future optimisation would be to remove the rmap entry here.
927 */
928 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
929 __radix_pte_update(ptep, clr, set);
930 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
931 }
932 }
933
934 /*
935 * For a given list of rmap entries, update the rc bits in all ptes in shadow
936 * page tables for nested guests which are referenced by the rmap list.
937 */
938 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
939 unsigned long clr, unsigned long set,
940 unsigned long hpa, unsigned long nbytes)
941 {
942 struct llist_node *entry = ((struct llist_head *) rmapp)->first;
943 struct rmap_nested *cursor;
944 unsigned long rmap, mask;
945
946 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
947 return;
948
949 mask = PTE_RPN_MASK & ~(nbytes - 1);
950 hpa &= mask;
951
952 for_each_nest_rmap_safe(cursor, entry, &rmap)
953 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
954 }
955
956 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
957 unsigned long hpa, unsigned long mask)
958 {
959 struct kvm_nested_guest *gp;
960 unsigned long gpa;
961 unsigned int shift, lpid;
962 pte_t *ptep;
963
964 gpa = n_rmap & RMAP_NESTED_GPA_MASK;
965 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
966 gp = kvmhv_find_nested(kvm, lpid);
967 if (!gp)
968 return;
969
970 /* Find and invalidate the pte */
971 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
972 /* Don't spuriously invalidate ptes if the pfn has changed */
973 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
974 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
975 }
976
977 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
978 unsigned long hpa, unsigned long mask)
979 {
980 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
981 struct rmap_nested *cursor;
982 unsigned long rmap;
983
984 for_each_nest_rmap_safe(cursor, entry, &rmap) {
985 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
986 kfree(cursor);
987 }
988 }
989
990 /* called with kvm->mmu_lock held */
991 void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
992 const struct kvm_memory_slot *memslot,
993 unsigned long gpa, unsigned long hpa,
994 unsigned long nbytes)
995 {
996 unsigned long gfn, end_gfn;
997 unsigned long addr_mask;
998
999 if (!memslot)
1000 return;
1001 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
1002 end_gfn = gfn + (nbytes >> PAGE_SHIFT);
1003
1004 addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
1005 hpa &= addr_mask;
1006
1007 for (; gfn < end_gfn; gfn++) {
1008 unsigned long *rmap = &memslot->arch.rmap[gfn];
1009 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
1010 }
1011 }
1012
1013 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
1014 {
1015 unsigned long page;
1016
1017 for (page = 0; page < free->npages; page++) {
1018 unsigned long rmap, *rmapp = &free->arch.rmap[page];
1019 struct rmap_nested *cursor;
1020 struct llist_node *entry;
1021
1022 entry = llist_del_all((struct llist_head *) rmapp);
1023 for_each_nest_rmap_safe(cursor, entry, &rmap)
1024 kfree(cursor);
1025 }
1026 }
1027
1028 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
1029 struct kvm_nested_guest *gp,
1030 long gpa, int *shift_ret)
1031 {
1032 struct kvm *kvm = vcpu->kvm;
1033 bool ret = false;
1034 pte_t *ptep;
1035 int shift;
1036
1037 spin_lock(&kvm->mmu_lock);
1038 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
1039 if (!shift)
1040 shift = PAGE_SHIFT;
1041 if (ptep && pte_present(*ptep)) {
1042 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
1043 ret = true;
1044 }
1045 spin_unlock(&kvm->mmu_lock);
1046
1047 if (shift_ret)
1048 *shift_ret = shift;
1049 return ret;
1050 }
1051
1052 static inline int get_ric(unsigned int instr)
1053 {
1054 return (instr >> 18) & 0x3;
1055 }
1056
1057 static inline int get_prs(unsigned int instr)
1058 {
1059 return (instr >> 17) & 0x1;
1060 }
1061
1062 static inline int get_r(unsigned int instr)
1063 {
1064 return (instr >> 16) & 0x1;
1065 }
1066
1067 static inline int get_lpid(unsigned long r_val)
1068 {
1069 return r_val & 0xffffffff;
1070 }
1071
1072 static inline int get_is(unsigned long r_val)
1073 {
1074 return (r_val >> 10) & 0x3;
1075 }
1076
1077 static inline int get_ap(unsigned long r_val)
1078 {
1079 return (r_val >> 5) & 0x7;
1080 }
1081
1082 static inline long get_epn(unsigned long r_val)
1083 {
1084 return r_val >> 12;
1085 }
1086
1087 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
1088 int ap, long epn)
1089 {
1090 struct kvm *kvm = vcpu->kvm;
1091 struct kvm_nested_guest *gp;
1092 long npages;
1093 int shift, shadow_shift;
1094 unsigned long addr;
1095
1096 shift = ap_to_shift(ap);
1097 addr = epn << 12;
1098 if (shift < 0)
1099 /* Invalid ap encoding */
1100 return -EINVAL;
1101
1102 addr &= ~((1UL << shift) - 1);
1103 npages = 1UL << (shift - PAGE_SHIFT);
1104
1105 gp = kvmhv_get_nested(kvm, lpid, false);
1106 if (!gp) /* No such guest -> nothing to do */
1107 return 0;
1108 mutex_lock(&gp->tlb_lock);
1109
1110 /* There may be more than one host page backing this single guest pte */
1111 do {
1112 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
1113
1114 npages -= 1UL << (shadow_shift - PAGE_SHIFT);
1115 addr += 1UL << shadow_shift;
1116 } while (npages > 0);
1117
1118 mutex_unlock(&gp->tlb_lock);
1119 kvmhv_put_nested(gp);
1120 return 0;
1121 }
1122
1123 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
1124 struct kvm_nested_guest *gp, int ric)
1125 {
1126 struct kvm *kvm = vcpu->kvm;
1127
1128 mutex_lock(&gp->tlb_lock);
1129 switch (ric) {
1130 case 0:
1131 /* Invalidate TLB */
1132 spin_lock(&kvm->mmu_lock);
1133 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
1134 gp->shadow_lpid);
1135 kvmhv_flush_lpid(gp->shadow_lpid);
1136 spin_unlock(&kvm->mmu_lock);
1137 break;
1138 case 1:
1139 /*
1140 * Invalidate PWC
1141 * We don't cache this -> nothing to do
1142 */
1143 break;
1144 case 2:
1145 /* Invalidate TLB, PWC and caching of partition table entries */
1146 kvmhv_flush_nested(gp);
1147 break;
1148 default:
1149 break;
1150 }
1151 mutex_unlock(&gp->tlb_lock);
1152 }
1153
1154 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
1155 {
1156 struct kvm *kvm = vcpu->kvm;
1157 struct kvm_nested_guest *gp;
1158 int i;
1159
1160 spin_lock(&kvm->mmu_lock);
1161 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) {
1162 gp = kvm->arch.nested_guests[i];
1163 if (gp) {
1164 spin_unlock(&kvm->mmu_lock);
1165 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1166 spin_lock(&kvm->mmu_lock);
1167 }
1168 }
1169 spin_unlock(&kvm->mmu_lock);
1170 }
1171
1172 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
1173 unsigned long rsval, unsigned long rbval)
1174 {
1175 struct kvm *kvm = vcpu->kvm;
1176 struct kvm_nested_guest *gp;
1177 int r, ric, prs, is, ap;
1178 int lpid;
1179 long epn;
1180 int ret = 0;
1181
1182 ric = get_ric(instr);
1183 prs = get_prs(instr);
1184 r = get_r(instr);
1185 lpid = get_lpid(rsval);
1186 is = get_is(rbval);
1187
1188 /*
1189 * These cases are invalid and are not handled:
1190 * r != 1 -> Only radix supported
1191 * prs == 1 -> Not HV privileged
1192 * ric == 3 -> No cluster bombs for radix
1193 * is == 1 -> Partition scoped translations not associated with pid
1194 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
1195 */
1196 if ((!r) || (prs) || (ric == 3) || (is == 1) ||
1197 ((!is) && (ric == 1 || ric == 2)))
1198 return -EINVAL;
1199
1200 switch (is) {
1201 case 0:
1202 /*
1203 * We know ric == 0
1204 * Invalidate TLB for a given target address
1205 */
1206 epn = get_epn(rbval);
1207 ap = get_ap(rbval);
1208 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
1209 break;
1210 case 2:
1211 /* Invalidate matching LPID */
1212 gp = kvmhv_get_nested(kvm, lpid, false);
1213 if (gp) {
1214 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1215 kvmhv_put_nested(gp);
1216 }
1217 break;
1218 case 3:
1219 /* Invalidate ALL LPIDs */
1220 kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
1221 break;
1222 default:
1223 ret = -EINVAL;
1224 break;
1225 }
1226
1227 return ret;
1228 }
1229
1230 /*
1231 * This handles the H_TLB_INVALIDATE hcall.
1232 * Parameters are (r4) tlbie instruction code, (r5) rS contents,
1233 * (r6) rB contents.
1234 */
1235 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
1236 {
1237 int ret;
1238
1239 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
1240 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
1241 if (ret)
1242 return H_PARAMETER;
1243 return H_SUCCESS;
1244 }
1245
1246 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
1247 unsigned long lpid, unsigned long ric)
1248 {
1249 struct kvm *kvm = vcpu->kvm;
1250 struct kvm_nested_guest *gp;
1251
1252 gp = kvmhv_get_nested(kvm, lpid, false);
1253 if (gp) {
1254 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
1255 kvmhv_put_nested(gp);
1256 }
1257 return H_SUCCESS;
1258 }
1259
1260 /*
1261 * Number of pages above which we invalidate the entire LPID rather than
1262 * flush individual pages.
1263 */
1264 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
1265
1266 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
1267 unsigned long lpid,
1268 unsigned long pg_sizes,
1269 unsigned long start,
1270 unsigned long end)
1271 {
1272 int ret = H_P4;
1273 unsigned long addr, nr_pages;
1274 struct mmu_psize_def *def;
1275 unsigned long psize, ap, page_size;
1276 bool flush_lpid;
1277
1278 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1279 def = &mmu_psize_defs[psize];
1280 if (!(pg_sizes & def->h_rpt_pgsize))
1281 continue;
1282
1283 nr_pages = (end - start) >> def->shift;
1284 flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
1285 if (flush_lpid)
1286 return do_tlb_invalidate_nested_all(vcpu, lpid,
1287 RIC_FLUSH_TLB);
1288 addr = start;
1289 ap = mmu_get_ap(psize);
1290 page_size = 1UL << def->shift;
1291 do {
1292 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
1293 get_epn(addr));
1294 if (ret)
1295 return H_P4;
1296 addr += page_size;
1297 } while (addr < end);
1298 }
1299 return ret;
1300 }
1301
1302 /*
1303 * Performs partition-scoped invalidations for nested guests
1304 * as part of H_RPT_INVALIDATE hcall.
1305 */
1306 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
1307 unsigned long type, unsigned long pg_sizes,
1308 unsigned long start, unsigned long end)
1309 {
1310 /*
1311 * If L2 lpid isn't valid, we need to return H_PARAMETER.
1312 *
1313 * However, nested KVM issues a L2 lpid flush call when creating
1314 * partition table entries for L2. This happens even before the
1315 * corresponding shadow lpid is created in HV which happens in
1316 * H_ENTER_NESTED call. Since we can't differentiate this case from
1317 * the invalid case, we ignore such flush requests and return success.
1318 */
1319 if (!kvmhv_find_nested(vcpu->kvm, lpid))
1320 return H_SUCCESS;
1321
1322 /*
1323 * A flush all request can be handled by a full lpid flush only.
1324 */
1325 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
1326 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
1327
1328 /*
1329 * We don't need to handle a PWC flush like process table here,
1330 * because intermediate partition scoped table in nested guest doesn't
1331 * really have PWC. Only level we have PWC is in L0 and for nested
1332 * invalidate at L0 we always do kvm_flush_lpid() which does
1333 * radix__flush_all_lpid(). For range invalidate at any level, we
1334 * are not removing the higher level page tables and hence there is
1335 * no PWC invalidate needed.
1336 *
1337 * if (type & H_RPTI_TYPE_PWC) {
1338 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
1339 * if (ret)
1340 * return H_P4;
1341 * }
1342 */
1343
1344 if (start == 0 && end == -1)
1345 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
1346
1347 if (type & H_RPTI_TYPE_TLB)
1348 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
1349 start, end);
1350 return H_SUCCESS;
1351 }
1352
1353 /* Used to convert a nested guest real address to a L1 guest real address */
1354 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
1355 struct kvm_nested_guest *gp,
1356 unsigned long n_gpa, unsigned long dsisr,
1357 struct kvmppc_pte *gpte_p)
1358 {
1359 u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
1360 int ret;
1361
1362 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
1363 &fault_addr);
1364
1365 if (ret) {
1366 /* We didn't find a pte */
1367 if (ret == -EINVAL) {
1368 /* Unsupported mmu config */
1369 flags |= DSISR_UNSUPP_MMU;
1370 } else if (ret == -ENOENT) {
1371 /* No translation found */
1372 flags |= DSISR_NOHPTE;
1373 } else if (ret == -EFAULT) {
1374 /* Couldn't access L1 real address */
1375 flags |= DSISR_PRTABLE_FAULT;
1376 vcpu->arch.fault_gpa = fault_addr;
1377 } else {
1378 /* Unknown error */
1379 return ret;
1380 }
1381 goto forward_to_l1;
1382 } else {
1383 /* We found a pte -> check permissions */
1384 if (dsisr & DSISR_ISSTORE) {
1385 /* Can we write? */
1386 if (!gpte_p->may_write) {
1387 flags |= DSISR_PROTFAULT;
1388 goto forward_to_l1;
1389 }
1390 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1391 /* Can we execute? */
1392 if (!gpte_p->may_execute) {
1393 flags |= SRR1_ISI_N_G_OR_CIP;
1394 goto forward_to_l1;
1395 }
1396 } else {
1397 /* Can we read? */
1398 if (!gpte_p->may_read && !gpte_p->may_write) {
1399 flags |= DSISR_PROTFAULT;
1400 goto forward_to_l1;
1401 }
1402 }
1403 }
1404
1405 return 0;
1406
1407 forward_to_l1:
1408 vcpu->arch.fault_dsisr = flags;
1409 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
1410 vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
1411 vcpu->arch.shregs.msr |= flags;
1412 }
1413 return RESUME_HOST;
1414 }
1415
1416 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
1417 struct kvm_nested_guest *gp,
1418 unsigned long n_gpa,
1419 struct kvmppc_pte gpte,
1420 unsigned long dsisr)
1421 {
1422 struct kvm *kvm = vcpu->kvm;
1423 bool writing = !!(dsisr & DSISR_ISSTORE);
1424 u64 pgflags;
1425 long ret;
1426
1427 /* Are the rc bits set in the L1 partition scoped pte? */
1428 pgflags = _PAGE_ACCESSED;
1429 if (writing)
1430 pgflags |= _PAGE_DIRTY;
1431 if (pgflags & ~gpte.rc)
1432 return RESUME_HOST;
1433
1434 spin_lock(&kvm->mmu_lock);
1435 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
1436 ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
1437 gpte.raddr, kvm->arch.lpid);
1438 if (!ret) {
1439 ret = -EINVAL;
1440 goto out_unlock;
1441 }
1442
1443 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
1444 ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
1445 n_gpa, gp->l1_lpid);
1446 if (!ret)
1447 ret = -EINVAL;
1448 else
1449 ret = 0;
1450
1451 out_unlock:
1452 spin_unlock(&kvm->mmu_lock);
1453 return ret;
1454 }
1455
1456 static inline int kvmppc_radix_level_to_shift(int level)
1457 {
1458 switch (level) {
1459 case 2:
1460 return PUD_SHIFT;
1461 case 1:
1462 return PMD_SHIFT;
1463 default:
1464 return PAGE_SHIFT;
1465 }
1466 }
1467
1468 static inline int kvmppc_radix_shift_to_level(int shift)
1469 {
1470 if (shift == PUD_SHIFT)
1471 return 2;
1472 if (shift == PMD_SHIFT)
1473 return 1;
1474 if (shift == PAGE_SHIFT)
1475 return 0;
1476 WARN_ON_ONCE(1);
1477 return 0;
1478 }
1479
1480 /* called with gp->tlb_lock held */
1481 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
1482 struct kvm_nested_guest *gp)
1483 {
1484 struct kvm *kvm = vcpu->kvm;
1485 struct kvm_memory_slot *memslot;
1486 struct rmap_nested *n_rmap;
1487 struct kvmppc_pte gpte;
1488 pte_t pte, *pte_p;
1489 unsigned long mmu_seq;
1490 unsigned long dsisr = vcpu->arch.fault_dsisr;
1491 unsigned long ea = vcpu->arch.fault_dar;
1492 unsigned long *rmapp;
1493 unsigned long n_gpa, gpa, gfn, perm = 0UL;
1494 unsigned int shift, l1_shift, level;
1495 bool writing = !!(dsisr & DSISR_ISSTORE);
1496 bool kvm_ro = false;
1497 long int ret;
1498
1499 if (!gp->l1_gr_to_hr) {
1500 kvmhv_update_ptbl_cache(gp);
1501 if (!gp->l1_gr_to_hr)
1502 return RESUME_HOST;
1503 }
1504
1505 /* Convert the nested guest real address into a L1 guest real address */
1506
1507 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
1508 if (!(dsisr & DSISR_PRTABLE_FAULT))
1509 n_gpa |= ea & 0xFFF;
1510 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
1511
1512 /*
1513 * If the hardware found a translation but we don't now have a usable
1514 * translation in the l1 partition-scoped tree, remove the shadow pte
1515 * and let the guest retry.
1516 */
1517 if (ret == RESUME_HOST &&
1518 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
1519 DSISR_BAD_COPYPASTE)))
1520 goto inval;
1521 if (ret)
1522 return ret;
1523
1524 /* Failed to set the reference/change bits */
1525 if (dsisr & DSISR_SET_RC) {
1526 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
1527 if (ret == RESUME_HOST)
1528 return ret;
1529 if (ret)
1530 goto inval;
1531 dsisr &= ~DSISR_SET_RC;
1532 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1533 DSISR_PROTFAULT)))
1534 return RESUME_GUEST;
1535 }
1536
1537 /*
1538 * We took an HISI or HDSI while we were running a nested guest which
1539 * means we have no partition scoped translation for that. This means
1540 * we need to insert a pte for the mapping into our shadow_pgtable.
1541 */
1542
1543 l1_shift = gpte.page_shift;
1544 if (l1_shift < PAGE_SHIFT) {
1545 /* We don't support l1 using a page size smaller than our own */
1546 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
1547 l1_shift, PAGE_SHIFT);
1548 return -EINVAL;
1549 }
1550 gpa = gpte.raddr;
1551 gfn = gpa >> PAGE_SHIFT;
1552
1553 /* 1. Get the corresponding host memslot */
1554
1555 memslot = gfn_to_memslot(kvm, gfn);
1556 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
1557 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
1558 /* unusual error -> reflect to the guest as a DSI */
1559 kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
1560 return RESUME_GUEST;
1561 }
1562
1563 /* passthrough of emulated MMIO case */
1564 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
1565 }
1566 if (memslot->flags & KVM_MEM_READONLY) {
1567 if (writing) {
1568 /* Give the guest a DSI */
1569 kvmppc_core_queue_data_storage(vcpu, ea,
1570 DSISR_ISSTORE | DSISR_PROTFAULT);
1571 return RESUME_GUEST;
1572 }
1573 kvm_ro = true;
1574 }
1575
1576 /* 2. Find the host pte for this L1 guest real address */
1577
1578 /* Used to check for invalidations in progress */
1579 mmu_seq = kvm->mmu_notifier_seq;
1580 smp_rmb();
1581
1582 /* See if can find translation in our partition scoped tables for L1 */
1583 pte = __pte(0);
1584 spin_lock(&kvm->mmu_lock);
1585 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
1586 if (!shift)
1587 shift = PAGE_SHIFT;
1588 if (pte_p)
1589 pte = *pte_p;
1590 spin_unlock(&kvm->mmu_lock);
1591
1592 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
1593 /* No suitable pte found -> try to insert a mapping */
1594 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
1595 writing, kvm_ro, &pte, &level);
1596 if (ret == -EAGAIN)
1597 return RESUME_GUEST;
1598 else if (ret)
1599 return ret;
1600 shift = kvmppc_radix_level_to_shift(level);
1601 }
1602 /* Align gfn to the start of the page */
1603 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
1604
1605 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
1606
1607 /* The permissions is the combination of the host and l1 guest ptes */
1608 perm |= gpte.may_read ? 0UL : _PAGE_READ;
1609 perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
1610 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
1611 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
1612 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
1613 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
1614 pte = __pte(pte_val(pte) & ~perm);
1615
1616 /* What size pte can we insert? */
1617 if (shift > l1_shift) {
1618 u64 mask;
1619 unsigned int actual_shift = PAGE_SHIFT;
1620 if (PMD_SHIFT < l1_shift)
1621 actual_shift = PMD_SHIFT;
1622 mask = (1UL << shift) - (1UL << actual_shift);
1623 pte = __pte(pte_val(pte) | (gpa & mask));
1624 shift = actual_shift;
1625 }
1626 level = kvmppc_radix_shift_to_level(shift);
1627 n_gpa &= ~((1UL << shift) - 1);
1628
1629 /* 4. Insert the pte into our shadow_pgtable */
1630
1631 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
1632 if (!n_rmap)
1633 return RESUME_GUEST; /* Let the guest try again */
1634 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
1635 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
1636 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1637 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
1638 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
1639 kfree(n_rmap);
1640 if (ret == -EAGAIN)
1641 ret = RESUME_GUEST; /* Let the guest try again */
1642
1643 return ret;
1644
1645 inval:
1646 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
1647 return RESUME_GUEST;
1648 }
1649
1650 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
1651 {
1652 struct kvm_nested_guest *gp = vcpu->arch.nested;
1653 long int ret;
1654
1655 mutex_lock(&gp->tlb_lock);
1656 ret = __kvmhv_nested_page_fault(vcpu, gp);
1657 mutex_unlock(&gp->tlb_lock);
1658 return ret;
1659 }
1660
1661 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
1662 {
1663 int ret = -1;
1664
1665 spin_lock(&kvm->mmu_lock);
1666 while (++lpid <= kvm->arch.max_nested_lpid) {
1667 if (kvm->arch.nested_guests[lpid]) {
1668 ret = lpid;
1669 break;
1670 }
1671 }
1672 spin_unlock(&kvm->mmu_lock);
1673 return ret;
1674 }