]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/book3s_pr.c
b18f2d4fac595236fb994afdcd8d51a8745be6eb
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / book3s_pr.c
1 /*
2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
7 * Paul Mackerras <paulus@samba.org>
8 *
9 * Description:
10 * Functions relating to running KVM on Book 3S processors where
11 * we don't have access to hypervisor mode, and we run the guest
12 * in problem state (user mode).
13 *
14 * This file is derived from arch/powerpc/kvm/44x.c,
15 * by Hollis Blanchard <hollisb@us.ibm.com>.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License, version 2, as
19 * published by the Free Software Foundation.
20 */
21
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlbflush.h>
31 #include <asm/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu_context.h>
36 #include <asm/switch_to.h>
37 #include <asm/firmware.h>
38 #include <asm/hvcall.h>
39 #include <linux/gfp.h>
40 #include <linux/sched.h>
41 #include <linux/vmalloc.h>
42 #include <linux/highmem.h>
43 #include <linux/module.h>
44 #include <linux/miscdevice.h>
45
46 #include "book3s.h"
47
48 #define CREATE_TRACE_POINTS
49 #include "trace_pr.h"
50
51 /* #define EXIT_DEBUG */
52 /* #define DEBUG_EXT */
53
54 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
55 ulong msr);
56 static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57
58 /* Some compatibility defines */
59 #ifdef CONFIG_PPC_BOOK3S_32
60 #define MSR_USER32 MSR_USER
61 #define MSR_USER64 MSR_USER
62 #define HW_PAGE_SIZE PAGE_SIZE
63 #endif
64
65 static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
66 {
67 ulong msr = kvmppc_get_msr(vcpu);
68 return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
69 }
70
71 static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
72 {
73 ulong msr = kvmppc_get_msr(vcpu);
74 ulong pc = kvmppc_get_pc(vcpu);
75
76 /* We are in DR only split real mode */
77 if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
78 return;
79
80 /* We have not fixed up the guest already */
81 if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
82 return;
83
84 /* The code is in fixupable address space */
85 if (pc & SPLIT_HACK_MASK)
86 return;
87
88 vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
89 kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
90 }
91
92 void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
93
94 static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
95 {
96 #ifdef CONFIG_PPC_BOOK3S_64
97 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
98 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
99 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
100 svcpu->in_use = 0;
101 svcpu_put(svcpu);
102 #endif
103
104 /* Disable AIL if supported */
105 if (cpu_has_feature(CPU_FTR_HVMODE) &&
106 cpu_has_feature(CPU_FTR_ARCH_207S))
107 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
108
109 vcpu->cpu = smp_processor_id();
110 #ifdef CONFIG_PPC_BOOK3S_32
111 current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
112 #endif
113
114 if (kvmppc_is_split_real(vcpu))
115 kvmppc_fixup_split_real(vcpu);
116 }
117
118 static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
119 {
120 #ifdef CONFIG_PPC_BOOK3S_64
121 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
122 if (svcpu->in_use) {
123 kvmppc_copy_from_svcpu(vcpu, svcpu);
124 }
125 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
126 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
127 svcpu_put(svcpu);
128 #endif
129
130 if (kvmppc_is_split_real(vcpu))
131 kvmppc_unfixup_split_real(vcpu);
132
133 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
134 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
135
136 /* Enable AIL if supported */
137 if (cpu_has_feature(CPU_FTR_HVMODE) &&
138 cpu_has_feature(CPU_FTR_ARCH_207S))
139 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
140
141 vcpu->cpu = -1;
142 }
143
144 /* Copy data needed by real-mode code from vcpu to shadow vcpu */
145 void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
146 struct kvm_vcpu *vcpu)
147 {
148 svcpu->gpr[0] = vcpu->arch.gpr[0];
149 svcpu->gpr[1] = vcpu->arch.gpr[1];
150 svcpu->gpr[2] = vcpu->arch.gpr[2];
151 svcpu->gpr[3] = vcpu->arch.gpr[3];
152 svcpu->gpr[4] = vcpu->arch.gpr[4];
153 svcpu->gpr[5] = vcpu->arch.gpr[5];
154 svcpu->gpr[6] = vcpu->arch.gpr[6];
155 svcpu->gpr[7] = vcpu->arch.gpr[7];
156 svcpu->gpr[8] = vcpu->arch.gpr[8];
157 svcpu->gpr[9] = vcpu->arch.gpr[9];
158 svcpu->gpr[10] = vcpu->arch.gpr[10];
159 svcpu->gpr[11] = vcpu->arch.gpr[11];
160 svcpu->gpr[12] = vcpu->arch.gpr[12];
161 svcpu->gpr[13] = vcpu->arch.gpr[13];
162 svcpu->cr = vcpu->arch.cr;
163 svcpu->xer = vcpu->arch.xer;
164 svcpu->ctr = vcpu->arch.ctr;
165 svcpu->lr = vcpu->arch.lr;
166 svcpu->pc = vcpu->arch.pc;
167 #ifdef CONFIG_PPC_BOOK3S_64
168 svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
169 #endif
170 /*
171 * Now also save the current time base value. We use this
172 * to find the guest purr and spurr value.
173 */
174 vcpu->arch.entry_tb = get_tb();
175 vcpu->arch.entry_vtb = get_vtb();
176 if (cpu_has_feature(CPU_FTR_ARCH_207S))
177 vcpu->arch.entry_ic = mfspr(SPRN_IC);
178 svcpu->in_use = true;
179 }
180
181 /* Copy data touched by real-mode code from shadow vcpu back to vcpu */
182 void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
183 struct kvmppc_book3s_shadow_vcpu *svcpu)
184 {
185 /*
186 * vcpu_put would just call us again because in_use hasn't
187 * been updated yet.
188 */
189 preempt_disable();
190
191 /*
192 * Maybe we were already preempted and synced the svcpu from
193 * our preempt notifiers. Don't bother touching this svcpu then.
194 */
195 if (!svcpu->in_use)
196 goto out;
197
198 vcpu->arch.gpr[0] = svcpu->gpr[0];
199 vcpu->arch.gpr[1] = svcpu->gpr[1];
200 vcpu->arch.gpr[2] = svcpu->gpr[2];
201 vcpu->arch.gpr[3] = svcpu->gpr[3];
202 vcpu->arch.gpr[4] = svcpu->gpr[4];
203 vcpu->arch.gpr[5] = svcpu->gpr[5];
204 vcpu->arch.gpr[6] = svcpu->gpr[6];
205 vcpu->arch.gpr[7] = svcpu->gpr[7];
206 vcpu->arch.gpr[8] = svcpu->gpr[8];
207 vcpu->arch.gpr[9] = svcpu->gpr[9];
208 vcpu->arch.gpr[10] = svcpu->gpr[10];
209 vcpu->arch.gpr[11] = svcpu->gpr[11];
210 vcpu->arch.gpr[12] = svcpu->gpr[12];
211 vcpu->arch.gpr[13] = svcpu->gpr[13];
212 vcpu->arch.cr = svcpu->cr;
213 vcpu->arch.xer = svcpu->xer;
214 vcpu->arch.ctr = svcpu->ctr;
215 vcpu->arch.lr = svcpu->lr;
216 vcpu->arch.pc = svcpu->pc;
217 vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
218 vcpu->arch.fault_dar = svcpu->fault_dar;
219 vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
220 vcpu->arch.last_inst = svcpu->last_inst;
221 #ifdef CONFIG_PPC_BOOK3S_64
222 vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
223 #endif
224 /*
225 * Update purr and spurr using time base on exit.
226 */
227 vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
228 vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
229 vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
230 if (cpu_has_feature(CPU_FTR_ARCH_207S))
231 vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
232 svcpu->in_use = false;
233
234 out:
235 preempt_enable();
236 }
237
238 static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
239 {
240 int r = 1; /* Indicate we want to get back into the guest */
241
242 /* We misuse TLB_FLUSH to indicate that we want to clear
243 all shadow cache entries */
244 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
245 kvmppc_mmu_pte_flush(vcpu, 0, 0);
246
247 return r;
248 }
249
250 /************* MMU Notifiers *************/
251 static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
252 unsigned long end)
253 {
254 long i;
255 struct kvm_vcpu *vcpu;
256 struct kvm_memslots *slots;
257 struct kvm_memory_slot *memslot;
258
259 slots = kvm_memslots(kvm);
260 kvm_for_each_memslot(memslot, slots) {
261 unsigned long hva_start, hva_end;
262 gfn_t gfn, gfn_end;
263
264 hva_start = max(start, memslot->userspace_addr);
265 hva_end = min(end, memslot->userspace_addr +
266 (memslot->npages << PAGE_SHIFT));
267 if (hva_start >= hva_end)
268 continue;
269 /*
270 * {gfn(page) | page intersects with [hva_start, hva_end)} =
271 * {gfn, gfn+1, ..., gfn_end-1}.
272 */
273 gfn = hva_to_gfn_memslot(hva_start, memslot);
274 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
275 kvm_for_each_vcpu(i, vcpu, kvm)
276 kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
277 gfn_end << PAGE_SHIFT);
278 }
279 }
280
281 static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
282 {
283 trace_kvm_unmap_hva(hva);
284
285 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
286
287 return 0;
288 }
289
290 static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
291 unsigned long end)
292 {
293 do_kvm_unmap_hva(kvm, start, end);
294
295 return 0;
296 }
297
298 static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
299 {
300 /* XXX could be more clever ;) */
301 return 0;
302 }
303
304 static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
305 {
306 /* XXX could be more clever ;) */
307 return 0;
308 }
309
310 static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
311 {
312 /* The page will get remapped properly on its next fault */
313 do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
314 }
315
316 /*****************************************/
317
318 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
319 {
320 ulong guest_msr = kvmppc_get_msr(vcpu);
321 ulong smsr = guest_msr;
322
323 /* Guest MSR values */
324 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
325 /* Process MSR values */
326 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
327 /* External providers the guest reserved */
328 smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
329 /* 64-bit Process MSR values */
330 #ifdef CONFIG_PPC_BOOK3S_64
331 smsr |= MSR_ISF | MSR_HV;
332 #endif
333 vcpu->arch.shadow_msr = smsr;
334 }
335
336 static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
337 {
338 ulong old_msr = kvmppc_get_msr(vcpu);
339
340 #ifdef EXIT_DEBUG
341 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
342 #endif
343
344 msr &= to_book3s(vcpu)->msr_mask;
345 kvmppc_set_msr_fast(vcpu, msr);
346 kvmppc_recalc_shadow_msr(vcpu);
347
348 if (msr & MSR_POW) {
349 if (!vcpu->arch.pending_exceptions) {
350 kvm_vcpu_block(vcpu);
351 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
352 vcpu->stat.halt_wakeup++;
353
354 /* Unset POW bit after we woke up */
355 msr &= ~MSR_POW;
356 kvmppc_set_msr_fast(vcpu, msr);
357 }
358 }
359
360 if (kvmppc_is_split_real(vcpu))
361 kvmppc_fixup_split_real(vcpu);
362 else
363 kvmppc_unfixup_split_real(vcpu);
364
365 if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
366 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
367 kvmppc_mmu_flush_segments(vcpu);
368 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
369
370 /* Preload magic page segment when in kernel mode */
371 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
372 struct kvm_vcpu_arch *a = &vcpu->arch;
373
374 if (msr & MSR_DR)
375 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
376 else
377 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
378 }
379 }
380
381 /*
382 * When switching from 32 to 64-bit, we may have a stale 32-bit
383 * magic page around, we need to flush it. Typically 32-bit magic
384 * page will be instanciated when calling into RTAS. Note: We
385 * assume that such transition only happens while in kernel mode,
386 * ie, we never transition from user 32-bit to kernel 64-bit with
387 * a 32-bit magic page around.
388 */
389 if (vcpu->arch.magic_page_pa &&
390 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
391 /* going from RTAS to normal kernel code */
392 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
393 ~0xFFFUL);
394 }
395
396 /* Preload FPU if it's enabled */
397 if (kvmppc_get_msr(vcpu) & MSR_FP)
398 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
399 }
400
401 void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
402 {
403 u32 host_pvr;
404
405 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
406 vcpu->arch.pvr = pvr;
407 #ifdef CONFIG_PPC_BOOK3S_64
408 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
409 kvmppc_mmu_book3s_64_init(vcpu);
410 if (!to_book3s(vcpu)->hior_explicit)
411 to_book3s(vcpu)->hior = 0xfff00000;
412 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
413 vcpu->arch.cpu_type = KVM_CPU_3S_64;
414 } else
415 #endif
416 {
417 kvmppc_mmu_book3s_32_init(vcpu);
418 if (!to_book3s(vcpu)->hior_explicit)
419 to_book3s(vcpu)->hior = 0;
420 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
421 vcpu->arch.cpu_type = KVM_CPU_3S_32;
422 }
423
424 kvmppc_sanity_check(vcpu);
425
426 /* If we are in hypervisor level on 970, we can tell the CPU to
427 * treat DCBZ as 32 bytes store */
428 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
429 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
430 !strcmp(cur_cpu_spec->platform, "ppc970"))
431 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
432
433 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
434 really needs them in a VM on Cell and force disable them. */
435 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
436 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
437
438 /*
439 * If they're asking for POWER6 or later, set the flag
440 * indicating that we can do multiple large page sizes
441 * and 1TB segments.
442 * Also set the flag that indicates that tlbie has the large
443 * page bit in the RB operand instead of the instruction.
444 */
445 switch (PVR_VER(pvr)) {
446 case PVR_POWER6:
447 case PVR_POWER7:
448 case PVR_POWER7p:
449 case PVR_POWER8:
450 vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
451 BOOK3S_HFLAG_NEW_TLBIE;
452 break;
453 }
454
455 #ifdef CONFIG_PPC_BOOK3S_32
456 /* 32 bit Book3S always has 32 byte dcbz */
457 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
458 #endif
459
460 /* On some CPUs we can execute paired single operations natively */
461 asm ( "mfpvr %0" : "=r"(host_pvr));
462 switch (host_pvr) {
463 case 0x00080200: /* lonestar 2.0 */
464 case 0x00088202: /* lonestar 2.2 */
465 case 0x70000100: /* gekko 1.0 */
466 case 0x00080100: /* gekko 2.0 */
467 case 0x00083203: /* gekko 2.3a */
468 case 0x00083213: /* gekko 2.3b */
469 case 0x00083204: /* gekko 2.4 */
470 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
471 case 0x00087200: /* broadway */
472 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
473 /* Enable HID2.PSE - in case we need it later */
474 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
475 }
476 }
477
478 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
479 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
480 * emulate 32 bytes dcbz length.
481 *
482 * The Book3s_64 inventors also realized this case and implemented a special bit
483 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
484 *
485 * My approach here is to patch the dcbz instruction on executing pages.
486 */
487 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
488 {
489 struct page *hpage;
490 u64 hpage_offset;
491 u32 *page;
492 int i;
493
494 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
495 if (is_error_page(hpage))
496 return;
497
498 hpage_offset = pte->raddr & ~PAGE_MASK;
499 hpage_offset &= ~0xFFFULL;
500 hpage_offset /= 4;
501
502 get_page(hpage);
503 page = kmap_atomic(hpage);
504
505 /* patch dcbz into reserved instruction, so we trap */
506 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
507 if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
508 page[i] &= cpu_to_be32(0xfffffff7);
509
510 kunmap_atomic(page);
511 put_page(hpage);
512 }
513
514 static int kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
515 {
516 ulong mp_pa = vcpu->arch.magic_page_pa;
517
518 if (!(kvmppc_get_msr(vcpu) & MSR_SF))
519 mp_pa = (uint32_t)mp_pa;
520
521 gpa &= ~0xFFFULL;
522 if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
523 return 1;
524 }
525
526 return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
527 }
528
529 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
530 ulong eaddr, int vec)
531 {
532 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
533 bool iswrite = false;
534 int r = RESUME_GUEST;
535 int relocated;
536 int page_found = 0;
537 struct kvmppc_pte pte;
538 bool is_mmio = false;
539 bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
540 bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
541 u64 vsid;
542
543 relocated = data ? dr : ir;
544 if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
545 iswrite = true;
546
547 /* Resolve real address if translation turned on */
548 if (relocated) {
549 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
550 } else {
551 pte.may_execute = true;
552 pte.may_read = true;
553 pte.may_write = true;
554 pte.raddr = eaddr & KVM_PAM;
555 pte.eaddr = eaddr;
556 pte.vpage = eaddr >> 12;
557 pte.page_size = MMU_PAGE_64K;
558 }
559
560 switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
561 case 0:
562 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
563 break;
564 case MSR_DR:
565 if (!data &&
566 (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
567 ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
568 pte.raddr &= ~SPLIT_HACK_MASK;
569 /* fall through */
570 case MSR_IR:
571 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
572
573 if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
574 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
575 else
576 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
577 pte.vpage |= vsid;
578
579 if (vsid == -1)
580 page_found = -EINVAL;
581 break;
582 }
583
584 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
585 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
586 /*
587 * If we do the dcbz hack, we have to NX on every execution,
588 * so we can patch the executing code. This renders our guest
589 * NX-less.
590 */
591 pte.may_execute = !data;
592 }
593
594 if (page_found == -ENOENT) {
595 /* Page not found in guest PTE entries */
596 u64 ssrr1 = vcpu->arch.shadow_srr1;
597 u64 msr = kvmppc_get_msr(vcpu);
598 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
599 kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
600 kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
601 kvmppc_book3s_queue_irqprio(vcpu, vec);
602 } else if (page_found == -EPERM) {
603 /* Storage protection */
604 u32 dsisr = vcpu->arch.fault_dsisr;
605 u64 ssrr1 = vcpu->arch.shadow_srr1;
606 u64 msr = kvmppc_get_msr(vcpu);
607 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
608 dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
609 kvmppc_set_dsisr(vcpu, dsisr);
610 kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
611 kvmppc_book3s_queue_irqprio(vcpu, vec);
612 } else if (page_found == -EINVAL) {
613 /* Page not found in guest SLB */
614 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
615 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
616 } else if (!is_mmio &&
617 kvmppc_visible_gpa(vcpu, pte.raddr)) {
618 if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
619 /*
620 * There is already a host HPTE there, presumably
621 * a read-only one for a page the guest thinks
622 * is writable, so get rid of it first.
623 */
624 kvmppc_mmu_unmap_page(vcpu, &pte);
625 }
626 /* The guest's PTE is not mapped yet. Map on the host */
627 kvmppc_mmu_map_page(vcpu, &pte, iswrite);
628 if (data)
629 vcpu->stat.sp_storage++;
630 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
631 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
632 kvmppc_patch_dcbz(vcpu, &pte);
633 } else {
634 /* MMIO */
635 vcpu->stat.mmio_exits++;
636 vcpu->arch.paddr_accessed = pte.raddr;
637 vcpu->arch.vaddr_accessed = pte.eaddr;
638 r = kvmppc_emulate_mmio(run, vcpu);
639 if ( r == RESUME_HOST_NV )
640 r = RESUME_HOST;
641 }
642
643 return r;
644 }
645
646 static inline int get_fpr_index(int i)
647 {
648 return i * TS_FPRWIDTH;
649 }
650
651 /* Give up external provider (FPU, Altivec, VSX) */
652 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
653 {
654 struct thread_struct *t = &current->thread;
655
656 /*
657 * VSX instructions can access FP and vector registers, so if
658 * we are giving up VSX, make sure we give up FP and VMX as well.
659 */
660 if (msr & MSR_VSX)
661 msr |= MSR_FP | MSR_VEC;
662
663 msr &= vcpu->arch.guest_owned_ext;
664 if (!msr)
665 return;
666
667 #ifdef DEBUG_EXT
668 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
669 #endif
670
671 if (msr & MSR_FP) {
672 /*
673 * Note that on CPUs with VSX, giveup_fpu stores
674 * both the traditional FP registers and the added VSX
675 * registers into thread.fp_state.fpr[].
676 */
677 if (t->regs->msr & MSR_FP)
678 giveup_fpu(current);
679 t->fp_save_area = NULL;
680 }
681
682 #ifdef CONFIG_ALTIVEC
683 if (msr & MSR_VEC) {
684 if (current->thread.regs->msr & MSR_VEC)
685 giveup_altivec(current);
686 t->vr_save_area = NULL;
687 }
688 #endif
689
690 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
691 kvmppc_recalc_shadow_msr(vcpu);
692 }
693
694 /* Give up facility (TAR / EBB / DSCR) */
695 static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
696 {
697 #ifdef CONFIG_PPC_BOOK3S_64
698 if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
699 /* Facility not available to the guest, ignore giveup request*/
700 return;
701 }
702
703 switch (fac) {
704 case FSCR_TAR_LG:
705 vcpu->arch.tar = mfspr(SPRN_TAR);
706 mtspr(SPRN_TAR, current->thread.tar);
707 vcpu->arch.shadow_fscr &= ~FSCR_TAR;
708 break;
709 }
710 #endif
711 }
712
713 /* Handle external providers (FPU, Altivec, VSX) */
714 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
715 ulong msr)
716 {
717 struct thread_struct *t = &current->thread;
718
719 /* When we have paired singles, we emulate in software */
720 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
721 return RESUME_GUEST;
722
723 if (!(kvmppc_get_msr(vcpu) & msr)) {
724 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
725 return RESUME_GUEST;
726 }
727
728 if (msr == MSR_VSX) {
729 /* No VSX? Give an illegal instruction interrupt */
730 #ifdef CONFIG_VSX
731 if (!cpu_has_feature(CPU_FTR_VSX))
732 #endif
733 {
734 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
735 return RESUME_GUEST;
736 }
737
738 /*
739 * We have to load up all the FP and VMX registers before
740 * we can let the guest use VSX instructions.
741 */
742 msr = MSR_FP | MSR_VEC | MSR_VSX;
743 }
744
745 /* See if we already own all the ext(s) needed */
746 msr &= ~vcpu->arch.guest_owned_ext;
747 if (!msr)
748 return RESUME_GUEST;
749
750 #ifdef DEBUG_EXT
751 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
752 #endif
753
754 if (msr & MSR_FP) {
755 preempt_disable();
756 enable_kernel_fp();
757 load_fp_state(&vcpu->arch.fp);
758 t->fp_save_area = &vcpu->arch.fp;
759 preempt_enable();
760 }
761
762 if (msr & MSR_VEC) {
763 #ifdef CONFIG_ALTIVEC
764 preempt_disable();
765 enable_kernel_altivec();
766 load_vr_state(&vcpu->arch.vr);
767 t->vr_save_area = &vcpu->arch.vr;
768 preempt_enable();
769 #endif
770 }
771
772 t->regs->msr |= msr;
773 vcpu->arch.guest_owned_ext |= msr;
774 kvmppc_recalc_shadow_msr(vcpu);
775
776 return RESUME_GUEST;
777 }
778
779 /*
780 * Kernel code using FP or VMX could have flushed guest state to
781 * the thread_struct; if so, get it back now.
782 */
783 static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
784 {
785 unsigned long lost_ext;
786
787 lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
788 if (!lost_ext)
789 return;
790
791 if (lost_ext & MSR_FP) {
792 preempt_disable();
793 enable_kernel_fp();
794 load_fp_state(&vcpu->arch.fp);
795 preempt_enable();
796 }
797 #ifdef CONFIG_ALTIVEC
798 if (lost_ext & MSR_VEC) {
799 preempt_disable();
800 enable_kernel_altivec();
801 load_vr_state(&vcpu->arch.vr);
802 preempt_enable();
803 }
804 #endif
805 current->thread.regs->msr |= lost_ext;
806 }
807
808 #ifdef CONFIG_PPC_BOOK3S_64
809
810 static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
811 {
812 /* Inject the Interrupt Cause field and trigger a guest interrupt */
813 vcpu->arch.fscr &= ~(0xffULL << 56);
814 vcpu->arch.fscr |= (fac << 56);
815 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
816 }
817
818 static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
819 {
820 enum emulation_result er = EMULATE_FAIL;
821
822 if (!(kvmppc_get_msr(vcpu) & MSR_PR))
823 er = kvmppc_emulate_instruction(vcpu->run, vcpu);
824
825 if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
826 /* Couldn't emulate, trigger interrupt in guest */
827 kvmppc_trigger_fac_interrupt(vcpu, fac);
828 }
829 }
830
831 /* Enable facilities (TAR, EBB, DSCR) for the guest */
832 static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
833 {
834 bool guest_fac_enabled;
835 BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
836
837 /*
838 * Not every facility is enabled by FSCR bits, check whether the
839 * guest has this facility enabled at all.
840 */
841 switch (fac) {
842 case FSCR_TAR_LG:
843 case FSCR_EBB_LG:
844 guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
845 break;
846 case FSCR_TM_LG:
847 guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
848 break;
849 default:
850 guest_fac_enabled = false;
851 break;
852 }
853
854 if (!guest_fac_enabled) {
855 /* Facility not enabled by the guest */
856 kvmppc_trigger_fac_interrupt(vcpu, fac);
857 return RESUME_GUEST;
858 }
859
860 switch (fac) {
861 case FSCR_TAR_LG:
862 /* TAR switching isn't lazy in Linux yet */
863 current->thread.tar = mfspr(SPRN_TAR);
864 mtspr(SPRN_TAR, vcpu->arch.tar);
865 vcpu->arch.shadow_fscr |= FSCR_TAR;
866 break;
867 default:
868 kvmppc_emulate_fac(vcpu, fac);
869 break;
870 }
871
872 return RESUME_GUEST;
873 }
874 #endif
875
876 int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
877 unsigned int exit_nr)
878 {
879 int r = RESUME_HOST;
880 int s;
881
882 vcpu->stat.sum_exits++;
883
884 run->exit_reason = KVM_EXIT_UNKNOWN;
885 run->ready_for_interrupt_injection = 1;
886
887 /* We get here with MSR.EE=1 */
888
889 trace_kvm_exit(exit_nr, vcpu);
890 kvm_guest_exit();
891
892 switch (exit_nr) {
893 case BOOK3S_INTERRUPT_INST_STORAGE:
894 {
895 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
896 vcpu->stat.pf_instruc++;
897
898 if (kvmppc_is_split_real(vcpu))
899 kvmppc_fixup_split_real(vcpu);
900
901 #ifdef CONFIG_PPC_BOOK3S_32
902 /* We set segments as unused segments when invalidating them. So
903 * treat the respective fault as segment fault. */
904 {
905 struct kvmppc_book3s_shadow_vcpu *svcpu;
906 u32 sr;
907
908 svcpu = svcpu_get(vcpu);
909 sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
910 svcpu_put(svcpu);
911 if (sr == SR_INVALID) {
912 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
913 r = RESUME_GUEST;
914 break;
915 }
916 }
917 #endif
918
919 /* only care about PTEG not found errors, but leave NX alone */
920 if (shadow_srr1 & 0x40000000) {
921 int idx = srcu_read_lock(&vcpu->kvm->srcu);
922 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
923 srcu_read_unlock(&vcpu->kvm->srcu, idx);
924 vcpu->stat.sp_instruc++;
925 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
926 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
927 /*
928 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
929 * so we can't use the NX bit inside the guest. Let's cross our fingers,
930 * that no guest that needs the dcbz hack does NX.
931 */
932 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
933 r = RESUME_GUEST;
934 } else {
935 u64 msr = kvmppc_get_msr(vcpu);
936 msr |= shadow_srr1 & 0x58000000;
937 kvmppc_set_msr_fast(vcpu, msr);
938 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
939 r = RESUME_GUEST;
940 }
941 break;
942 }
943 case BOOK3S_INTERRUPT_DATA_STORAGE:
944 {
945 ulong dar = kvmppc_get_fault_dar(vcpu);
946 u32 fault_dsisr = vcpu->arch.fault_dsisr;
947 vcpu->stat.pf_storage++;
948
949 #ifdef CONFIG_PPC_BOOK3S_32
950 /* We set segments as unused segments when invalidating them. So
951 * treat the respective fault as segment fault. */
952 {
953 struct kvmppc_book3s_shadow_vcpu *svcpu;
954 u32 sr;
955
956 svcpu = svcpu_get(vcpu);
957 sr = svcpu->sr[dar >> SID_SHIFT];
958 svcpu_put(svcpu);
959 if (sr == SR_INVALID) {
960 kvmppc_mmu_map_segment(vcpu, dar);
961 r = RESUME_GUEST;
962 break;
963 }
964 }
965 #endif
966
967 /*
968 * We need to handle missing shadow PTEs, and
969 * protection faults due to us mapping a page read-only
970 * when the guest thinks it is writable.
971 */
972 if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
973 int idx = srcu_read_lock(&vcpu->kvm->srcu);
974 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
975 srcu_read_unlock(&vcpu->kvm->srcu, idx);
976 } else {
977 kvmppc_set_dar(vcpu, dar);
978 kvmppc_set_dsisr(vcpu, fault_dsisr);
979 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
980 r = RESUME_GUEST;
981 }
982 break;
983 }
984 case BOOK3S_INTERRUPT_DATA_SEGMENT:
985 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
986 kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
987 kvmppc_book3s_queue_irqprio(vcpu,
988 BOOK3S_INTERRUPT_DATA_SEGMENT);
989 }
990 r = RESUME_GUEST;
991 break;
992 case BOOK3S_INTERRUPT_INST_SEGMENT:
993 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
994 kvmppc_book3s_queue_irqprio(vcpu,
995 BOOK3S_INTERRUPT_INST_SEGMENT);
996 }
997 r = RESUME_GUEST;
998 break;
999 /* We're good on these - the host merely wanted to get our attention */
1000 case BOOK3S_INTERRUPT_DECREMENTER:
1001 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1002 case BOOK3S_INTERRUPT_DOORBELL:
1003 case BOOK3S_INTERRUPT_H_DOORBELL:
1004 vcpu->stat.dec_exits++;
1005 r = RESUME_GUEST;
1006 break;
1007 case BOOK3S_INTERRUPT_EXTERNAL:
1008 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
1009 case BOOK3S_INTERRUPT_EXTERNAL_HV:
1010 vcpu->stat.ext_intr_exits++;
1011 r = RESUME_GUEST;
1012 break;
1013 case BOOK3S_INTERRUPT_PERFMON:
1014 r = RESUME_GUEST;
1015 break;
1016 case BOOK3S_INTERRUPT_PROGRAM:
1017 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1018 {
1019 enum emulation_result er;
1020 ulong flags;
1021 u32 last_inst;
1022 int emul;
1023
1024 program_interrupt:
1025 flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1026
1027 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1028 if (emul != EMULATE_DONE) {
1029 r = RESUME_GUEST;
1030 break;
1031 }
1032
1033 if (kvmppc_get_msr(vcpu) & MSR_PR) {
1034 #ifdef EXIT_DEBUG
1035 pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
1036 kvmppc_get_pc(vcpu), last_inst);
1037 #endif
1038 if ((last_inst & 0xff0007ff) !=
1039 (INS_DCBZ & 0xfffffff7)) {
1040 kvmppc_core_queue_program(vcpu, flags);
1041 r = RESUME_GUEST;
1042 break;
1043 }
1044 }
1045
1046 vcpu->stat.emulated_inst_exits++;
1047 er = kvmppc_emulate_instruction(run, vcpu);
1048 switch (er) {
1049 case EMULATE_DONE:
1050 r = RESUME_GUEST_NV;
1051 break;
1052 case EMULATE_AGAIN:
1053 r = RESUME_GUEST;
1054 break;
1055 case EMULATE_FAIL:
1056 printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
1057 __func__, kvmppc_get_pc(vcpu), last_inst);
1058 kvmppc_core_queue_program(vcpu, flags);
1059 r = RESUME_GUEST;
1060 break;
1061 case EMULATE_DO_MMIO:
1062 run->exit_reason = KVM_EXIT_MMIO;
1063 r = RESUME_HOST_NV;
1064 break;
1065 case EMULATE_EXIT_USER:
1066 r = RESUME_HOST_NV;
1067 break;
1068 default:
1069 BUG();
1070 }
1071 break;
1072 }
1073 case BOOK3S_INTERRUPT_SYSCALL:
1074 {
1075 u32 last_sc;
1076 int emul;
1077
1078 /* Get last sc for papr */
1079 if (vcpu->arch.papr_enabled) {
1080 /* The sc instuction points SRR0 to the next inst */
1081 emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
1082 if (emul != EMULATE_DONE) {
1083 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
1084 r = RESUME_GUEST;
1085 break;
1086 }
1087 }
1088
1089 if (vcpu->arch.papr_enabled &&
1090 (last_sc == 0x44000022) &&
1091 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1092 /* SC 1 papr hypercalls */
1093 ulong cmd = kvmppc_get_gpr(vcpu, 3);
1094 int i;
1095
1096 #ifdef CONFIG_PPC_BOOK3S_64
1097 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
1098 r = RESUME_GUEST;
1099 break;
1100 }
1101 #endif
1102
1103 run->papr_hcall.nr = cmd;
1104 for (i = 0; i < 9; ++i) {
1105 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
1106 run->papr_hcall.args[i] = gpr;
1107 }
1108 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1109 vcpu->arch.hcall_needed = 1;
1110 r = RESUME_HOST;
1111 } else if (vcpu->arch.osi_enabled &&
1112 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
1113 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
1114 /* MOL hypercalls */
1115 u64 *gprs = run->osi.gprs;
1116 int i;
1117
1118 run->exit_reason = KVM_EXIT_OSI;
1119 for (i = 0; i < 32; i++)
1120 gprs[i] = kvmppc_get_gpr(vcpu, i);
1121 vcpu->arch.osi_needed = 1;
1122 r = RESUME_HOST_NV;
1123 } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1124 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
1125 /* KVM PV hypercalls */
1126 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
1127 r = RESUME_GUEST;
1128 } else {
1129 /* Guest syscalls */
1130 vcpu->stat.syscall_exits++;
1131 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1132 r = RESUME_GUEST;
1133 }
1134 break;
1135 }
1136 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1137 case BOOK3S_INTERRUPT_ALTIVEC:
1138 case BOOK3S_INTERRUPT_VSX:
1139 {
1140 int ext_msr = 0;
1141 int emul;
1142 u32 last_inst;
1143
1144 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
1145 /* Do paired single instruction emulation */
1146 emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1147 &last_inst);
1148 if (emul == EMULATE_DONE)
1149 goto program_interrupt;
1150 else
1151 r = RESUME_GUEST;
1152
1153 break;
1154 }
1155
1156 /* Enable external provider */
1157 switch (exit_nr) {
1158 case BOOK3S_INTERRUPT_FP_UNAVAIL:
1159 ext_msr = MSR_FP;
1160 break;
1161
1162 case BOOK3S_INTERRUPT_ALTIVEC:
1163 ext_msr = MSR_VEC;
1164 break;
1165
1166 case BOOK3S_INTERRUPT_VSX:
1167 ext_msr = MSR_VSX;
1168 break;
1169 }
1170
1171 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1172 break;
1173 }
1174 case BOOK3S_INTERRUPT_ALIGNMENT:
1175 {
1176 u32 last_inst;
1177 int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1178
1179 if (emul == EMULATE_DONE) {
1180 u32 dsisr;
1181 u64 dar;
1182
1183 dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
1184 dar = kvmppc_alignment_dar(vcpu, last_inst);
1185
1186 kvmppc_set_dsisr(vcpu, dsisr);
1187 kvmppc_set_dar(vcpu, dar);
1188
1189 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1190 }
1191 r = RESUME_GUEST;
1192 break;
1193 }
1194 #ifdef CONFIG_PPC_BOOK3S_64
1195 case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1196 kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1197 r = RESUME_GUEST;
1198 break;
1199 #endif
1200 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1201 case BOOK3S_INTERRUPT_TRACE:
1202 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
1203 r = RESUME_GUEST;
1204 break;
1205 default:
1206 {
1207 ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1208 /* Ugh - bork here! What did we get? */
1209 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1210 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1211 r = RESUME_HOST;
1212 BUG();
1213 break;
1214 }
1215 }
1216
1217 if (!(r & RESUME_HOST)) {
1218 /* To avoid clobbering exit_reason, only check for signals if
1219 * we aren't already exiting to userspace for some other
1220 * reason. */
1221
1222 /*
1223 * Interrupts could be timers for the guest which we have to
1224 * inject again, so let's postpone them until we're in the guest
1225 * and if we really did time things so badly, then we just exit
1226 * again due to a host external interrupt.
1227 */
1228 s = kvmppc_prepare_to_enter(vcpu);
1229 if (s <= 0)
1230 r = s;
1231 else {
1232 /* interrupts now hard-disabled */
1233 kvmppc_fix_ee_before_entry();
1234 }
1235
1236 kvmppc_handle_lost_ext(vcpu);
1237 }
1238
1239 trace_kvm_book3s_reenter(r, vcpu);
1240
1241 return r;
1242 }
1243
1244 static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
1245 struct kvm_sregs *sregs)
1246 {
1247 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1248 int i;
1249
1250 sregs->pvr = vcpu->arch.pvr;
1251
1252 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
1253 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1254 for (i = 0; i < 64; i++) {
1255 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
1256 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1257 }
1258 } else {
1259 for (i = 0; i < 16; i++)
1260 sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1261
1262 for (i = 0; i < 8; i++) {
1263 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
1264 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
1265 }
1266 }
1267
1268 return 0;
1269 }
1270
1271 static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
1272 struct kvm_sregs *sregs)
1273 {
1274 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
1275 int i;
1276
1277 kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1278
1279 vcpu3s->sdr1 = sregs->u.s.sdr1;
1280 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1281 for (i = 0; i < 64; i++) {
1282 vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
1283 sregs->u.s.ppc64.slb[i].slbe);
1284 }
1285 } else {
1286 for (i = 0; i < 16; i++) {
1287 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
1288 }
1289 for (i = 0; i < 8; i++) {
1290 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
1291 (u32)sregs->u.s.ppc32.ibat[i]);
1292 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
1293 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
1294 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
1295 (u32)sregs->u.s.ppc32.dbat[i]);
1296 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
1297 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
1298 }
1299 }
1300
1301 /* Flush the MMU after messing with the segments */
1302 kvmppc_mmu_pte_flush(vcpu, 0, 0);
1303
1304 return 0;
1305 }
1306
1307 static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1308 union kvmppc_one_reg *val)
1309 {
1310 int r = 0;
1311
1312 switch (id) {
1313 case KVM_REG_PPC_HIOR:
1314 *val = get_reg_val(id, to_book3s(vcpu)->hior);
1315 break;
1316 case KVM_REG_PPC_LPCR:
1317 /*
1318 * We are only interested in the LPCR_ILE bit
1319 */
1320 if (vcpu->arch.intr_msr & MSR_LE)
1321 *val = get_reg_val(id, LPCR_ILE);
1322 else
1323 *val = get_reg_val(id, 0);
1324 break;
1325 default:
1326 r = -EINVAL;
1327 break;
1328 }
1329
1330 return r;
1331 }
1332
1333 static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
1334 {
1335 if (new_lpcr & LPCR_ILE)
1336 vcpu->arch.intr_msr |= MSR_LE;
1337 else
1338 vcpu->arch.intr_msr &= ~MSR_LE;
1339 }
1340
1341 static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
1342 union kvmppc_one_reg *val)
1343 {
1344 int r = 0;
1345
1346 switch (id) {
1347 case KVM_REG_PPC_HIOR:
1348 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1349 to_book3s(vcpu)->hior_explicit = true;
1350 break;
1351 case KVM_REG_PPC_LPCR:
1352 kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
1353 break;
1354 default:
1355 r = -EINVAL;
1356 break;
1357 }
1358
1359 return r;
1360 }
1361
1362 static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
1363 unsigned int id)
1364 {
1365 struct kvmppc_vcpu_book3s *vcpu_book3s;
1366 struct kvm_vcpu *vcpu;
1367 int err = -ENOMEM;
1368 unsigned long p;
1369
1370 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1371 if (!vcpu)
1372 goto out;
1373
1374 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1375 if (!vcpu_book3s)
1376 goto free_vcpu;
1377 vcpu->arch.book3s = vcpu_book3s;
1378
1379 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1380 vcpu->arch.shadow_vcpu =
1381 kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
1382 if (!vcpu->arch.shadow_vcpu)
1383 goto free_vcpu3s;
1384 #endif
1385
1386 err = kvm_vcpu_init(vcpu, kvm, id);
1387 if (err)
1388 goto free_shadow_vcpu;
1389
1390 err = -ENOMEM;
1391 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1392 if (!p)
1393 goto uninit_vcpu;
1394 vcpu->arch.shared = (void *)p;
1395 #ifdef CONFIG_PPC_BOOK3S_64
1396 /* Always start the shared struct in native endian mode */
1397 #ifdef __BIG_ENDIAN__
1398 vcpu->arch.shared_big_endian = true;
1399 #else
1400 vcpu->arch.shared_big_endian = false;
1401 #endif
1402
1403 /*
1404 * Default to the same as the host if we're on sufficiently
1405 * recent machine that we have 1TB segments;
1406 * otherwise default to PPC970FX.
1407 */
1408 vcpu->arch.pvr = 0x3C0301;
1409 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1410 vcpu->arch.pvr = mfspr(SPRN_PVR);
1411 vcpu->arch.intr_msr = MSR_SF;
1412 #else
1413 /* default to book3s_32 (750) */
1414 vcpu->arch.pvr = 0x84202;
1415 #endif
1416 kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1417 vcpu->arch.slb_nr = 64;
1418
1419 vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1420
1421 err = kvmppc_mmu_init(vcpu);
1422 if (err < 0)
1423 goto uninit_vcpu;
1424
1425 return vcpu;
1426
1427 uninit_vcpu:
1428 kvm_vcpu_uninit(vcpu);
1429 free_shadow_vcpu:
1430 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1431 kfree(vcpu->arch.shadow_vcpu);
1432 free_vcpu3s:
1433 #endif
1434 vfree(vcpu_book3s);
1435 free_vcpu:
1436 kmem_cache_free(kvm_vcpu_cache, vcpu);
1437 out:
1438 return ERR_PTR(err);
1439 }
1440
1441 static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1442 {
1443 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1444
1445 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1446 kvm_vcpu_uninit(vcpu);
1447 #ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1448 kfree(vcpu->arch.shadow_vcpu);
1449 #endif
1450 vfree(vcpu_book3s);
1451 kmem_cache_free(kvm_vcpu_cache, vcpu);
1452 }
1453
1454 static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1455 {
1456 int ret;
1457 #ifdef CONFIG_ALTIVEC
1458 unsigned long uninitialized_var(vrsave);
1459 #endif
1460
1461 /* Check if we can run the vcpu at all */
1462 if (!vcpu->arch.sane) {
1463 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1464 ret = -EINVAL;
1465 goto out;
1466 }
1467
1468 /*
1469 * Interrupts could be timers for the guest which we have to inject
1470 * again, so let's postpone them until we're in the guest and if we
1471 * really did time things so badly, then we just exit again due to
1472 * a host external interrupt.
1473 */
1474 ret = kvmppc_prepare_to_enter(vcpu);
1475 if (ret <= 0)
1476 goto out;
1477 /* interrupts now hard-disabled */
1478
1479 /* Save FPU state in thread_struct */
1480 if (current->thread.regs->msr & MSR_FP)
1481 giveup_fpu(current);
1482
1483 #ifdef CONFIG_ALTIVEC
1484 /* Save Altivec state in thread_struct */
1485 if (current->thread.regs->msr & MSR_VEC)
1486 giveup_altivec(current);
1487 #endif
1488
1489 #ifdef CONFIG_VSX
1490 /* Save VSX state in thread_struct */
1491 if (current->thread.regs->msr & MSR_VSX)
1492 __giveup_vsx(current);
1493 #endif
1494
1495 /* Preload FPU if it's enabled */
1496 if (kvmppc_get_msr(vcpu) & MSR_FP)
1497 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1498
1499 kvmppc_fix_ee_before_entry();
1500
1501 ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1502
1503 /* No need for kvm_guest_exit. It's done in handle_exit.
1504 We also get here with interrupts enabled. */
1505
1506 /* Make sure we save the guest FPU/Altivec/VSX state */
1507 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1508
1509 /* Make sure we save the guest TAR/EBB/DSCR state */
1510 kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1511
1512 out:
1513 vcpu->mode = OUTSIDE_GUEST_MODE;
1514 return ret;
1515 }
1516
1517 /*
1518 * Get (and clear) the dirty memory log for a memory slot.
1519 */
1520 static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
1521 struct kvm_dirty_log *log)
1522 {
1523 struct kvm_memory_slot *memslot;
1524 struct kvm_vcpu *vcpu;
1525 ulong ga, ga_end;
1526 int is_dirty = 0;
1527 int r;
1528 unsigned long n;
1529
1530 mutex_lock(&kvm->slots_lock);
1531
1532 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1533 if (r)
1534 goto out;
1535
1536 /* If nothing is dirty, don't bother messing with page tables. */
1537 if (is_dirty) {
1538 memslot = id_to_memslot(kvm->memslots, log->slot);
1539
1540 ga = memslot->base_gfn << PAGE_SHIFT;
1541 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1542
1543 kvm_for_each_vcpu(n, vcpu, kvm)
1544 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1545
1546 n = kvm_dirty_bitmap_bytes(memslot);
1547 memset(memslot->dirty_bitmap, 0, n);
1548 }
1549
1550 r = 0;
1551 out:
1552 mutex_unlock(&kvm->slots_lock);
1553 return r;
1554 }
1555
1556 static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
1557 struct kvm_memory_slot *memslot)
1558 {
1559 return;
1560 }
1561
1562 static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
1563 struct kvm_memory_slot *memslot,
1564 struct kvm_userspace_memory_region *mem)
1565 {
1566 return 0;
1567 }
1568
1569 static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1570 struct kvm_userspace_memory_region *mem,
1571 const struct kvm_memory_slot *old)
1572 {
1573 return;
1574 }
1575
1576 static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
1577 struct kvm_memory_slot *dont)
1578 {
1579 return;
1580 }
1581
1582 static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
1583 unsigned long npages)
1584 {
1585 return 0;
1586 }
1587
1588
1589 #ifdef CONFIG_PPC64
1590 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1591 struct kvm_ppc_smmu_info *info)
1592 {
1593 long int i;
1594 struct kvm_vcpu *vcpu;
1595
1596 info->flags = 0;
1597
1598 /* SLB is always 64 entries */
1599 info->slb_size = 64;
1600
1601 /* Standard 4k base page size segment */
1602 info->sps[0].page_shift = 12;
1603 info->sps[0].slb_enc = 0;
1604 info->sps[0].enc[0].page_shift = 12;
1605 info->sps[0].enc[0].pte_enc = 0;
1606
1607 /*
1608 * 64k large page size.
1609 * We only want to put this in if the CPUs we're emulating
1610 * support it, but unfortunately we don't have a vcpu easily
1611 * to hand here to test. Just pick the first vcpu, and if
1612 * that doesn't exist yet, report the minimum capability,
1613 * i.e., no 64k pages.
1614 * 1T segment support goes along with 64k pages.
1615 */
1616 i = 1;
1617 vcpu = kvm_get_vcpu(kvm, 0);
1618 if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
1619 info->flags = KVM_PPC_1T_SEGMENTS;
1620 info->sps[i].page_shift = 16;
1621 info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
1622 info->sps[i].enc[0].page_shift = 16;
1623 info->sps[i].enc[0].pte_enc = 1;
1624 ++i;
1625 }
1626
1627 /* Standard 16M large page size segment */
1628 info->sps[i].page_shift = 24;
1629 info->sps[i].slb_enc = SLB_VSID_L;
1630 info->sps[i].enc[0].page_shift = 24;
1631 info->sps[i].enc[0].pte_enc = 0;
1632
1633 return 0;
1634 }
1635 #else
1636 static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
1637 struct kvm_ppc_smmu_info *info)
1638 {
1639 /* We should not get called */
1640 BUG();
1641 }
1642 #endif /* CONFIG_PPC64 */
1643
1644 static unsigned int kvm_global_user_count = 0;
1645 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1646
1647 static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1648 {
1649 mutex_init(&kvm->arch.hpt_mutex);
1650
1651 #ifdef CONFIG_PPC_BOOK3S_64
1652 /* Start out with the default set of hcalls enabled */
1653 kvmppc_pr_init_default_hcalls(kvm);
1654 #endif
1655
1656 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1657 spin_lock(&kvm_global_user_count_lock);
1658 if (++kvm_global_user_count == 1)
1659 pSeries_disable_reloc_on_exc();
1660 spin_unlock(&kvm_global_user_count_lock);
1661 }
1662 return 0;
1663 }
1664
1665 static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1666 {
1667 #ifdef CONFIG_PPC64
1668 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1669 #endif
1670
1671 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1672 spin_lock(&kvm_global_user_count_lock);
1673 BUG_ON(kvm_global_user_count == 0);
1674 if (--kvm_global_user_count == 0)
1675 pSeries_enable_reloc_on_exc();
1676 spin_unlock(&kvm_global_user_count_lock);
1677 }
1678 }
1679
1680 static int kvmppc_core_check_processor_compat_pr(void)
1681 {
1682 /* we are always compatible */
1683 return 0;
1684 }
1685
1686 static long kvm_arch_vm_ioctl_pr(struct file *filp,
1687 unsigned int ioctl, unsigned long arg)
1688 {
1689 return -ENOTTY;
1690 }
1691
1692 static struct kvmppc_ops kvm_ops_pr = {
1693 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
1694 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
1695 .get_one_reg = kvmppc_get_one_reg_pr,
1696 .set_one_reg = kvmppc_set_one_reg_pr,
1697 .vcpu_load = kvmppc_core_vcpu_load_pr,
1698 .vcpu_put = kvmppc_core_vcpu_put_pr,
1699 .set_msr = kvmppc_set_msr_pr,
1700 .vcpu_run = kvmppc_vcpu_run_pr,
1701 .vcpu_create = kvmppc_core_vcpu_create_pr,
1702 .vcpu_free = kvmppc_core_vcpu_free_pr,
1703 .check_requests = kvmppc_core_check_requests_pr,
1704 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
1705 .flush_memslot = kvmppc_core_flush_memslot_pr,
1706 .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
1707 .commit_memory_region = kvmppc_core_commit_memory_region_pr,
1708 .unmap_hva = kvm_unmap_hva_pr,
1709 .unmap_hva_range = kvm_unmap_hva_range_pr,
1710 .age_hva = kvm_age_hva_pr,
1711 .test_age_hva = kvm_test_age_hva_pr,
1712 .set_spte_hva = kvm_set_spte_hva_pr,
1713 .mmu_destroy = kvmppc_mmu_destroy_pr,
1714 .free_memslot = kvmppc_core_free_memslot_pr,
1715 .create_memslot = kvmppc_core_create_memslot_pr,
1716 .init_vm = kvmppc_core_init_vm_pr,
1717 .destroy_vm = kvmppc_core_destroy_vm_pr,
1718 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
1719 .emulate_op = kvmppc_core_emulate_op_pr,
1720 .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
1721 .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
1722 .fast_vcpu_kick = kvm_vcpu_kick,
1723 .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
1724 #ifdef CONFIG_PPC_BOOK3S_64
1725 .hcall_implemented = kvmppc_hcall_impl_pr,
1726 #endif
1727 };
1728
1729
1730 int kvmppc_book3s_init_pr(void)
1731 {
1732 int r;
1733
1734 r = kvmppc_core_check_processor_compat_pr();
1735 if (r < 0)
1736 return r;
1737
1738 kvm_ops_pr.owner = THIS_MODULE;
1739 kvmppc_pr_ops = &kvm_ops_pr;
1740
1741 r = kvmppc_mmu_hpte_sysinit();
1742 return r;
1743 }
1744
1745 void kvmppc_book3s_exit_pr(void)
1746 {
1747 kvmppc_pr_ops = NULL;
1748 kvmppc_mmu_hpte_sysexit();
1749 }
1750
1751 /*
1752 * We only support separate modules for book3s 64
1753 */
1754 #ifdef CONFIG_PPC_BOOK3S_64
1755
1756 module_init(kvmppc_book3s_init_pr);
1757 module_exit(kvmppc_book3s_exit_pr);
1758
1759 MODULE_LICENSE("GPL");
1760 MODULE_ALIAS_MISCDEV(KVM_MINOR);
1761 MODULE_ALIAS("devname:kvm");
1762 #endif