]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_pr.c
powerpc/kvm/book3s_pr: Return appropriate error when allocation fails
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_pr.c
1 /*
2 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
3 *
4 * Authors:
5 * Alexander Graf <agraf@suse.de>
6 * Kevin Wolf <mail@kevin-wolf.de>
7 * Paul Mackerras <paulus@samba.org>
8 *
9 * Description:
10 * Functions relating to running KVM on Book 3S processors where
11 * we don't have access to hypervisor mode, and we run the guest
12 * in problem state (user mode).
13 *
14 * This file is derived from arch/powerpc/kvm/44x.c,
15 * by Hollis Blanchard <hollisb@us.ibm.com>.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License, version 2, as
19 * published by the Free Software Foundation.
20 */
21
22 #include <linux/kvm_host.h>
23 #include <linux/export.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26
27 #include <asm/reg.h>
28 #include <asm/cputable.h>
29 #include <asm/cacheflush.h>
30 #include <asm/tlbflush.h>
31 #include <asm/uaccess.h>
32 #include <asm/io.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/mmu_context.h>
36 #include <asm/switch_to.h>
37 #include <asm/firmware.h>
38 #include <asm/hvcall.h>
39 #include <linux/gfp.h>
40 #include <linux/sched.h>
41 #include <linux/vmalloc.h>
42 #include <linux/highmem.h>
43
44 #include "trace.h"
45
46 /* #define EXIT_DEBUG */
47 /* #define DEBUG_EXT */
48
49 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
50 ulong msr);
51
52 /* Some compatibility defines */
53 #ifdef CONFIG_PPC_BOOK3S_32
54 #define MSR_USER32 MSR_USER
55 #define MSR_USER64 MSR_USER
56 #define HW_PAGE_SIZE PAGE_SIZE
57 #endif
58
59 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
60 {
61 #ifdef CONFIG_PPC_BOOK3S_64
62 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
63 memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
64 memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
65 sizeof(get_paca()->shadow_vcpu));
66 svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
67 svcpu_put(svcpu);
68 #endif
69 vcpu->cpu = smp_processor_id();
70 #ifdef CONFIG_PPC_BOOK3S_32
71 current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
72 #endif
73 }
74
75 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
76 {
77 #ifdef CONFIG_PPC_BOOK3S_64
78 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
79 memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
80 memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
81 sizeof(get_paca()->shadow_vcpu));
82 to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
83 svcpu_put(svcpu);
84 #endif
85
86 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
87 vcpu->cpu = -1;
88 }
89
90 int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
91 {
92 int r = 1; /* Indicate we want to get back into the guest */
93
94 /* We misuse TLB_FLUSH to indicate that we want to clear
95 all shadow cache entries */
96 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
97 kvmppc_mmu_pte_flush(vcpu, 0, 0);
98
99 return r;
100 }
101
102 /************* MMU Notifiers *************/
103
104 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
105 {
106 trace_kvm_unmap_hva(hva);
107
108 /*
109 * Flush all shadow tlb entries everywhere. This is slow, but
110 * we are 100% sure that we catch the to be unmapped page
111 */
112 kvm_flush_remote_tlbs(kvm);
113
114 return 0;
115 }
116
117 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
118 {
119 /* kvm_unmap_hva flushes everything anyways */
120 kvm_unmap_hva(kvm, start);
121
122 return 0;
123 }
124
125 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
126 {
127 /* XXX could be more clever ;) */
128 return 0;
129 }
130
131 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
132 {
133 /* XXX could be more clever ;) */
134 return 0;
135 }
136
137 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
138 {
139 /* The page will get remapped properly on its next fault */
140 kvm_unmap_hva(kvm, hva);
141 }
142
143 /*****************************************/
144
145 static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
146 {
147 ulong smsr = vcpu->arch.shared->msr;
148
149 /* Guest MSR values */
150 smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
151 /* Process MSR values */
152 smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
153 /* External providers the guest reserved */
154 smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
155 /* 64-bit Process MSR values */
156 #ifdef CONFIG_PPC_BOOK3S_64
157 smsr |= MSR_ISF | MSR_HV;
158 #endif
159 vcpu->arch.shadow_msr = smsr;
160 }
161
162 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
163 {
164 ulong old_msr = vcpu->arch.shared->msr;
165
166 #ifdef EXIT_DEBUG
167 printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
168 #endif
169
170 msr &= to_book3s(vcpu)->msr_mask;
171 vcpu->arch.shared->msr = msr;
172 kvmppc_recalc_shadow_msr(vcpu);
173
174 if (msr & MSR_POW) {
175 if (!vcpu->arch.pending_exceptions) {
176 kvm_vcpu_block(vcpu);
177 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
178 vcpu->stat.halt_wakeup++;
179
180 /* Unset POW bit after we woke up */
181 msr &= ~MSR_POW;
182 vcpu->arch.shared->msr = msr;
183 }
184 }
185
186 if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
187 (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
188 kvmppc_mmu_flush_segments(vcpu);
189 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
190
191 /* Preload magic page segment when in kernel mode */
192 if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
193 struct kvm_vcpu_arch *a = &vcpu->arch;
194
195 if (msr & MSR_DR)
196 kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
197 else
198 kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
199 }
200 }
201
202 /*
203 * When switching from 32 to 64-bit, we may have a stale 32-bit
204 * magic page around, we need to flush it. Typically 32-bit magic
205 * page will be instanciated when calling into RTAS. Note: We
206 * assume that such transition only happens while in kernel mode,
207 * ie, we never transition from user 32-bit to kernel 64-bit with
208 * a 32-bit magic page around.
209 */
210 if (vcpu->arch.magic_page_pa &&
211 !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
212 /* going from RTAS to normal kernel code */
213 kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
214 ~0xFFFUL);
215 }
216
217 /* Preload FPU if it's enabled */
218 if (vcpu->arch.shared->msr & MSR_FP)
219 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
220 }
221
222 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
223 {
224 u32 host_pvr;
225
226 vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
227 vcpu->arch.pvr = pvr;
228 #ifdef CONFIG_PPC_BOOK3S_64
229 if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
230 kvmppc_mmu_book3s_64_init(vcpu);
231 if (!to_book3s(vcpu)->hior_explicit)
232 to_book3s(vcpu)->hior = 0xfff00000;
233 to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
234 vcpu->arch.cpu_type = KVM_CPU_3S_64;
235 } else
236 #endif
237 {
238 kvmppc_mmu_book3s_32_init(vcpu);
239 if (!to_book3s(vcpu)->hior_explicit)
240 to_book3s(vcpu)->hior = 0;
241 to_book3s(vcpu)->msr_mask = 0xffffffffULL;
242 vcpu->arch.cpu_type = KVM_CPU_3S_32;
243 }
244
245 kvmppc_sanity_check(vcpu);
246
247 /* If we are in hypervisor level on 970, we can tell the CPU to
248 * treat DCBZ as 32 bytes store */
249 vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
250 if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
251 !strcmp(cur_cpu_spec->platform, "ppc970"))
252 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
253
254 /* Cell performs badly if MSR_FEx are set. So let's hope nobody
255 really needs them in a VM on Cell and force disable them. */
256 if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
257 to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
258
259 #ifdef CONFIG_PPC_BOOK3S_32
260 /* 32 bit Book3S always has 32 byte dcbz */
261 vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
262 #endif
263
264 /* On some CPUs we can execute paired single operations natively */
265 asm ( "mfpvr %0" : "=r"(host_pvr));
266 switch (host_pvr) {
267 case 0x00080200: /* lonestar 2.0 */
268 case 0x00088202: /* lonestar 2.2 */
269 case 0x70000100: /* gekko 1.0 */
270 case 0x00080100: /* gekko 2.0 */
271 case 0x00083203: /* gekko 2.3a */
272 case 0x00083213: /* gekko 2.3b */
273 case 0x00083204: /* gekko 2.4 */
274 case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
275 case 0x00087200: /* broadway */
276 vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
277 /* Enable HID2.PSE - in case we need it later */
278 mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
279 }
280 }
281
282 /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
283 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
284 * emulate 32 bytes dcbz length.
285 *
286 * The Book3s_64 inventors also realized this case and implemented a special bit
287 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
288 *
289 * My approach here is to patch the dcbz instruction on executing pages.
290 */
291 static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
292 {
293 struct page *hpage;
294 u64 hpage_offset;
295 u32 *page;
296 int i;
297
298 hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
299 if (is_error_page(hpage))
300 return;
301
302 hpage_offset = pte->raddr & ~PAGE_MASK;
303 hpage_offset &= ~0xFFFULL;
304 hpage_offset /= 4;
305
306 get_page(hpage);
307 page = kmap_atomic(hpage);
308
309 /* patch dcbz into reserved instruction, so we trap */
310 for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
311 if ((page[i] & 0xff0007ff) == INS_DCBZ)
312 page[i] &= 0xfffffff7;
313
314 kunmap_atomic(page);
315 put_page(hpage);
316 }
317
318 static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
319 {
320 ulong mp_pa = vcpu->arch.magic_page_pa;
321
322 if (!(vcpu->arch.shared->msr & MSR_SF))
323 mp_pa = (uint32_t)mp_pa;
324
325 if (unlikely(mp_pa) &&
326 unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
327 return 1;
328 }
329
330 return kvm_is_visible_gfn(vcpu->kvm, gfn);
331 }
332
333 int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
334 ulong eaddr, int vec)
335 {
336 bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
337 int r = RESUME_GUEST;
338 int relocated;
339 int page_found = 0;
340 struct kvmppc_pte pte;
341 bool is_mmio = false;
342 bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
343 bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
344 u64 vsid;
345
346 relocated = data ? dr : ir;
347
348 /* Resolve real address if translation turned on */
349 if (relocated) {
350 page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
351 } else {
352 pte.may_execute = true;
353 pte.may_read = true;
354 pte.may_write = true;
355 pte.raddr = eaddr & KVM_PAM;
356 pte.eaddr = eaddr;
357 pte.vpage = eaddr >> 12;
358 }
359
360 switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
361 case 0:
362 pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
363 break;
364 case MSR_DR:
365 case MSR_IR:
366 vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
367
368 if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
369 pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
370 else
371 pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
372 pte.vpage |= vsid;
373
374 if (vsid == -1)
375 page_found = -EINVAL;
376 break;
377 }
378
379 if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
380 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
381 /*
382 * If we do the dcbz hack, we have to NX on every execution,
383 * so we can patch the executing code. This renders our guest
384 * NX-less.
385 */
386 pte.may_execute = !data;
387 }
388
389 if (page_found == -ENOENT) {
390 /* Page not found in guest PTE entries */
391 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
392 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
393 vcpu->arch.shared->dsisr = svcpu->fault_dsisr;
394 vcpu->arch.shared->msr |=
395 (svcpu->shadow_srr1 & 0x00000000f8000000ULL);
396 svcpu_put(svcpu);
397 kvmppc_book3s_queue_irqprio(vcpu, vec);
398 } else if (page_found == -EPERM) {
399 /* Storage protection */
400 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
401 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
402 vcpu->arch.shared->dsisr = svcpu->fault_dsisr & ~DSISR_NOHPTE;
403 vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
404 vcpu->arch.shared->msr |=
405 svcpu->shadow_srr1 & 0x00000000f8000000ULL;
406 svcpu_put(svcpu);
407 kvmppc_book3s_queue_irqprio(vcpu, vec);
408 } else if (page_found == -EINVAL) {
409 /* Page not found in guest SLB */
410 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
411 kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
412 } else if (!is_mmio &&
413 kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
414 /* The guest's PTE is not mapped yet. Map on the host */
415 kvmppc_mmu_map_page(vcpu, &pte);
416 if (data)
417 vcpu->stat.sp_storage++;
418 else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
419 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
420 kvmppc_patch_dcbz(vcpu, &pte);
421 } else {
422 /* MMIO */
423 vcpu->stat.mmio_exits++;
424 vcpu->arch.paddr_accessed = pte.raddr;
425 vcpu->arch.vaddr_accessed = pte.eaddr;
426 r = kvmppc_emulate_mmio(run, vcpu);
427 if ( r == RESUME_HOST_NV )
428 r = RESUME_HOST;
429 }
430
431 return r;
432 }
433
434 static inline int get_fpr_index(int i)
435 {
436 return i * TS_FPRWIDTH;
437 }
438
439 /* Give up external provider (FPU, Altivec, VSX) */
440 void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
441 {
442 struct thread_struct *t = &current->thread;
443 u64 *vcpu_fpr = vcpu->arch.fpr;
444 #ifdef CONFIG_VSX
445 u64 *vcpu_vsx = vcpu->arch.vsr;
446 #endif
447 u64 *thread_fpr = (u64*)t->fpr;
448 int i;
449
450 /*
451 * VSX instructions can access FP and vector registers, so if
452 * we are giving up VSX, make sure we give up FP and VMX as well.
453 */
454 if (msr & MSR_VSX)
455 msr |= MSR_FP | MSR_VEC;
456
457 msr &= vcpu->arch.guest_owned_ext;
458 if (!msr)
459 return;
460
461 #ifdef DEBUG_EXT
462 printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
463 #endif
464
465 if (msr & MSR_FP) {
466 /*
467 * Note that on CPUs with VSX, giveup_fpu stores
468 * both the traditional FP registers and the added VSX
469 * registers into thread.fpr[].
470 */
471 giveup_fpu(current);
472 for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
473 vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
474
475 vcpu->arch.fpscr = t->fpscr.val;
476
477 #ifdef CONFIG_VSX
478 if (cpu_has_feature(CPU_FTR_VSX))
479 for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
480 vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
481 #endif
482 }
483
484 #ifdef CONFIG_ALTIVEC
485 if (msr & MSR_VEC) {
486 giveup_altivec(current);
487 memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
488 vcpu->arch.vscr = t->vscr;
489 }
490 #endif
491
492 vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
493 kvmppc_recalc_shadow_msr(vcpu);
494 }
495
496 static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
497 {
498 ulong srr0 = kvmppc_get_pc(vcpu);
499 u32 last_inst = kvmppc_get_last_inst(vcpu);
500 int ret;
501
502 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
503 if (ret == -ENOENT) {
504 ulong msr = vcpu->arch.shared->msr;
505
506 msr = kvmppc_set_field(msr, 33, 33, 1);
507 msr = kvmppc_set_field(msr, 34, 36, 0);
508 vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
509 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
510 return EMULATE_AGAIN;
511 }
512
513 return EMULATE_DONE;
514 }
515
516 static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
517 {
518
519 /* Need to do paired single emulation? */
520 if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
521 return EMULATE_DONE;
522
523 /* Read out the instruction */
524 if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
525 /* Need to emulate */
526 return EMULATE_FAIL;
527
528 return EMULATE_AGAIN;
529 }
530
531 /* Handle external providers (FPU, Altivec, VSX) */
532 static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
533 ulong msr)
534 {
535 struct thread_struct *t = &current->thread;
536 u64 *vcpu_fpr = vcpu->arch.fpr;
537 #ifdef CONFIG_VSX
538 u64 *vcpu_vsx = vcpu->arch.vsr;
539 #endif
540 u64 *thread_fpr = (u64*)t->fpr;
541 int i;
542
543 /* When we have paired singles, we emulate in software */
544 if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
545 return RESUME_GUEST;
546
547 if (!(vcpu->arch.shared->msr & msr)) {
548 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
549 return RESUME_GUEST;
550 }
551
552 if (msr == MSR_VSX) {
553 /* No VSX? Give an illegal instruction interrupt */
554 #ifdef CONFIG_VSX
555 if (!cpu_has_feature(CPU_FTR_VSX))
556 #endif
557 {
558 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
559 return RESUME_GUEST;
560 }
561
562 /*
563 * We have to load up all the FP and VMX registers before
564 * we can let the guest use VSX instructions.
565 */
566 msr = MSR_FP | MSR_VEC | MSR_VSX;
567 }
568
569 /* See if we already own all the ext(s) needed */
570 msr &= ~vcpu->arch.guest_owned_ext;
571 if (!msr)
572 return RESUME_GUEST;
573
574 #ifdef DEBUG_EXT
575 printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
576 #endif
577
578 current->thread.regs->msr |= msr;
579
580 if (msr & MSR_FP) {
581 for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
582 thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
583 #ifdef CONFIG_VSX
584 for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
585 thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
586 #endif
587 t->fpscr.val = vcpu->arch.fpscr;
588 t->fpexc_mode = 0;
589 kvmppc_load_up_fpu();
590 }
591
592 if (msr & MSR_VEC) {
593 #ifdef CONFIG_ALTIVEC
594 memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
595 t->vscr = vcpu->arch.vscr;
596 t->vrsave = -1;
597 kvmppc_load_up_altivec();
598 #endif
599 }
600
601 vcpu->arch.guest_owned_ext |= msr;
602 kvmppc_recalc_shadow_msr(vcpu);
603
604 return RESUME_GUEST;
605 }
606
607 int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
608 unsigned int exit_nr)
609 {
610 int r = RESUME_HOST;
611 int s;
612
613 vcpu->stat.sum_exits++;
614
615 run->exit_reason = KVM_EXIT_UNKNOWN;
616 run->ready_for_interrupt_injection = 1;
617
618 /* We get here with MSR.EE=1 */
619
620 trace_kvm_exit(exit_nr, vcpu);
621 kvm_guest_exit();
622
623 switch (exit_nr) {
624 case BOOK3S_INTERRUPT_INST_STORAGE:
625 {
626 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
627 ulong shadow_srr1 = svcpu->shadow_srr1;
628 vcpu->stat.pf_instruc++;
629
630 #ifdef CONFIG_PPC_BOOK3S_32
631 /* We set segments as unused segments when invalidating them. So
632 * treat the respective fault as segment fault. */
633 if (svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) {
634 kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
635 r = RESUME_GUEST;
636 svcpu_put(svcpu);
637 break;
638 }
639 #endif
640 svcpu_put(svcpu);
641
642 /* only care about PTEG not found errors, but leave NX alone */
643 if (shadow_srr1 & 0x40000000) {
644 r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
645 vcpu->stat.sp_instruc++;
646 } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
647 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
648 /*
649 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
650 * so we can't use the NX bit inside the guest. Let's cross our fingers,
651 * that no guest that needs the dcbz hack does NX.
652 */
653 kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
654 r = RESUME_GUEST;
655 } else {
656 vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
657 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
658 r = RESUME_GUEST;
659 }
660 break;
661 }
662 case BOOK3S_INTERRUPT_DATA_STORAGE:
663 {
664 ulong dar = kvmppc_get_fault_dar(vcpu);
665 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
666 u32 fault_dsisr = svcpu->fault_dsisr;
667 vcpu->stat.pf_storage++;
668
669 #ifdef CONFIG_PPC_BOOK3S_32
670 /* We set segments as unused segments when invalidating them. So
671 * treat the respective fault as segment fault. */
672 if ((svcpu->sr[dar >> SID_SHIFT]) == SR_INVALID) {
673 kvmppc_mmu_map_segment(vcpu, dar);
674 r = RESUME_GUEST;
675 svcpu_put(svcpu);
676 break;
677 }
678 #endif
679 svcpu_put(svcpu);
680
681 /* The only case we need to handle is missing shadow PTEs */
682 if (fault_dsisr & DSISR_NOHPTE) {
683 r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
684 } else {
685 vcpu->arch.shared->dar = dar;
686 vcpu->arch.shared->dsisr = fault_dsisr;
687 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
688 r = RESUME_GUEST;
689 }
690 break;
691 }
692 case BOOK3S_INTERRUPT_DATA_SEGMENT:
693 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
694 vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
695 kvmppc_book3s_queue_irqprio(vcpu,
696 BOOK3S_INTERRUPT_DATA_SEGMENT);
697 }
698 r = RESUME_GUEST;
699 break;
700 case BOOK3S_INTERRUPT_INST_SEGMENT:
701 if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
702 kvmppc_book3s_queue_irqprio(vcpu,
703 BOOK3S_INTERRUPT_INST_SEGMENT);
704 }
705 r = RESUME_GUEST;
706 break;
707 /* We're good on these - the host merely wanted to get our attention */
708 case BOOK3S_INTERRUPT_DECREMENTER:
709 case BOOK3S_INTERRUPT_HV_DECREMENTER:
710 vcpu->stat.dec_exits++;
711 r = RESUME_GUEST;
712 break;
713 case BOOK3S_INTERRUPT_EXTERNAL:
714 case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
715 case BOOK3S_INTERRUPT_EXTERNAL_HV:
716 vcpu->stat.ext_intr_exits++;
717 r = RESUME_GUEST;
718 break;
719 case BOOK3S_INTERRUPT_PERFMON:
720 r = RESUME_GUEST;
721 break;
722 case BOOK3S_INTERRUPT_PROGRAM:
723 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
724 {
725 enum emulation_result er;
726 struct kvmppc_book3s_shadow_vcpu *svcpu;
727 ulong flags;
728
729 program_interrupt:
730 svcpu = svcpu_get(vcpu);
731 flags = svcpu->shadow_srr1 & 0x1f0000ull;
732 svcpu_put(svcpu);
733
734 if (vcpu->arch.shared->msr & MSR_PR) {
735 #ifdef EXIT_DEBUG
736 printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
737 #endif
738 if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
739 (INS_DCBZ & 0xfffffff7)) {
740 kvmppc_core_queue_program(vcpu, flags);
741 r = RESUME_GUEST;
742 break;
743 }
744 }
745
746 vcpu->stat.emulated_inst_exits++;
747 er = kvmppc_emulate_instruction(run, vcpu);
748 switch (er) {
749 case EMULATE_DONE:
750 r = RESUME_GUEST_NV;
751 break;
752 case EMULATE_AGAIN:
753 r = RESUME_GUEST;
754 break;
755 case EMULATE_FAIL:
756 printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
757 __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
758 kvmppc_core_queue_program(vcpu, flags);
759 r = RESUME_GUEST;
760 break;
761 case EMULATE_DO_MMIO:
762 run->exit_reason = KVM_EXIT_MMIO;
763 r = RESUME_HOST_NV;
764 break;
765 case EMULATE_EXIT_USER:
766 r = RESUME_HOST_NV;
767 break;
768 default:
769 BUG();
770 }
771 break;
772 }
773 case BOOK3S_INTERRUPT_SYSCALL:
774 if (vcpu->arch.papr_enabled &&
775 (kvmppc_get_last_inst(vcpu) == 0x44000022) &&
776 !(vcpu->arch.shared->msr & MSR_PR)) {
777 /* SC 1 papr hypercalls */
778 ulong cmd = kvmppc_get_gpr(vcpu, 3);
779 int i;
780
781 #ifdef CONFIG_KVM_BOOK3S_64_PR
782 if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
783 r = RESUME_GUEST;
784 break;
785 }
786 #endif
787
788 run->papr_hcall.nr = cmd;
789 for (i = 0; i < 9; ++i) {
790 ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
791 run->papr_hcall.args[i] = gpr;
792 }
793 run->exit_reason = KVM_EXIT_PAPR_HCALL;
794 vcpu->arch.hcall_needed = 1;
795 r = RESUME_HOST;
796 } else if (vcpu->arch.osi_enabled &&
797 (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
798 (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
799 /* MOL hypercalls */
800 u64 *gprs = run->osi.gprs;
801 int i;
802
803 run->exit_reason = KVM_EXIT_OSI;
804 for (i = 0; i < 32; i++)
805 gprs[i] = kvmppc_get_gpr(vcpu, i);
806 vcpu->arch.osi_needed = 1;
807 r = RESUME_HOST_NV;
808 } else if (!(vcpu->arch.shared->msr & MSR_PR) &&
809 (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
810 /* KVM PV hypercalls */
811 kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
812 r = RESUME_GUEST;
813 } else {
814 /* Guest syscalls */
815 vcpu->stat.syscall_exits++;
816 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
817 r = RESUME_GUEST;
818 }
819 break;
820 case BOOK3S_INTERRUPT_FP_UNAVAIL:
821 case BOOK3S_INTERRUPT_ALTIVEC:
822 case BOOK3S_INTERRUPT_VSX:
823 {
824 int ext_msr = 0;
825
826 switch (exit_nr) {
827 case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
828 case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
829 case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
830 }
831
832 switch (kvmppc_check_ext(vcpu, exit_nr)) {
833 case EMULATE_DONE:
834 /* everything ok - let's enable the ext */
835 r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
836 break;
837 case EMULATE_FAIL:
838 /* we need to emulate this instruction */
839 goto program_interrupt;
840 break;
841 default:
842 /* nothing to worry about - go again */
843 break;
844 }
845 break;
846 }
847 case BOOK3S_INTERRUPT_ALIGNMENT:
848 if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
849 vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
850 kvmppc_get_last_inst(vcpu));
851 vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
852 kvmppc_get_last_inst(vcpu));
853 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
854 }
855 r = RESUME_GUEST;
856 break;
857 case BOOK3S_INTERRUPT_MACHINE_CHECK:
858 case BOOK3S_INTERRUPT_TRACE:
859 kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
860 r = RESUME_GUEST;
861 break;
862 default:
863 {
864 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
865 ulong shadow_srr1 = svcpu->shadow_srr1;
866 svcpu_put(svcpu);
867 /* Ugh - bork here! What did we get? */
868 printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
869 exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
870 r = RESUME_HOST;
871 BUG();
872 break;
873 }
874 }
875
876 if (!(r & RESUME_HOST)) {
877 /* To avoid clobbering exit_reason, only check for signals if
878 * we aren't already exiting to userspace for some other
879 * reason. */
880
881 /*
882 * Interrupts could be timers for the guest which we have to
883 * inject again, so let's postpone them until we're in the guest
884 * and if we really did time things so badly, then we just exit
885 * again due to a host external interrupt.
886 */
887 local_irq_disable();
888 s = kvmppc_prepare_to_enter(vcpu);
889 if (s <= 0) {
890 local_irq_enable();
891 r = s;
892 } else {
893 kvmppc_lazy_ee_enable();
894 }
895 }
896
897 trace_kvm_book3s_reenter(r, vcpu);
898
899 return r;
900 }
901
902 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
903 struct kvm_sregs *sregs)
904 {
905 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
906 int i;
907
908 sregs->pvr = vcpu->arch.pvr;
909
910 sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
911 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
912 for (i = 0; i < 64; i++) {
913 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
914 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
915 }
916 } else {
917 for (i = 0; i < 16; i++)
918 sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
919
920 for (i = 0; i < 8; i++) {
921 sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
922 sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
923 }
924 }
925
926 return 0;
927 }
928
929 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
930 struct kvm_sregs *sregs)
931 {
932 struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
933 int i;
934
935 kvmppc_set_pvr(vcpu, sregs->pvr);
936
937 vcpu3s->sdr1 = sregs->u.s.sdr1;
938 if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
939 for (i = 0; i < 64; i++) {
940 vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
941 sregs->u.s.ppc64.slb[i].slbe);
942 }
943 } else {
944 for (i = 0; i < 16; i++) {
945 vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
946 }
947 for (i = 0; i < 8; i++) {
948 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
949 (u32)sregs->u.s.ppc32.ibat[i]);
950 kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
951 (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
952 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
953 (u32)sregs->u.s.ppc32.dbat[i]);
954 kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
955 (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
956 }
957 }
958
959 /* Flush the MMU after messing with the segments */
960 kvmppc_mmu_pte_flush(vcpu, 0, 0);
961
962 return 0;
963 }
964
965 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
966 {
967 int r = 0;
968
969 switch (id) {
970 case KVM_REG_PPC_HIOR:
971 *val = get_reg_val(id, to_book3s(vcpu)->hior);
972 break;
973 #ifdef CONFIG_VSX
974 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
975 long int i = id - KVM_REG_PPC_VSR0;
976
977 if (!cpu_has_feature(CPU_FTR_VSX)) {
978 r = -ENXIO;
979 break;
980 }
981 val->vsxval[0] = vcpu->arch.fpr[i];
982 val->vsxval[1] = vcpu->arch.vsr[i];
983 break;
984 }
985 #endif /* CONFIG_VSX */
986 default:
987 r = -EINVAL;
988 break;
989 }
990
991 return r;
992 }
993
994 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
995 {
996 int r = 0;
997
998 switch (id) {
999 case KVM_REG_PPC_HIOR:
1000 to_book3s(vcpu)->hior = set_reg_val(id, *val);
1001 to_book3s(vcpu)->hior_explicit = true;
1002 break;
1003 #ifdef CONFIG_VSX
1004 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
1005 long int i = id - KVM_REG_PPC_VSR0;
1006
1007 if (!cpu_has_feature(CPU_FTR_VSX)) {
1008 r = -ENXIO;
1009 break;
1010 }
1011 vcpu->arch.fpr[i] = val->vsxval[0];
1012 vcpu->arch.vsr[i] = val->vsxval[1];
1013 break;
1014 }
1015 #endif /* CONFIG_VSX */
1016 default:
1017 r = -EINVAL;
1018 break;
1019 }
1020
1021 return r;
1022 }
1023
1024 int kvmppc_core_check_processor_compat(void)
1025 {
1026 return 0;
1027 }
1028
1029 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
1030 {
1031 struct kvmppc_vcpu_book3s *vcpu_book3s;
1032 struct kvm_vcpu *vcpu;
1033 int err = -ENOMEM;
1034 unsigned long p;
1035
1036 vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
1037 if (!vcpu_book3s)
1038 goto out;
1039
1040 vcpu_book3s->shadow_vcpu =
1041 kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
1042 if (!vcpu_book3s->shadow_vcpu)
1043 goto free_vcpu;
1044
1045 vcpu = &vcpu_book3s->vcpu;
1046 err = kvm_vcpu_init(vcpu, kvm, id);
1047 if (err)
1048 goto free_shadow_vcpu;
1049
1050 err = -ENOMEM;
1051 p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
1052 if (!p)
1053 goto uninit_vcpu;
1054 /* the real shared page fills the last 4k of our page */
1055 vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1056
1057 #ifdef CONFIG_PPC_BOOK3S_64
1058 /* default to book3s_64 (970fx) */
1059 vcpu->arch.pvr = 0x3C0301;
1060 #else
1061 /* default to book3s_32 (750) */
1062 vcpu->arch.pvr = 0x84202;
1063 #endif
1064 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
1065 vcpu->arch.slb_nr = 64;
1066
1067 vcpu->arch.shadow_msr = MSR_USER64;
1068
1069 err = kvmppc_mmu_init(vcpu);
1070 if (err < 0)
1071 goto uninit_vcpu;
1072
1073 return vcpu;
1074
1075 uninit_vcpu:
1076 kvm_vcpu_uninit(vcpu);
1077 free_shadow_vcpu:
1078 kfree(vcpu_book3s->shadow_vcpu);
1079 free_vcpu:
1080 vfree(vcpu_book3s);
1081 out:
1082 return ERR_PTR(err);
1083 }
1084
1085 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
1086 {
1087 struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
1088
1089 free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
1090 kvm_vcpu_uninit(vcpu);
1091 kfree(vcpu_book3s->shadow_vcpu);
1092 vfree(vcpu_book3s);
1093 }
1094
1095 int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1096 {
1097 int ret;
1098 double fpr[32][TS_FPRWIDTH];
1099 unsigned int fpscr;
1100 int fpexc_mode;
1101 #ifdef CONFIG_ALTIVEC
1102 vector128 vr[32];
1103 vector128 vscr;
1104 unsigned long uninitialized_var(vrsave);
1105 int used_vr;
1106 #endif
1107 #ifdef CONFIG_VSX
1108 int used_vsr;
1109 #endif
1110 ulong ext_msr;
1111
1112 /* Check if we can run the vcpu at all */
1113 if (!vcpu->arch.sane) {
1114 kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1115 ret = -EINVAL;
1116 goto out;
1117 }
1118
1119 /*
1120 * Interrupts could be timers for the guest which we have to inject
1121 * again, so let's postpone them until we're in the guest and if we
1122 * really did time things so badly, then we just exit again due to
1123 * a host external interrupt.
1124 */
1125 local_irq_disable();
1126 ret = kvmppc_prepare_to_enter(vcpu);
1127 if (ret <= 0) {
1128 local_irq_enable();
1129 goto out;
1130 }
1131
1132 /* Save FPU state in stack */
1133 if (current->thread.regs->msr & MSR_FP)
1134 giveup_fpu(current);
1135 memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
1136 fpscr = current->thread.fpscr.val;
1137 fpexc_mode = current->thread.fpexc_mode;
1138
1139 #ifdef CONFIG_ALTIVEC
1140 /* Save Altivec state in stack */
1141 used_vr = current->thread.used_vr;
1142 if (used_vr) {
1143 if (current->thread.regs->msr & MSR_VEC)
1144 giveup_altivec(current);
1145 memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
1146 vscr = current->thread.vscr;
1147 vrsave = current->thread.vrsave;
1148 }
1149 #endif
1150
1151 #ifdef CONFIG_VSX
1152 /* Save VSX state in stack */
1153 used_vsr = current->thread.used_vsr;
1154 if (used_vsr && (current->thread.regs->msr & MSR_VSX))
1155 __giveup_vsx(current);
1156 #endif
1157
1158 /* Remember the MSR with disabled extensions */
1159 ext_msr = current->thread.regs->msr;
1160
1161 /* Preload FPU if it's enabled */
1162 if (vcpu->arch.shared->msr & MSR_FP)
1163 kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
1164
1165 kvmppc_lazy_ee_enable();
1166
1167 ret = __kvmppc_vcpu_run(kvm_run, vcpu);
1168
1169 /* No need for kvm_guest_exit. It's done in handle_exit.
1170 We also get here with interrupts enabled. */
1171
1172 /* Make sure we save the guest FPU/Altivec/VSX state */
1173 kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
1174
1175 current->thread.regs->msr = ext_msr;
1176
1177 /* Restore FPU/VSX state from stack */
1178 memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
1179 current->thread.fpscr.val = fpscr;
1180 current->thread.fpexc_mode = fpexc_mode;
1181
1182 #ifdef CONFIG_ALTIVEC
1183 /* Restore Altivec state from stack */
1184 if (used_vr && current->thread.used_vr) {
1185 memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
1186 current->thread.vscr = vscr;
1187 current->thread.vrsave = vrsave;
1188 }
1189 current->thread.used_vr = used_vr;
1190 #endif
1191
1192 #ifdef CONFIG_VSX
1193 current->thread.used_vsr = used_vsr;
1194 #endif
1195
1196 out:
1197 vcpu->mode = OUTSIDE_GUEST_MODE;
1198 return ret;
1199 }
1200
1201 /*
1202 * Get (and clear) the dirty memory log for a memory slot.
1203 */
1204 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1205 struct kvm_dirty_log *log)
1206 {
1207 struct kvm_memory_slot *memslot;
1208 struct kvm_vcpu *vcpu;
1209 ulong ga, ga_end;
1210 int is_dirty = 0;
1211 int r;
1212 unsigned long n;
1213
1214 mutex_lock(&kvm->slots_lock);
1215
1216 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1217 if (r)
1218 goto out;
1219
1220 /* If nothing is dirty, don't bother messing with page tables. */
1221 if (is_dirty) {
1222 memslot = id_to_memslot(kvm->memslots, log->slot);
1223
1224 ga = memslot->base_gfn << PAGE_SHIFT;
1225 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1226
1227 kvm_for_each_vcpu(n, vcpu, kvm)
1228 kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
1229
1230 n = kvm_dirty_bitmap_bytes(memslot);
1231 memset(memslot->dirty_bitmap, 0, n);
1232 }
1233
1234 r = 0;
1235 out:
1236 mutex_unlock(&kvm->slots_lock);
1237 return r;
1238 }
1239
1240 #ifdef CONFIG_PPC64
1241 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1242 {
1243 info->flags = KVM_PPC_1T_SEGMENTS;
1244
1245 /* SLB is always 64 entries */
1246 info->slb_size = 64;
1247
1248 /* Standard 4k base page size segment */
1249 info->sps[0].page_shift = 12;
1250 info->sps[0].slb_enc = 0;
1251 info->sps[0].enc[0].page_shift = 12;
1252 info->sps[0].enc[0].pte_enc = 0;
1253
1254 /* Standard 16M large page size segment */
1255 info->sps[1].page_shift = 24;
1256 info->sps[1].slb_enc = SLB_VSID_L;
1257 info->sps[1].enc[0].page_shift = 24;
1258 info->sps[1].enc[0].pte_enc = 0;
1259
1260 return 0;
1261 }
1262 #endif /* CONFIG_PPC64 */
1263
1264 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1265 struct kvm_memory_slot *dont)
1266 {
1267 }
1268
1269 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1270 unsigned long npages)
1271 {
1272 return 0;
1273 }
1274
1275 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1276 struct kvm_memory_slot *memslot,
1277 struct kvm_userspace_memory_region *mem)
1278 {
1279 return 0;
1280 }
1281
1282 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1283 struct kvm_userspace_memory_region *mem,
1284 const struct kvm_memory_slot *old)
1285 {
1286 }
1287
1288 void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
1289 {
1290 }
1291
1292 static unsigned int kvm_global_user_count = 0;
1293 static DEFINE_SPINLOCK(kvm_global_user_count_lock);
1294
1295 int kvmppc_core_init_vm(struct kvm *kvm)
1296 {
1297 #ifdef CONFIG_PPC64
1298 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1299 INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1300 #endif
1301
1302 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1303 spin_lock(&kvm_global_user_count_lock);
1304 if (++kvm_global_user_count == 1)
1305 pSeries_disable_reloc_on_exc();
1306 spin_unlock(&kvm_global_user_count_lock);
1307 }
1308 return 0;
1309 }
1310
1311 void kvmppc_core_destroy_vm(struct kvm *kvm)
1312 {
1313 #ifdef CONFIG_PPC64
1314 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1315 #endif
1316
1317 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
1318 spin_lock(&kvm_global_user_count_lock);
1319 BUG_ON(kvm_global_user_count == 0);
1320 if (--kvm_global_user_count == 0)
1321 pSeries_enable_reloc_on_exc();
1322 spin_unlock(&kvm_global_user_count_lock);
1323 }
1324 }
1325
1326 static int kvmppc_book3s_init(void)
1327 {
1328 int r;
1329
1330 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
1331 THIS_MODULE);
1332
1333 if (r)
1334 return r;
1335
1336 r = kvmppc_mmu_hpte_sysinit();
1337
1338 return r;
1339 }
1340
1341 static void kvmppc_book3s_exit(void)
1342 {
1343 kvmppc_mmu_hpte_sysexit();
1344 kvm_exit();
1345 }
1346
1347 module_init(kvmppc_book3s_init);
1348 module_exit(kvmppc_book3s_exit);