]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/book3s_xive.c
KVM: PPC: Book3S HV: Provide mode where all vCPUs on a core must be the same VM
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / book3s_xive.c
1 /*
2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9 #define pr_fmt(fmt) "xive-kvm: " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <asm/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
30
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
33
34 #include "book3s_xive.h"
35
36
37 /*
38 * Virtual mode variants of the hcalls for use on radix/radix
39 * with AIL. They require the VCPU's VP to be "pushed"
40 *
41 * We still instanciate them here because we use some of the
42 * generated utility functions as well in this file.
43 */
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima xive_tima
49 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
51 #define __x_writeb __raw_writeb
52 #define __x_readw __raw_readw
53 #define __x_readq __raw_readq
54 #define __x_writeq __raw_writeq
55
56 #include "book3s_xive_template.c"
57
58 /*
59 * We leave a gap of a couple of interrupts in the queue to
60 * account for the IPI and additional safety guard.
61 */
62 #define XIVE_Q_GAP 2
63
64 /*
65 * This is a simple trigger for a generic XIVE IRQ. This must
66 * only be called for interrupts that support a trigger page
67 */
68 static bool xive_irq_trigger(struct xive_irq_data *xd)
69 {
70 /* This should be only for MSIs */
71 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
72 return false;
73
74 /* Those interrupts should always have a trigger page */
75 if (WARN_ON(!xd->trig_mmio))
76 return false;
77
78 out_be64(xd->trig_mmio, 0);
79
80 return true;
81 }
82
83 static irqreturn_t xive_esc_irq(int irq, void *data)
84 {
85 struct kvm_vcpu *vcpu = data;
86
87 /* We use the existing H_PROD mechanism to wake up the target */
88 vcpu->arch.prodded = 1;
89 smp_mb();
90 if (vcpu->arch.ceded)
91 kvmppc_fast_vcpu_kick(vcpu);
92
93 return IRQ_HANDLED;
94 }
95
96 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
97 {
98 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
99 struct xive_q *q = &xc->queues[prio];
100 char *name = NULL;
101 int rc;
102
103 /* Already there ? */
104 if (xc->esc_virq[prio])
105 return 0;
106
107 /* Hook up the escalation interrupt */
108 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
109 if (!xc->esc_virq[prio]) {
110 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
111 prio, xc->server_num);
112 return -EIO;
113 }
114
115 /*
116 * Future improvement: start with them disabled
117 * and handle DD2 and later scheme of merged escalation
118 * interrupts
119 */
120 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
121 vcpu->kvm->arch.lpid, xc->server_num, prio);
122 if (!name) {
123 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
124 prio, xc->server_num);
125 rc = -ENOMEM;
126 goto error;
127 }
128 rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
129 IRQF_NO_THREAD, name, vcpu);
130 if (rc) {
131 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
132 prio, xc->server_num);
133 goto error;
134 }
135 xc->esc_virq_names[prio] = name;
136 return 0;
137 error:
138 irq_dispose_mapping(xc->esc_virq[prio]);
139 xc->esc_virq[prio] = 0;
140 kfree(name);
141 return rc;
142 }
143
144 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
145 {
146 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
147 struct kvmppc_xive *xive = xc->xive;
148 struct xive_q *q = &xc->queues[prio];
149 void *qpage;
150 int rc;
151
152 if (WARN_ON(q->qpage))
153 return 0;
154
155 /* Allocate the queue and retrieve infos on current node for now */
156 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
157 if (!qpage) {
158 pr_err("Failed to allocate queue %d for VCPU %d\n",
159 prio, xc->server_num);
160 return -ENOMEM;;
161 }
162 memset(qpage, 0, 1 << xive->q_order);
163
164 /*
165 * Reconfigure the queue. This will set q->qpage only once the
166 * queue is fully configured. This is a requirement for prio 0
167 * as we will stop doing EOIs for every IPI as soon as we observe
168 * qpage being non-NULL, and instead will only EOI when we receive
169 * corresponding queue 0 entries
170 */
171 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
172 xive->q_order, true);
173 if (rc)
174 pr_err("Failed to configure queue %d for VCPU %d\n",
175 prio, xc->server_num);
176 return rc;
177 }
178
179 /* Called with kvm_lock held */
180 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
181 {
182 struct kvmppc_xive *xive = kvm->arch.xive;
183 struct kvm_vcpu *vcpu;
184 int i, rc;
185
186 lockdep_assert_held(&kvm->lock);
187
188 /* Already provisioned ? */
189 if (xive->qmap & (1 << prio))
190 return 0;
191
192 pr_devel("Provisioning prio... %d\n", prio);
193
194 /* Provision each VCPU and enable escalations */
195 kvm_for_each_vcpu(i, vcpu, kvm) {
196 if (!vcpu->arch.xive_vcpu)
197 continue;
198 rc = xive_provision_queue(vcpu, prio);
199 if (rc == 0)
200 xive_attach_escalation(vcpu, prio);
201 if (rc)
202 return rc;
203 }
204
205 /* Order previous stores and mark it as provisioned */
206 mb();
207 xive->qmap |= (1 << prio);
208 return 0;
209 }
210
211 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
212 {
213 struct kvm_vcpu *vcpu;
214 struct kvmppc_xive_vcpu *xc;
215 struct xive_q *q;
216
217 /* Locate target server */
218 vcpu = kvmppc_xive_find_server(kvm, server);
219 if (!vcpu) {
220 pr_warn("%s: Can't find server %d\n", __func__, server);
221 return;
222 }
223 xc = vcpu->arch.xive_vcpu;
224 if (WARN_ON(!xc))
225 return;
226
227 q = &xc->queues[prio];
228 atomic_inc(&q->pending_count);
229 }
230
231 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
232 {
233 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
234 struct xive_q *q;
235 u32 max;
236
237 if (WARN_ON(!xc))
238 return -ENXIO;
239 if (!xc->valid)
240 return -ENXIO;
241
242 q = &xc->queues[prio];
243 if (WARN_ON(!q->qpage))
244 return -ENXIO;
245
246 /* Calculate max number of interrupts in that queue. */
247 max = (q->msk + 1) - XIVE_Q_GAP;
248 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
249 }
250
251 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
252 {
253 struct kvm_vcpu *vcpu;
254 int i, rc;
255
256 /* Locate target server */
257 vcpu = kvmppc_xive_find_server(kvm, *server);
258 if (!vcpu) {
259 pr_devel("Can't find server %d\n", *server);
260 return -EINVAL;
261 }
262
263 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
264
265 /* Try pick it */
266 rc = xive_try_pick_queue(vcpu, prio);
267 if (rc == 0)
268 return rc;
269
270 pr_devel(" .. failed, looking up candidate...\n");
271
272 /* Failed, pick another VCPU */
273 kvm_for_each_vcpu(i, vcpu, kvm) {
274 if (!vcpu->arch.xive_vcpu)
275 continue;
276 rc = xive_try_pick_queue(vcpu, prio);
277 if (rc == 0) {
278 *server = vcpu->arch.xive_vcpu->server_num;
279 pr_devel(" found on 0x%x/%d\n", *server, prio);
280 return rc;
281 }
282 }
283 pr_devel(" no available target !\n");
284
285 /* No available target ! */
286 return -EBUSY;
287 }
288
289 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
290 struct kvmppc_xive_src_block *sb,
291 struct kvmppc_xive_irq_state *state)
292 {
293 struct xive_irq_data *xd;
294 u32 hw_num;
295 u8 old_prio;
296 u64 val;
297
298 /*
299 * Take the lock, set masked, try again if racing
300 * with H_EOI
301 */
302 for (;;) {
303 arch_spin_lock(&sb->lock);
304 old_prio = state->guest_priority;
305 state->guest_priority = MASKED;
306 mb();
307 if (!state->in_eoi)
308 break;
309 state->guest_priority = old_prio;
310 arch_spin_unlock(&sb->lock);
311 }
312
313 /* No change ? Bail */
314 if (old_prio == MASKED)
315 return old_prio;
316
317 /* Get the right irq */
318 kvmppc_xive_select_irq(state, &hw_num, &xd);
319
320 /*
321 * If the interrupt is marked as needing masking via
322 * firmware, we do it here. Firmware masking however
323 * is "lossy", it won't return the old p and q bits
324 * and won't set the interrupt to a state where it will
325 * record queued ones. If this is an issue we should do
326 * lazy masking instead.
327 *
328 * For now, we work around this in unmask by forcing
329 * an interrupt whenever we unmask a non-LSI via FW
330 * (if ever).
331 */
332 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
333 xive_native_configure_irq(hw_num,
334 xive->vp_base + state->act_server,
335 MASKED, state->number);
336 /* set old_p so we can track if an H_EOI was done */
337 state->old_p = true;
338 state->old_q = false;
339 } else {
340 /* Set PQ to 10, return old P and old Q and remember them */
341 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
342 state->old_p = !!(val & 2);
343 state->old_q = !!(val & 1);
344
345 /*
346 * Synchronize hardware to sensure the queues are updated
347 * when masking
348 */
349 xive_native_sync_source(hw_num);
350 }
351
352 return old_prio;
353 }
354
355 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
356 struct kvmppc_xive_irq_state *state)
357 {
358 /*
359 * Take the lock try again if racing with H_EOI
360 */
361 for (;;) {
362 arch_spin_lock(&sb->lock);
363 if (!state->in_eoi)
364 break;
365 arch_spin_unlock(&sb->lock);
366 }
367 }
368
369 static void xive_finish_unmask(struct kvmppc_xive *xive,
370 struct kvmppc_xive_src_block *sb,
371 struct kvmppc_xive_irq_state *state,
372 u8 prio)
373 {
374 struct xive_irq_data *xd;
375 u32 hw_num;
376
377 /* If we aren't changing a thing, move on */
378 if (state->guest_priority != MASKED)
379 goto bail;
380
381 /* Get the right irq */
382 kvmppc_xive_select_irq(state, &hw_num, &xd);
383
384 /*
385 * See command in xive_lock_and_mask() concerning masking
386 * via firmware.
387 */
388 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
389 xive_native_configure_irq(hw_num,
390 xive->vp_base + state->act_server,
391 state->act_priority, state->number);
392 /* If an EOI is needed, do it here */
393 if (!state->old_p)
394 xive_vm_source_eoi(hw_num, xd);
395 /* If this is not an LSI, force a trigger */
396 if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
397 xive_irq_trigger(xd);
398 goto bail;
399 }
400
401 /* Old Q set, set PQ to 11 */
402 if (state->old_q)
403 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
404
405 /*
406 * If not old P, then perform an "effective" EOI,
407 * on the source. This will handle the cases where
408 * FW EOI is needed.
409 */
410 if (!state->old_p)
411 xive_vm_source_eoi(hw_num, xd);
412
413 /* Synchronize ordering and mark unmasked */
414 mb();
415 bail:
416 state->guest_priority = prio;
417 }
418
419 /*
420 * Target an interrupt to a given server/prio, this will fallback
421 * to another server if necessary and perform the HW targetting
422 * updates as needed
423 *
424 * NOTE: Must be called with the state lock held
425 */
426 static int xive_target_interrupt(struct kvm *kvm,
427 struct kvmppc_xive_irq_state *state,
428 u32 server, u8 prio)
429 {
430 struct kvmppc_xive *xive = kvm->arch.xive;
431 u32 hw_num;
432 int rc;
433
434 /*
435 * This will return a tentative server and actual
436 * priority. The count for that new target will have
437 * already been incremented.
438 */
439 rc = xive_select_target(kvm, &server, prio);
440
441 /*
442 * We failed to find a target ? Not much we can do
443 * at least until we support the GIQ.
444 */
445 if (rc)
446 return rc;
447
448 /*
449 * Increment the old queue pending count if there
450 * was one so that the old queue count gets adjusted later
451 * when observed to be empty.
452 */
453 if (state->act_priority != MASKED)
454 xive_inc_q_pending(kvm,
455 state->act_server,
456 state->act_priority);
457 /*
458 * Update state and HW
459 */
460 state->act_priority = prio;
461 state->act_server = server;
462
463 /* Get the right irq */
464 kvmppc_xive_select_irq(state, &hw_num, NULL);
465
466 return xive_native_configure_irq(hw_num,
467 xive->vp_base + server,
468 prio, state->number);
469 }
470
471 /*
472 * Targetting rules: In order to avoid losing track of
473 * pending interrupts accross mask and unmask, which would
474 * allow queue overflows, we implement the following rules:
475 *
476 * - Unless it was never enabled (or we run out of capacity)
477 * an interrupt is always targetted at a valid server/queue
478 * pair even when "masked" by the guest. This pair tends to
479 * be the last one used but it can be changed under some
480 * circumstances. That allows us to separate targetting
481 * from masking, we only handle accounting during (re)targetting,
482 * this also allows us to let an interrupt drain into its target
483 * queue after masking, avoiding complex schemes to remove
484 * interrupts out of remote processor queues.
485 *
486 * - When masking, we set PQ to 10 and save the previous value
487 * of P and Q.
488 *
489 * - When unmasking, if saved Q was set, we set PQ to 11
490 * otherwise we leave PQ to the HW state which will be either
491 * 10 if nothing happened or 11 if the interrupt fired while
492 * masked. Effectively we are OR'ing the previous Q into the
493 * HW Q.
494 *
495 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
496 * which will unmask the interrupt and shoot a new one if Q was
497 * set.
498 *
499 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
500 * effectively meaning an H_EOI from the guest is still expected
501 * for that interrupt).
502 *
503 * - If H_EOI occurs while masked, we clear the saved P.
504 *
505 * - When changing target, we account on the new target and
506 * increment a separate "pending" counter on the old one.
507 * This pending counter will be used to decrement the old
508 * target's count when its queue has been observed empty.
509 */
510
511 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
512 u32 priority)
513 {
514 struct kvmppc_xive *xive = kvm->arch.xive;
515 struct kvmppc_xive_src_block *sb;
516 struct kvmppc_xive_irq_state *state;
517 u8 new_act_prio;
518 int rc = 0;
519 u16 idx;
520
521 if (!xive)
522 return -ENODEV;
523
524 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
525 irq, server, priority);
526
527 /* First, check provisioning of queues */
528 if (priority != MASKED)
529 rc = xive_check_provisioning(xive->kvm,
530 xive_prio_from_guest(priority));
531 if (rc) {
532 pr_devel(" provisioning failure %d !\n", rc);
533 return rc;
534 }
535
536 sb = kvmppc_xive_find_source(xive, irq, &idx);
537 if (!sb)
538 return -EINVAL;
539 state = &sb->irq_state[idx];
540
541 /*
542 * We first handle masking/unmasking since the locking
543 * might need to be retried due to EOIs, we'll handle
544 * targetting changes later. These functions will return
545 * with the SB lock held.
546 *
547 * xive_lock_and_mask() will also set state->guest_priority
548 * but won't otherwise change other fields of the state.
549 *
550 * xive_lock_for_unmask will not actually unmask, this will
551 * be done later by xive_finish_unmask() once the targetting
552 * has been done, so we don't try to unmask an interrupt
553 * that hasn't yet been targetted.
554 */
555 if (priority == MASKED)
556 xive_lock_and_mask(xive, sb, state);
557 else
558 xive_lock_for_unmask(sb, state);
559
560
561 /*
562 * Then we handle targetting.
563 *
564 * First calculate a new "actual priority"
565 */
566 new_act_prio = state->act_priority;
567 if (priority != MASKED)
568 new_act_prio = xive_prio_from_guest(priority);
569
570 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
571 new_act_prio, state->act_server, state->act_priority);
572
573 /*
574 * Then check if we actually need to change anything,
575 *
576 * The condition for re-targetting the interrupt is that
577 * we have a valid new priority (new_act_prio is not 0xff)
578 * and either the server or the priority changed.
579 *
580 * Note: If act_priority was ff and the new priority is
581 * also ff, we don't do anything and leave the interrupt
582 * untargetted. An attempt of doing an int_on on an
583 * untargetted interrupt will fail. If that is a problem
584 * we could initialize interrupts with valid default
585 */
586
587 if (new_act_prio != MASKED &&
588 (state->act_server != server ||
589 state->act_priority != new_act_prio))
590 rc = xive_target_interrupt(kvm, state, server, new_act_prio);
591
592 /*
593 * Perform the final unmasking of the interrupt source
594 * if necessary
595 */
596 if (priority != MASKED)
597 xive_finish_unmask(xive, sb, state, priority);
598
599 /*
600 * Finally Update saved_priority to match. Only int_on/off
601 * set this field to a different value.
602 */
603 state->saved_priority = priority;
604
605 arch_spin_unlock(&sb->lock);
606 return rc;
607 }
608
609 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
610 u32 *priority)
611 {
612 struct kvmppc_xive *xive = kvm->arch.xive;
613 struct kvmppc_xive_src_block *sb;
614 struct kvmppc_xive_irq_state *state;
615 u16 idx;
616
617 if (!xive)
618 return -ENODEV;
619
620 sb = kvmppc_xive_find_source(xive, irq, &idx);
621 if (!sb)
622 return -EINVAL;
623 state = &sb->irq_state[idx];
624 arch_spin_lock(&sb->lock);
625 *server = state->act_server;
626 *priority = state->guest_priority;
627 arch_spin_unlock(&sb->lock);
628
629 return 0;
630 }
631
632 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
633 {
634 struct kvmppc_xive *xive = kvm->arch.xive;
635 struct kvmppc_xive_src_block *sb;
636 struct kvmppc_xive_irq_state *state;
637 u16 idx;
638
639 if (!xive)
640 return -ENODEV;
641
642 sb = kvmppc_xive_find_source(xive, irq, &idx);
643 if (!sb)
644 return -EINVAL;
645 state = &sb->irq_state[idx];
646
647 pr_devel("int_on(irq=0x%x)\n", irq);
648
649 /*
650 * Check if interrupt was not targetted
651 */
652 if (state->act_priority == MASKED) {
653 pr_devel("int_on on untargetted interrupt\n");
654 return -EINVAL;
655 }
656
657 /* If saved_priority is 0xff, do nothing */
658 if (state->saved_priority == MASKED)
659 return 0;
660
661 /*
662 * Lock and unmask it.
663 */
664 xive_lock_for_unmask(sb, state);
665 xive_finish_unmask(xive, sb, state, state->saved_priority);
666 arch_spin_unlock(&sb->lock);
667
668 return 0;
669 }
670
671 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
672 {
673 struct kvmppc_xive *xive = kvm->arch.xive;
674 struct kvmppc_xive_src_block *sb;
675 struct kvmppc_xive_irq_state *state;
676 u16 idx;
677
678 if (!xive)
679 return -ENODEV;
680
681 sb = kvmppc_xive_find_source(xive, irq, &idx);
682 if (!sb)
683 return -EINVAL;
684 state = &sb->irq_state[idx];
685
686 pr_devel("int_off(irq=0x%x)\n", irq);
687
688 /*
689 * Lock and mask
690 */
691 state->saved_priority = xive_lock_and_mask(xive, sb, state);
692 arch_spin_unlock(&sb->lock);
693
694 return 0;
695 }
696
697 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
698 {
699 struct kvmppc_xive_src_block *sb;
700 struct kvmppc_xive_irq_state *state;
701 u16 idx;
702
703 sb = kvmppc_xive_find_source(xive, irq, &idx);
704 if (!sb)
705 return false;
706 state = &sb->irq_state[idx];
707 if (!state->valid)
708 return false;
709
710 /*
711 * Trigger the IPI. This assumes we never restore a pass-through
712 * interrupt which should be safe enough
713 */
714 xive_irq_trigger(&state->ipi_data);
715
716 return true;
717 }
718
719 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
720 {
721 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
722
723 if (!xc)
724 return 0;
725
726 /* Return the per-cpu state for state saving/migration */
727 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
728 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
729 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
730 }
731
732 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
733 {
734 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
735 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
736 u8 cppr, mfrr;
737 u32 xisr;
738
739 if (!xc || !xive)
740 return -ENOENT;
741
742 /* Grab individual state fields. We don't use pending_pri */
743 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
744 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
745 KVM_REG_PPC_ICP_XISR_MASK;
746 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
747
748 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
749 xc->server_num, cppr, mfrr, xisr);
750
751 /*
752 * We can't update the state of a "pushed" VCPU, but that
753 * shouldn't happen.
754 */
755 if (WARN_ON(vcpu->arch.xive_pushed))
756 return -EIO;
757
758 /* Update VCPU HW saved state */
759 vcpu->arch.xive_saved_state.cppr = cppr;
760 xc->hw_cppr = xc->cppr = cppr;
761
762 /*
763 * Update MFRR state. If it's not 0xff, we mark the VCPU as
764 * having a pending MFRR change, which will re-evaluate the
765 * target. The VCPU will thus potentially get a spurious
766 * interrupt but that's not a big deal.
767 */
768 xc->mfrr = mfrr;
769 if (mfrr < cppr)
770 xive_irq_trigger(&xc->vp_ipi_data);
771
772 /*
773 * Now saved XIRR is "interesting". It means there's something in
774 * the legacy "1 element" queue... for an IPI we simply ignore it,
775 * as the MFRR restore will handle that. For anything else we need
776 * to force a resend of the source.
777 * However the source may not have been setup yet. If that's the
778 * case, we keep that info and increment a counter in the xive to
779 * tell subsequent xive_set_source() to go look.
780 */
781 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
782 xc->delayed_irq = xisr;
783 xive->delayed_irqs++;
784 pr_devel(" xisr restore delayed\n");
785 }
786
787 return 0;
788 }
789
790 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
791 struct irq_desc *host_desc)
792 {
793 struct kvmppc_xive *xive = kvm->arch.xive;
794 struct kvmppc_xive_src_block *sb;
795 struct kvmppc_xive_irq_state *state;
796 struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
797 unsigned int host_irq = irq_desc_get_irq(host_desc);
798 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
799 u16 idx;
800 u8 prio;
801 int rc;
802
803 if (!xive)
804 return -ENODEV;
805
806 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
807
808 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
809 if (!sb)
810 return -EINVAL;
811 state = &sb->irq_state[idx];
812
813 /*
814 * Mark the passed-through interrupt as going to a VCPU,
815 * this will prevent further EOIs and similar operations
816 * from the XIVE code. It will also mask the interrupt
817 * to either PQ=10 or 11 state, the latter if the interrupt
818 * is pending. This will allow us to unmask or retrigger it
819 * after routing it to the guest with a simple EOI.
820 *
821 * The "state" argument is a "token", all it needs is to be
822 * non-NULL to switch to passed-through or NULL for the
823 * other way around. We may not yet have an actual VCPU
824 * target here and we don't really care.
825 */
826 rc = irq_set_vcpu_affinity(host_irq, state);
827 if (rc) {
828 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
829 return rc;
830 }
831
832 /*
833 * Mask and read state of IPI. We need to know if its P bit
834 * is set as that means it's potentially already using a
835 * queue entry in the target
836 */
837 prio = xive_lock_and_mask(xive, sb, state);
838 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
839 state->old_p, state->old_q);
840
841 /* Turn the IPI hard off */
842 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
843
844 /* Grab info about irq */
845 state->pt_number = hw_irq;
846 state->pt_data = irq_data_get_irq_handler_data(host_data);
847
848 /*
849 * Configure the IRQ to match the existing configuration of
850 * the IPI if it was already targetted. Otherwise this will
851 * mask the interrupt in a lossy way (act_priority is 0xff)
852 * which is fine for a never started interrupt.
853 */
854 xive_native_configure_irq(hw_irq,
855 xive->vp_base + state->act_server,
856 state->act_priority, state->number);
857
858 /*
859 * We do an EOI to enable the interrupt (and retrigger if needed)
860 * if the guest has the interrupt unmasked and the P bit was *not*
861 * set in the IPI. If it was set, we know a slot may still be in
862 * use in the target queue thus we have to wait for a guest
863 * originated EOI
864 */
865 if (prio != MASKED && !state->old_p)
866 xive_vm_source_eoi(hw_irq, state->pt_data);
867
868 /* Clear old_p/old_q as they are no longer relevant */
869 state->old_p = state->old_q = false;
870
871 /* Restore guest prio (unlocks EOI) */
872 mb();
873 state->guest_priority = prio;
874 arch_spin_unlock(&sb->lock);
875
876 return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
879
880 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
881 struct irq_desc *host_desc)
882 {
883 struct kvmppc_xive *xive = kvm->arch.xive;
884 struct kvmppc_xive_src_block *sb;
885 struct kvmppc_xive_irq_state *state;
886 unsigned int host_irq = irq_desc_get_irq(host_desc);
887 u16 idx;
888 u8 prio;
889 int rc;
890
891 if (!xive)
892 return -ENODEV;
893
894 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
895
896 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
897 if (!sb)
898 return -EINVAL;
899 state = &sb->irq_state[idx];
900
901 /*
902 * Mask and read state of IRQ. We need to know if its P bit
903 * is set as that means it's potentially already using a
904 * queue entry in the target
905 */
906 prio = xive_lock_and_mask(xive, sb, state);
907 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
908 state->old_p, state->old_q);
909
910 /*
911 * If old_p is set, the interrupt is pending, we switch it to
912 * PQ=11. This will force a resend in the host so the interrupt
913 * isn't lost to whatver host driver may pick it up
914 */
915 if (state->old_p)
916 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
917
918 /* Release the passed-through interrupt to the host */
919 rc = irq_set_vcpu_affinity(host_irq, NULL);
920 if (rc) {
921 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
922 return rc;
923 }
924
925 /* Forget about the IRQ */
926 state->pt_number = 0;
927 state->pt_data = NULL;
928
929 /* Reconfigure the IPI */
930 xive_native_configure_irq(state->ipi_number,
931 xive->vp_base + state->act_server,
932 state->act_priority, state->number);
933
934 /*
935 * If old_p is set (we have a queue entry potentially
936 * occupied) or the interrupt is masked, we set the IPI
937 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
938 */
939 if (prio == MASKED || state->old_p)
940 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
941 else
942 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
943
944 /* Restore guest prio (unlocks EOI) */
945 mb();
946 state->guest_priority = prio;
947 arch_spin_unlock(&sb->lock);
948
949 return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
952
953 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
954 {
955 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
956 struct kvm *kvm = vcpu->kvm;
957 struct kvmppc_xive *xive = kvm->arch.xive;
958 int i, j;
959
960 for (i = 0; i <= xive->max_sbid; i++) {
961 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
962
963 if (!sb)
964 continue;
965 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
966 struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
967
968 if (!state->valid)
969 continue;
970 if (state->act_priority == MASKED)
971 continue;
972 if (state->act_server != xc->server_num)
973 continue;
974
975 /* Clean it up */
976 arch_spin_lock(&sb->lock);
977 state->act_priority = MASKED;
978 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
979 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
980 if (state->pt_number) {
981 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
982 xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
983 }
984 arch_spin_unlock(&sb->lock);
985 }
986 }
987 }
988
989 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
990 {
991 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
992 struct kvmppc_xive *xive = xc->xive;
993 int i;
994
995 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
996
997 /* Ensure no interrupt is still routed to that VP */
998 xc->valid = false;
999 kvmppc_xive_disable_vcpu_interrupts(vcpu);
1000
1001 /* Mask the VP IPI */
1002 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1003
1004 /* Disable the VP */
1005 xive_native_disable_vp(xc->vp_id);
1006
1007 /* Free the queues & associated interrupts */
1008 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1009 struct xive_q *q = &xc->queues[i];
1010
1011 /* Free the escalation irq */
1012 if (xc->esc_virq[i]) {
1013 free_irq(xc->esc_virq[i], vcpu);
1014 irq_dispose_mapping(xc->esc_virq[i]);
1015 kfree(xc->esc_virq_names[i]);
1016 }
1017 /* Free the queue */
1018 xive_native_disable_queue(xc->vp_id, q, i);
1019 if (q->qpage) {
1020 free_pages((unsigned long)q->qpage,
1021 xive->q_page_order);
1022 q->qpage = NULL;
1023 }
1024 }
1025
1026 /* Free the IPI */
1027 if (xc->vp_ipi) {
1028 xive_cleanup_irq_data(&xc->vp_ipi_data);
1029 xive_native_free_irq(xc->vp_ipi);
1030 }
1031 /* Free the VP */
1032 kfree(xc);
1033 }
1034
1035 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1036 struct kvm_vcpu *vcpu, u32 cpu)
1037 {
1038 struct kvmppc_xive *xive = dev->private;
1039 struct kvmppc_xive_vcpu *xc;
1040 int i, r = -EBUSY;
1041
1042 pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1043
1044 if (dev->ops != &kvm_xive_ops) {
1045 pr_devel("Wrong ops !\n");
1046 return -EPERM;
1047 }
1048 if (xive->kvm != vcpu->kvm)
1049 return -EPERM;
1050 if (vcpu->arch.irq_type)
1051 return -EBUSY;
1052 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1053 pr_devel("Duplicate !\n");
1054 return -EEXIST;
1055 }
1056 if (cpu >= KVM_MAX_VCPUS) {
1057 pr_devel("Out of bounds !\n");
1058 return -EINVAL;
1059 }
1060 xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1061 if (!xc)
1062 return -ENOMEM;
1063
1064 /* We need to synchronize with queue provisioning */
1065 mutex_lock(&vcpu->kvm->lock);
1066 vcpu->arch.xive_vcpu = xc;
1067 xc->xive = xive;
1068 xc->vcpu = vcpu;
1069 xc->server_num = cpu;
1070 xc->vp_id = xive->vp_base + cpu;
1071 xc->mfrr = 0xff;
1072 xc->valid = true;
1073
1074 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1075 if (r)
1076 goto bail;
1077
1078 /* Configure VCPU fields for use by assembly push/pull */
1079 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1080 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1081
1082 /* Allocate IPI */
1083 xc->vp_ipi = xive_native_alloc_irq();
1084 if (!xc->vp_ipi) {
1085 r = -EIO;
1086 goto bail;
1087 }
1088 pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1089
1090 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1091 if (r)
1092 goto bail;
1093
1094 /*
1095 * Initialize queues. Initially we set them all for no queueing
1096 * and we enable escalation for queue 0 only which we'll use for
1097 * our mfrr change notifications. If the VCPU is hot-plugged, we
1098 * do handle provisioning however.
1099 */
1100 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1101 struct xive_q *q = &xc->queues[i];
1102
1103 /* Is queue already enabled ? Provision it */
1104 if (xive->qmap & (1 << i)) {
1105 r = xive_provision_queue(vcpu, i);
1106 if (r == 0)
1107 xive_attach_escalation(vcpu, i);
1108 if (r)
1109 goto bail;
1110 } else {
1111 r = xive_native_configure_queue(xc->vp_id,
1112 q, i, NULL, 0, true);
1113 if (r) {
1114 pr_err("Failed to configure queue %d for VCPU %d\n",
1115 i, cpu);
1116 goto bail;
1117 }
1118 }
1119 }
1120
1121 /* If not done above, attach priority 0 escalation */
1122 r = xive_attach_escalation(vcpu, 0);
1123 if (r)
1124 goto bail;
1125
1126 /* Enable the VP */
1127 r = xive_native_enable_vp(xc->vp_id);
1128 if (r)
1129 goto bail;
1130
1131 /* Route the IPI */
1132 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1133 if (!r)
1134 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1135
1136 bail:
1137 mutex_unlock(&vcpu->kvm->lock);
1138 if (r) {
1139 kvmppc_xive_cleanup_vcpu(vcpu);
1140 return r;
1141 }
1142
1143 vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1144 return 0;
1145 }
1146
1147 /*
1148 * Scanning of queues before/after migration save
1149 */
1150 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1151 {
1152 struct kvmppc_xive_src_block *sb;
1153 struct kvmppc_xive_irq_state *state;
1154 u16 idx;
1155
1156 sb = kvmppc_xive_find_source(xive, irq, &idx);
1157 if (!sb)
1158 return;
1159
1160 state = &sb->irq_state[idx];
1161
1162 /* Some sanity checking */
1163 if (!state->valid) {
1164 pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1165 return;
1166 }
1167
1168 /*
1169 * If the interrupt is in a queue it should have P set.
1170 * We warn so that gets reported. A backtrace isn't useful
1171 * so no need to use a WARN_ON.
1172 */
1173 if (!state->saved_p)
1174 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1175
1176 /* Set flag */
1177 state->in_queue = true;
1178 }
1179
1180 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1181 struct kvmppc_xive_src_block *sb,
1182 u32 irq)
1183 {
1184 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1185
1186 if (!state->valid)
1187 return;
1188
1189 /* Mask and save state, this will also sync HW queues */
1190 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1191
1192 /* Transfer P and Q */
1193 state->saved_p = state->old_p;
1194 state->saved_q = state->old_q;
1195
1196 /* Unlock */
1197 arch_spin_unlock(&sb->lock);
1198 }
1199
1200 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1201 struct kvmppc_xive_src_block *sb,
1202 u32 irq)
1203 {
1204 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1205
1206 if (!state->valid)
1207 return;
1208
1209 /*
1210 * Lock / exclude EOI (not technically necessary if the
1211 * guest isn't running concurrently. If this becomes a
1212 * performance issue we can probably remove the lock.
1213 */
1214 xive_lock_for_unmask(sb, state);
1215
1216 /* Restore mask/prio if it wasn't masked */
1217 if (state->saved_scan_prio != MASKED)
1218 xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1219
1220 /* Unlock */
1221 arch_spin_unlock(&sb->lock);
1222 }
1223
1224 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1225 {
1226 u32 idx = q->idx;
1227 u32 toggle = q->toggle;
1228 u32 irq;
1229
1230 do {
1231 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1232 if (irq > XICS_IPI)
1233 xive_pre_save_set_queued(xive, irq);
1234 } while(irq);
1235 }
1236
1237 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1238 {
1239 struct kvm_vcpu *vcpu = NULL;
1240 int i, j;
1241
1242 /*
1243 * See comment in xive_get_source() about how this
1244 * work. Collect a stable state for all interrupts
1245 */
1246 for (i = 0; i <= xive->max_sbid; i++) {
1247 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1248 if (!sb)
1249 continue;
1250 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1251 xive_pre_save_mask_irq(xive, sb, j);
1252 }
1253
1254 /* Then scan the queues and update the "in_queue" flag */
1255 kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1256 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1257 if (!xc)
1258 continue;
1259 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1260 if (xc->queues[j].qpage)
1261 xive_pre_save_queue(xive, &xc->queues[j]);
1262 }
1263 }
1264
1265 /* Finally restore interrupt states */
1266 for (i = 0; i <= xive->max_sbid; i++) {
1267 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1268 if (!sb)
1269 continue;
1270 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1271 xive_pre_save_unmask_irq(xive, sb, j);
1272 }
1273 }
1274
1275 static void xive_post_save_scan(struct kvmppc_xive *xive)
1276 {
1277 u32 i, j;
1278
1279 /* Clear all the in_queue flags */
1280 for (i = 0; i <= xive->max_sbid; i++) {
1281 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1282 if (!sb)
1283 continue;
1284 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1285 sb->irq_state[j].in_queue = false;
1286 }
1287
1288 /* Next get_source() will do a new scan */
1289 xive->saved_src_count = 0;
1290 }
1291
1292 /*
1293 * This returns the source configuration and state to user space.
1294 */
1295 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1296 {
1297 struct kvmppc_xive_src_block *sb;
1298 struct kvmppc_xive_irq_state *state;
1299 u64 __user *ubufp = (u64 __user *) addr;
1300 u64 val, prio;
1301 u16 idx;
1302
1303 sb = kvmppc_xive_find_source(xive, irq, &idx);
1304 if (!sb)
1305 return -ENOENT;
1306
1307 state = &sb->irq_state[idx];
1308
1309 if (!state->valid)
1310 return -ENOENT;
1311
1312 pr_devel("get_source(%ld)...\n", irq);
1313
1314 /*
1315 * So to properly save the state into something that looks like a
1316 * XICS migration stream we cannot treat interrupts individually.
1317 *
1318 * We need, instead, mask them all (& save their previous PQ state)
1319 * to get a stable state in the HW, then sync them to ensure that
1320 * any interrupt that had already fired hits its queue, and finally
1321 * scan all the queues to collect which interrupts are still present
1322 * in the queues, so we can set the "pending" flag on them and
1323 * they can be resent on restore.
1324 *
1325 * So we do it all when the "first" interrupt gets saved, all the
1326 * state is collected at that point, the rest of xive_get_source()
1327 * will merely collect and convert that state to the expected
1328 * userspace bit mask.
1329 */
1330 if (xive->saved_src_count == 0)
1331 xive_pre_save_scan(xive);
1332 xive->saved_src_count++;
1333
1334 /* Convert saved state into something compatible with xics */
1335 val = state->act_server;
1336 prio = state->saved_scan_prio;
1337
1338 if (prio == MASKED) {
1339 val |= KVM_XICS_MASKED;
1340 prio = state->saved_priority;
1341 }
1342 val |= prio << KVM_XICS_PRIORITY_SHIFT;
1343 if (state->lsi) {
1344 val |= KVM_XICS_LEVEL_SENSITIVE;
1345 if (state->saved_p)
1346 val |= KVM_XICS_PENDING;
1347 } else {
1348 if (state->saved_p)
1349 val |= KVM_XICS_PRESENTED;
1350
1351 if (state->saved_q)
1352 val |= KVM_XICS_QUEUED;
1353
1354 /*
1355 * We mark it pending (which will attempt a re-delivery)
1356 * if we are in a queue *or* we were masked and had
1357 * Q set which is equivalent to the XICS "masked pending"
1358 * state
1359 */
1360 if (state->in_queue || (prio == MASKED && state->saved_q))
1361 val |= KVM_XICS_PENDING;
1362 }
1363
1364 /*
1365 * If that was the last interrupt saved, reset the
1366 * in_queue flags
1367 */
1368 if (xive->saved_src_count == xive->src_count)
1369 xive_post_save_scan(xive);
1370
1371 /* Copy the result to userspace */
1372 if (put_user(val, ubufp))
1373 return -EFAULT;
1374
1375 return 0;
1376 }
1377
1378 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1379 int irq)
1380 {
1381 struct kvm *kvm = xive->kvm;
1382 struct kvmppc_xive_src_block *sb;
1383 int i, bid;
1384
1385 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1386
1387 mutex_lock(&kvm->lock);
1388
1389 /* block already exists - somebody else got here first */
1390 if (xive->src_blocks[bid])
1391 goto out;
1392
1393 /* Create the ICS */
1394 sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1395 if (!sb)
1396 goto out;
1397
1398 sb->id = bid;
1399
1400 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1401 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1402 sb->irq_state[i].guest_priority = MASKED;
1403 sb->irq_state[i].saved_priority = MASKED;
1404 sb->irq_state[i].act_priority = MASKED;
1405 }
1406 smp_wmb();
1407 xive->src_blocks[bid] = sb;
1408
1409 if (bid > xive->max_sbid)
1410 xive->max_sbid = bid;
1411
1412 out:
1413 mutex_unlock(&kvm->lock);
1414 return xive->src_blocks[bid];
1415 }
1416
1417 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1418 {
1419 struct kvm *kvm = xive->kvm;
1420 struct kvm_vcpu *vcpu = NULL;
1421 int i;
1422
1423 kvm_for_each_vcpu(i, vcpu, kvm) {
1424 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1425
1426 if (!xc)
1427 continue;
1428
1429 if (xc->delayed_irq == irq) {
1430 xc->delayed_irq = 0;
1431 xive->delayed_irqs--;
1432 return true;
1433 }
1434 }
1435 return false;
1436 }
1437
1438 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1439 {
1440 struct kvmppc_xive_src_block *sb;
1441 struct kvmppc_xive_irq_state *state;
1442 u64 __user *ubufp = (u64 __user *) addr;
1443 u16 idx;
1444 u64 val;
1445 u8 act_prio, guest_prio;
1446 u32 server;
1447 int rc = 0;
1448
1449 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1450 return -ENOENT;
1451
1452 pr_devel("set_source(irq=0x%lx)\n", irq);
1453
1454 /* Find the source */
1455 sb = kvmppc_xive_find_source(xive, irq, &idx);
1456 if (!sb) {
1457 pr_devel("No source, creating source block...\n");
1458 sb = xive_create_src_block(xive, irq);
1459 if (!sb) {
1460 pr_devel("Failed to create block...\n");
1461 return -ENOMEM;
1462 }
1463 }
1464 state = &sb->irq_state[idx];
1465
1466 /* Read user passed data */
1467 if (get_user(val, ubufp)) {
1468 pr_devel("fault getting user info !\n");
1469 return -EFAULT;
1470 }
1471
1472 server = val & KVM_XICS_DESTINATION_MASK;
1473 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1474
1475 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1476 val, server, guest_prio);
1477 /*
1478 * If the source doesn't already have an IPI, allocate
1479 * one and get the corresponding data
1480 */
1481 if (!state->ipi_number) {
1482 state->ipi_number = xive_native_alloc_irq();
1483 if (state->ipi_number == 0) {
1484 pr_devel("Failed to allocate IPI !\n");
1485 return -ENOMEM;
1486 }
1487 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1488 pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1489 }
1490
1491 /*
1492 * We use lock_and_mask() to set us in the right masked
1493 * state. We will override that state from the saved state
1494 * further down, but this will handle the cases of interrupts
1495 * that need FW masking. We set the initial guest_priority to
1496 * 0 before calling it to ensure it actually performs the masking.
1497 */
1498 state->guest_priority = 0;
1499 xive_lock_and_mask(xive, sb, state);
1500
1501 /*
1502 * Now, we select a target if we have one. If we don't we
1503 * leave the interrupt untargetted. It means that an interrupt
1504 * can become "untargetted" accross migration if it was masked
1505 * by set_xive() but there is little we can do about it.
1506 */
1507
1508 /* First convert prio and mark interrupt as untargetted */
1509 act_prio = xive_prio_from_guest(guest_prio);
1510 state->act_priority = MASKED;
1511
1512 /*
1513 * We need to drop the lock due to the mutex below. Hopefully
1514 * nothing is touching that interrupt yet since it hasn't been
1515 * advertized to a running guest yet
1516 */
1517 arch_spin_unlock(&sb->lock);
1518
1519 /* If we have a priority target the interrupt */
1520 if (act_prio != MASKED) {
1521 /* First, check provisioning of queues */
1522 mutex_lock(&xive->kvm->lock);
1523 rc = xive_check_provisioning(xive->kvm, act_prio);
1524 mutex_unlock(&xive->kvm->lock);
1525
1526 /* Target interrupt */
1527 if (rc == 0)
1528 rc = xive_target_interrupt(xive->kvm, state,
1529 server, act_prio);
1530 /*
1531 * If provisioning or targetting failed, leave it
1532 * alone and masked. It will remain disabled until
1533 * the guest re-targets it.
1534 */
1535 }
1536
1537 /*
1538 * Find out if this was a delayed irq stashed in an ICP,
1539 * in which case, treat it as pending
1540 */
1541 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1542 val |= KVM_XICS_PENDING;
1543 pr_devel(" Found delayed ! forcing PENDING !\n");
1544 }
1545
1546 /* Cleanup the SW state */
1547 state->old_p = false;
1548 state->old_q = false;
1549 state->lsi = false;
1550 state->asserted = false;
1551
1552 /* Restore LSI state */
1553 if (val & KVM_XICS_LEVEL_SENSITIVE) {
1554 state->lsi = true;
1555 if (val & KVM_XICS_PENDING)
1556 state->asserted = true;
1557 pr_devel(" LSI ! Asserted=%d\n", state->asserted);
1558 }
1559
1560 /*
1561 * Restore P and Q. If the interrupt was pending, we
1562 * force Q and !P, which will trigger a resend.
1563 *
1564 * That means that a guest that had both an interrupt
1565 * pending (queued) and Q set will restore with only
1566 * one instance of that interrupt instead of 2, but that
1567 * is perfectly fine as coalescing interrupts that haven't
1568 * been presented yet is always allowed.
1569 */
1570 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1571 state->old_p = true;
1572 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1573 state->old_q = true;
1574
1575 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
1576
1577 /*
1578 * If the interrupt was unmasked, update guest priority and
1579 * perform the appropriate state transition and do a
1580 * re-trigger if necessary.
1581 */
1582 if (val & KVM_XICS_MASKED) {
1583 pr_devel(" masked, saving prio\n");
1584 state->guest_priority = MASKED;
1585 state->saved_priority = guest_prio;
1586 } else {
1587 pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
1588 xive_finish_unmask(xive, sb, state, guest_prio);
1589 state->saved_priority = guest_prio;
1590 }
1591
1592 /* Increment the number of valid sources and mark this one valid */
1593 if (!state->valid)
1594 xive->src_count++;
1595 state->valid = true;
1596
1597 return 0;
1598 }
1599
1600 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1601 bool line_status)
1602 {
1603 struct kvmppc_xive *xive = kvm->arch.xive;
1604 struct kvmppc_xive_src_block *sb;
1605 struct kvmppc_xive_irq_state *state;
1606 u16 idx;
1607
1608 if (!xive)
1609 return -ENODEV;
1610
1611 sb = kvmppc_xive_find_source(xive, irq, &idx);
1612 if (!sb)
1613 return -EINVAL;
1614
1615 /* Perform locklessly .... (we need to do some RCUisms here...) */
1616 state = &sb->irq_state[idx];
1617 if (!state->valid)
1618 return -EINVAL;
1619
1620 /* We don't allow a trigger on a passed-through interrupt */
1621 if (state->pt_number)
1622 return -EINVAL;
1623
1624 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1625 state->asserted = 1;
1626 else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1627 state->asserted = 0;
1628 return 0;
1629 }
1630
1631 /* Trigger the IPI */
1632 xive_irq_trigger(&state->ipi_data);
1633
1634 return 0;
1635 }
1636
1637 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1638 {
1639 struct kvmppc_xive *xive = dev->private;
1640
1641 /* We honor the existing XICS ioctl */
1642 switch (attr->group) {
1643 case KVM_DEV_XICS_GRP_SOURCES:
1644 return xive_set_source(xive, attr->attr, attr->addr);
1645 }
1646 return -ENXIO;
1647 }
1648
1649 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1650 {
1651 struct kvmppc_xive *xive = dev->private;
1652
1653 /* We honor the existing XICS ioctl */
1654 switch (attr->group) {
1655 case KVM_DEV_XICS_GRP_SOURCES:
1656 return xive_get_source(xive, attr->attr, attr->addr);
1657 }
1658 return -ENXIO;
1659 }
1660
1661 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1662 {
1663 /* We honor the same limits as XICS, at least for now */
1664 switch (attr->group) {
1665 case KVM_DEV_XICS_GRP_SOURCES:
1666 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1667 attr->attr < KVMPPC_XICS_NR_IRQS)
1668 return 0;
1669 break;
1670 }
1671 return -ENXIO;
1672 }
1673
1674 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1675 {
1676 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1677 xive_native_configure_irq(hw_num, 0, MASKED, 0);
1678 xive_cleanup_irq_data(xd);
1679 }
1680
1681 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1682 {
1683 int i;
1684
1685 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1686 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1687
1688 if (!state->valid)
1689 continue;
1690
1691 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1692 xive_native_free_irq(state->ipi_number);
1693
1694 /* Pass-through, cleanup too */
1695 if (state->pt_number)
1696 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1697
1698 state->valid = false;
1699 }
1700 }
1701
1702 static void kvmppc_xive_free(struct kvm_device *dev)
1703 {
1704 struct kvmppc_xive *xive = dev->private;
1705 struct kvm *kvm = xive->kvm;
1706 int i;
1707
1708 debugfs_remove(xive->dentry);
1709
1710 if (kvm)
1711 kvm->arch.xive = NULL;
1712
1713 /* Mask and free interrupts */
1714 for (i = 0; i <= xive->max_sbid; i++) {
1715 if (xive->src_blocks[i])
1716 kvmppc_xive_free_sources(xive->src_blocks[i]);
1717 kfree(xive->src_blocks[i]);
1718 xive->src_blocks[i] = NULL;
1719 }
1720
1721 if (xive->vp_base != XIVE_INVALID_VP)
1722 xive_native_free_vp_block(xive->vp_base);
1723
1724
1725 kfree(xive);
1726 kfree(dev);
1727 }
1728
1729 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1730 {
1731 struct kvmppc_xive *xive;
1732 struct kvm *kvm = dev->kvm;
1733 int ret = 0;
1734
1735 pr_devel("Creating xive for partition\n");
1736
1737 xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1738 if (!xive)
1739 return -ENOMEM;
1740
1741 dev->private = xive;
1742 xive->dev = dev;
1743 xive->kvm = kvm;
1744
1745 /* Already there ? */
1746 if (kvm->arch.xive)
1747 ret = -EEXIST;
1748 else
1749 kvm->arch.xive = xive;
1750
1751 /* We use the default queue size set by the host */
1752 xive->q_order = xive_native_default_eq_shift();
1753 if (xive->q_order < PAGE_SHIFT)
1754 xive->q_page_order = 0;
1755 else
1756 xive->q_page_order = xive->q_order - PAGE_SHIFT;
1757
1758 /* Allocate a bunch of VPs */
1759 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1760 pr_devel("VP_Base=%x\n", xive->vp_base);
1761
1762 if (xive->vp_base == XIVE_INVALID_VP)
1763 ret = -ENOMEM;
1764
1765 if (ret) {
1766 kfree(xive);
1767 return ret;
1768 }
1769
1770 return 0;
1771 }
1772
1773
1774 static int xive_debug_show(struct seq_file *m, void *private)
1775 {
1776 struct kvmppc_xive *xive = m->private;
1777 struct kvm *kvm = xive->kvm;
1778 struct kvm_vcpu *vcpu;
1779 u64 t_rm_h_xirr = 0;
1780 u64 t_rm_h_ipoll = 0;
1781 u64 t_rm_h_cppr = 0;
1782 u64 t_rm_h_eoi = 0;
1783 u64 t_rm_h_ipi = 0;
1784 u64 t_vm_h_xirr = 0;
1785 u64 t_vm_h_ipoll = 0;
1786 u64 t_vm_h_cppr = 0;
1787 u64 t_vm_h_eoi = 0;
1788 u64 t_vm_h_ipi = 0;
1789 unsigned int i;
1790
1791 if (!kvm)
1792 return 0;
1793
1794 seq_printf(m, "=========\nVCPU state\n=========\n");
1795
1796 kvm_for_each_vcpu(i, vcpu, kvm) {
1797 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1798
1799 if (!xc)
1800 continue;
1801
1802 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1803 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1804 xc->server_num, xc->cppr, xc->hw_cppr,
1805 xc->mfrr, xc->pending,
1806 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1807
1808 t_rm_h_xirr += xc->stat_rm_h_xirr;
1809 t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1810 t_rm_h_cppr += xc->stat_rm_h_cppr;
1811 t_rm_h_eoi += xc->stat_rm_h_eoi;
1812 t_rm_h_ipi += xc->stat_rm_h_ipi;
1813 t_vm_h_xirr += xc->stat_vm_h_xirr;
1814 t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1815 t_vm_h_cppr += xc->stat_vm_h_cppr;
1816 t_vm_h_eoi += xc->stat_vm_h_eoi;
1817 t_vm_h_ipi += xc->stat_vm_h_ipi;
1818 }
1819
1820 seq_printf(m, "Hcalls totals\n");
1821 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1822 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1823 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1824 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1825 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1826
1827 return 0;
1828 }
1829
1830 static int xive_debug_open(struct inode *inode, struct file *file)
1831 {
1832 return single_open(file, xive_debug_show, inode->i_private);
1833 }
1834
1835 static const struct file_operations xive_debug_fops = {
1836 .open = xive_debug_open,
1837 .read = seq_read,
1838 .llseek = seq_lseek,
1839 .release = single_release,
1840 };
1841
1842 static void xive_debugfs_init(struct kvmppc_xive *xive)
1843 {
1844 char *name;
1845
1846 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1847 if (!name) {
1848 pr_err("%s: no memory for name\n", __func__);
1849 return;
1850 }
1851
1852 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1853 xive, &xive_debug_fops);
1854
1855 pr_debug("%s: created %s\n", __func__, name);
1856 kfree(name);
1857 }
1858
1859 static void kvmppc_xive_init(struct kvm_device *dev)
1860 {
1861 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1862
1863 /* Register some debug interfaces */
1864 xive_debugfs_init(xive);
1865 }
1866
1867 struct kvm_device_ops kvm_xive_ops = {
1868 .name = "kvm-xive",
1869 .create = kvmppc_xive_create,
1870 .init = kvmppc_xive_init,
1871 .destroy = kvmppc_xive_free,
1872 .set_attr = xive_set_attr,
1873 .get_attr = xive_get_attr,
1874 .has_attr = xive_has_attr,
1875 };
1876
1877 void kvmppc_xive_init_module(void)
1878 {
1879 __xive_vm_h_xirr = xive_vm_h_xirr;
1880 __xive_vm_h_ipoll = xive_vm_h_ipoll;
1881 __xive_vm_h_ipi = xive_vm_h_ipi;
1882 __xive_vm_h_cppr = xive_vm_h_cppr;
1883 __xive_vm_h_eoi = xive_vm_h_eoi;
1884 }
1885
1886 void kvmppc_xive_exit_module(void)
1887 {
1888 __xive_vm_h_xirr = NULL;
1889 __xive_vm_h_ipoll = NULL;
1890 __xive_vm_h_ipi = NULL;
1891 __xive_vm_h_cppr = NULL;
1892 __xive_vm_h_eoi = NULL;
1893 }