]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/mpic.c
kvm/ppc/mpic: in-kernel MPIC emulation
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / mpic.c
1 /*
2 * OpenPIC emulation
3 *
4 * Copyright (c) 2004 Jocelyn Mayer
5 * 2011 Alexander Graf
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/mutex.h>
28 #include <linux/kvm_host.h>
29 #include <linux/errno.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <asm/uaccess.h>
33 #include <asm/mpic.h>
34 #include <asm/kvm_para.h>
35 #include <asm/kvm_host.h>
36 #include <asm/kvm_ppc.h>
37 #include "iodev.h"
38
39 #define MAX_CPU 32
40 #define MAX_SRC 256
41 #define MAX_TMR 4
42 #define MAX_IPI 4
43 #define MAX_MSI 8
44 #define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
45 #define VID 0x03 /* MPIC version ID */
46
47 /* OpenPIC capability flags */
48 #define OPENPIC_FLAG_IDR_CRIT (1 << 0)
49 #define OPENPIC_FLAG_ILR (2 << 0)
50
51 /* OpenPIC address map */
52 #define OPENPIC_REG_SIZE 0x40000
53 #define OPENPIC_GLB_REG_START 0x0
54 #define OPENPIC_GLB_REG_SIZE 0x10F0
55 #define OPENPIC_TMR_REG_START 0x10F0
56 #define OPENPIC_TMR_REG_SIZE 0x220
57 #define OPENPIC_MSI_REG_START 0x1600
58 #define OPENPIC_MSI_REG_SIZE 0x200
59 #define OPENPIC_SUMMARY_REG_START 0x3800
60 #define OPENPIC_SUMMARY_REG_SIZE 0x800
61 #define OPENPIC_SRC_REG_START 0x10000
62 #define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
63 #define OPENPIC_CPU_REG_START 0x20000
64 #define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000))
65
66 struct fsl_mpic_info {
67 int max_ext;
68 };
69
70 static struct fsl_mpic_info fsl_mpic_20 = {
71 .max_ext = 12,
72 };
73
74 static struct fsl_mpic_info fsl_mpic_42 = {
75 .max_ext = 12,
76 };
77
78 #define FRR_NIRQ_SHIFT 16
79 #define FRR_NCPU_SHIFT 8
80 #define FRR_VID_SHIFT 0
81
82 #define VID_REVISION_1_2 2
83 #define VID_REVISION_1_3 3
84
85 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
86
87 #define GCR_RESET 0x80000000
88 #define GCR_MODE_PASS 0x00000000
89 #define GCR_MODE_MIXED 0x20000000
90 #define GCR_MODE_PROXY 0x60000000
91
92 #define TBCR_CI 0x80000000 /* count inhibit */
93 #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
94
95 #define IDR_EP_SHIFT 31
96 #define IDR_EP_MASK (1 << IDR_EP_SHIFT)
97 #define IDR_CI0_SHIFT 30
98 #define IDR_CI1_SHIFT 29
99 #define IDR_P1_SHIFT 1
100 #define IDR_P0_SHIFT 0
101
102 #define ILR_INTTGT_MASK 0x000000ff
103 #define ILR_INTTGT_INT 0x00
104 #define ILR_INTTGT_CINT 0x01 /* critical */
105 #define ILR_INTTGT_MCP 0x02 /* machine check */
106 #define NUM_OUTPUTS 3
107
108 #define MSIIR_OFFSET 0x140
109 #define MSIIR_SRS_SHIFT 29
110 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
111 #define MSIIR_IBS_SHIFT 24
112 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
113
114 static int get_current_cpu(void)
115 {
116 #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
117 struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
118 return vcpu ? vcpu->vcpu_id : -1;
119 #else
120 /* XXX */
121 return -1;
122 #endif
123 }
124
125 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
126 u32 val, int idx);
127 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
128 u32 *ptr, int idx);
129
130 enum irq_type {
131 IRQ_TYPE_NORMAL = 0,
132 IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
133 IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
134 };
135
136 struct irq_queue {
137 /* Round up to the nearest 64 IRQs so that the queue length
138 * won't change when moving between 32 and 64 bit hosts.
139 */
140 unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
141 int next;
142 int priority;
143 };
144
145 struct irq_source {
146 uint32_t ivpr; /* IRQ vector/priority register */
147 uint32_t idr; /* IRQ destination register */
148 uint32_t destmask; /* bitmap of CPU destinations */
149 int last_cpu;
150 int output; /* IRQ level, e.g. ILR_INTTGT_INT */
151 int pending; /* TRUE if IRQ is pending */
152 enum irq_type type;
153 bool level:1; /* level-triggered */
154 bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
155 };
156
157 #define IVPR_MASK_SHIFT 31
158 #define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
159 #define IVPR_ACTIVITY_SHIFT 30
160 #define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
161 #define IVPR_MODE_SHIFT 29
162 #define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
163 #define IVPR_POLARITY_SHIFT 23
164 #define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
165 #define IVPR_SENSE_SHIFT 22
166 #define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
167
168 #define IVPR_PRIORITY_MASK (0xF << 16)
169 #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
170 #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
171
172 /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
173 #define IDR_EP 0x80000000 /* external pin */
174 #define IDR_CI 0x40000000 /* critical interrupt */
175
176 struct irq_dest {
177 struct kvm_vcpu *vcpu;
178
179 int32_t ctpr; /* CPU current task priority */
180 struct irq_queue raised;
181 struct irq_queue servicing;
182
183 /* Count of IRQ sources asserting on non-INT outputs */
184 uint32_t outputs_active[NUM_OUTPUTS];
185 };
186
187 struct openpic {
188 struct kvm *kvm;
189 struct kvm_device *dev;
190 struct kvm_io_device mmio;
191 struct list_head mmio_regions;
192 atomic_t users;
193 bool mmio_mapped;
194
195 gpa_t reg_base;
196 spinlock_t lock;
197
198 /* Behavior control */
199 struct fsl_mpic_info *fsl;
200 uint32_t model;
201 uint32_t flags;
202 uint32_t nb_irqs;
203 uint32_t vid;
204 uint32_t vir; /* Vendor identification register */
205 uint32_t vector_mask;
206 uint32_t tfrr_reset;
207 uint32_t ivpr_reset;
208 uint32_t idr_reset;
209 uint32_t brr1;
210 uint32_t mpic_mode_mask;
211
212 /* Global registers */
213 uint32_t frr; /* Feature reporting register */
214 uint32_t gcr; /* Global configuration register */
215 uint32_t pir; /* Processor initialization register */
216 uint32_t spve; /* Spurious vector register */
217 uint32_t tfrr; /* Timer frequency reporting register */
218 /* Source registers */
219 struct irq_source src[MAX_IRQ];
220 /* Local registers per output pin */
221 struct irq_dest dst[MAX_CPU];
222 uint32_t nb_cpus;
223 /* Timer registers */
224 struct {
225 uint32_t tccr; /* Global timer current count register */
226 uint32_t tbcr; /* Global timer base count register */
227 } timers[MAX_TMR];
228 /* Shared MSI registers */
229 struct {
230 uint32_t msir; /* Shared Message Signaled Interrupt Register */
231 } msi[MAX_MSI];
232 uint32_t max_irq;
233 uint32_t irq_ipi0;
234 uint32_t irq_tim0;
235 uint32_t irq_msi;
236 };
237
238
239 static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
240 int output)
241 {
242 struct kvm_interrupt irq = {
243 .irq = KVM_INTERRUPT_SET_LEVEL,
244 };
245
246 if (!dst->vcpu) {
247 pr_debug("%s: destination cpu %d does not exist\n",
248 __func__, (int)(dst - &opp->dst[0]));
249 return;
250 }
251
252 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->vcpu_id,
253 output);
254
255 if (output != ILR_INTTGT_INT) /* TODO */
256 return;
257
258 kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
259 }
260
261 static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
262 int output)
263 {
264 if (!dst->vcpu) {
265 pr_debug("%s: destination cpu %d does not exist\n",
266 __func__, (int)(dst - &opp->dst[0]));
267 return;
268 }
269
270 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->vcpu_id,
271 output);
272
273 if (output != ILR_INTTGT_INT) /* TODO */
274 return;
275
276 kvmppc_core_dequeue_external(dst->vcpu);
277 }
278
279 static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
280 {
281 set_bit(n_IRQ, q->queue);
282 }
283
284 static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
285 {
286 clear_bit(n_IRQ, q->queue);
287 }
288
289 static inline int IRQ_testbit(struct irq_queue *q, int n_IRQ)
290 {
291 return test_bit(n_IRQ, q->queue);
292 }
293
294 static void IRQ_check(struct openpic *opp, struct irq_queue *q)
295 {
296 int irq = -1;
297 int next = -1;
298 int priority = -1;
299
300 for (;;) {
301 irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
302 if (irq == opp->max_irq)
303 break;
304
305 pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
306 irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
307
308 if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
309 next = irq;
310 priority = IVPR_PRIORITY(opp->src[irq].ivpr);
311 }
312 }
313
314 q->next = next;
315 q->priority = priority;
316 }
317
318 static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
319 {
320 /* XXX: optimize */
321 IRQ_check(opp, q);
322
323 return q->next;
324 }
325
326 static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
327 bool active, bool was_active)
328 {
329 struct irq_dest *dst;
330 struct irq_source *src;
331 int priority;
332
333 dst = &opp->dst[n_CPU];
334 src = &opp->src[n_IRQ];
335
336 pr_debug("%s: IRQ %d active %d was %d\n",
337 __func__, n_IRQ, active, was_active);
338
339 if (src->output != ILR_INTTGT_INT) {
340 pr_debug("%s: output %d irq %d active %d was %d count %d\n",
341 __func__, src->output, n_IRQ, active, was_active,
342 dst->outputs_active[src->output]);
343
344 /* On Freescale MPIC, critical interrupts ignore priority,
345 * IACK, EOI, etc. Before MPIC v4.1 they also ignore
346 * masking.
347 */
348 if (active) {
349 if (!was_active &&
350 dst->outputs_active[src->output]++ == 0) {
351 pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
352 __func__, src->output, n_CPU, n_IRQ);
353 mpic_irq_raise(opp, dst, src->output);
354 }
355 } else {
356 if (was_active &&
357 --dst->outputs_active[src->output] == 0) {
358 pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
359 __func__, src->output, n_CPU, n_IRQ);
360 mpic_irq_lower(opp, dst, src->output);
361 }
362 }
363
364 return;
365 }
366
367 priority = IVPR_PRIORITY(src->ivpr);
368
369 /* Even if the interrupt doesn't have enough priority,
370 * it is still raised, in case ctpr is lowered later.
371 */
372 if (active)
373 IRQ_setbit(&dst->raised, n_IRQ);
374 else
375 IRQ_resetbit(&dst->raised, n_IRQ);
376
377 IRQ_check(opp, &dst->raised);
378
379 if (active && priority <= dst->ctpr) {
380 pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
381 __func__, n_IRQ, priority, dst->ctpr, n_CPU);
382 active = 0;
383 }
384
385 if (active) {
386 if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
387 priority <= dst->servicing.priority) {
388 pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
389 __func__, n_IRQ, dst->servicing.next, n_CPU);
390 } else {
391 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
392 __func__, n_CPU, n_IRQ, dst->raised.next);
393 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
394 }
395 } else {
396 IRQ_get_next(opp, &dst->servicing);
397 if (dst->raised.priority > dst->ctpr &&
398 dst->raised.priority > dst->servicing.priority) {
399 pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
400 __func__, n_IRQ, dst->raised.next,
401 dst->raised.priority, dst->ctpr,
402 dst->servicing.priority, n_CPU);
403 /* IRQ line stays asserted */
404 } else {
405 pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
406 __func__, n_IRQ, dst->ctpr,
407 dst->servicing.priority, n_CPU);
408 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
409 }
410 }
411 }
412
413 /* update pic state because registers for n_IRQ have changed value */
414 static void openpic_update_irq(struct openpic *opp, int n_IRQ)
415 {
416 struct irq_source *src;
417 bool active, was_active;
418 int i;
419
420 src = &opp->src[n_IRQ];
421 active = src->pending;
422
423 if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
424 /* Interrupt source is disabled */
425 pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
426 active = false;
427 }
428
429 was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
430
431 /*
432 * We don't have a similar check for already-active because
433 * ctpr may have changed and we need to withdraw the interrupt.
434 */
435 if (!active && !was_active) {
436 pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
437 return;
438 }
439
440 if (active)
441 src->ivpr |= IVPR_ACTIVITY_MASK;
442 else
443 src->ivpr &= ~IVPR_ACTIVITY_MASK;
444
445 if (src->destmask == 0) {
446 /* No target */
447 pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
448 return;
449 }
450
451 if (src->destmask == (1 << src->last_cpu)) {
452 /* Only one CPU is allowed to receive this IRQ */
453 IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
454 } else if (!(src->ivpr & IVPR_MODE_MASK)) {
455 /* Directed delivery mode */
456 for (i = 0; i < opp->nb_cpus; i++) {
457 if (src->destmask & (1 << i)) {
458 IRQ_local_pipe(opp, i, n_IRQ, active,
459 was_active);
460 }
461 }
462 } else {
463 /* Distributed delivery mode */
464 for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
465 if (i == opp->nb_cpus)
466 i = 0;
467
468 if (src->destmask & (1 << i)) {
469 IRQ_local_pipe(opp, i, n_IRQ, active,
470 was_active);
471 src->last_cpu = i;
472 break;
473 }
474 }
475 }
476 }
477
478 static void openpic_set_irq(void *opaque, int n_IRQ, int level)
479 {
480 struct openpic *opp = opaque;
481 struct irq_source *src;
482
483 if (n_IRQ >= MAX_IRQ) {
484 WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
485 return;
486 }
487
488 src = &opp->src[n_IRQ];
489 pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
490 n_IRQ, level, src->ivpr);
491 if (src->level) {
492 /* level-sensitive irq */
493 src->pending = level;
494 openpic_update_irq(opp, n_IRQ);
495 } else {
496 /* edge-sensitive irq */
497 if (level) {
498 src->pending = 1;
499 openpic_update_irq(opp, n_IRQ);
500 }
501
502 if (src->output != ILR_INTTGT_INT) {
503 /* Edge-triggered interrupts shouldn't be used
504 * with non-INT delivery, but just in case,
505 * try to make it do something sane rather than
506 * cause an interrupt storm. This is close to
507 * what you'd probably see happen in real hardware.
508 */
509 src->pending = 0;
510 openpic_update_irq(opp, n_IRQ);
511 }
512 }
513 }
514
515 static void openpic_reset(struct openpic *opp)
516 {
517 int i;
518
519 opp->gcr = GCR_RESET;
520 /* Initialise controller registers */
521 opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
522 (opp->vid << FRR_VID_SHIFT);
523
524 opp->pir = 0;
525 opp->spve = -1 & opp->vector_mask;
526 opp->tfrr = opp->tfrr_reset;
527 /* Initialise IRQ sources */
528 for (i = 0; i < opp->max_irq; i++) {
529 opp->src[i].ivpr = opp->ivpr_reset;
530 opp->src[i].idr = opp->idr_reset;
531
532 switch (opp->src[i].type) {
533 case IRQ_TYPE_NORMAL:
534 opp->src[i].level =
535 !!(opp->ivpr_reset & IVPR_SENSE_MASK);
536 break;
537
538 case IRQ_TYPE_FSLINT:
539 opp->src[i].ivpr |= IVPR_POLARITY_MASK;
540 break;
541
542 case IRQ_TYPE_FSLSPECIAL:
543 break;
544 }
545 }
546 /* Initialise IRQ destinations */
547 for (i = 0; i < MAX_CPU; i++) {
548 opp->dst[i].ctpr = 15;
549 memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
550 opp->dst[i].raised.next = -1;
551 memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
552 opp->dst[i].servicing.next = -1;
553 }
554 /* Initialise timers */
555 for (i = 0; i < MAX_TMR; i++) {
556 opp->timers[i].tccr = 0;
557 opp->timers[i].tbcr = TBCR_CI;
558 }
559 /* Go out of RESET state */
560 opp->gcr = 0;
561 }
562
563 static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
564 {
565 return opp->src[n_IRQ].idr;
566 }
567
568 static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
569 {
570 if (opp->flags & OPENPIC_FLAG_ILR)
571 return opp->src[n_IRQ].output;
572
573 return 0xffffffff;
574 }
575
576 static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
577 {
578 return opp->src[n_IRQ].ivpr;
579 }
580
581 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
582 uint32_t val)
583 {
584 struct irq_source *src = &opp->src[n_IRQ];
585 uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
586 uint32_t crit_mask = 0;
587 uint32_t mask = normal_mask;
588 int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
589 int i;
590
591 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
592 crit_mask = mask << crit_shift;
593 mask |= crit_mask | IDR_EP;
594 }
595
596 src->idr = val & mask;
597 pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
598
599 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
600 if (src->idr & crit_mask) {
601 if (src->idr & normal_mask) {
602 pr_debug("%s: IRQ configured for multiple output types, using critical\n",
603 __func__);
604 }
605
606 src->output = ILR_INTTGT_CINT;
607 src->nomask = true;
608 src->destmask = 0;
609
610 for (i = 0; i < opp->nb_cpus; i++) {
611 int n_ci = IDR_CI0_SHIFT - i;
612
613 if (src->idr & (1UL << n_ci))
614 src->destmask |= 1UL << i;
615 }
616 } else {
617 src->output = ILR_INTTGT_INT;
618 src->nomask = false;
619 src->destmask = src->idr & normal_mask;
620 }
621 } else {
622 src->destmask = src->idr;
623 }
624 }
625
626 static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
627 uint32_t val)
628 {
629 if (opp->flags & OPENPIC_FLAG_ILR) {
630 struct irq_source *src = &opp->src[n_IRQ];
631
632 src->output = val & ILR_INTTGT_MASK;
633 pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
634 src->output);
635
636 /* TODO: on MPIC v4.0 only, set nomask for non-INT */
637 }
638 }
639
640 static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
641 uint32_t val)
642 {
643 uint32_t mask;
644
645 /* NOTE when implementing newer FSL MPIC models: starting with v4.0,
646 * the polarity bit is read-only on internal interrupts.
647 */
648 mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
649 IVPR_POLARITY_MASK | opp->vector_mask;
650
651 /* ACTIVITY bit is read-only */
652 opp->src[n_IRQ].ivpr =
653 (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
654
655 /* For FSL internal interrupts, The sense bit is reserved and zero,
656 * and the interrupt is always level-triggered. Timers and IPIs
657 * have no sense or polarity bits, and are edge-triggered.
658 */
659 switch (opp->src[n_IRQ].type) {
660 case IRQ_TYPE_NORMAL:
661 opp->src[n_IRQ].level =
662 !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
663 break;
664
665 case IRQ_TYPE_FSLINT:
666 opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
667 break;
668
669 case IRQ_TYPE_FSLSPECIAL:
670 opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
671 break;
672 }
673
674 openpic_update_irq(opp, n_IRQ);
675 pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
676 opp->src[n_IRQ].ivpr);
677 }
678
679 static void openpic_gcr_write(struct openpic *opp, uint64_t val)
680 {
681 if (val & GCR_RESET) {
682 openpic_reset(opp);
683 return;
684 }
685
686 opp->gcr &= ~opp->mpic_mode_mask;
687 opp->gcr |= val & opp->mpic_mode_mask;
688 }
689
690 static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
691 {
692 struct openpic *opp = opaque;
693 int err = 0;
694
695 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
696 if (addr & 0xF)
697 return 0;
698
699 switch (addr) {
700 case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
701 break;
702 case 0x40:
703 case 0x50:
704 case 0x60:
705 case 0x70:
706 case 0x80:
707 case 0x90:
708 case 0xA0:
709 case 0xB0:
710 err = openpic_cpu_write_internal(opp, addr, val,
711 get_current_cpu());
712 break;
713 case 0x1000: /* FRR */
714 break;
715 case 0x1020: /* GCR */
716 openpic_gcr_write(opp, val);
717 break;
718 case 0x1080: /* VIR */
719 break;
720 case 0x1090: /* PIR */
721 /*
722 * This register is used to reset a CPU core --
723 * let userspace handle it.
724 */
725 err = -ENXIO;
726 break;
727 case 0x10A0: /* IPI_IVPR */
728 case 0x10B0:
729 case 0x10C0:
730 case 0x10D0: {
731 int idx;
732 idx = (addr - 0x10A0) >> 4;
733 write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
734 break;
735 }
736 case 0x10E0: /* SPVE */
737 opp->spve = val & opp->vector_mask;
738 break;
739 default:
740 break;
741 }
742
743 return err;
744 }
745
746 static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
747 {
748 struct openpic *opp = opaque;
749 u32 retval;
750 int err = 0;
751
752 pr_debug("%s: addr %#llx\n", __func__, addr);
753 retval = 0xFFFFFFFF;
754 if (addr & 0xF)
755 goto out;
756
757 switch (addr) {
758 case 0x1000: /* FRR */
759 retval = opp->frr;
760 retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
761 break;
762 case 0x1020: /* GCR */
763 retval = opp->gcr;
764 break;
765 case 0x1080: /* VIR */
766 retval = opp->vir;
767 break;
768 case 0x1090: /* PIR */
769 retval = 0x00000000;
770 break;
771 case 0x00: /* Block Revision Register1 (BRR1) */
772 retval = opp->brr1;
773 break;
774 case 0x40:
775 case 0x50:
776 case 0x60:
777 case 0x70:
778 case 0x80:
779 case 0x90:
780 case 0xA0:
781 case 0xB0:
782 err = openpic_cpu_read_internal(opp, addr,
783 &retval, get_current_cpu());
784 break;
785 case 0x10A0: /* IPI_IVPR */
786 case 0x10B0:
787 case 0x10C0:
788 case 0x10D0:
789 {
790 int idx;
791 idx = (addr - 0x10A0) >> 4;
792 retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
793 }
794 break;
795 case 0x10E0: /* SPVE */
796 retval = opp->spve;
797 break;
798 default:
799 break;
800 }
801
802 out:
803 pr_debug("%s: => 0x%08x\n", __func__, retval);
804 *ptr = retval;
805 return err;
806 }
807
808 static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
809 {
810 struct openpic *opp = opaque;
811 int idx;
812
813 addr += 0x10f0;
814
815 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
816 if (addr & 0xF)
817 return 0;
818
819 if (addr == 0x10f0) {
820 /* TFRR */
821 opp->tfrr = val;
822 return 0;
823 }
824
825 idx = (addr >> 6) & 0x3;
826 addr = addr & 0x30;
827
828 switch (addr & 0x30) {
829 case 0x00: /* TCCR */
830 break;
831 case 0x10: /* TBCR */
832 if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
833 (val & TBCR_CI) == 0 &&
834 (opp->timers[idx].tbcr & TBCR_CI) != 0)
835 opp->timers[idx].tccr &= ~TCCR_TOG;
836
837 opp->timers[idx].tbcr = val;
838 break;
839 case 0x20: /* TVPR */
840 write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
841 break;
842 case 0x30: /* TDR */
843 write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
844 break;
845 }
846
847 return 0;
848 }
849
850 static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
851 {
852 struct openpic *opp = opaque;
853 uint32_t retval = -1;
854 int idx;
855
856 pr_debug("%s: addr %#llx\n", __func__, addr);
857 if (addr & 0xF)
858 goto out;
859
860 idx = (addr >> 6) & 0x3;
861 if (addr == 0x0) {
862 /* TFRR */
863 retval = opp->tfrr;
864 goto out;
865 }
866
867 switch (addr & 0x30) {
868 case 0x00: /* TCCR */
869 retval = opp->timers[idx].tccr;
870 break;
871 case 0x10: /* TBCR */
872 retval = opp->timers[idx].tbcr;
873 break;
874 case 0x20: /* TIPV */
875 retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
876 break;
877 case 0x30: /* TIDE (TIDR) */
878 retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
879 break;
880 }
881
882 out:
883 pr_debug("%s: => 0x%08x\n", __func__, retval);
884 *ptr = retval;
885 return 0;
886 }
887
888 static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
889 {
890 struct openpic *opp = opaque;
891 int idx;
892
893 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
894
895 addr = addr & 0xffff;
896 idx = addr >> 5;
897
898 switch (addr & 0x1f) {
899 case 0x00:
900 write_IRQreg_ivpr(opp, idx, val);
901 break;
902 case 0x10:
903 write_IRQreg_idr(opp, idx, val);
904 break;
905 case 0x18:
906 write_IRQreg_ilr(opp, idx, val);
907 break;
908 }
909
910 return 0;
911 }
912
913 static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
914 {
915 struct openpic *opp = opaque;
916 uint32_t retval;
917 int idx;
918
919 pr_debug("%s: addr %#llx\n", __func__, addr);
920 retval = 0xFFFFFFFF;
921
922 addr = addr & 0xffff;
923 idx = addr >> 5;
924
925 switch (addr & 0x1f) {
926 case 0x00:
927 retval = read_IRQreg_ivpr(opp, idx);
928 break;
929 case 0x10:
930 retval = read_IRQreg_idr(opp, idx);
931 break;
932 case 0x18:
933 retval = read_IRQreg_ilr(opp, idx);
934 break;
935 }
936
937 pr_debug("%s: => 0x%08x\n", __func__, retval);
938 *ptr = retval;
939 return 0;
940 }
941
942 static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
943 {
944 struct openpic *opp = opaque;
945 int idx = opp->irq_msi;
946 int srs, ibs;
947
948 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
949 if (addr & 0xF)
950 return 0;
951
952 switch (addr) {
953 case MSIIR_OFFSET:
954 srs = val >> MSIIR_SRS_SHIFT;
955 idx += srs;
956 ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
957 opp->msi[srs].msir |= 1 << ibs;
958 openpic_set_irq(opp, idx, 1);
959 break;
960 default:
961 /* most registers are read-only, thus ignored */
962 break;
963 }
964
965 return 0;
966 }
967
968 static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
969 {
970 struct openpic *opp = opaque;
971 uint32_t r = 0;
972 int i, srs;
973
974 pr_debug("%s: addr %#llx\n", __func__, addr);
975 if (addr & 0xF)
976 return -ENXIO;
977
978 srs = addr >> 4;
979
980 switch (addr) {
981 case 0x00:
982 case 0x10:
983 case 0x20:
984 case 0x30:
985 case 0x40:
986 case 0x50:
987 case 0x60:
988 case 0x70: /* MSIRs */
989 r = opp->msi[srs].msir;
990 /* Clear on read */
991 opp->msi[srs].msir = 0;
992 openpic_set_irq(opp, opp->irq_msi + srs, 0);
993 break;
994 case 0x120: /* MSISR */
995 for (i = 0; i < MAX_MSI; i++)
996 r |= (opp->msi[i].msir ? 1 : 0) << i;
997 break;
998 }
999
1000 pr_debug("%s: => 0x%08x\n", __func__, r);
1001 *ptr = r;
1002 return 0;
1003 }
1004
1005 static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
1006 {
1007 uint32_t r = 0;
1008
1009 pr_debug("%s: addr %#llx\n", __func__, addr);
1010
1011 /* TODO: EISR/EIMR */
1012
1013 *ptr = r;
1014 return 0;
1015 }
1016
1017 static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
1018 {
1019 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
1020
1021 /* TODO: EISR/EIMR */
1022 return 0;
1023 }
1024
1025 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
1026 u32 val, int idx)
1027 {
1028 struct openpic *opp = opaque;
1029 struct irq_source *src;
1030 struct irq_dest *dst;
1031 int s_IRQ, n_IRQ;
1032
1033 pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
1034 addr, val);
1035
1036 if (idx < 0)
1037 return 0;
1038
1039 if (addr & 0xF)
1040 return 0;
1041
1042 dst = &opp->dst[idx];
1043 addr &= 0xFF0;
1044 switch (addr) {
1045 case 0x40: /* IPIDR */
1046 case 0x50:
1047 case 0x60:
1048 case 0x70:
1049 idx = (addr - 0x40) >> 4;
1050 /* we use IDE as mask which CPUs to deliver the IPI to still. */
1051 opp->src[opp->irq_ipi0 + idx].destmask |= val;
1052 openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
1053 openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
1054 break;
1055 case 0x80: /* CTPR */
1056 dst->ctpr = val & 0x0000000F;
1057
1058 pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
1059 __func__, idx, dst->ctpr, dst->raised.priority,
1060 dst->servicing.priority);
1061
1062 if (dst->raised.priority <= dst->ctpr) {
1063 pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
1064 __func__, idx);
1065 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1066 } else if (dst->raised.priority > dst->servicing.priority) {
1067 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
1068 __func__, idx, dst->raised.next);
1069 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1070 }
1071
1072 break;
1073 case 0x90: /* WHOAMI */
1074 /* Read-only register */
1075 break;
1076 case 0xA0: /* IACK */
1077 /* Read-only register */
1078 break;
1079 case 0xB0: /* EOI */
1080 pr_debug("EOI\n");
1081 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1082
1083 if (s_IRQ < 0) {
1084 pr_debug("%s: EOI with no interrupt in service\n",
1085 __func__);
1086 break;
1087 }
1088
1089 IRQ_resetbit(&dst->servicing, s_IRQ);
1090 /* Set up next servicing IRQ */
1091 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1092 /* Check queued interrupts. */
1093 n_IRQ = IRQ_get_next(opp, &dst->raised);
1094 src = &opp->src[n_IRQ];
1095 if (n_IRQ != -1 &&
1096 (s_IRQ == -1 ||
1097 IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
1098 pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
1099 idx, n_IRQ);
1100 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1101 }
1102 break;
1103 default:
1104 break;
1105 }
1106
1107 return 0;
1108 }
1109
1110 static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
1111 {
1112 struct openpic *opp = opaque;
1113
1114 return openpic_cpu_write_internal(opp, addr, val,
1115 (addr & 0x1f000) >> 12);
1116 }
1117
1118 static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
1119 int cpu)
1120 {
1121 struct irq_source *src;
1122 int retval, irq;
1123
1124 pr_debug("Lower OpenPIC INT output\n");
1125 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1126
1127 irq = IRQ_get_next(opp, &dst->raised);
1128 pr_debug("IACK: irq=%d\n", irq);
1129
1130 if (irq == -1)
1131 /* No more interrupt pending */
1132 return opp->spve;
1133
1134 src = &opp->src[irq];
1135 if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
1136 !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
1137 pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
1138 __func__, irq, dst->ctpr, src->ivpr);
1139 openpic_update_irq(opp, irq);
1140 retval = opp->spve;
1141 } else {
1142 /* IRQ enter servicing state */
1143 IRQ_setbit(&dst->servicing, irq);
1144 retval = IVPR_VECTOR(opp, src->ivpr);
1145 }
1146
1147 if (!src->level) {
1148 /* edge-sensitive IRQ */
1149 src->ivpr &= ~IVPR_ACTIVITY_MASK;
1150 src->pending = 0;
1151 IRQ_resetbit(&dst->raised, irq);
1152 }
1153
1154 if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
1155 src->destmask &= ~(1 << cpu);
1156 if (src->destmask && !src->level) {
1157 /* trigger on CPUs that didn't know about it yet */
1158 openpic_set_irq(opp, irq, 1);
1159 openpic_set_irq(opp, irq, 0);
1160 /* if all CPUs knew about it, set active bit again */
1161 src->ivpr |= IVPR_ACTIVITY_MASK;
1162 }
1163 }
1164
1165 return retval;
1166 }
1167
1168 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
1169 u32 *ptr, int idx)
1170 {
1171 struct openpic *opp = opaque;
1172 struct irq_dest *dst;
1173 uint32_t retval;
1174
1175 pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
1176 retval = 0xFFFFFFFF;
1177
1178 if (idx < 0)
1179 goto out;
1180
1181 if (addr & 0xF)
1182 goto out;
1183
1184 dst = &opp->dst[idx];
1185 addr &= 0xFF0;
1186 switch (addr) {
1187 case 0x80: /* CTPR */
1188 retval = dst->ctpr;
1189 break;
1190 case 0x90: /* WHOAMI */
1191 retval = idx;
1192 break;
1193 case 0xA0: /* IACK */
1194 retval = openpic_iack(opp, dst, idx);
1195 break;
1196 case 0xB0: /* EOI */
1197 retval = 0;
1198 break;
1199 default:
1200 break;
1201 }
1202 pr_debug("%s: => 0x%08x\n", __func__, retval);
1203
1204 out:
1205 *ptr = retval;
1206 return 0;
1207 }
1208
1209 static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
1210 {
1211 struct openpic *opp = opaque;
1212
1213 return openpic_cpu_read_internal(opp, addr, ptr,
1214 (addr & 0x1f000) >> 12);
1215 }
1216
1217 struct mem_reg {
1218 struct list_head list;
1219 int (*read)(void *opaque, gpa_t addr, u32 *ptr);
1220 int (*write)(void *opaque, gpa_t addr, u32 val);
1221 gpa_t start_addr;
1222 int size;
1223 };
1224
1225 static struct mem_reg openpic_gbl_mmio = {
1226 .write = openpic_gbl_write,
1227 .read = openpic_gbl_read,
1228 .start_addr = OPENPIC_GLB_REG_START,
1229 .size = OPENPIC_GLB_REG_SIZE,
1230 };
1231
1232 static struct mem_reg openpic_tmr_mmio = {
1233 .write = openpic_tmr_write,
1234 .read = openpic_tmr_read,
1235 .start_addr = OPENPIC_TMR_REG_START,
1236 .size = OPENPIC_TMR_REG_SIZE,
1237 };
1238
1239 static struct mem_reg openpic_cpu_mmio = {
1240 .write = openpic_cpu_write,
1241 .read = openpic_cpu_read,
1242 .start_addr = OPENPIC_CPU_REG_START,
1243 .size = OPENPIC_CPU_REG_SIZE,
1244 };
1245
1246 static struct mem_reg openpic_src_mmio = {
1247 .write = openpic_src_write,
1248 .read = openpic_src_read,
1249 .start_addr = OPENPIC_SRC_REG_START,
1250 .size = OPENPIC_SRC_REG_SIZE,
1251 };
1252
1253 static struct mem_reg openpic_msi_mmio = {
1254 .read = openpic_msi_read,
1255 .write = openpic_msi_write,
1256 .start_addr = OPENPIC_MSI_REG_START,
1257 .size = OPENPIC_MSI_REG_SIZE,
1258 };
1259
1260 static struct mem_reg openpic_summary_mmio = {
1261 .read = openpic_summary_read,
1262 .write = openpic_summary_write,
1263 .start_addr = OPENPIC_SUMMARY_REG_START,
1264 .size = OPENPIC_SUMMARY_REG_SIZE,
1265 };
1266
1267 static void fsl_common_init(struct openpic *opp)
1268 {
1269 int i;
1270 int virq = MAX_SRC;
1271
1272 list_add(&openpic_msi_mmio.list, &opp->mmio_regions);
1273 list_add(&openpic_summary_mmio.list, &opp->mmio_regions);
1274
1275 opp->vid = VID_REVISION_1_2;
1276 opp->vir = VIR_GENERIC;
1277 opp->vector_mask = 0xFFFF;
1278 opp->tfrr_reset = 0;
1279 opp->ivpr_reset = IVPR_MASK_MASK;
1280 opp->idr_reset = 1 << 0;
1281 opp->max_irq = MAX_IRQ;
1282
1283 opp->irq_ipi0 = virq;
1284 virq += MAX_IPI;
1285 opp->irq_tim0 = virq;
1286 virq += MAX_TMR;
1287
1288 BUG_ON(virq > MAX_IRQ);
1289
1290 opp->irq_msi = 224;
1291
1292 for (i = 0; i < opp->fsl->max_ext; i++)
1293 opp->src[i].level = false;
1294
1295 /* Internal interrupts, including message and MSI */
1296 for (i = 16; i < MAX_SRC; i++) {
1297 opp->src[i].type = IRQ_TYPE_FSLINT;
1298 opp->src[i].level = true;
1299 }
1300
1301 /* timers and IPIs */
1302 for (i = MAX_SRC; i < virq; i++) {
1303 opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
1304 opp->src[i].level = false;
1305 }
1306 }
1307
1308 static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
1309 {
1310 struct list_head *node;
1311
1312 list_for_each(node, &opp->mmio_regions) {
1313 struct mem_reg *mr = list_entry(node, struct mem_reg, list);
1314
1315 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1316 continue;
1317
1318 return mr->read(opp, addr - mr->start_addr, ptr);
1319 }
1320
1321 return -ENXIO;
1322 }
1323
1324 static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
1325 {
1326 struct list_head *node;
1327
1328 list_for_each(node, &opp->mmio_regions) {
1329 struct mem_reg *mr = list_entry(node, struct mem_reg, list);
1330
1331 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1332 continue;
1333
1334 return mr->write(opp, addr - mr->start_addr, val);
1335 }
1336
1337 return -ENXIO;
1338 }
1339
1340 static int kvm_mpic_read(struct kvm_io_device *this, gpa_t addr,
1341 int len, void *ptr)
1342 {
1343 struct openpic *opp = container_of(this, struct openpic, mmio);
1344 int ret;
1345 union {
1346 u32 val;
1347 u8 bytes[4];
1348 } u;
1349
1350 if (addr & (len - 1)) {
1351 pr_debug("%s: bad alignment %llx/%d\n",
1352 __func__, addr, len);
1353 return -EINVAL;
1354 }
1355
1356 spin_lock_irq(&opp->lock);
1357 ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
1358 spin_unlock_irq(&opp->lock);
1359
1360 /*
1361 * Technically only 32-bit accesses are allowed, but be nice to
1362 * people dumping registers a byte at a time -- it works in real
1363 * hardware (reads only, not writes).
1364 */
1365 if (len == 4) {
1366 *(u32 *)ptr = u.val;
1367 pr_debug("%s: addr %llx ret %d len 4 val %x\n",
1368 __func__, addr, ret, u.val);
1369 } else if (len == 1) {
1370 *(u8 *)ptr = u.bytes[addr & 3];
1371 pr_debug("%s: addr %llx ret %d len 1 val %x\n",
1372 __func__, addr, ret, u.bytes[addr & 3]);
1373 } else {
1374 pr_debug("%s: bad length %d\n", __func__, len);
1375 return -EINVAL;
1376 }
1377
1378 return ret;
1379 }
1380
1381 static int kvm_mpic_write(struct kvm_io_device *this, gpa_t addr,
1382 int len, const void *ptr)
1383 {
1384 struct openpic *opp = container_of(this, struct openpic, mmio);
1385 int ret;
1386
1387 if (len != 4) {
1388 pr_debug("%s: bad length %d\n", __func__, len);
1389 return -EOPNOTSUPP;
1390 }
1391 if (addr & 3) {
1392 pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
1393 return -EOPNOTSUPP;
1394 }
1395
1396 spin_lock_irq(&opp->lock);
1397 ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
1398 *(const u32 *)ptr);
1399 spin_unlock_irq(&opp->lock);
1400
1401 pr_debug("%s: addr %llx ret %d val %x\n",
1402 __func__, addr, ret, *(const u32 *)ptr);
1403
1404 return ret;
1405 }
1406
1407 static void kvm_mpic_dtor(struct kvm_io_device *this)
1408 {
1409 struct openpic *opp = container_of(this, struct openpic, mmio);
1410
1411 opp->mmio_mapped = false;
1412 }
1413
1414 static const struct kvm_io_device_ops mpic_mmio_ops = {
1415 .read = kvm_mpic_read,
1416 .write = kvm_mpic_write,
1417 .destructor = kvm_mpic_dtor,
1418 };
1419
1420 static void map_mmio(struct openpic *opp)
1421 {
1422 BUG_ON(opp->mmio_mapped);
1423 opp->mmio_mapped = true;
1424
1425 kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
1426
1427 kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
1428 opp->reg_base, OPENPIC_REG_SIZE,
1429 &opp->mmio);
1430 }
1431
1432 static void unmap_mmio(struct openpic *opp)
1433 {
1434 BUG_ON(opp->mmio_mapped);
1435 opp->mmio_mapped = false;
1436
1437 kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
1438 }
1439
1440 static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
1441 {
1442 u64 base;
1443
1444 if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
1445 return -EFAULT;
1446
1447 if (base & 0x3ffff) {
1448 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
1449 __func__, base);
1450 return -EINVAL;
1451 }
1452
1453 if (base == opp->reg_base)
1454 return 0;
1455
1456 mutex_lock(&opp->kvm->slots_lock);
1457
1458 unmap_mmio(opp);
1459 opp->reg_base = base;
1460
1461 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
1462 __func__, base);
1463
1464 if (base == 0)
1465 goto out;
1466
1467 map_mmio(opp);
1468
1469 mutex_unlock(&opp->kvm->slots_lock);
1470 out:
1471 return 0;
1472 }
1473
1474 #define ATTR_SET 0
1475 #define ATTR_GET 1
1476
1477 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
1478 {
1479 int ret;
1480
1481 if (addr & 3)
1482 return -ENXIO;
1483
1484 spin_lock_irq(&opp->lock);
1485
1486 if (type == ATTR_SET)
1487 ret = kvm_mpic_write_internal(opp, addr, *val);
1488 else
1489 ret = kvm_mpic_read_internal(opp, addr, val);
1490
1491 spin_unlock_irq(&opp->lock);
1492
1493 pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
1494
1495 return ret;
1496 }
1497
1498 static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1499 {
1500 struct openpic *opp = dev->private;
1501 u32 attr32;
1502
1503 switch (attr->group) {
1504 case KVM_DEV_MPIC_GRP_MISC:
1505 switch (attr->attr) {
1506 case KVM_DEV_MPIC_BASE_ADDR:
1507 return set_base_addr(opp, attr);
1508 }
1509
1510 break;
1511
1512 case KVM_DEV_MPIC_GRP_REGISTER:
1513 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1514 return -EFAULT;
1515
1516 return access_reg(opp, attr->attr, &attr32, ATTR_SET);
1517
1518 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1519 if (attr->attr > MAX_SRC)
1520 return -EINVAL;
1521
1522 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1523 return -EFAULT;
1524
1525 if (attr32 != 0 && attr32 != 1)
1526 return -EINVAL;
1527
1528 spin_lock_irq(&opp->lock);
1529 openpic_set_irq(opp, attr->attr, attr32);
1530 spin_unlock_irq(&opp->lock);
1531 return 0;
1532 }
1533
1534 return -ENXIO;
1535 }
1536
1537 static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1538 {
1539 struct openpic *opp = dev->private;
1540 u64 attr64;
1541 u32 attr32;
1542 int ret;
1543
1544 switch (attr->group) {
1545 case KVM_DEV_MPIC_GRP_MISC:
1546 switch (attr->attr) {
1547 case KVM_DEV_MPIC_BASE_ADDR:
1548 mutex_lock(&opp->kvm->slots_lock);
1549 attr64 = opp->reg_base;
1550 mutex_unlock(&opp->kvm->slots_lock);
1551
1552 if (copy_to_user((u64 __user *)(long)attr->addr,
1553 &attr64, sizeof(u64)))
1554 return -EFAULT;
1555
1556 return 0;
1557 }
1558
1559 break;
1560
1561 case KVM_DEV_MPIC_GRP_REGISTER:
1562 ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
1563 if (ret)
1564 return ret;
1565
1566 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1567 return -EFAULT;
1568
1569 return 0;
1570
1571 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1572 if (attr->attr > MAX_SRC)
1573 return -EINVAL;
1574
1575 spin_lock_irq(&opp->lock);
1576 attr32 = opp->src[attr->attr].pending;
1577 spin_unlock_irq(&opp->lock);
1578
1579 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1580 return -EFAULT;
1581
1582 return 0;
1583 }
1584
1585 return -ENXIO;
1586 }
1587
1588 static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1589 {
1590 switch (attr->group) {
1591 case KVM_DEV_MPIC_GRP_MISC:
1592 switch (attr->attr) {
1593 case KVM_DEV_MPIC_BASE_ADDR:
1594 return 0;
1595 }
1596
1597 break;
1598
1599 case KVM_DEV_MPIC_GRP_REGISTER:
1600 return 0;
1601
1602 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1603 if (attr->attr > MAX_SRC)
1604 break;
1605
1606 return 0;
1607 }
1608
1609 return -ENXIO;
1610 }
1611
1612 static void mpic_destroy(struct kvm_device *dev)
1613 {
1614 struct openpic *opp = dev->private;
1615
1616 if (opp->mmio_mapped) {
1617 /*
1618 * Normally we get unmapped by kvm_io_bus_destroy(),
1619 * which happens before the VCPUs release their references.
1620 *
1621 * Thus, we should only get here if no VCPUs took a reference
1622 * to us in the first place.
1623 */
1624 WARN_ON(opp->nb_cpus != 0);
1625 unmap_mmio(opp);
1626 }
1627
1628 kfree(opp);
1629 }
1630
1631 static int mpic_create(struct kvm_device *dev, u32 type)
1632 {
1633 struct openpic *opp;
1634 int ret;
1635
1636 opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
1637 if (!opp)
1638 return -ENOMEM;
1639
1640 dev->private = opp;
1641 opp->kvm = dev->kvm;
1642 opp->dev = dev;
1643 opp->model = type;
1644 spin_lock_init(&opp->lock);
1645
1646 INIT_LIST_HEAD(&opp->mmio_regions);
1647 list_add(&openpic_gbl_mmio.list, &opp->mmio_regions);
1648 list_add(&openpic_tmr_mmio.list, &opp->mmio_regions);
1649 list_add(&openpic_src_mmio.list, &opp->mmio_regions);
1650 list_add(&openpic_cpu_mmio.list, &opp->mmio_regions);
1651
1652 switch (opp->model) {
1653 case KVM_DEV_TYPE_FSL_MPIC_20:
1654 opp->fsl = &fsl_mpic_20;
1655 opp->brr1 = 0x00400200;
1656 opp->flags |= OPENPIC_FLAG_IDR_CRIT;
1657 opp->nb_irqs = 80;
1658 opp->mpic_mode_mask = GCR_MODE_MIXED;
1659
1660 fsl_common_init(opp);
1661
1662 break;
1663
1664 case KVM_DEV_TYPE_FSL_MPIC_42:
1665 opp->fsl = &fsl_mpic_42;
1666 opp->brr1 = 0x00400402;
1667 opp->flags |= OPENPIC_FLAG_ILR;
1668 opp->nb_irqs = 196;
1669 opp->mpic_mode_mask = GCR_MODE_PROXY;
1670
1671 fsl_common_init(opp);
1672
1673 break;
1674
1675 default:
1676 ret = -ENODEV;
1677 goto err;
1678 }
1679
1680 openpic_reset(opp);
1681 return 0;
1682
1683 err:
1684 kfree(opp);
1685 return ret;
1686 }
1687
1688 struct kvm_device_ops kvm_mpic_ops = {
1689 .name = "kvm-mpic",
1690 .create = mpic_create,
1691 .destroy = mpic_destroy,
1692 .set_attr = mpic_set_attr,
1693 .get_attr = mpic_get_attr,
1694 .has_attr = mpic_has_attr,
1695 };