]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/kvm/powerpc.c
24e2b64b6a484f21698ee9adc24f515b4028c833
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hrtimer.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <asm/cputable.h>
30 #include <asm/uaccess.h>
31 #include <asm/kvm_ppc.h>
32 #include <asm/tlbflush.h>
33 #include "timing.h"
34 #include "../mm/mmu_decl.h"
35
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
38
39 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
40 {
41 return !(v->arch.shared->msr & MSR_WE) ||
42 !!(v->arch.pending_exceptions);
43 }
44
45 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
46 {
47 int nr = kvmppc_get_gpr(vcpu, 11);
48 int r;
49 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
50 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
51 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
52 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
53 unsigned long r2 = 0;
54
55 if (!(vcpu->arch.shared->msr & MSR_SF)) {
56 /* 32 bit mode */
57 param1 &= 0xffffffff;
58 param2 &= 0xffffffff;
59 param3 &= 0xffffffff;
60 param4 &= 0xffffffff;
61 }
62
63 switch (nr) {
64 case HC_VENDOR_KVM | KVM_HC_PPC_MAP_MAGIC_PAGE:
65 {
66 vcpu->arch.magic_page_pa = param1;
67 vcpu->arch.magic_page_ea = param2;
68
69 r2 = KVM_MAGIC_FEAT_SR;
70
71 r = HC_EV_SUCCESS;
72 break;
73 }
74 case HC_VENDOR_KVM | KVM_HC_FEATURES:
75 r = HC_EV_SUCCESS;
76 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500)
77 /* XXX Missing magic page on 44x */
78 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
79 #endif
80
81 /* Second return value is in r4 */
82 break;
83 default:
84 r = HC_EV_UNIMPLEMENTED;
85 break;
86 }
87
88 kvmppc_set_gpr(vcpu, 4, r2);
89
90 return r;
91 }
92
93 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
94 {
95 enum emulation_result er;
96 int r;
97
98 er = kvmppc_emulate_instruction(run, vcpu);
99 switch (er) {
100 case EMULATE_DONE:
101 /* Future optimization: only reload non-volatiles if they were
102 * actually modified. */
103 r = RESUME_GUEST_NV;
104 break;
105 case EMULATE_DO_MMIO:
106 run->exit_reason = KVM_EXIT_MMIO;
107 /* We must reload nonvolatiles because "update" load/store
108 * instructions modify register state. */
109 /* Future optimization: only reload non-volatiles if they were
110 * actually modified. */
111 r = RESUME_HOST_NV;
112 break;
113 case EMULATE_FAIL:
114 /* XXX Deliver Program interrupt to guest. */
115 printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__,
116 kvmppc_get_last_inst(vcpu));
117 r = RESUME_HOST;
118 break;
119 default:
120 BUG();
121 }
122
123 return r;
124 }
125
126 int kvm_arch_hardware_enable(void *garbage)
127 {
128 return 0;
129 }
130
131 void kvm_arch_hardware_disable(void *garbage)
132 {
133 }
134
135 int kvm_arch_hardware_setup(void)
136 {
137 return 0;
138 }
139
140 void kvm_arch_hardware_unsetup(void)
141 {
142 }
143
144 void kvm_arch_check_processor_compat(void *rtn)
145 {
146 *(int *)rtn = kvmppc_core_check_processor_compat();
147 }
148
149 int kvm_arch_init_vm(struct kvm *kvm)
150 {
151 return 0;
152 }
153
154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156 unsigned int i;
157 struct kvm_vcpu *vcpu;
158
159 kvm_for_each_vcpu(i, vcpu, kvm)
160 kvm_arch_vcpu_free(vcpu);
161
162 mutex_lock(&kvm->lock);
163 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
164 kvm->vcpus[i] = NULL;
165
166 atomic_set(&kvm->online_vcpus, 0);
167 mutex_unlock(&kvm->lock);
168 }
169
170 void kvm_arch_sync_events(struct kvm *kvm)
171 {
172 }
173
174 int kvm_dev_ioctl_check_extension(long ext)
175 {
176 int r;
177
178 switch (ext) {
179 #ifdef CONFIG_BOOKE
180 case KVM_CAP_PPC_BOOKE_SREGS:
181 #else
182 case KVM_CAP_PPC_SEGSTATE:
183 #endif
184 case KVM_CAP_PPC_PAIRED_SINGLES:
185 case KVM_CAP_PPC_UNSET_IRQ:
186 case KVM_CAP_PPC_IRQ_LEVEL:
187 case KVM_CAP_ENABLE_CAP:
188 case KVM_CAP_PPC_OSI:
189 case KVM_CAP_PPC_GET_PVINFO:
190 r = 1;
191 break;
192 case KVM_CAP_COALESCED_MMIO:
193 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
194 break;
195 default:
196 r = 0;
197 break;
198 }
199 return r;
200
201 }
202
203 long kvm_arch_dev_ioctl(struct file *filp,
204 unsigned int ioctl, unsigned long arg)
205 {
206 return -EINVAL;
207 }
208
209 int kvm_arch_prepare_memory_region(struct kvm *kvm,
210 struct kvm_memory_slot *memslot,
211 struct kvm_memory_slot old,
212 struct kvm_userspace_memory_region *mem,
213 int user_alloc)
214 {
215 return 0;
216 }
217
218 void kvm_arch_commit_memory_region(struct kvm *kvm,
219 struct kvm_userspace_memory_region *mem,
220 struct kvm_memory_slot old,
221 int user_alloc)
222 {
223 return;
224 }
225
226
227 void kvm_arch_flush_shadow(struct kvm *kvm)
228 {
229 }
230
231 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
232 {
233 struct kvm_vcpu *vcpu;
234 vcpu = kvmppc_core_vcpu_create(kvm, id);
235 if (!IS_ERR(vcpu))
236 kvmppc_create_vcpu_debugfs(vcpu, id);
237 return vcpu;
238 }
239
240 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
241 {
242 /* Make sure we're not using the vcpu anymore */
243 hrtimer_cancel(&vcpu->arch.dec_timer);
244 tasklet_kill(&vcpu->arch.tasklet);
245
246 kvmppc_remove_vcpu_debugfs(vcpu);
247 kvmppc_core_vcpu_free(vcpu);
248 }
249
250 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
251 {
252 kvm_arch_vcpu_free(vcpu);
253 }
254
255 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
256 {
257 return kvmppc_core_pending_dec(vcpu);
258 }
259
260 static void kvmppc_decrementer_func(unsigned long data)
261 {
262 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
263
264 kvmppc_core_queue_dec(vcpu);
265
266 if (waitqueue_active(&vcpu->wq)) {
267 wake_up_interruptible(&vcpu->wq);
268 vcpu->stat.halt_wakeup++;
269 }
270 }
271
272 /*
273 * low level hrtimer wake routine. Because this runs in hardirq context
274 * we schedule a tasklet to do the real work.
275 */
276 enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
277 {
278 struct kvm_vcpu *vcpu;
279
280 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
281 tasklet_schedule(&vcpu->arch.tasklet);
282
283 return HRTIMER_NORESTART;
284 }
285
286 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
287 {
288 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
289 tasklet_init(&vcpu->arch.tasklet, kvmppc_decrementer_func, (ulong)vcpu);
290 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
291
292 #ifdef CONFIG_KVM_EXIT_TIMING
293 mutex_init(&vcpu->arch.exit_timing_lock);
294 #endif
295
296 return 0;
297 }
298
299 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
300 {
301 kvmppc_mmu_destroy(vcpu);
302 }
303
304 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
305 {
306 #ifdef CONFIG_BOOKE
307 /*
308 * vrsave (formerly usprg0) isn't used by Linux, but may
309 * be used by the guest.
310 *
311 * On non-booke this is associated with Altivec and
312 * is handled by code in book3s.c.
313 */
314 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
315 #endif
316 kvmppc_core_vcpu_load(vcpu, cpu);
317 }
318
319 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
320 {
321 kvmppc_core_vcpu_put(vcpu);
322 #ifdef CONFIG_BOOKE
323 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
324 #endif
325 }
326
327 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
328 struct kvm_guest_debug *dbg)
329 {
330 return -EINVAL;
331 }
332
333 static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu,
334 struct kvm_run *run)
335 {
336 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, run->dcr.data);
337 }
338
339 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
340 struct kvm_run *run)
341 {
342 u64 uninitialized_var(gpr);
343
344 if (run->mmio.len > sizeof(gpr)) {
345 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
346 return;
347 }
348
349 if (vcpu->arch.mmio_is_bigendian) {
350 switch (run->mmio.len) {
351 case 8: gpr = *(u64 *)run->mmio.data; break;
352 case 4: gpr = *(u32 *)run->mmio.data; break;
353 case 2: gpr = *(u16 *)run->mmio.data; break;
354 case 1: gpr = *(u8 *)run->mmio.data; break;
355 }
356 } else {
357 /* Convert BE data from userland back to LE. */
358 switch (run->mmio.len) {
359 case 4: gpr = ld_le32((u32 *)run->mmio.data); break;
360 case 2: gpr = ld_le16((u16 *)run->mmio.data); break;
361 case 1: gpr = *(u8 *)run->mmio.data; break;
362 }
363 }
364
365 if (vcpu->arch.mmio_sign_extend) {
366 switch (run->mmio.len) {
367 #ifdef CONFIG_PPC64
368 case 4:
369 gpr = (s64)(s32)gpr;
370 break;
371 #endif
372 case 2:
373 gpr = (s64)(s16)gpr;
374 break;
375 case 1:
376 gpr = (s64)(s8)gpr;
377 break;
378 }
379 }
380
381 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
382
383 switch (vcpu->arch.io_gpr & KVM_REG_EXT_MASK) {
384 case KVM_REG_GPR:
385 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
386 break;
387 case KVM_REG_FPR:
388 vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
389 break;
390 #ifdef CONFIG_PPC_BOOK3S
391 case KVM_REG_QPR:
392 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
393 break;
394 case KVM_REG_FQPR:
395 vcpu->arch.fpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
396 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_REG_MASK] = gpr;
397 break;
398 #endif
399 default:
400 BUG();
401 }
402 }
403
404 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
405 unsigned int rt, unsigned int bytes, int is_bigendian)
406 {
407 if (bytes > sizeof(run->mmio.data)) {
408 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
409 run->mmio.len);
410 }
411
412 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
413 run->mmio.len = bytes;
414 run->mmio.is_write = 0;
415
416 vcpu->arch.io_gpr = rt;
417 vcpu->arch.mmio_is_bigendian = is_bigendian;
418 vcpu->mmio_needed = 1;
419 vcpu->mmio_is_write = 0;
420 vcpu->arch.mmio_sign_extend = 0;
421
422 return EMULATE_DO_MMIO;
423 }
424
425 /* Same as above, but sign extends */
426 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
427 unsigned int rt, unsigned int bytes, int is_bigendian)
428 {
429 int r;
430
431 r = kvmppc_handle_load(run, vcpu, rt, bytes, is_bigendian);
432 vcpu->arch.mmio_sign_extend = 1;
433
434 return r;
435 }
436
437 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
438 u64 val, unsigned int bytes, int is_bigendian)
439 {
440 void *data = run->mmio.data;
441
442 if (bytes > sizeof(run->mmio.data)) {
443 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
444 run->mmio.len);
445 }
446
447 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
448 run->mmio.len = bytes;
449 run->mmio.is_write = 1;
450 vcpu->mmio_needed = 1;
451 vcpu->mmio_is_write = 1;
452
453 /* Store the value at the lowest bytes in 'data'. */
454 if (is_bigendian) {
455 switch (bytes) {
456 case 8: *(u64 *)data = val; break;
457 case 4: *(u32 *)data = val; break;
458 case 2: *(u16 *)data = val; break;
459 case 1: *(u8 *)data = val; break;
460 }
461 } else {
462 /* Store LE value into 'data'. */
463 switch (bytes) {
464 case 4: st_le32(data, val); break;
465 case 2: st_le16(data, val); break;
466 case 1: *(u8 *)data = val; break;
467 }
468 }
469
470 return EMULATE_DO_MMIO;
471 }
472
473 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
474 {
475 int r;
476 sigset_t sigsaved;
477
478 if (vcpu->sigset_active)
479 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
480
481 if (vcpu->mmio_needed) {
482 if (!vcpu->mmio_is_write)
483 kvmppc_complete_mmio_load(vcpu, run);
484 vcpu->mmio_needed = 0;
485 } else if (vcpu->arch.dcr_needed) {
486 if (!vcpu->arch.dcr_is_write)
487 kvmppc_complete_dcr_load(vcpu, run);
488 vcpu->arch.dcr_needed = 0;
489 } else if (vcpu->arch.osi_needed) {
490 u64 *gprs = run->osi.gprs;
491 int i;
492
493 for (i = 0; i < 32; i++)
494 kvmppc_set_gpr(vcpu, i, gprs[i]);
495 vcpu->arch.osi_needed = 0;
496 }
497
498 kvmppc_core_deliver_interrupts(vcpu);
499
500 local_irq_disable();
501 kvm_guest_enter();
502 r = __kvmppc_vcpu_run(run, vcpu);
503 kvm_guest_exit();
504 local_irq_enable();
505
506 if (vcpu->sigset_active)
507 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
508
509 return r;
510 }
511
512 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
513 {
514 if (irq->irq == KVM_INTERRUPT_UNSET)
515 kvmppc_core_dequeue_external(vcpu, irq);
516 else
517 kvmppc_core_queue_external(vcpu, irq);
518
519 if (waitqueue_active(&vcpu->wq)) {
520 wake_up_interruptible(&vcpu->wq);
521 vcpu->stat.halt_wakeup++;
522 }
523
524 return 0;
525 }
526
527 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
528 struct kvm_enable_cap *cap)
529 {
530 int r;
531
532 if (cap->flags)
533 return -EINVAL;
534
535 switch (cap->cap) {
536 case KVM_CAP_PPC_OSI:
537 r = 0;
538 vcpu->arch.osi_enabled = true;
539 break;
540 default:
541 r = -EINVAL;
542 break;
543 }
544
545 return r;
546 }
547
548 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
549 struct kvm_mp_state *mp_state)
550 {
551 return -EINVAL;
552 }
553
554 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
555 struct kvm_mp_state *mp_state)
556 {
557 return -EINVAL;
558 }
559
560 long kvm_arch_vcpu_ioctl(struct file *filp,
561 unsigned int ioctl, unsigned long arg)
562 {
563 struct kvm_vcpu *vcpu = filp->private_data;
564 void __user *argp = (void __user *)arg;
565 long r;
566
567 switch (ioctl) {
568 case KVM_INTERRUPT: {
569 struct kvm_interrupt irq;
570 r = -EFAULT;
571 if (copy_from_user(&irq, argp, sizeof(irq)))
572 goto out;
573 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
574 goto out;
575 }
576
577 case KVM_ENABLE_CAP:
578 {
579 struct kvm_enable_cap cap;
580 r = -EFAULT;
581 if (copy_from_user(&cap, argp, sizeof(cap)))
582 goto out;
583 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
584 break;
585 }
586 default:
587 r = -EINVAL;
588 }
589
590 out:
591 return r;
592 }
593
594 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
595 {
596 u32 inst_lis = 0x3c000000;
597 u32 inst_ori = 0x60000000;
598 u32 inst_nop = 0x60000000;
599 u32 inst_sc = 0x44000002;
600 u32 inst_imm_mask = 0xffff;
601
602 /*
603 * The hypercall to get into KVM from within guest context is as
604 * follows:
605 *
606 * lis r0, r0, KVM_SC_MAGIC_R0@h
607 * ori r0, KVM_SC_MAGIC_R0@l
608 * sc
609 * nop
610 */
611 pvinfo->hcall[0] = inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask);
612 pvinfo->hcall[1] = inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask);
613 pvinfo->hcall[2] = inst_sc;
614 pvinfo->hcall[3] = inst_nop;
615
616 return 0;
617 }
618
619 long kvm_arch_vm_ioctl(struct file *filp,
620 unsigned int ioctl, unsigned long arg)
621 {
622 void __user *argp = (void __user *)arg;
623 long r;
624
625 switch (ioctl) {
626 case KVM_PPC_GET_PVINFO: {
627 struct kvm_ppc_pvinfo pvinfo;
628 memset(&pvinfo, 0, sizeof(pvinfo));
629 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
630 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
631 r = -EFAULT;
632 goto out;
633 }
634
635 break;
636 }
637 default:
638 r = -ENOTTY;
639 }
640
641 out:
642 return r;
643 }
644
645 int kvm_arch_init(void *opaque)
646 {
647 return 0;
648 }
649
650 void kvm_arch_exit(void)
651 {
652 }