]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/powerpc/kvm/powerpc.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57
58
59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63
64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
65 {
66 return false;
67 }
68
69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
70 {
71 return 1;
72 }
73
74 /*
75 * Common checks before entering the guest world. Call with interrupts
76 * disabled.
77 *
78 * returns:
79 *
80 * == 1 if we're ready to go into guest state
81 * <= 0 if we need to go back to the host with return value
82 */
83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
84 {
85 int r;
86
87 WARN_ON(irqs_disabled());
88 hard_irq_disable();
89
90 while (true) {
91 if (need_resched()) {
92 local_irq_enable();
93 cond_resched();
94 hard_irq_disable();
95 continue;
96 }
97
98 if (signal_pending(current)) {
99 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
100 vcpu->run->exit_reason = KVM_EXIT_INTR;
101 r = -EINTR;
102 break;
103 }
104
105 vcpu->mode = IN_GUEST_MODE;
106
107 /*
108 * Reading vcpu->requests must happen after setting vcpu->mode,
109 * so we don't miss a request because the requester sees
110 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
111 * before next entering the guest (and thus doesn't IPI).
112 * This also orders the write to mode from any reads
113 * to the page tables done while the VCPU is running.
114 * Please see the comment in kvm_flush_remote_tlbs.
115 */
116 smp_mb();
117
118 if (kvm_request_pending(vcpu)) {
119 /* Make sure we process requests preemptable */
120 local_irq_enable();
121 trace_kvm_check_requests(vcpu);
122 r = kvmppc_core_check_requests(vcpu);
123 hard_irq_disable();
124 if (r > 0)
125 continue;
126 break;
127 }
128
129 if (kvmppc_core_prepare_to_enter(vcpu)) {
130 /* interrupts got enabled in between, so we
131 are back at square 1 */
132 continue;
133 }
134
135 guest_enter_irqoff();
136 return 1;
137 }
138
139 /* return to host */
140 local_irq_enable();
141 return r;
142 }
143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144
145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
147 {
148 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
149 int i;
150
151 shared->sprg0 = swab64(shared->sprg0);
152 shared->sprg1 = swab64(shared->sprg1);
153 shared->sprg2 = swab64(shared->sprg2);
154 shared->sprg3 = swab64(shared->sprg3);
155 shared->srr0 = swab64(shared->srr0);
156 shared->srr1 = swab64(shared->srr1);
157 shared->dar = swab64(shared->dar);
158 shared->msr = swab64(shared->msr);
159 shared->dsisr = swab32(shared->dsisr);
160 shared->int_pending = swab32(shared->int_pending);
161 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
162 shared->sr[i] = swab32(shared->sr[i]);
163 }
164 #endif
165
166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
167 {
168 int nr = kvmppc_get_gpr(vcpu, 11);
169 int r;
170 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
171 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
172 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
173 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
174 unsigned long r2 = 0;
175
176 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 /* 32 bit mode */
178 param1 &= 0xffffffff;
179 param2 &= 0xffffffff;
180 param3 &= 0xffffffff;
181 param4 &= 0xffffffff;
182 }
183
184 switch (nr) {
185 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186 {
187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
188 /* Book3S can be little endian, find it out here */
189 int shared_big_endian = true;
190 if (vcpu->arch.intr_msr & MSR_LE)
191 shared_big_endian = false;
192 if (shared_big_endian != vcpu->arch.shared_big_endian)
193 kvmppc_swab_shared(vcpu);
194 vcpu->arch.shared_big_endian = shared_big_endian;
195 #endif
196
197 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
198 /*
199 * Older versions of the Linux magic page code had
200 * a bug where they would map their trampoline code
201 * NX. If that's the case, remove !PR NX capability.
202 */
203 vcpu->arch.disable_kernel_nx = true;
204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
205 }
206
207 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
208 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209
210 #ifdef CONFIG_PPC_64K_PAGES
211 /*
212 * Make sure our 4k magic page is in the same window of a 64k
213 * page within the guest and within the host's page.
214 */
215 if ((vcpu->arch.magic_page_pa & 0xf000) !=
216 ((ulong)vcpu->arch.shared & 0xf000)) {
217 void *old_shared = vcpu->arch.shared;
218 ulong shared = (ulong)vcpu->arch.shared;
219 void *new_shared;
220
221 shared &= PAGE_MASK;
222 shared |= vcpu->arch.magic_page_pa & 0xf000;
223 new_shared = (void*)shared;
224 memcpy(new_shared, old_shared, 0x1000);
225 vcpu->arch.shared = new_shared;
226 }
227 #endif
228
229 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230
231 r = EV_SUCCESS;
232 break;
233 }
234 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
235 r = EV_SUCCESS;
236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
238 #endif
239
240 /* Second return value is in r4 */
241 break;
242 case EV_HCALL_TOKEN(EV_IDLE):
243 r = EV_SUCCESS;
244 kvm_vcpu_block(vcpu);
245 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246 break;
247 default:
248 r = EV_UNIMPLEMENTED;
249 break;
250 }
251
252 kvmppc_set_gpr(vcpu, 4, r2);
253
254 return r;
255 }
256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257
258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
259 {
260 int r = false;
261
262 /* We have to know what CPU to virtualize */
263 if (!vcpu->arch.pvr)
264 goto out;
265
266 /* PAPR only works with book3s_64 */
267 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
268 goto out;
269
270 /* HV KVM can only do PAPR mode for now */
271 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 goto out;
273
274 #ifdef CONFIG_KVM_BOOKE_HV
275 if (!cpu_has_feature(CPU_FTR_EMB_HV))
276 goto out;
277 #endif
278
279 r = true;
280
281 out:
282 vcpu->arch.sane = r;
283 return r ? 0 : -EINVAL;
284 }
285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286
287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
288 {
289 enum emulation_result er;
290 int r;
291
292 er = kvmppc_emulate_loadstore(vcpu);
293 switch (er) {
294 case EMULATE_DONE:
295 /* Future optimization: only reload non-volatiles if they were
296 * actually modified. */
297 r = RESUME_GUEST_NV;
298 break;
299 case EMULATE_AGAIN:
300 r = RESUME_GUEST;
301 break;
302 case EMULATE_DO_MMIO:
303 run->exit_reason = KVM_EXIT_MMIO;
304 /* We must reload nonvolatiles because "update" load/store
305 * instructions modify register state. */
306 /* Future optimization: only reload non-volatiles if they were
307 * actually modified. */
308 r = RESUME_HOST_NV;
309 break;
310 case EMULATE_FAIL:
311 {
312 u32 last_inst;
313
314 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315 /* XXX Deliver Program interrupt to guest. */
316 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 r = RESUME_HOST;
318 break;
319 }
320 default:
321 WARN_ON(1);
322 r = RESUME_GUEST;
323 }
324
325 return r;
326 }
327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328
329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
330 bool data)
331 {
332 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333 struct kvmppc_pte pte;
334 int r = -EINVAL;
335
336 vcpu->stat.st++;
337
338 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
339 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
340 size);
341
342 if ((!r) || (r == -EAGAIN))
343 return r;
344
345 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
346 XLATE_WRITE, &pte);
347 if (r < 0)
348 return r;
349
350 *eaddr = pte.raddr;
351
352 if (!pte.may_write)
353 return -EPERM;
354
355 /* Magic page override */
356 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
357 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
358 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
359 void *magic = vcpu->arch.shared;
360 magic += pte.eaddr & 0xfff;
361 memcpy(magic, ptr, size);
362 return EMULATE_DONE;
363 }
364
365 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
366 return EMULATE_DO_MMIO;
367
368 return EMULATE_DONE;
369 }
370 EXPORT_SYMBOL_GPL(kvmppc_st);
371
372 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
373 bool data)
374 {
375 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376 struct kvmppc_pte pte;
377 int rc = -EINVAL;
378
379 vcpu->stat.ld++;
380
381 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
382 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
383 size);
384
385 if ((!rc) || (rc == -EAGAIN))
386 return rc;
387
388 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
389 XLATE_READ, &pte);
390 if (rc)
391 return rc;
392
393 *eaddr = pte.raddr;
394
395 if (!pte.may_read)
396 return -EPERM;
397
398 if (!data && !pte.may_execute)
399 return -ENOEXEC;
400
401 /* Magic page override */
402 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
403 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
404 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
405 void *magic = vcpu->arch.shared;
406 magic += pte.eaddr & 0xfff;
407 memcpy(ptr, magic, size);
408 return EMULATE_DONE;
409 }
410
411 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
412 return EMULATE_DO_MMIO;
413
414 return EMULATE_DONE;
415 }
416 EXPORT_SYMBOL_GPL(kvmppc_ld);
417
418 int kvm_arch_hardware_enable(void)
419 {
420 return 0;
421 }
422
423 int kvm_arch_hardware_setup(void)
424 {
425 return 0;
426 }
427
428 void kvm_arch_check_processor_compat(void *rtn)
429 {
430 *(int *)rtn = kvmppc_core_check_processor_compat();
431 }
432
433 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434 {
435 struct kvmppc_ops *kvm_ops = NULL;
436 /*
437 * if we have both HV and PR enabled, default is HV
438 */
439 if (type == 0) {
440 if (kvmppc_hv_ops)
441 kvm_ops = kvmppc_hv_ops;
442 else
443 kvm_ops = kvmppc_pr_ops;
444 if (!kvm_ops)
445 goto err_out;
446 } else if (type == KVM_VM_PPC_HV) {
447 if (!kvmppc_hv_ops)
448 goto err_out;
449 kvm_ops = kvmppc_hv_ops;
450 } else if (type == KVM_VM_PPC_PR) {
451 if (!kvmppc_pr_ops)
452 goto err_out;
453 kvm_ops = kvmppc_pr_ops;
454 } else
455 goto err_out;
456
457 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
458 return -ENOENT;
459
460 kvm->arch.kvm_ops = kvm_ops;
461 return kvmppc_core_init_vm(kvm);
462 err_out:
463 return -EINVAL;
464 }
465
466 bool kvm_arch_has_vcpu_debugfs(void)
467 {
468 return false;
469 }
470
471 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
472 {
473 return 0;
474 }
475
476 void kvm_arch_destroy_vm(struct kvm *kvm)
477 {
478 unsigned int i;
479 struct kvm_vcpu *vcpu;
480
481 #ifdef CONFIG_KVM_XICS
482 /*
483 * We call kick_all_cpus_sync() to ensure that all
484 * CPUs have executed any pending IPIs before we
485 * continue and free VCPUs structures below.
486 */
487 if (is_kvmppc_hv_enabled(kvm))
488 kick_all_cpus_sync();
489 #endif
490
491 kvm_for_each_vcpu(i, vcpu, kvm)
492 kvm_arch_vcpu_free(vcpu);
493
494 mutex_lock(&kvm->lock);
495 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
496 kvm->vcpus[i] = NULL;
497
498 atomic_set(&kvm->online_vcpus, 0);
499
500 kvmppc_core_destroy_vm(kvm);
501
502 mutex_unlock(&kvm->lock);
503
504 /* drop the module reference */
505 module_put(kvm->arch.kvm_ops->owner);
506 }
507
508 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 {
510 int r;
511 /* Assume we're using HV mode when the HV module is loaded */
512 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513
514 if (kvm) {
515 /*
516 * Hooray - we know which VM type we're running on. Depend on
517 * that rather than the guess above.
518 */
519 hv_enabled = is_kvmppc_hv_enabled(kvm);
520 }
521
522 switch (ext) {
523 #ifdef CONFIG_BOOKE
524 case KVM_CAP_PPC_BOOKE_SREGS:
525 case KVM_CAP_PPC_BOOKE_WATCHDOG:
526 case KVM_CAP_PPC_EPR:
527 #else
528 case KVM_CAP_PPC_SEGSTATE:
529 case KVM_CAP_PPC_HIOR:
530 case KVM_CAP_PPC_PAPR:
531 #endif
532 case KVM_CAP_PPC_UNSET_IRQ:
533 case KVM_CAP_PPC_IRQ_LEVEL:
534 case KVM_CAP_ENABLE_CAP:
535 case KVM_CAP_ONE_REG:
536 case KVM_CAP_IOEVENTFD:
537 case KVM_CAP_DEVICE_CTRL:
538 case KVM_CAP_IMMEDIATE_EXIT:
539 r = 1;
540 break;
541 case KVM_CAP_PPC_PAIRED_SINGLES:
542 case KVM_CAP_PPC_OSI:
543 case KVM_CAP_PPC_GET_PVINFO:
544 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
545 case KVM_CAP_SW_TLB:
546 #endif
547 /* We support this only for PR */
548 r = !hv_enabled;
549 break;
550 #ifdef CONFIG_KVM_MPIC
551 case KVM_CAP_IRQ_MPIC:
552 r = 1;
553 break;
554 #endif
555
556 #ifdef CONFIG_PPC_BOOK3S_64
557 case KVM_CAP_SPAPR_TCE:
558 case KVM_CAP_SPAPR_TCE_64:
559 r = 1;
560 break;
561 case KVM_CAP_SPAPR_TCE_VFIO:
562 r = !!cpu_has_feature(CPU_FTR_HVMODE);
563 break;
564 case KVM_CAP_PPC_RTAS:
565 case KVM_CAP_PPC_FIXUP_HCALL:
566 case KVM_CAP_PPC_ENABLE_HCALL:
567 #ifdef CONFIG_KVM_XICS
568 case KVM_CAP_IRQ_XICS:
569 #endif
570 case KVM_CAP_PPC_GET_CPU_CHAR:
571 r = 1;
572 break;
573
574 case KVM_CAP_PPC_ALLOC_HTAB:
575 r = hv_enabled;
576 break;
577 #endif /* CONFIG_PPC_BOOK3S_64 */
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579 case KVM_CAP_PPC_SMT:
580 r = 0;
581 if (kvm) {
582 if (kvm->arch.emul_smt_mode > 1)
583 r = kvm->arch.emul_smt_mode;
584 else
585 r = kvm->arch.smt_mode;
586 } else if (hv_enabled) {
587 if (cpu_has_feature(CPU_FTR_ARCH_300))
588 r = 1;
589 else
590 r = threads_per_subcore;
591 }
592 break;
593 case KVM_CAP_PPC_SMT_POSSIBLE:
594 r = 1;
595 if (hv_enabled) {
596 if (!cpu_has_feature(CPU_FTR_ARCH_300))
597 r = ((threads_per_subcore << 1) - 1);
598 else
599 /* P9 can emulate dbells, so allow any mode */
600 r = 8 | 4 | 2 | 1;
601 }
602 break;
603 case KVM_CAP_PPC_RMA:
604 r = 0;
605 break;
606 case KVM_CAP_PPC_HWRNG:
607 r = kvmppc_hwrng_present();
608 break;
609 case KVM_CAP_PPC_MMU_RADIX:
610 r = !!(hv_enabled && radix_enabled());
611 break;
612 case KVM_CAP_PPC_MMU_HASH_V3:
613 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
614 cpu_has_feature(CPU_FTR_HVMODE));
615 break;
616 case KVM_CAP_PPC_NESTED_HV:
617 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
618 !kvmppc_hv_ops->enable_nested(NULL));
619 break;
620 #endif
621 case KVM_CAP_SYNC_MMU:
622 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
623 r = hv_enabled;
624 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
625 r = 1;
626 #else
627 r = 0;
628 #endif
629 break;
630 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
631 case KVM_CAP_PPC_HTAB_FD:
632 r = hv_enabled;
633 break;
634 #endif
635 case KVM_CAP_NR_VCPUS:
636 /*
637 * Recommending a number of CPUs is somewhat arbitrary; we
638 * return the number of present CPUs for -HV (since a host
639 * will have secondary threads "offline"), and for other KVM
640 * implementations just count online CPUs.
641 */
642 if (hv_enabled)
643 r = num_present_cpus();
644 else
645 r = num_online_cpus();
646 break;
647 case KVM_CAP_NR_MEMSLOTS:
648 r = KVM_USER_MEM_SLOTS;
649 break;
650 case KVM_CAP_MAX_VCPUS:
651 r = KVM_MAX_VCPUS;
652 break;
653 #ifdef CONFIG_PPC_BOOK3S_64
654 case KVM_CAP_PPC_GET_SMMU_INFO:
655 r = 1;
656 break;
657 case KVM_CAP_SPAPR_MULTITCE:
658 r = 1;
659 break;
660 case KVM_CAP_SPAPR_RESIZE_HPT:
661 r = !!hv_enabled;
662 break;
663 #endif
664 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
665 case KVM_CAP_PPC_FWNMI:
666 r = hv_enabled;
667 break;
668 #endif
669 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
670 case KVM_CAP_PPC_HTM:
671 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
672 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
673 break;
674 #endif
675 default:
676 r = 0;
677 break;
678 }
679 return r;
680
681 }
682
683 long kvm_arch_dev_ioctl(struct file *filp,
684 unsigned int ioctl, unsigned long arg)
685 {
686 return -EINVAL;
687 }
688
689 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
690 struct kvm_memory_slot *dont)
691 {
692 kvmppc_core_free_memslot(kvm, free, dont);
693 }
694
695 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
696 unsigned long npages)
697 {
698 return kvmppc_core_create_memslot(kvm, slot, npages);
699 }
700
701 int kvm_arch_prepare_memory_region(struct kvm *kvm,
702 struct kvm_memory_slot *memslot,
703 const struct kvm_userspace_memory_region *mem,
704 enum kvm_mr_change change)
705 {
706 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
707 }
708
709 void kvm_arch_commit_memory_region(struct kvm *kvm,
710 const struct kvm_userspace_memory_region *mem,
711 const struct kvm_memory_slot *old,
712 const struct kvm_memory_slot *new,
713 enum kvm_mr_change change)
714 {
715 kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
716 }
717
718 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
719 struct kvm_memory_slot *slot)
720 {
721 kvmppc_core_flush_memslot(kvm, slot);
722 }
723
724 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
725 {
726 struct kvm_vcpu *vcpu;
727 vcpu = kvmppc_core_vcpu_create(kvm, id);
728 if (!IS_ERR(vcpu)) {
729 vcpu->arch.wqp = &vcpu->wq;
730 kvmppc_create_vcpu_debugfs(vcpu, id);
731 }
732 return vcpu;
733 }
734
735 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
736 {
737 }
738
739 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
740 {
741 /* Make sure we're not using the vcpu anymore */
742 hrtimer_cancel(&vcpu->arch.dec_timer);
743
744 kvmppc_remove_vcpu_debugfs(vcpu);
745
746 switch (vcpu->arch.irq_type) {
747 case KVMPPC_IRQ_MPIC:
748 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
749 break;
750 case KVMPPC_IRQ_XICS:
751 if (xive_enabled())
752 kvmppc_xive_cleanup_vcpu(vcpu);
753 else
754 kvmppc_xics_free_icp(vcpu);
755 break;
756 }
757
758 kvmppc_core_vcpu_free(vcpu);
759 }
760
761 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
762 {
763 kvm_arch_vcpu_free(vcpu);
764 }
765
766 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
767 {
768 return kvmppc_core_pending_dec(vcpu);
769 }
770
771 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
772 {
773 struct kvm_vcpu *vcpu;
774
775 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
776 kvmppc_decrementer_func(vcpu);
777
778 return HRTIMER_NORESTART;
779 }
780
781 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
782 {
783 int ret;
784
785 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
786 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
787 vcpu->arch.dec_expires = get_tb();
788
789 #ifdef CONFIG_KVM_EXIT_TIMING
790 mutex_init(&vcpu->arch.exit_timing_lock);
791 #endif
792 ret = kvmppc_subarch_vcpu_init(vcpu);
793 return ret;
794 }
795
796 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
797 {
798 kvmppc_mmu_destroy(vcpu);
799 kvmppc_subarch_vcpu_uninit(vcpu);
800 }
801
802 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
803 {
804 #ifdef CONFIG_BOOKE
805 /*
806 * vrsave (formerly usprg0) isn't used by Linux, but may
807 * be used by the guest.
808 *
809 * On non-booke this is associated with Altivec and
810 * is handled by code in book3s.c.
811 */
812 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
813 #endif
814 kvmppc_core_vcpu_load(vcpu, cpu);
815 }
816
817 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
818 {
819 kvmppc_core_vcpu_put(vcpu);
820 #ifdef CONFIG_BOOKE
821 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
822 #endif
823 }
824
825 /*
826 * irq_bypass_add_producer and irq_bypass_del_producer are only
827 * useful if the architecture supports PCI passthrough.
828 * irq_bypass_stop and irq_bypass_start are not needed and so
829 * kvm_ops are not defined for them.
830 */
831 bool kvm_arch_has_irq_bypass(void)
832 {
833 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
834 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
835 }
836
837 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
838 struct irq_bypass_producer *prod)
839 {
840 struct kvm_kernel_irqfd *irqfd =
841 container_of(cons, struct kvm_kernel_irqfd, consumer);
842 struct kvm *kvm = irqfd->kvm;
843
844 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
845 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
846
847 return 0;
848 }
849
850 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
851 struct irq_bypass_producer *prod)
852 {
853 struct kvm_kernel_irqfd *irqfd =
854 container_of(cons, struct kvm_kernel_irqfd, consumer);
855 struct kvm *kvm = irqfd->kvm;
856
857 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
858 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
859 }
860
861 #ifdef CONFIG_VSX
862 static inline int kvmppc_get_vsr_dword_offset(int index)
863 {
864 int offset;
865
866 if ((index != 0) && (index != 1))
867 return -1;
868
869 #ifdef __BIG_ENDIAN
870 offset = index;
871 #else
872 offset = 1 - index;
873 #endif
874
875 return offset;
876 }
877
878 static inline int kvmppc_get_vsr_word_offset(int index)
879 {
880 int offset;
881
882 if ((index > 3) || (index < 0))
883 return -1;
884
885 #ifdef __BIG_ENDIAN
886 offset = index;
887 #else
888 offset = 3 - index;
889 #endif
890 return offset;
891 }
892
893 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
894 u64 gpr)
895 {
896 union kvmppc_one_reg val;
897 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
898 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
899
900 if (offset == -1)
901 return;
902
903 if (index >= 32) {
904 val.vval = VCPU_VSX_VR(vcpu, index - 32);
905 val.vsxval[offset] = gpr;
906 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
907 } else {
908 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
909 }
910 }
911
912 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
913 u64 gpr)
914 {
915 union kvmppc_one_reg val;
916 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
917
918 if (index >= 32) {
919 val.vval = VCPU_VSX_VR(vcpu, index - 32);
920 val.vsxval[0] = gpr;
921 val.vsxval[1] = gpr;
922 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
923 } else {
924 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
925 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
926 }
927 }
928
929 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
930 u32 gpr)
931 {
932 union kvmppc_one_reg val;
933 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
934
935 if (index >= 32) {
936 val.vsx32val[0] = gpr;
937 val.vsx32val[1] = gpr;
938 val.vsx32val[2] = gpr;
939 val.vsx32val[3] = gpr;
940 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
941 } else {
942 val.vsx32val[0] = gpr;
943 val.vsx32val[1] = gpr;
944 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
945 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
946 }
947 }
948
949 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
950 u32 gpr32)
951 {
952 union kvmppc_one_reg val;
953 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
954 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
955 int dword_offset, word_offset;
956
957 if (offset == -1)
958 return;
959
960 if (index >= 32) {
961 val.vval = VCPU_VSX_VR(vcpu, index - 32);
962 val.vsx32val[offset] = gpr32;
963 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
964 } else {
965 dword_offset = offset / 2;
966 word_offset = offset % 2;
967 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
968 val.vsx32val[word_offset] = gpr32;
969 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
970 }
971 }
972 #endif /* CONFIG_VSX */
973
974 #ifdef CONFIG_ALTIVEC
975 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
976 int index, int element_size)
977 {
978 int offset;
979 int elts = sizeof(vector128)/element_size;
980
981 if ((index < 0) || (index >= elts))
982 return -1;
983
984 if (kvmppc_need_byteswap(vcpu))
985 offset = elts - index - 1;
986 else
987 offset = index;
988
989 return offset;
990 }
991
992 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
993 int index)
994 {
995 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
996 }
997
998 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
999 int index)
1000 {
1001 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1002 }
1003
1004 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1005 int index)
1006 {
1007 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1008 }
1009
1010 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1011 int index)
1012 {
1013 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1014 }
1015
1016
1017 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1018 u64 gpr)
1019 {
1020 union kvmppc_one_reg val;
1021 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1022 vcpu->arch.mmio_vmx_offset);
1023 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1024
1025 if (offset == -1)
1026 return;
1027
1028 val.vval = VCPU_VSX_VR(vcpu, index);
1029 val.vsxval[offset] = gpr;
1030 VCPU_VSX_VR(vcpu, index) = val.vval;
1031 }
1032
1033 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1034 u32 gpr32)
1035 {
1036 union kvmppc_one_reg val;
1037 int offset = kvmppc_get_vmx_word_offset(vcpu,
1038 vcpu->arch.mmio_vmx_offset);
1039 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1040
1041 if (offset == -1)
1042 return;
1043
1044 val.vval = VCPU_VSX_VR(vcpu, index);
1045 val.vsx32val[offset] = gpr32;
1046 VCPU_VSX_VR(vcpu, index) = val.vval;
1047 }
1048
1049 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1050 u16 gpr16)
1051 {
1052 union kvmppc_one_reg val;
1053 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1054 vcpu->arch.mmio_vmx_offset);
1055 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1056
1057 if (offset == -1)
1058 return;
1059
1060 val.vval = VCPU_VSX_VR(vcpu, index);
1061 val.vsx16val[offset] = gpr16;
1062 VCPU_VSX_VR(vcpu, index) = val.vval;
1063 }
1064
1065 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1066 u8 gpr8)
1067 {
1068 union kvmppc_one_reg val;
1069 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1070 vcpu->arch.mmio_vmx_offset);
1071 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1072
1073 if (offset == -1)
1074 return;
1075
1076 val.vval = VCPU_VSX_VR(vcpu, index);
1077 val.vsx8val[offset] = gpr8;
1078 VCPU_VSX_VR(vcpu, index) = val.vval;
1079 }
1080 #endif /* CONFIG_ALTIVEC */
1081
1082 #ifdef CONFIG_PPC_FPU
1083 static inline u64 sp_to_dp(u32 fprs)
1084 {
1085 u64 fprd;
1086
1087 preempt_disable();
1088 enable_kernel_fp();
1089 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1090 : "fr0");
1091 preempt_enable();
1092 return fprd;
1093 }
1094
1095 static inline u32 dp_to_sp(u64 fprd)
1096 {
1097 u32 fprs;
1098
1099 preempt_disable();
1100 enable_kernel_fp();
1101 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1102 : "fr0");
1103 preempt_enable();
1104 return fprs;
1105 }
1106
1107 #else
1108 #define sp_to_dp(x) (x)
1109 #define dp_to_sp(x) (x)
1110 #endif /* CONFIG_PPC_FPU */
1111
1112 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1113 struct kvm_run *run)
1114 {
1115 u64 uninitialized_var(gpr);
1116
1117 if (run->mmio.len > sizeof(gpr)) {
1118 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1119 return;
1120 }
1121
1122 if (!vcpu->arch.mmio_host_swabbed) {
1123 switch (run->mmio.len) {
1124 case 8: gpr = *(u64 *)run->mmio.data; break;
1125 case 4: gpr = *(u32 *)run->mmio.data; break;
1126 case 2: gpr = *(u16 *)run->mmio.data; break;
1127 case 1: gpr = *(u8 *)run->mmio.data; break;
1128 }
1129 } else {
1130 switch (run->mmio.len) {
1131 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1132 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1133 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1134 case 1: gpr = *(u8 *)run->mmio.data; break;
1135 }
1136 }
1137
1138 /* conversion between single and double precision */
1139 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1140 gpr = sp_to_dp(gpr);
1141
1142 if (vcpu->arch.mmio_sign_extend) {
1143 switch (run->mmio.len) {
1144 #ifdef CONFIG_PPC64
1145 case 4:
1146 gpr = (s64)(s32)gpr;
1147 break;
1148 #endif
1149 case 2:
1150 gpr = (s64)(s16)gpr;
1151 break;
1152 case 1:
1153 gpr = (s64)(s8)gpr;
1154 break;
1155 }
1156 }
1157
1158 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1159 case KVM_MMIO_REG_GPR:
1160 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1161 break;
1162 case KVM_MMIO_REG_FPR:
1163 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1164 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1165
1166 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1167 break;
1168 #ifdef CONFIG_PPC_BOOK3S
1169 case KVM_MMIO_REG_QPR:
1170 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1171 break;
1172 case KVM_MMIO_REG_FQPR:
1173 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1174 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1175 break;
1176 #endif
1177 #ifdef CONFIG_VSX
1178 case KVM_MMIO_REG_VSX:
1179 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1180 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1181
1182 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1183 kvmppc_set_vsr_dword(vcpu, gpr);
1184 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1185 kvmppc_set_vsr_word(vcpu, gpr);
1186 else if (vcpu->arch.mmio_copy_type ==
1187 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1188 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1189 else if (vcpu->arch.mmio_copy_type ==
1190 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1191 kvmppc_set_vsr_word_dump(vcpu, gpr);
1192 break;
1193 #endif
1194 #ifdef CONFIG_ALTIVEC
1195 case KVM_MMIO_REG_VMX:
1196 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1197 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1198
1199 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1200 kvmppc_set_vmx_dword(vcpu, gpr);
1201 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1202 kvmppc_set_vmx_word(vcpu, gpr);
1203 else if (vcpu->arch.mmio_copy_type ==
1204 KVMPPC_VMX_COPY_HWORD)
1205 kvmppc_set_vmx_hword(vcpu, gpr);
1206 else if (vcpu->arch.mmio_copy_type ==
1207 KVMPPC_VMX_COPY_BYTE)
1208 kvmppc_set_vmx_byte(vcpu, gpr);
1209 break;
1210 #endif
1211 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1212 case KVM_MMIO_REG_NESTED_GPR:
1213 if (kvmppc_need_byteswap(vcpu))
1214 gpr = swab64(gpr);
1215 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1216 sizeof(gpr));
1217 break;
1218 #endif
1219 default:
1220 BUG();
1221 }
1222 }
1223
1224 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1225 unsigned int rt, unsigned int bytes,
1226 int is_default_endian, int sign_extend)
1227 {
1228 int idx, ret;
1229 bool host_swabbed;
1230
1231 /* Pity C doesn't have a logical XOR operator */
1232 if (kvmppc_need_byteswap(vcpu)) {
1233 host_swabbed = is_default_endian;
1234 } else {
1235 host_swabbed = !is_default_endian;
1236 }
1237
1238 if (bytes > sizeof(run->mmio.data)) {
1239 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1240 run->mmio.len);
1241 }
1242
1243 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1244 run->mmio.len = bytes;
1245 run->mmio.is_write = 0;
1246
1247 vcpu->arch.io_gpr = rt;
1248 vcpu->arch.mmio_host_swabbed = host_swabbed;
1249 vcpu->mmio_needed = 1;
1250 vcpu->mmio_is_write = 0;
1251 vcpu->arch.mmio_sign_extend = sign_extend;
1252
1253 idx = srcu_read_lock(&vcpu->kvm->srcu);
1254
1255 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1256 bytes, &run->mmio.data);
1257
1258 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1259
1260 if (!ret) {
1261 kvmppc_complete_mmio_load(vcpu, run);
1262 vcpu->mmio_needed = 0;
1263 return EMULATE_DONE;
1264 }
1265
1266 return EMULATE_DO_MMIO;
1267 }
1268
1269 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1270 unsigned int rt, unsigned int bytes,
1271 int is_default_endian)
1272 {
1273 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1274 }
1275 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1276
1277 /* Same as above, but sign extends */
1278 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1279 unsigned int rt, unsigned int bytes,
1280 int is_default_endian)
1281 {
1282 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1283 }
1284
1285 #ifdef CONFIG_VSX
1286 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1287 unsigned int rt, unsigned int bytes,
1288 int is_default_endian, int mmio_sign_extend)
1289 {
1290 enum emulation_result emulated = EMULATE_DONE;
1291
1292 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1293 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1294 return EMULATE_FAIL;
1295
1296 while (vcpu->arch.mmio_vsx_copy_nums) {
1297 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1298 is_default_endian, mmio_sign_extend);
1299
1300 if (emulated != EMULATE_DONE)
1301 break;
1302
1303 vcpu->arch.paddr_accessed += run->mmio.len;
1304
1305 vcpu->arch.mmio_vsx_copy_nums--;
1306 vcpu->arch.mmio_vsx_offset++;
1307 }
1308 return emulated;
1309 }
1310 #endif /* CONFIG_VSX */
1311
1312 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1313 u64 val, unsigned int bytes, int is_default_endian)
1314 {
1315 void *data = run->mmio.data;
1316 int idx, ret;
1317 bool host_swabbed;
1318
1319 /* Pity C doesn't have a logical XOR operator */
1320 if (kvmppc_need_byteswap(vcpu)) {
1321 host_swabbed = is_default_endian;
1322 } else {
1323 host_swabbed = !is_default_endian;
1324 }
1325
1326 if (bytes > sizeof(run->mmio.data)) {
1327 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1328 run->mmio.len);
1329 }
1330
1331 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1332 run->mmio.len = bytes;
1333 run->mmio.is_write = 1;
1334 vcpu->mmio_needed = 1;
1335 vcpu->mmio_is_write = 1;
1336
1337 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1338 val = dp_to_sp(val);
1339
1340 /* Store the value at the lowest bytes in 'data'. */
1341 if (!host_swabbed) {
1342 switch (bytes) {
1343 case 8: *(u64 *)data = val; break;
1344 case 4: *(u32 *)data = val; break;
1345 case 2: *(u16 *)data = val; break;
1346 case 1: *(u8 *)data = val; break;
1347 }
1348 } else {
1349 switch (bytes) {
1350 case 8: *(u64 *)data = swab64(val); break;
1351 case 4: *(u32 *)data = swab32(val); break;
1352 case 2: *(u16 *)data = swab16(val); break;
1353 case 1: *(u8 *)data = val; break;
1354 }
1355 }
1356
1357 idx = srcu_read_lock(&vcpu->kvm->srcu);
1358
1359 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1360 bytes, &run->mmio.data);
1361
1362 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1363
1364 if (!ret) {
1365 vcpu->mmio_needed = 0;
1366 return EMULATE_DONE;
1367 }
1368
1369 return EMULATE_DO_MMIO;
1370 }
1371 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1372
1373 #ifdef CONFIG_VSX
1374 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1375 {
1376 u32 dword_offset, word_offset;
1377 union kvmppc_one_reg reg;
1378 int vsx_offset = 0;
1379 int copy_type = vcpu->arch.mmio_copy_type;
1380 int result = 0;
1381
1382 switch (copy_type) {
1383 case KVMPPC_VSX_COPY_DWORD:
1384 vsx_offset =
1385 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1386
1387 if (vsx_offset == -1) {
1388 result = -1;
1389 break;
1390 }
1391
1392 if (rs < 32) {
1393 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1394 } else {
1395 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1396 *val = reg.vsxval[vsx_offset];
1397 }
1398 break;
1399
1400 case KVMPPC_VSX_COPY_WORD:
1401 vsx_offset =
1402 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1403
1404 if (vsx_offset == -1) {
1405 result = -1;
1406 break;
1407 }
1408
1409 if (rs < 32) {
1410 dword_offset = vsx_offset / 2;
1411 word_offset = vsx_offset % 2;
1412 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1413 *val = reg.vsx32val[word_offset];
1414 } else {
1415 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1416 *val = reg.vsx32val[vsx_offset];
1417 }
1418 break;
1419
1420 default:
1421 result = -1;
1422 break;
1423 }
1424
1425 return result;
1426 }
1427
1428 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1429 int rs, unsigned int bytes, int is_default_endian)
1430 {
1431 u64 val;
1432 enum emulation_result emulated = EMULATE_DONE;
1433
1434 vcpu->arch.io_gpr = rs;
1435
1436 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1437 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1438 return EMULATE_FAIL;
1439
1440 while (vcpu->arch.mmio_vsx_copy_nums) {
1441 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1442 return EMULATE_FAIL;
1443
1444 emulated = kvmppc_handle_store(run, vcpu,
1445 val, bytes, is_default_endian);
1446
1447 if (emulated != EMULATE_DONE)
1448 break;
1449
1450 vcpu->arch.paddr_accessed += run->mmio.len;
1451
1452 vcpu->arch.mmio_vsx_copy_nums--;
1453 vcpu->arch.mmio_vsx_offset++;
1454 }
1455
1456 return emulated;
1457 }
1458
1459 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1460 struct kvm_run *run)
1461 {
1462 enum emulation_result emulated = EMULATE_FAIL;
1463 int r;
1464
1465 vcpu->arch.paddr_accessed += run->mmio.len;
1466
1467 if (!vcpu->mmio_is_write) {
1468 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1469 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1470 } else {
1471 emulated = kvmppc_handle_vsx_store(run, vcpu,
1472 vcpu->arch.io_gpr, run->mmio.len, 1);
1473 }
1474
1475 switch (emulated) {
1476 case EMULATE_DO_MMIO:
1477 run->exit_reason = KVM_EXIT_MMIO;
1478 r = RESUME_HOST;
1479 break;
1480 case EMULATE_FAIL:
1481 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1482 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1483 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1484 r = RESUME_HOST;
1485 break;
1486 default:
1487 r = RESUME_GUEST;
1488 break;
1489 }
1490 return r;
1491 }
1492 #endif /* CONFIG_VSX */
1493
1494 #ifdef CONFIG_ALTIVEC
1495 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1496 unsigned int rt, unsigned int bytes, int is_default_endian)
1497 {
1498 enum emulation_result emulated = EMULATE_DONE;
1499
1500 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1501 return EMULATE_FAIL;
1502
1503 while (vcpu->arch.mmio_vmx_copy_nums) {
1504 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1505 is_default_endian, 0);
1506
1507 if (emulated != EMULATE_DONE)
1508 break;
1509
1510 vcpu->arch.paddr_accessed += run->mmio.len;
1511 vcpu->arch.mmio_vmx_copy_nums--;
1512 vcpu->arch.mmio_vmx_offset++;
1513 }
1514
1515 return emulated;
1516 }
1517
1518 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1519 {
1520 union kvmppc_one_reg reg;
1521 int vmx_offset = 0;
1522 int result = 0;
1523
1524 vmx_offset =
1525 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526
1527 if (vmx_offset == -1)
1528 return -1;
1529
1530 reg.vval = VCPU_VSX_VR(vcpu, index);
1531 *val = reg.vsxval[vmx_offset];
1532
1533 return result;
1534 }
1535
1536 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1537 {
1538 union kvmppc_one_reg reg;
1539 int vmx_offset = 0;
1540 int result = 0;
1541
1542 vmx_offset =
1543 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1544
1545 if (vmx_offset == -1)
1546 return -1;
1547
1548 reg.vval = VCPU_VSX_VR(vcpu, index);
1549 *val = reg.vsx32val[vmx_offset];
1550
1551 return result;
1552 }
1553
1554 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1555 {
1556 union kvmppc_one_reg reg;
1557 int vmx_offset = 0;
1558 int result = 0;
1559
1560 vmx_offset =
1561 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1562
1563 if (vmx_offset == -1)
1564 return -1;
1565
1566 reg.vval = VCPU_VSX_VR(vcpu, index);
1567 *val = reg.vsx16val[vmx_offset];
1568
1569 return result;
1570 }
1571
1572 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1573 {
1574 union kvmppc_one_reg reg;
1575 int vmx_offset = 0;
1576 int result = 0;
1577
1578 vmx_offset =
1579 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1580
1581 if (vmx_offset == -1)
1582 return -1;
1583
1584 reg.vval = VCPU_VSX_VR(vcpu, index);
1585 *val = reg.vsx8val[vmx_offset];
1586
1587 return result;
1588 }
1589
1590 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1591 unsigned int rs, unsigned int bytes, int is_default_endian)
1592 {
1593 u64 val = 0;
1594 unsigned int index = rs & KVM_MMIO_REG_MASK;
1595 enum emulation_result emulated = EMULATE_DONE;
1596
1597 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1598 return EMULATE_FAIL;
1599
1600 vcpu->arch.io_gpr = rs;
1601
1602 while (vcpu->arch.mmio_vmx_copy_nums) {
1603 switch (vcpu->arch.mmio_copy_type) {
1604 case KVMPPC_VMX_COPY_DWORD:
1605 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1606 return EMULATE_FAIL;
1607
1608 break;
1609 case KVMPPC_VMX_COPY_WORD:
1610 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1611 return EMULATE_FAIL;
1612 break;
1613 case KVMPPC_VMX_COPY_HWORD:
1614 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1615 return EMULATE_FAIL;
1616 break;
1617 case KVMPPC_VMX_COPY_BYTE:
1618 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1619 return EMULATE_FAIL;
1620 break;
1621 default:
1622 return EMULATE_FAIL;
1623 }
1624
1625 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1626 is_default_endian);
1627 if (emulated != EMULATE_DONE)
1628 break;
1629
1630 vcpu->arch.paddr_accessed += run->mmio.len;
1631 vcpu->arch.mmio_vmx_copy_nums--;
1632 vcpu->arch.mmio_vmx_offset++;
1633 }
1634
1635 return emulated;
1636 }
1637
1638 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1639 struct kvm_run *run)
1640 {
1641 enum emulation_result emulated = EMULATE_FAIL;
1642 int r;
1643
1644 vcpu->arch.paddr_accessed += run->mmio.len;
1645
1646 if (!vcpu->mmio_is_write) {
1647 emulated = kvmppc_handle_vmx_load(run, vcpu,
1648 vcpu->arch.io_gpr, run->mmio.len, 1);
1649 } else {
1650 emulated = kvmppc_handle_vmx_store(run, vcpu,
1651 vcpu->arch.io_gpr, run->mmio.len, 1);
1652 }
1653
1654 switch (emulated) {
1655 case EMULATE_DO_MMIO:
1656 run->exit_reason = KVM_EXIT_MMIO;
1657 r = RESUME_HOST;
1658 break;
1659 case EMULATE_FAIL:
1660 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1661 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1662 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1663 r = RESUME_HOST;
1664 break;
1665 default:
1666 r = RESUME_GUEST;
1667 break;
1668 }
1669 return r;
1670 }
1671 #endif /* CONFIG_ALTIVEC */
1672
1673 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1674 {
1675 int r = 0;
1676 union kvmppc_one_reg val;
1677 int size;
1678
1679 size = one_reg_size(reg->id);
1680 if (size > sizeof(val))
1681 return -EINVAL;
1682
1683 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1684 if (r == -EINVAL) {
1685 r = 0;
1686 switch (reg->id) {
1687 #ifdef CONFIG_ALTIVEC
1688 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1689 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1690 r = -ENXIO;
1691 break;
1692 }
1693 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1694 break;
1695 case KVM_REG_PPC_VSCR:
1696 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1697 r = -ENXIO;
1698 break;
1699 }
1700 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1701 break;
1702 case KVM_REG_PPC_VRSAVE:
1703 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1704 break;
1705 #endif /* CONFIG_ALTIVEC */
1706 default:
1707 r = -EINVAL;
1708 break;
1709 }
1710 }
1711
1712 if (r)
1713 return r;
1714
1715 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1716 r = -EFAULT;
1717
1718 return r;
1719 }
1720
1721 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1722 {
1723 int r;
1724 union kvmppc_one_reg val;
1725 int size;
1726
1727 size = one_reg_size(reg->id);
1728 if (size > sizeof(val))
1729 return -EINVAL;
1730
1731 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1732 return -EFAULT;
1733
1734 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1735 if (r == -EINVAL) {
1736 r = 0;
1737 switch (reg->id) {
1738 #ifdef CONFIG_ALTIVEC
1739 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1740 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1741 r = -ENXIO;
1742 break;
1743 }
1744 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1745 break;
1746 case KVM_REG_PPC_VSCR:
1747 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1748 r = -ENXIO;
1749 break;
1750 }
1751 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1752 break;
1753 case KVM_REG_PPC_VRSAVE:
1754 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1755 r = -ENXIO;
1756 break;
1757 }
1758 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1759 break;
1760 #endif /* CONFIG_ALTIVEC */
1761 default:
1762 r = -EINVAL;
1763 break;
1764 }
1765 }
1766
1767 return r;
1768 }
1769
1770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1771 {
1772 int r;
1773
1774 vcpu_load(vcpu);
1775
1776 if (vcpu->mmio_needed) {
1777 vcpu->mmio_needed = 0;
1778 if (!vcpu->mmio_is_write)
1779 kvmppc_complete_mmio_load(vcpu, run);
1780 #ifdef CONFIG_VSX
1781 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1782 vcpu->arch.mmio_vsx_copy_nums--;
1783 vcpu->arch.mmio_vsx_offset++;
1784 }
1785
1786 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1787 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1788 if (r == RESUME_HOST) {
1789 vcpu->mmio_needed = 1;
1790 goto out;
1791 }
1792 }
1793 #endif
1794 #ifdef CONFIG_ALTIVEC
1795 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1796 vcpu->arch.mmio_vmx_copy_nums--;
1797 vcpu->arch.mmio_vmx_offset++;
1798 }
1799
1800 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1801 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1802 if (r == RESUME_HOST) {
1803 vcpu->mmio_needed = 1;
1804 goto out;
1805 }
1806 }
1807 #endif
1808 } else if (vcpu->arch.osi_needed) {
1809 u64 *gprs = run->osi.gprs;
1810 int i;
1811
1812 for (i = 0; i < 32; i++)
1813 kvmppc_set_gpr(vcpu, i, gprs[i]);
1814 vcpu->arch.osi_needed = 0;
1815 } else if (vcpu->arch.hcall_needed) {
1816 int i;
1817
1818 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1819 for (i = 0; i < 9; ++i)
1820 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1821 vcpu->arch.hcall_needed = 0;
1822 #ifdef CONFIG_BOOKE
1823 } else if (vcpu->arch.epr_needed) {
1824 kvmppc_set_epr(vcpu, run->epr.epr);
1825 vcpu->arch.epr_needed = 0;
1826 #endif
1827 }
1828
1829 kvm_sigset_activate(vcpu);
1830
1831 if (run->immediate_exit)
1832 r = -EINTR;
1833 else
1834 r = kvmppc_vcpu_run(run, vcpu);
1835
1836 kvm_sigset_deactivate(vcpu);
1837
1838 #ifdef CONFIG_ALTIVEC
1839 out:
1840 #endif
1841 vcpu_put(vcpu);
1842 return r;
1843 }
1844
1845 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1846 {
1847 if (irq->irq == KVM_INTERRUPT_UNSET) {
1848 kvmppc_core_dequeue_external(vcpu);
1849 return 0;
1850 }
1851
1852 kvmppc_core_queue_external(vcpu, irq);
1853
1854 kvm_vcpu_kick(vcpu);
1855
1856 return 0;
1857 }
1858
1859 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1860 struct kvm_enable_cap *cap)
1861 {
1862 int r;
1863
1864 if (cap->flags)
1865 return -EINVAL;
1866
1867 switch (cap->cap) {
1868 case KVM_CAP_PPC_OSI:
1869 r = 0;
1870 vcpu->arch.osi_enabled = true;
1871 break;
1872 case KVM_CAP_PPC_PAPR:
1873 r = 0;
1874 vcpu->arch.papr_enabled = true;
1875 break;
1876 case KVM_CAP_PPC_EPR:
1877 r = 0;
1878 if (cap->args[0])
1879 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1880 else
1881 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1882 break;
1883 #ifdef CONFIG_BOOKE
1884 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1885 r = 0;
1886 vcpu->arch.watchdog_enabled = true;
1887 break;
1888 #endif
1889 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1890 case KVM_CAP_SW_TLB: {
1891 struct kvm_config_tlb cfg;
1892 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1893
1894 r = -EFAULT;
1895 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1896 break;
1897
1898 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1899 break;
1900 }
1901 #endif
1902 #ifdef CONFIG_KVM_MPIC
1903 case KVM_CAP_IRQ_MPIC: {
1904 struct fd f;
1905 struct kvm_device *dev;
1906
1907 r = -EBADF;
1908 f = fdget(cap->args[0]);
1909 if (!f.file)
1910 break;
1911
1912 r = -EPERM;
1913 dev = kvm_device_from_filp(f.file);
1914 if (dev)
1915 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1916
1917 fdput(f);
1918 break;
1919 }
1920 #endif
1921 #ifdef CONFIG_KVM_XICS
1922 case KVM_CAP_IRQ_XICS: {
1923 struct fd f;
1924 struct kvm_device *dev;
1925
1926 r = -EBADF;
1927 f = fdget(cap->args[0]);
1928 if (!f.file)
1929 break;
1930
1931 r = -EPERM;
1932 dev = kvm_device_from_filp(f.file);
1933 if (dev) {
1934 if (xive_enabled())
1935 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1936 else
1937 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1938 }
1939
1940 fdput(f);
1941 break;
1942 }
1943 #endif /* CONFIG_KVM_XICS */
1944 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1945 case KVM_CAP_PPC_FWNMI:
1946 r = -EINVAL;
1947 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1948 break;
1949 r = 0;
1950 vcpu->kvm->arch.fwnmi_enabled = true;
1951 break;
1952 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1953 default:
1954 r = -EINVAL;
1955 break;
1956 }
1957
1958 if (!r)
1959 r = kvmppc_sanity_check(vcpu);
1960
1961 return r;
1962 }
1963
1964 bool kvm_arch_intc_initialized(struct kvm *kvm)
1965 {
1966 #ifdef CONFIG_KVM_MPIC
1967 if (kvm->arch.mpic)
1968 return true;
1969 #endif
1970 #ifdef CONFIG_KVM_XICS
1971 if (kvm->arch.xics || kvm->arch.xive)
1972 return true;
1973 #endif
1974 return false;
1975 }
1976
1977 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1978 struct kvm_mp_state *mp_state)
1979 {
1980 return -EINVAL;
1981 }
1982
1983 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1984 struct kvm_mp_state *mp_state)
1985 {
1986 return -EINVAL;
1987 }
1988
1989 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1990 unsigned int ioctl, unsigned long arg)
1991 {
1992 struct kvm_vcpu *vcpu = filp->private_data;
1993 void __user *argp = (void __user *)arg;
1994
1995 if (ioctl == KVM_INTERRUPT) {
1996 struct kvm_interrupt irq;
1997 if (copy_from_user(&irq, argp, sizeof(irq)))
1998 return -EFAULT;
1999 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2000 }
2001 return -ENOIOCTLCMD;
2002 }
2003
2004 long kvm_arch_vcpu_ioctl(struct file *filp,
2005 unsigned int ioctl, unsigned long arg)
2006 {
2007 struct kvm_vcpu *vcpu = filp->private_data;
2008 void __user *argp = (void __user *)arg;
2009 long r;
2010
2011 switch (ioctl) {
2012 case KVM_ENABLE_CAP:
2013 {
2014 struct kvm_enable_cap cap;
2015 r = -EFAULT;
2016 vcpu_load(vcpu);
2017 if (copy_from_user(&cap, argp, sizeof(cap)))
2018 goto out;
2019 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2020 vcpu_put(vcpu);
2021 break;
2022 }
2023
2024 case KVM_SET_ONE_REG:
2025 case KVM_GET_ONE_REG:
2026 {
2027 struct kvm_one_reg reg;
2028 r = -EFAULT;
2029 if (copy_from_user(&reg, argp, sizeof(reg)))
2030 goto out;
2031 if (ioctl == KVM_SET_ONE_REG)
2032 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2033 else
2034 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2035 break;
2036 }
2037
2038 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2039 case KVM_DIRTY_TLB: {
2040 struct kvm_dirty_tlb dirty;
2041 r = -EFAULT;
2042 vcpu_load(vcpu);
2043 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2044 goto out;
2045 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2046 vcpu_put(vcpu);
2047 break;
2048 }
2049 #endif
2050 default:
2051 r = -EINVAL;
2052 }
2053
2054 out:
2055 return r;
2056 }
2057
2058 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2059 {
2060 return VM_FAULT_SIGBUS;
2061 }
2062
2063 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2064 {
2065 u32 inst_nop = 0x60000000;
2066 #ifdef CONFIG_KVM_BOOKE_HV
2067 u32 inst_sc1 = 0x44000022;
2068 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2069 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2070 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2071 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2072 #else
2073 u32 inst_lis = 0x3c000000;
2074 u32 inst_ori = 0x60000000;
2075 u32 inst_sc = 0x44000002;
2076 u32 inst_imm_mask = 0xffff;
2077
2078 /*
2079 * The hypercall to get into KVM from within guest context is as
2080 * follows:
2081 *
2082 * lis r0, r0, KVM_SC_MAGIC_R0@h
2083 * ori r0, KVM_SC_MAGIC_R0@l
2084 * sc
2085 * nop
2086 */
2087 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2088 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2089 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2090 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2091 #endif
2092
2093 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2094
2095 return 0;
2096 }
2097
2098 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2099 bool line_status)
2100 {
2101 if (!irqchip_in_kernel(kvm))
2102 return -ENXIO;
2103
2104 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2105 irq_event->irq, irq_event->level,
2106 line_status);
2107 return 0;
2108 }
2109
2110
2111 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2112 struct kvm_enable_cap *cap)
2113 {
2114 int r;
2115
2116 if (cap->flags)
2117 return -EINVAL;
2118
2119 switch (cap->cap) {
2120 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2121 case KVM_CAP_PPC_ENABLE_HCALL: {
2122 unsigned long hcall = cap->args[0];
2123
2124 r = -EINVAL;
2125 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2126 cap->args[1] > 1)
2127 break;
2128 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2129 break;
2130 if (cap->args[1])
2131 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2132 else
2133 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2134 r = 0;
2135 break;
2136 }
2137 case KVM_CAP_PPC_SMT: {
2138 unsigned long mode = cap->args[0];
2139 unsigned long flags = cap->args[1];
2140
2141 r = -EINVAL;
2142 if (kvm->arch.kvm_ops->set_smt_mode)
2143 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2144 break;
2145 }
2146
2147 case KVM_CAP_PPC_NESTED_HV:
2148 r = -EINVAL;
2149 if (!is_kvmppc_hv_enabled(kvm) ||
2150 !kvm->arch.kvm_ops->enable_nested)
2151 break;
2152 r = kvm->arch.kvm_ops->enable_nested(kvm);
2153 break;
2154 #endif
2155 default:
2156 r = -EINVAL;
2157 break;
2158 }
2159
2160 return r;
2161 }
2162
2163 #ifdef CONFIG_PPC_BOOK3S_64
2164 /*
2165 * These functions check whether the underlying hardware is safe
2166 * against attacks based on observing the effects of speculatively
2167 * executed instructions, and whether it supplies instructions for
2168 * use in workarounds. The information comes from firmware, either
2169 * via the device tree on powernv platforms or from an hcall on
2170 * pseries platforms.
2171 */
2172 #ifdef CONFIG_PPC_PSERIES
2173 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2174 {
2175 struct h_cpu_char_result c;
2176 unsigned long rc;
2177
2178 if (!machine_is(pseries))
2179 return -ENOTTY;
2180
2181 rc = plpar_get_cpu_characteristics(&c);
2182 if (rc == H_SUCCESS) {
2183 cp->character = c.character;
2184 cp->behaviour = c.behaviour;
2185 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2186 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2187 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2188 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2189 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2190 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2191 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2192 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2193 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2194 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2195 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2196 }
2197 return 0;
2198 }
2199 #else
2200 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2201 {
2202 return -ENOTTY;
2203 }
2204 #endif
2205
2206 static inline bool have_fw_feat(struct device_node *fw_features,
2207 const char *state, const char *name)
2208 {
2209 struct device_node *np;
2210 bool r = false;
2211
2212 np = of_get_child_by_name(fw_features, name);
2213 if (np) {
2214 r = of_property_read_bool(np, state);
2215 of_node_put(np);
2216 }
2217 return r;
2218 }
2219
2220 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2221 {
2222 struct device_node *np, *fw_features;
2223 int r;
2224
2225 memset(cp, 0, sizeof(*cp));
2226 r = pseries_get_cpu_char(cp);
2227 if (r != -ENOTTY)
2228 return r;
2229
2230 np = of_find_node_by_name(NULL, "ibm,opal");
2231 if (np) {
2232 fw_features = of_get_child_by_name(np, "fw-features");
2233 of_node_put(np);
2234 if (!fw_features)
2235 return 0;
2236 if (have_fw_feat(fw_features, "enabled",
2237 "inst-spec-barrier-ori31,31,0"))
2238 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2239 if (have_fw_feat(fw_features, "enabled",
2240 "fw-bcctrl-serialized"))
2241 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2242 if (have_fw_feat(fw_features, "enabled",
2243 "inst-l1d-flush-ori30,30,0"))
2244 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2245 if (have_fw_feat(fw_features, "enabled",
2246 "inst-l1d-flush-trig2"))
2247 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2248 if (have_fw_feat(fw_features, "enabled",
2249 "fw-l1d-thread-split"))
2250 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2251 if (have_fw_feat(fw_features, "enabled",
2252 "fw-count-cache-disabled"))
2253 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2254 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2255 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2256 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2257 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2258 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2259 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2260
2261 if (have_fw_feat(fw_features, "enabled",
2262 "speculation-policy-favor-security"))
2263 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2264 if (!have_fw_feat(fw_features, "disabled",
2265 "needs-l1d-flush-msr-pr-0-to-1"))
2266 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2267 if (!have_fw_feat(fw_features, "disabled",
2268 "needs-spec-barrier-for-bound-checks"))
2269 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2270 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2271 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2272 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2273
2274 of_node_put(fw_features);
2275 }
2276
2277 return 0;
2278 }
2279 #endif
2280
2281 long kvm_arch_vm_ioctl(struct file *filp,
2282 unsigned int ioctl, unsigned long arg)
2283 {
2284 struct kvm *kvm __maybe_unused = filp->private_data;
2285 void __user *argp = (void __user *)arg;
2286 long r;
2287
2288 switch (ioctl) {
2289 case KVM_PPC_GET_PVINFO: {
2290 struct kvm_ppc_pvinfo pvinfo;
2291 memset(&pvinfo, 0, sizeof(pvinfo));
2292 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2293 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2294 r = -EFAULT;
2295 goto out;
2296 }
2297
2298 break;
2299 }
2300 #ifdef CONFIG_SPAPR_TCE_IOMMU
2301 case KVM_CREATE_SPAPR_TCE_64: {
2302 struct kvm_create_spapr_tce_64 create_tce_64;
2303
2304 r = -EFAULT;
2305 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2306 goto out;
2307 if (create_tce_64.flags) {
2308 r = -EINVAL;
2309 goto out;
2310 }
2311 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2312 goto out;
2313 }
2314 case KVM_CREATE_SPAPR_TCE: {
2315 struct kvm_create_spapr_tce create_tce;
2316 struct kvm_create_spapr_tce_64 create_tce_64;
2317
2318 r = -EFAULT;
2319 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2320 goto out;
2321
2322 create_tce_64.liobn = create_tce.liobn;
2323 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2324 create_tce_64.offset = 0;
2325 create_tce_64.size = create_tce.window_size >>
2326 IOMMU_PAGE_SHIFT_4K;
2327 create_tce_64.flags = 0;
2328 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2329 goto out;
2330 }
2331 #endif
2332 #ifdef CONFIG_PPC_BOOK3S_64
2333 case KVM_PPC_GET_SMMU_INFO: {
2334 struct kvm_ppc_smmu_info info;
2335 struct kvm *kvm = filp->private_data;
2336
2337 memset(&info, 0, sizeof(info));
2338 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2339 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2340 r = -EFAULT;
2341 break;
2342 }
2343 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2344 struct kvm *kvm = filp->private_data;
2345
2346 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2347 break;
2348 }
2349 case KVM_PPC_CONFIGURE_V3_MMU: {
2350 struct kvm *kvm = filp->private_data;
2351 struct kvm_ppc_mmuv3_cfg cfg;
2352
2353 r = -EINVAL;
2354 if (!kvm->arch.kvm_ops->configure_mmu)
2355 goto out;
2356 r = -EFAULT;
2357 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2358 goto out;
2359 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2360 break;
2361 }
2362 case KVM_PPC_GET_RMMU_INFO: {
2363 struct kvm *kvm = filp->private_data;
2364 struct kvm_ppc_rmmu_info info;
2365
2366 r = -EINVAL;
2367 if (!kvm->arch.kvm_ops->get_rmmu_info)
2368 goto out;
2369 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2370 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2371 r = -EFAULT;
2372 break;
2373 }
2374 case KVM_PPC_GET_CPU_CHAR: {
2375 struct kvm_ppc_cpu_char cpuchar;
2376
2377 r = kvmppc_get_cpu_char(&cpuchar);
2378 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2379 r = -EFAULT;
2380 break;
2381 }
2382 default: {
2383 struct kvm *kvm = filp->private_data;
2384 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2385 }
2386 #else /* CONFIG_PPC_BOOK3S_64 */
2387 default:
2388 r = -ENOTTY;
2389 #endif
2390 }
2391 out:
2392 return r;
2393 }
2394
2395 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2396 static unsigned long nr_lpids;
2397
2398 long kvmppc_alloc_lpid(void)
2399 {
2400 long lpid;
2401
2402 do {
2403 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2404 if (lpid >= nr_lpids) {
2405 pr_err("%s: No LPIDs free\n", __func__);
2406 return -ENOMEM;
2407 }
2408 } while (test_and_set_bit(lpid, lpid_inuse));
2409
2410 return lpid;
2411 }
2412 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2413
2414 void kvmppc_claim_lpid(long lpid)
2415 {
2416 set_bit(lpid, lpid_inuse);
2417 }
2418 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2419
2420 void kvmppc_free_lpid(long lpid)
2421 {
2422 clear_bit(lpid, lpid_inuse);
2423 }
2424 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2425
2426 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2427 {
2428 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2429 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2430 }
2431 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2432
2433 int kvm_arch_init(void *opaque)
2434 {
2435 return 0;
2436 }
2437
2438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);