]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kvm/powerpc.c
KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/xive.h>
41
42 #include "timing.h"
43 #include "irq.h"
44 #include "../mm/mmu_decl.h"
45
46 #define CREATE_TRACE_POINTS
47 #include "trace.h"
48
49 struct kvmppc_ops *kvmppc_hv_ops;
50 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
51 struct kvmppc_ops *kvmppc_pr_ops;
52 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
53
54
55 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
56 {
57 return !!(v->arch.pending_exceptions) ||
58 v->requests;
59 }
60
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63 return 1;
64 }
65
66 /*
67 * Common checks before entering the guest world. Call with interrupts
68 * disabled.
69 *
70 * returns:
71 *
72 * == 1 if we're ready to go into guest state
73 * <= 0 if we need to go back to the host with return value
74 */
75 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
76 {
77 int r;
78
79 WARN_ON(irqs_disabled());
80 hard_irq_disable();
81
82 while (true) {
83 if (need_resched()) {
84 local_irq_enable();
85 cond_resched();
86 hard_irq_disable();
87 continue;
88 }
89
90 if (signal_pending(current)) {
91 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
92 vcpu->run->exit_reason = KVM_EXIT_INTR;
93 r = -EINTR;
94 break;
95 }
96
97 vcpu->mode = IN_GUEST_MODE;
98
99 /*
100 * Reading vcpu->requests must happen after setting vcpu->mode,
101 * so we don't miss a request because the requester sees
102 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
103 * before next entering the guest (and thus doesn't IPI).
104 * This also orders the write to mode from any reads
105 * to the page tables done while the VCPU is running.
106 * Please see the comment in kvm_flush_remote_tlbs.
107 */
108 smp_mb();
109
110 if (vcpu->requests) {
111 /* Make sure we process requests preemptable */
112 local_irq_enable();
113 trace_kvm_check_requests(vcpu);
114 r = kvmppc_core_check_requests(vcpu);
115 hard_irq_disable();
116 if (r > 0)
117 continue;
118 break;
119 }
120
121 if (kvmppc_core_prepare_to_enter(vcpu)) {
122 /* interrupts got enabled in between, so we
123 are back at square 1 */
124 continue;
125 }
126
127 guest_enter_irqoff();
128 return 1;
129 }
130
131 /* return to host */
132 local_irq_enable();
133 return r;
134 }
135 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
136
137 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
138 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
139 {
140 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
141 int i;
142
143 shared->sprg0 = swab64(shared->sprg0);
144 shared->sprg1 = swab64(shared->sprg1);
145 shared->sprg2 = swab64(shared->sprg2);
146 shared->sprg3 = swab64(shared->sprg3);
147 shared->srr0 = swab64(shared->srr0);
148 shared->srr1 = swab64(shared->srr1);
149 shared->dar = swab64(shared->dar);
150 shared->msr = swab64(shared->msr);
151 shared->dsisr = swab32(shared->dsisr);
152 shared->int_pending = swab32(shared->int_pending);
153 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
154 shared->sr[i] = swab32(shared->sr[i]);
155 }
156 #endif
157
158 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
159 {
160 int nr = kvmppc_get_gpr(vcpu, 11);
161 int r;
162 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
163 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
164 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
165 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
166 unsigned long r2 = 0;
167
168 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
169 /* 32 bit mode */
170 param1 &= 0xffffffff;
171 param2 &= 0xffffffff;
172 param3 &= 0xffffffff;
173 param4 &= 0xffffffff;
174 }
175
176 switch (nr) {
177 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
178 {
179 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
180 /* Book3S can be little endian, find it out here */
181 int shared_big_endian = true;
182 if (vcpu->arch.intr_msr & MSR_LE)
183 shared_big_endian = false;
184 if (shared_big_endian != vcpu->arch.shared_big_endian)
185 kvmppc_swab_shared(vcpu);
186 vcpu->arch.shared_big_endian = shared_big_endian;
187 #endif
188
189 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
190 /*
191 * Older versions of the Linux magic page code had
192 * a bug where they would map their trampoline code
193 * NX. If that's the case, remove !PR NX capability.
194 */
195 vcpu->arch.disable_kernel_nx = true;
196 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
197 }
198
199 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
200 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
201
202 #ifdef CONFIG_PPC_64K_PAGES
203 /*
204 * Make sure our 4k magic page is in the same window of a 64k
205 * page within the guest and within the host's page.
206 */
207 if ((vcpu->arch.magic_page_pa & 0xf000) !=
208 ((ulong)vcpu->arch.shared & 0xf000)) {
209 void *old_shared = vcpu->arch.shared;
210 ulong shared = (ulong)vcpu->arch.shared;
211 void *new_shared;
212
213 shared &= PAGE_MASK;
214 shared |= vcpu->arch.magic_page_pa & 0xf000;
215 new_shared = (void*)shared;
216 memcpy(new_shared, old_shared, 0x1000);
217 vcpu->arch.shared = new_shared;
218 }
219 #endif
220
221 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
222
223 r = EV_SUCCESS;
224 break;
225 }
226 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
227 r = EV_SUCCESS;
228 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
229 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
230 #endif
231
232 /* Second return value is in r4 */
233 break;
234 case EV_HCALL_TOKEN(EV_IDLE):
235 r = EV_SUCCESS;
236 kvm_vcpu_block(vcpu);
237 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
238 break;
239 default:
240 r = EV_UNIMPLEMENTED;
241 break;
242 }
243
244 kvmppc_set_gpr(vcpu, 4, r2);
245
246 return r;
247 }
248 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
249
250 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
251 {
252 int r = false;
253
254 /* We have to know what CPU to virtualize */
255 if (!vcpu->arch.pvr)
256 goto out;
257
258 /* PAPR only works with book3s_64 */
259 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
260 goto out;
261
262 /* HV KVM can only do PAPR mode for now */
263 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
264 goto out;
265
266 #ifdef CONFIG_KVM_BOOKE_HV
267 if (!cpu_has_feature(CPU_FTR_EMB_HV))
268 goto out;
269 #endif
270
271 r = true;
272
273 out:
274 vcpu->arch.sane = r;
275 return r ? 0 : -EINVAL;
276 }
277 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
278
279 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
280 {
281 enum emulation_result er;
282 int r;
283
284 er = kvmppc_emulate_loadstore(vcpu);
285 switch (er) {
286 case EMULATE_DONE:
287 /* Future optimization: only reload non-volatiles if they were
288 * actually modified. */
289 r = RESUME_GUEST_NV;
290 break;
291 case EMULATE_AGAIN:
292 r = RESUME_GUEST;
293 break;
294 case EMULATE_DO_MMIO:
295 run->exit_reason = KVM_EXIT_MMIO;
296 /* We must reload nonvolatiles because "update" load/store
297 * instructions modify register state. */
298 /* Future optimization: only reload non-volatiles if they were
299 * actually modified. */
300 r = RESUME_HOST_NV;
301 break;
302 case EMULATE_FAIL:
303 {
304 u32 last_inst;
305
306 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
307 /* XXX Deliver Program interrupt to guest. */
308 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
309 r = RESUME_HOST;
310 break;
311 }
312 default:
313 WARN_ON(1);
314 r = RESUME_GUEST;
315 }
316
317 return r;
318 }
319 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
320
321 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
322 bool data)
323 {
324 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
325 struct kvmppc_pte pte;
326 int r;
327
328 vcpu->stat.st++;
329
330 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
331 XLATE_WRITE, &pte);
332 if (r < 0)
333 return r;
334
335 *eaddr = pte.raddr;
336
337 if (!pte.may_write)
338 return -EPERM;
339
340 /* Magic page override */
341 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
342 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
343 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
344 void *magic = vcpu->arch.shared;
345 magic += pte.eaddr & 0xfff;
346 memcpy(magic, ptr, size);
347 return EMULATE_DONE;
348 }
349
350 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
351 return EMULATE_DO_MMIO;
352
353 return EMULATE_DONE;
354 }
355 EXPORT_SYMBOL_GPL(kvmppc_st);
356
357 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
358 bool data)
359 {
360 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
361 struct kvmppc_pte pte;
362 int rc;
363
364 vcpu->stat.ld++;
365
366 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
367 XLATE_READ, &pte);
368 if (rc)
369 return rc;
370
371 *eaddr = pte.raddr;
372
373 if (!pte.may_read)
374 return -EPERM;
375
376 if (!data && !pte.may_execute)
377 return -ENOEXEC;
378
379 /* Magic page override */
380 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
381 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
382 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
383 void *magic = vcpu->arch.shared;
384 magic += pte.eaddr & 0xfff;
385 memcpy(ptr, magic, size);
386 return EMULATE_DONE;
387 }
388
389 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
390 return EMULATE_DO_MMIO;
391
392 return EMULATE_DONE;
393 }
394 EXPORT_SYMBOL_GPL(kvmppc_ld);
395
396 int kvm_arch_hardware_enable(void)
397 {
398 return 0;
399 }
400
401 int kvm_arch_hardware_setup(void)
402 {
403 return 0;
404 }
405
406 void kvm_arch_check_processor_compat(void *rtn)
407 {
408 *(int *)rtn = kvmppc_core_check_processor_compat();
409 }
410
411 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
412 {
413 struct kvmppc_ops *kvm_ops = NULL;
414 /*
415 * if we have both HV and PR enabled, default is HV
416 */
417 if (type == 0) {
418 if (kvmppc_hv_ops)
419 kvm_ops = kvmppc_hv_ops;
420 else
421 kvm_ops = kvmppc_pr_ops;
422 if (!kvm_ops)
423 goto err_out;
424 } else if (type == KVM_VM_PPC_HV) {
425 if (!kvmppc_hv_ops)
426 goto err_out;
427 kvm_ops = kvmppc_hv_ops;
428 } else if (type == KVM_VM_PPC_PR) {
429 if (!kvmppc_pr_ops)
430 goto err_out;
431 kvm_ops = kvmppc_pr_ops;
432 } else
433 goto err_out;
434
435 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
436 return -ENOENT;
437
438 kvm->arch.kvm_ops = kvm_ops;
439 return kvmppc_core_init_vm(kvm);
440 err_out:
441 return -EINVAL;
442 }
443
444 bool kvm_arch_has_vcpu_debugfs(void)
445 {
446 return false;
447 }
448
449 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
450 {
451 return 0;
452 }
453
454 void kvm_arch_destroy_vm(struct kvm *kvm)
455 {
456 unsigned int i;
457 struct kvm_vcpu *vcpu;
458
459 #ifdef CONFIG_KVM_XICS
460 /*
461 * We call kick_all_cpus_sync() to ensure that all
462 * CPUs have executed any pending IPIs before we
463 * continue and free VCPUs structures below.
464 */
465 if (is_kvmppc_hv_enabled(kvm))
466 kick_all_cpus_sync();
467 #endif
468
469 kvm_for_each_vcpu(i, vcpu, kvm)
470 kvm_arch_vcpu_free(vcpu);
471
472 mutex_lock(&kvm->lock);
473 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
474 kvm->vcpus[i] = NULL;
475
476 atomic_set(&kvm->online_vcpus, 0);
477
478 kvmppc_core_destroy_vm(kvm);
479
480 mutex_unlock(&kvm->lock);
481
482 /* drop the module reference */
483 module_put(kvm->arch.kvm_ops->owner);
484 }
485
486 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
487 {
488 int r;
489 /* Assume we're using HV mode when the HV module is loaded */
490 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
491
492 if (kvm) {
493 /*
494 * Hooray - we know which VM type we're running on. Depend on
495 * that rather than the guess above.
496 */
497 hv_enabled = is_kvmppc_hv_enabled(kvm);
498 }
499
500 switch (ext) {
501 #ifdef CONFIG_BOOKE
502 case KVM_CAP_PPC_BOOKE_SREGS:
503 case KVM_CAP_PPC_BOOKE_WATCHDOG:
504 case KVM_CAP_PPC_EPR:
505 #else
506 case KVM_CAP_PPC_SEGSTATE:
507 case KVM_CAP_PPC_HIOR:
508 case KVM_CAP_PPC_PAPR:
509 #endif
510 case KVM_CAP_PPC_UNSET_IRQ:
511 case KVM_CAP_PPC_IRQ_LEVEL:
512 case KVM_CAP_ENABLE_CAP:
513 case KVM_CAP_ENABLE_CAP_VM:
514 case KVM_CAP_ONE_REG:
515 case KVM_CAP_IOEVENTFD:
516 case KVM_CAP_DEVICE_CTRL:
517 case KVM_CAP_IMMEDIATE_EXIT:
518 r = 1;
519 break;
520 case KVM_CAP_PPC_PAIRED_SINGLES:
521 case KVM_CAP_PPC_OSI:
522 case KVM_CAP_PPC_GET_PVINFO:
523 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
524 case KVM_CAP_SW_TLB:
525 #endif
526 /* We support this only for PR */
527 r = !hv_enabled;
528 break;
529 #ifdef CONFIG_KVM_MMIO
530 case KVM_CAP_COALESCED_MMIO:
531 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
532 break;
533 #endif
534 #ifdef CONFIG_KVM_MPIC
535 case KVM_CAP_IRQ_MPIC:
536 r = 1;
537 break;
538 #endif
539
540 #ifdef CONFIG_PPC_BOOK3S_64
541 case KVM_CAP_SPAPR_TCE:
542 case KVM_CAP_SPAPR_TCE_64:
543 case KVM_CAP_PPC_RTAS:
544 case KVM_CAP_PPC_FIXUP_HCALL:
545 case KVM_CAP_PPC_ENABLE_HCALL:
546 #ifdef CONFIG_KVM_XICS
547 case KVM_CAP_IRQ_XICS:
548 #endif
549 r = 1;
550 break;
551
552 case KVM_CAP_PPC_ALLOC_HTAB:
553 r = hv_enabled;
554 break;
555 #endif /* CONFIG_PPC_BOOK3S_64 */
556 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
557 case KVM_CAP_PPC_SMT:
558 r = 0;
559 if (hv_enabled) {
560 if (cpu_has_feature(CPU_FTR_ARCH_300))
561 r = 1;
562 else
563 r = threads_per_subcore;
564 }
565 break;
566 case KVM_CAP_PPC_RMA:
567 r = 0;
568 break;
569 case KVM_CAP_PPC_HWRNG:
570 r = kvmppc_hwrng_present();
571 break;
572 case KVM_CAP_PPC_MMU_RADIX:
573 r = !!(hv_enabled && radix_enabled());
574 break;
575 case KVM_CAP_PPC_MMU_HASH_V3:
576 r = !!(hv_enabled && !radix_enabled() &&
577 cpu_has_feature(CPU_FTR_ARCH_300));
578 break;
579 #endif
580 case KVM_CAP_SYNC_MMU:
581 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
582 r = hv_enabled;
583 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
584 r = 1;
585 #else
586 r = 0;
587 #endif
588 break;
589 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
590 case KVM_CAP_PPC_HTAB_FD:
591 r = hv_enabled;
592 break;
593 #endif
594 case KVM_CAP_NR_VCPUS:
595 /*
596 * Recommending a number of CPUs is somewhat arbitrary; we
597 * return the number of present CPUs for -HV (since a host
598 * will have secondary threads "offline"), and for other KVM
599 * implementations just count online CPUs.
600 */
601 if (hv_enabled)
602 r = num_present_cpus();
603 else
604 r = num_online_cpus();
605 break;
606 case KVM_CAP_NR_MEMSLOTS:
607 r = KVM_USER_MEM_SLOTS;
608 break;
609 case KVM_CAP_MAX_VCPUS:
610 r = KVM_MAX_VCPUS;
611 break;
612 #ifdef CONFIG_PPC_BOOK3S_64
613 case KVM_CAP_PPC_GET_SMMU_INFO:
614 r = 1;
615 break;
616 case KVM_CAP_SPAPR_MULTITCE:
617 r = 1;
618 break;
619 case KVM_CAP_SPAPR_RESIZE_HPT:
620 /* Disable this on POWER9 until code handles new HPTE format */
621 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
622 break;
623 #endif
624 case KVM_CAP_PPC_HTM:
625 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
626 is_kvmppc_hv_enabled(kvm);
627 break;
628 default:
629 r = 0;
630 break;
631 }
632 return r;
633
634 }
635
636 long kvm_arch_dev_ioctl(struct file *filp,
637 unsigned int ioctl, unsigned long arg)
638 {
639 return -EINVAL;
640 }
641
642 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
643 struct kvm_memory_slot *dont)
644 {
645 kvmppc_core_free_memslot(kvm, free, dont);
646 }
647
648 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
649 unsigned long npages)
650 {
651 return kvmppc_core_create_memslot(kvm, slot, npages);
652 }
653
654 int kvm_arch_prepare_memory_region(struct kvm *kvm,
655 struct kvm_memory_slot *memslot,
656 const struct kvm_userspace_memory_region *mem,
657 enum kvm_mr_change change)
658 {
659 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
660 }
661
662 void kvm_arch_commit_memory_region(struct kvm *kvm,
663 const struct kvm_userspace_memory_region *mem,
664 const struct kvm_memory_slot *old,
665 const struct kvm_memory_slot *new,
666 enum kvm_mr_change change)
667 {
668 kvmppc_core_commit_memory_region(kvm, mem, old, new);
669 }
670
671 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
672 struct kvm_memory_slot *slot)
673 {
674 kvmppc_core_flush_memslot(kvm, slot);
675 }
676
677 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
678 {
679 struct kvm_vcpu *vcpu;
680 vcpu = kvmppc_core_vcpu_create(kvm, id);
681 if (!IS_ERR(vcpu)) {
682 vcpu->arch.wqp = &vcpu->wq;
683 kvmppc_create_vcpu_debugfs(vcpu, id);
684 }
685 return vcpu;
686 }
687
688 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
689 {
690 }
691
692 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
693 {
694 /* Make sure we're not using the vcpu anymore */
695 hrtimer_cancel(&vcpu->arch.dec_timer);
696
697 kvmppc_remove_vcpu_debugfs(vcpu);
698
699 switch (vcpu->arch.irq_type) {
700 case KVMPPC_IRQ_MPIC:
701 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
702 break;
703 case KVMPPC_IRQ_XICS:
704 if (xive_enabled())
705 kvmppc_xive_cleanup_vcpu(vcpu);
706 else
707 kvmppc_xics_free_icp(vcpu);
708 break;
709 }
710
711 kvmppc_core_vcpu_free(vcpu);
712 }
713
714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
715 {
716 kvm_arch_vcpu_free(vcpu);
717 }
718
719 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
720 {
721 return kvmppc_core_pending_dec(vcpu);
722 }
723
724 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
725 {
726 struct kvm_vcpu *vcpu;
727
728 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
729 kvmppc_decrementer_func(vcpu);
730
731 return HRTIMER_NORESTART;
732 }
733
734 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
735 {
736 int ret;
737
738 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
739 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
740 vcpu->arch.dec_expires = ~(u64)0;
741
742 #ifdef CONFIG_KVM_EXIT_TIMING
743 mutex_init(&vcpu->arch.exit_timing_lock);
744 #endif
745 ret = kvmppc_subarch_vcpu_init(vcpu);
746 return ret;
747 }
748
749 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
750 {
751 kvmppc_mmu_destroy(vcpu);
752 kvmppc_subarch_vcpu_uninit(vcpu);
753 }
754
755 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
756 {
757 #ifdef CONFIG_BOOKE
758 /*
759 * vrsave (formerly usprg0) isn't used by Linux, but may
760 * be used by the guest.
761 *
762 * On non-booke this is associated with Altivec and
763 * is handled by code in book3s.c.
764 */
765 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
766 #endif
767 kvmppc_core_vcpu_load(vcpu, cpu);
768 }
769
770 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
771 {
772 kvmppc_core_vcpu_put(vcpu);
773 #ifdef CONFIG_BOOKE
774 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
775 #endif
776 }
777
778 /*
779 * irq_bypass_add_producer and irq_bypass_del_producer are only
780 * useful if the architecture supports PCI passthrough.
781 * irq_bypass_stop and irq_bypass_start are not needed and so
782 * kvm_ops are not defined for them.
783 */
784 bool kvm_arch_has_irq_bypass(void)
785 {
786 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
787 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
788 }
789
790 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
791 struct irq_bypass_producer *prod)
792 {
793 struct kvm_kernel_irqfd *irqfd =
794 container_of(cons, struct kvm_kernel_irqfd, consumer);
795 struct kvm *kvm = irqfd->kvm;
796
797 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
798 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
799
800 return 0;
801 }
802
803 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
804 struct irq_bypass_producer *prod)
805 {
806 struct kvm_kernel_irqfd *irqfd =
807 container_of(cons, struct kvm_kernel_irqfd, consumer);
808 struct kvm *kvm = irqfd->kvm;
809
810 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
811 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
812 }
813
814 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
815 struct kvm_run *run)
816 {
817 u64 uninitialized_var(gpr);
818
819 if (run->mmio.len > sizeof(gpr)) {
820 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
821 return;
822 }
823
824 if (!vcpu->arch.mmio_host_swabbed) {
825 switch (run->mmio.len) {
826 case 8: gpr = *(u64 *)run->mmio.data; break;
827 case 4: gpr = *(u32 *)run->mmio.data; break;
828 case 2: gpr = *(u16 *)run->mmio.data; break;
829 case 1: gpr = *(u8 *)run->mmio.data; break;
830 }
831 } else {
832 switch (run->mmio.len) {
833 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
834 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
835 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
836 case 1: gpr = *(u8 *)run->mmio.data; break;
837 }
838 }
839
840 if (vcpu->arch.mmio_sign_extend) {
841 switch (run->mmio.len) {
842 #ifdef CONFIG_PPC64
843 case 4:
844 gpr = (s64)(s32)gpr;
845 break;
846 #endif
847 case 2:
848 gpr = (s64)(s16)gpr;
849 break;
850 case 1:
851 gpr = (s64)(s8)gpr;
852 break;
853 }
854 }
855
856 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
857
858 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
859 case KVM_MMIO_REG_GPR:
860 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
861 break;
862 case KVM_MMIO_REG_FPR:
863 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
864 break;
865 #ifdef CONFIG_PPC_BOOK3S
866 case KVM_MMIO_REG_QPR:
867 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
868 break;
869 case KVM_MMIO_REG_FQPR:
870 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
871 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
872 break;
873 #endif
874 default:
875 BUG();
876 }
877 }
878
879 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
880 unsigned int rt, unsigned int bytes,
881 int is_default_endian, int sign_extend)
882 {
883 int idx, ret;
884 bool host_swabbed;
885
886 /* Pity C doesn't have a logical XOR operator */
887 if (kvmppc_need_byteswap(vcpu)) {
888 host_swabbed = is_default_endian;
889 } else {
890 host_swabbed = !is_default_endian;
891 }
892
893 if (bytes > sizeof(run->mmio.data)) {
894 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
895 run->mmio.len);
896 }
897
898 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
899 run->mmio.len = bytes;
900 run->mmio.is_write = 0;
901
902 vcpu->arch.io_gpr = rt;
903 vcpu->arch.mmio_host_swabbed = host_swabbed;
904 vcpu->mmio_needed = 1;
905 vcpu->mmio_is_write = 0;
906 vcpu->arch.mmio_sign_extend = sign_extend;
907
908 idx = srcu_read_lock(&vcpu->kvm->srcu);
909
910 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
911 bytes, &run->mmio.data);
912
913 srcu_read_unlock(&vcpu->kvm->srcu, idx);
914
915 if (!ret) {
916 kvmppc_complete_mmio_load(vcpu, run);
917 vcpu->mmio_needed = 0;
918 return EMULATE_DONE;
919 }
920
921 return EMULATE_DO_MMIO;
922 }
923
924 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
925 unsigned int rt, unsigned int bytes,
926 int is_default_endian)
927 {
928 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
929 }
930 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
931
932 /* Same as above, but sign extends */
933 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
934 unsigned int rt, unsigned int bytes,
935 int is_default_endian)
936 {
937 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
938 }
939
940 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
941 u64 val, unsigned int bytes, int is_default_endian)
942 {
943 void *data = run->mmio.data;
944 int idx, ret;
945 bool host_swabbed;
946
947 /* Pity C doesn't have a logical XOR operator */
948 if (kvmppc_need_byteswap(vcpu)) {
949 host_swabbed = is_default_endian;
950 } else {
951 host_swabbed = !is_default_endian;
952 }
953
954 if (bytes > sizeof(run->mmio.data)) {
955 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
956 run->mmio.len);
957 }
958
959 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
960 run->mmio.len = bytes;
961 run->mmio.is_write = 1;
962 vcpu->mmio_needed = 1;
963 vcpu->mmio_is_write = 1;
964
965 /* Store the value at the lowest bytes in 'data'. */
966 if (!host_swabbed) {
967 switch (bytes) {
968 case 8: *(u64 *)data = val; break;
969 case 4: *(u32 *)data = val; break;
970 case 2: *(u16 *)data = val; break;
971 case 1: *(u8 *)data = val; break;
972 }
973 } else {
974 switch (bytes) {
975 case 8: *(u64 *)data = swab64(val); break;
976 case 4: *(u32 *)data = swab32(val); break;
977 case 2: *(u16 *)data = swab16(val); break;
978 case 1: *(u8 *)data = val; break;
979 }
980 }
981
982 idx = srcu_read_lock(&vcpu->kvm->srcu);
983
984 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
985 bytes, &run->mmio.data);
986
987 srcu_read_unlock(&vcpu->kvm->srcu, idx);
988
989 if (!ret) {
990 vcpu->mmio_needed = 0;
991 return EMULATE_DONE;
992 }
993
994 return EMULATE_DO_MMIO;
995 }
996 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
997
998 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
999 {
1000 int r = 0;
1001 union kvmppc_one_reg val;
1002 int size;
1003
1004 size = one_reg_size(reg->id);
1005 if (size > sizeof(val))
1006 return -EINVAL;
1007
1008 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1009 if (r == -EINVAL) {
1010 r = 0;
1011 switch (reg->id) {
1012 #ifdef CONFIG_ALTIVEC
1013 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1014 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1015 r = -ENXIO;
1016 break;
1017 }
1018 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1019 break;
1020 case KVM_REG_PPC_VSCR:
1021 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1022 r = -ENXIO;
1023 break;
1024 }
1025 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1026 break;
1027 case KVM_REG_PPC_VRSAVE:
1028 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1029 break;
1030 #endif /* CONFIG_ALTIVEC */
1031 default:
1032 r = -EINVAL;
1033 break;
1034 }
1035 }
1036
1037 if (r)
1038 return r;
1039
1040 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1041 r = -EFAULT;
1042
1043 return r;
1044 }
1045
1046 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1047 {
1048 int r;
1049 union kvmppc_one_reg val;
1050 int size;
1051
1052 size = one_reg_size(reg->id);
1053 if (size > sizeof(val))
1054 return -EINVAL;
1055
1056 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1057 return -EFAULT;
1058
1059 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1060 if (r == -EINVAL) {
1061 r = 0;
1062 switch (reg->id) {
1063 #ifdef CONFIG_ALTIVEC
1064 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1065 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1066 r = -ENXIO;
1067 break;
1068 }
1069 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1070 break;
1071 case KVM_REG_PPC_VSCR:
1072 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1073 r = -ENXIO;
1074 break;
1075 }
1076 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1077 break;
1078 case KVM_REG_PPC_VRSAVE:
1079 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1080 r = -ENXIO;
1081 break;
1082 }
1083 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1084 break;
1085 #endif /* CONFIG_ALTIVEC */
1086 default:
1087 r = -EINVAL;
1088 break;
1089 }
1090 }
1091
1092 return r;
1093 }
1094
1095 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1096 {
1097 int r;
1098 sigset_t sigsaved;
1099
1100 if (vcpu->sigset_active)
1101 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1102
1103 if (vcpu->mmio_needed) {
1104 if (!vcpu->mmio_is_write)
1105 kvmppc_complete_mmio_load(vcpu, run);
1106 vcpu->mmio_needed = 0;
1107 } else if (vcpu->arch.osi_needed) {
1108 u64 *gprs = run->osi.gprs;
1109 int i;
1110
1111 for (i = 0; i < 32; i++)
1112 kvmppc_set_gpr(vcpu, i, gprs[i]);
1113 vcpu->arch.osi_needed = 0;
1114 } else if (vcpu->arch.hcall_needed) {
1115 int i;
1116
1117 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1118 for (i = 0; i < 9; ++i)
1119 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1120 vcpu->arch.hcall_needed = 0;
1121 #ifdef CONFIG_BOOKE
1122 } else if (vcpu->arch.epr_needed) {
1123 kvmppc_set_epr(vcpu, run->epr.epr);
1124 vcpu->arch.epr_needed = 0;
1125 #endif
1126 }
1127
1128 if (run->immediate_exit)
1129 r = -EINTR;
1130 else
1131 r = kvmppc_vcpu_run(run, vcpu);
1132
1133 if (vcpu->sigset_active)
1134 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1135
1136 return r;
1137 }
1138
1139 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1140 {
1141 if (irq->irq == KVM_INTERRUPT_UNSET) {
1142 kvmppc_core_dequeue_external(vcpu);
1143 return 0;
1144 }
1145
1146 kvmppc_core_queue_external(vcpu, irq);
1147
1148 kvm_vcpu_kick(vcpu);
1149
1150 return 0;
1151 }
1152
1153 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1154 struct kvm_enable_cap *cap)
1155 {
1156 int r;
1157
1158 if (cap->flags)
1159 return -EINVAL;
1160
1161 switch (cap->cap) {
1162 case KVM_CAP_PPC_OSI:
1163 r = 0;
1164 vcpu->arch.osi_enabled = true;
1165 break;
1166 case KVM_CAP_PPC_PAPR:
1167 r = 0;
1168 vcpu->arch.papr_enabled = true;
1169 break;
1170 case KVM_CAP_PPC_EPR:
1171 r = 0;
1172 if (cap->args[0])
1173 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1174 else
1175 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1176 break;
1177 #ifdef CONFIG_BOOKE
1178 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1179 r = 0;
1180 vcpu->arch.watchdog_enabled = true;
1181 break;
1182 #endif
1183 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1184 case KVM_CAP_SW_TLB: {
1185 struct kvm_config_tlb cfg;
1186 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1187
1188 r = -EFAULT;
1189 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1190 break;
1191
1192 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1193 break;
1194 }
1195 #endif
1196 #ifdef CONFIG_KVM_MPIC
1197 case KVM_CAP_IRQ_MPIC: {
1198 struct fd f;
1199 struct kvm_device *dev;
1200
1201 r = -EBADF;
1202 f = fdget(cap->args[0]);
1203 if (!f.file)
1204 break;
1205
1206 r = -EPERM;
1207 dev = kvm_device_from_filp(f.file);
1208 if (dev)
1209 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1210
1211 fdput(f);
1212 break;
1213 }
1214 #endif
1215 #ifdef CONFIG_KVM_XICS
1216 case KVM_CAP_IRQ_XICS: {
1217 struct fd f;
1218 struct kvm_device *dev;
1219
1220 r = -EBADF;
1221 f = fdget(cap->args[0]);
1222 if (!f.file)
1223 break;
1224
1225 r = -EPERM;
1226 dev = kvm_device_from_filp(f.file);
1227 if (dev) {
1228 if (xive_enabled())
1229 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1230 else
1231 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1232 }
1233
1234 fdput(f);
1235 break;
1236 }
1237 #endif /* CONFIG_KVM_XICS */
1238 default:
1239 r = -EINVAL;
1240 break;
1241 }
1242
1243 if (!r)
1244 r = kvmppc_sanity_check(vcpu);
1245
1246 return r;
1247 }
1248
1249 bool kvm_arch_intc_initialized(struct kvm *kvm)
1250 {
1251 #ifdef CONFIG_KVM_MPIC
1252 if (kvm->arch.mpic)
1253 return true;
1254 #endif
1255 #ifdef CONFIG_KVM_XICS
1256 if (kvm->arch.xics || kvm->arch.xive)
1257 return true;
1258 #endif
1259 return false;
1260 }
1261
1262 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1263 struct kvm_mp_state *mp_state)
1264 {
1265 return -EINVAL;
1266 }
1267
1268 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1269 struct kvm_mp_state *mp_state)
1270 {
1271 return -EINVAL;
1272 }
1273
1274 long kvm_arch_vcpu_ioctl(struct file *filp,
1275 unsigned int ioctl, unsigned long arg)
1276 {
1277 struct kvm_vcpu *vcpu = filp->private_data;
1278 void __user *argp = (void __user *)arg;
1279 long r;
1280
1281 switch (ioctl) {
1282 case KVM_INTERRUPT: {
1283 struct kvm_interrupt irq;
1284 r = -EFAULT;
1285 if (copy_from_user(&irq, argp, sizeof(irq)))
1286 goto out;
1287 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1288 goto out;
1289 }
1290
1291 case KVM_ENABLE_CAP:
1292 {
1293 struct kvm_enable_cap cap;
1294 r = -EFAULT;
1295 if (copy_from_user(&cap, argp, sizeof(cap)))
1296 goto out;
1297 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1298 break;
1299 }
1300
1301 case KVM_SET_ONE_REG:
1302 case KVM_GET_ONE_REG:
1303 {
1304 struct kvm_one_reg reg;
1305 r = -EFAULT;
1306 if (copy_from_user(&reg, argp, sizeof(reg)))
1307 goto out;
1308 if (ioctl == KVM_SET_ONE_REG)
1309 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1310 else
1311 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1312 break;
1313 }
1314
1315 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1316 case KVM_DIRTY_TLB: {
1317 struct kvm_dirty_tlb dirty;
1318 r = -EFAULT;
1319 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1320 goto out;
1321 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1322 break;
1323 }
1324 #endif
1325 default:
1326 r = -EINVAL;
1327 }
1328
1329 out:
1330 return r;
1331 }
1332
1333 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1334 {
1335 return VM_FAULT_SIGBUS;
1336 }
1337
1338 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1339 {
1340 u32 inst_nop = 0x60000000;
1341 #ifdef CONFIG_KVM_BOOKE_HV
1342 u32 inst_sc1 = 0x44000022;
1343 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1344 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1345 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1346 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1347 #else
1348 u32 inst_lis = 0x3c000000;
1349 u32 inst_ori = 0x60000000;
1350 u32 inst_sc = 0x44000002;
1351 u32 inst_imm_mask = 0xffff;
1352
1353 /*
1354 * The hypercall to get into KVM from within guest context is as
1355 * follows:
1356 *
1357 * lis r0, r0, KVM_SC_MAGIC_R0@h
1358 * ori r0, KVM_SC_MAGIC_R0@l
1359 * sc
1360 * nop
1361 */
1362 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1363 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1364 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1365 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1366 #endif
1367
1368 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1369
1370 return 0;
1371 }
1372
1373 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1374 bool line_status)
1375 {
1376 if (!irqchip_in_kernel(kvm))
1377 return -ENXIO;
1378
1379 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1380 irq_event->irq, irq_event->level,
1381 line_status);
1382 return 0;
1383 }
1384
1385
1386 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1387 struct kvm_enable_cap *cap)
1388 {
1389 int r;
1390
1391 if (cap->flags)
1392 return -EINVAL;
1393
1394 switch (cap->cap) {
1395 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1396 case KVM_CAP_PPC_ENABLE_HCALL: {
1397 unsigned long hcall = cap->args[0];
1398
1399 r = -EINVAL;
1400 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1401 cap->args[1] > 1)
1402 break;
1403 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1404 break;
1405 if (cap->args[1])
1406 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1407 else
1408 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1409 r = 0;
1410 break;
1411 }
1412 #endif
1413 default:
1414 r = -EINVAL;
1415 break;
1416 }
1417
1418 return r;
1419 }
1420
1421 long kvm_arch_vm_ioctl(struct file *filp,
1422 unsigned int ioctl, unsigned long arg)
1423 {
1424 struct kvm *kvm __maybe_unused = filp->private_data;
1425 void __user *argp = (void __user *)arg;
1426 long r;
1427
1428 switch (ioctl) {
1429 case KVM_PPC_GET_PVINFO: {
1430 struct kvm_ppc_pvinfo pvinfo;
1431 memset(&pvinfo, 0, sizeof(pvinfo));
1432 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1433 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1434 r = -EFAULT;
1435 goto out;
1436 }
1437
1438 break;
1439 }
1440 case KVM_ENABLE_CAP:
1441 {
1442 struct kvm_enable_cap cap;
1443 r = -EFAULT;
1444 if (copy_from_user(&cap, argp, sizeof(cap)))
1445 goto out;
1446 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1447 break;
1448 }
1449 #ifdef CONFIG_PPC_BOOK3S_64
1450 case KVM_CREATE_SPAPR_TCE_64: {
1451 struct kvm_create_spapr_tce_64 create_tce_64;
1452
1453 r = -EFAULT;
1454 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1455 goto out;
1456 if (create_tce_64.flags) {
1457 r = -EINVAL;
1458 goto out;
1459 }
1460 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1461 goto out;
1462 }
1463 case KVM_CREATE_SPAPR_TCE: {
1464 struct kvm_create_spapr_tce create_tce;
1465 struct kvm_create_spapr_tce_64 create_tce_64;
1466
1467 r = -EFAULT;
1468 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1469 goto out;
1470
1471 create_tce_64.liobn = create_tce.liobn;
1472 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1473 create_tce_64.offset = 0;
1474 create_tce_64.size = create_tce.window_size >>
1475 IOMMU_PAGE_SHIFT_4K;
1476 create_tce_64.flags = 0;
1477 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1478 goto out;
1479 }
1480 case KVM_PPC_GET_SMMU_INFO: {
1481 struct kvm_ppc_smmu_info info;
1482 struct kvm *kvm = filp->private_data;
1483
1484 memset(&info, 0, sizeof(info));
1485 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1486 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1487 r = -EFAULT;
1488 break;
1489 }
1490 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1491 struct kvm *kvm = filp->private_data;
1492
1493 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1494 break;
1495 }
1496 case KVM_PPC_CONFIGURE_V3_MMU: {
1497 struct kvm *kvm = filp->private_data;
1498 struct kvm_ppc_mmuv3_cfg cfg;
1499
1500 r = -EINVAL;
1501 if (!kvm->arch.kvm_ops->configure_mmu)
1502 goto out;
1503 r = -EFAULT;
1504 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1505 goto out;
1506 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1507 break;
1508 }
1509 case KVM_PPC_GET_RMMU_INFO: {
1510 struct kvm *kvm = filp->private_data;
1511 struct kvm_ppc_rmmu_info info;
1512
1513 r = -EINVAL;
1514 if (!kvm->arch.kvm_ops->get_rmmu_info)
1515 goto out;
1516 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1517 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1518 r = -EFAULT;
1519 break;
1520 }
1521 default: {
1522 struct kvm *kvm = filp->private_data;
1523 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1524 }
1525 #else /* CONFIG_PPC_BOOK3S_64 */
1526 default:
1527 r = -ENOTTY;
1528 #endif
1529 }
1530 out:
1531 return r;
1532 }
1533
1534 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1535 static unsigned long nr_lpids;
1536
1537 long kvmppc_alloc_lpid(void)
1538 {
1539 long lpid;
1540
1541 do {
1542 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1543 if (lpid >= nr_lpids) {
1544 pr_err("%s: No LPIDs free\n", __func__);
1545 return -ENOMEM;
1546 }
1547 } while (test_and_set_bit(lpid, lpid_inuse));
1548
1549 return lpid;
1550 }
1551 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1552
1553 void kvmppc_claim_lpid(long lpid)
1554 {
1555 set_bit(lpid, lpid_inuse);
1556 }
1557 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1558
1559 void kvmppc_free_lpid(long lpid)
1560 {
1561 clear_bit(lpid, lpid_inuse);
1562 }
1563 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1564
1565 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1566 {
1567 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1568 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1569 }
1570 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1571
1572 int kvm_arch_init(void *opaque)
1573 {
1574 return 0;
1575 }
1576
1577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);