]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kvm/powerpc.c
KVM: PPC: VFIO: Add in-kernel acceleration for VFIO
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <linux/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50
51
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54 return !!(v->arch.pending_exceptions) ||
55 v->requests;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60 return 1;
61 }
62
63 /*
64 * Common checks before entering the guest world. Call with interrupts
65 * disabled.
66 *
67 * returns:
68 *
69 * == 1 if we're ready to go into guest state
70 * <= 0 if we need to go back to the host with return value
71 */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74 int r;
75
76 WARN_ON(irqs_disabled());
77 hard_irq_disable();
78
79 while (true) {
80 if (need_resched()) {
81 local_irq_enable();
82 cond_resched();
83 hard_irq_disable();
84 continue;
85 }
86
87 if (signal_pending(current)) {
88 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89 vcpu->run->exit_reason = KVM_EXIT_INTR;
90 r = -EINTR;
91 break;
92 }
93
94 vcpu->mode = IN_GUEST_MODE;
95
96 /*
97 * Reading vcpu->requests must happen after setting vcpu->mode,
98 * so we don't miss a request because the requester sees
99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100 * before next entering the guest (and thus doesn't IPI).
101 * This also orders the write to mode from any reads
102 * to the page tables done while the VCPU is running.
103 * Please see the comment in kvm_flush_remote_tlbs.
104 */
105 smp_mb();
106
107 if (vcpu->requests) {
108 /* Make sure we process requests preemptable */
109 local_irq_enable();
110 trace_kvm_check_requests(vcpu);
111 r = kvmppc_core_check_requests(vcpu);
112 hard_irq_disable();
113 if (r > 0)
114 continue;
115 break;
116 }
117
118 if (kvmppc_core_prepare_to_enter(vcpu)) {
119 /* interrupts got enabled in between, so we
120 are back at square 1 */
121 continue;
122 }
123
124 guest_enter_irqoff();
125 return 1;
126 }
127
128 /* return to host */
129 local_irq_enable();
130 return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138 int i;
139
140 shared->sprg0 = swab64(shared->sprg0);
141 shared->sprg1 = swab64(shared->sprg1);
142 shared->sprg2 = swab64(shared->sprg2);
143 shared->sprg3 = swab64(shared->sprg3);
144 shared->srr0 = swab64(shared->srr0);
145 shared->srr1 = swab64(shared->srr1);
146 shared->dar = swab64(shared->dar);
147 shared->msr = swab64(shared->msr);
148 shared->dsisr = swab32(shared->dsisr);
149 shared->int_pending = swab32(shared->int_pending);
150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157 int nr = kvmppc_get_gpr(vcpu, 11);
158 int r;
159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163 unsigned long r2 = 0;
164
165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166 /* 32 bit mode */
167 param1 &= 0xffffffff;
168 param2 &= 0xffffffff;
169 param3 &= 0xffffffff;
170 param4 &= 0xffffffff;
171 }
172
173 switch (nr) {
174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175 {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177 /* Book3S can be little endian, find it out here */
178 int shared_big_endian = true;
179 if (vcpu->arch.intr_msr & MSR_LE)
180 shared_big_endian = false;
181 if (shared_big_endian != vcpu->arch.shared_big_endian)
182 kvmppc_swab_shared(vcpu);
183 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187 /*
188 * Older versions of the Linux magic page code had
189 * a bug where they would map their trampoline code
190 * NX. If that's the case, remove !PR NX capability.
191 */
192 vcpu->arch.disable_kernel_nx = true;
193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194 }
195
196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200 /*
201 * Make sure our 4k magic page is in the same window of a 64k
202 * page within the guest and within the host's page.
203 */
204 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205 ((ulong)vcpu->arch.shared & 0xf000)) {
206 void *old_shared = vcpu->arch.shared;
207 ulong shared = (ulong)vcpu->arch.shared;
208 void *new_shared;
209
210 shared &= PAGE_MASK;
211 shared |= vcpu->arch.magic_page_pa & 0xf000;
212 new_shared = (void*)shared;
213 memcpy(new_shared, old_shared, 0x1000);
214 vcpu->arch.shared = new_shared;
215 }
216 #endif
217
218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220 r = EV_SUCCESS;
221 break;
222 }
223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229 /* Second return value is in r4 */
230 break;
231 case EV_HCALL_TOKEN(EV_IDLE):
232 r = EV_SUCCESS;
233 kvm_vcpu_block(vcpu);
234 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235 break;
236 default:
237 r = EV_UNIMPLEMENTED;
238 break;
239 }
240
241 kvmppc_set_gpr(vcpu, 4, r2);
242
243 return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249 int r = false;
250
251 /* We have to know what CPU to virtualize */
252 if (!vcpu->arch.pvr)
253 goto out;
254
255 /* PAPR only works with book3s_64 */
256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257 goto out;
258
259 /* HV KVM can only do PAPR mode for now */
260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264 if (!cpu_has_feature(CPU_FTR_EMB_HV))
265 goto out;
266 #endif
267
268 r = true;
269
270 out:
271 vcpu->arch.sane = r;
272 return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278 enum emulation_result er;
279 int r;
280
281 er = kvmppc_emulate_loadstore(vcpu);
282 switch (er) {
283 case EMULATE_DONE:
284 /* Future optimization: only reload non-volatiles if they were
285 * actually modified. */
286 r = RESUME_GUEST_NV;
287 break;
288 case EMULATE_AGAIN:
289 r = RESUME_GUEST;
290 break;
291 case EMULATE_DO_MMIO:
292 run->exit_reason = KVM_EXIT_MMIO;
293 /* We must reload nonvolatiles because "update" load/store
294 * instructions modify register state. */
295 /* Future optimization: only reload non-volatiles if they were
296 * actually modified. */
297 r = RESUME_HOST_NV;
298 break;
299 case EMULATE_FAIL:
300 {
301 u32 last_inst;
302
303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304 /* XXX Deliver Program interrupt to guest. */
305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306 r = RESUME_HOST;
307 break;
308 }
309 default:
310 WARN_ON(1);
311 r = RESUME_GUEST;
312 }
313
314 return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319 bool data)
320 {
321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322 struct kvmppc_pte pte;
323 int r;
324
325 vcpu->stat.st++;
326
327 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328 XLATE_WRITE, &pte);
329 if (r < 0)
330 return r;
331
332 *eaddr = pte.raddr;
333
334 if (!pte.may_write)
335 return -EPERM;
336
337 /* Magic page override */
338 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341 void *magic = vcpu->arch.shared;
342 magic += pte.eaddr & 0xfff;
343 memcpy(magic, ptr, size);
344 return EMULATE_DONE;
345 }
346
347 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348 return EMULATE_DO_MMIO;
349
350 return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355 bool data)
356 {
357 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358 struct kvmppc_pte pte;
359 int rc;
360
361 vcpu->stat.ld++;
362
363 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364 XLATE_READ, &pte);
365 if (rc)
366 return rc;
367
368 *eaddr = pte.raddr;
369
370 if (!pte.may_read)
371 return -EPERM;
372
373 if (!data && !pte.may_execute)
374 return -ENOEXEC;
375
376 /* Magic page override */
377 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380 void *magic = vcpu->arch.shared;
381 magic += pte.eaddr & 0xfff;
382 memcpy(ptr, magic, size);
383 return EMULATE_DONE;
384 }
385
386 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387 return EMULATE_DO_MMIO;
388
389 return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392
393 int kvm_arch_hardware_enable(void)
394 {
395 return 0;
396 }
397
398 int kvm_arch_hardware_setup(void)
399 {
400 return 0;
401 }
402
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405 *(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410 struct kvmppc_ops *kvm_ops = NULL;
411 /*
412 * if we have both HV and PR enabled, default is HV
413 */
414 if (type == 0) {
415 if (kvmppc_hv_ops)
416 kvm_ops = kvmppc_hv_ops;
417 else
418 kvm_ops = kvmppc_pr_ops;
419 if (!kvm_ops)
420 goto err_out;
421 } else if (type == KVM_VM_PPC_HV) {
422 if (!kvmppc_hv_ops)
423 goto err_out;
424 kvm_ops = kvmppc_hv_ops;
425 } else if (type == KVM_VM_PPC_PR) {
426 if (!kvmppc_pr_ops)
427 goto err_out;
428 kvm_ops = kvmppc_pr_ops;
429 } else
430 goto err_out;
431
432 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433 return -ENOENT;
434
435 kvm->arch.kvm_ops = kvm_ops;
436 return kvmppc_core_init_vm(kvm);
437 err_out:
438 return -EINVAL;
439 }
440
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443 return false;
444 }
445
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448 return 0;
449 }
450
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453 unsigned int i;
454 struct kvm_vcpu *vcpu;
455
456 #ifdef CONFIG_KVM_XICS
457 /*
458 * We call kick_all_cpus_sync() to ensure that all
459 * CPUs have executed any pending IPIs before we
460 * continue and free VCPUs structures below.
461 */
462 if (is_kvmppc_hv_enabled(kvm))
463 kick_all_cpus_sync();
464 #endif
465
466 kvm_for_each_vcpu(i, vcpu, kvm)
467 kvm_arch_vcpu_free(vcpu);
468
469 mutex_lock(&kvm->lock);
470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471 kvm->vcpus[i] = NULL;
472
473 atomic_set(&kvm->online_vcpus, 0);
474
475 kvmppc_core_destroy_vm(kvm);
476
477 mutex_unlock(&kvm->lock);
478
479 /* drop the module reference */
480 module_put(kvm->arch.kvm_ops->owner);
481 }
482
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485 int r;
486 /* Assume we're using HV mode when the HV module is loaded */
487 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488
489 if (kvm) {
490 /*
491 * Hooray - we know which VM type we're running on. Depend on
492 * that rather than the guess above.
493 */
494 hv_enabled = is_kvmppc_hv_enabled(kvm);
495 }
496
497 switch (ext) {
498 #ifdef CONFIG_BOOKE
499 case KVM_CAP_PPC_BOOKE_SREGS:
500 case KVM_CAP_PPC_BOOKE_WATCHDOG:
501 case KVM_CAP_PPC_EPR:
502 #else
503 case KVM_CAP_PPC_SEGSTATE:
504 case KVM_CAP_PPC_HIOR:
505 case KVM_CAP_PPC_PAPR:
506 #endif
507 case KVM_CAP_PPC_UNSET_IRQ:
508 case KVM_CAP_PPC_IRQ_LEVEL:
509 case KVM_CAP_ENABLE_CAP:
510 case KVM_CAP_ENABLE_CAP_VM:
511 case KVM_CAP_ONE_REG:
512 case KVM_CAP_IOEVENTFD:
513 case KVM_CAP_DEVICE_CTRL:
514 r = 1;
515 break;
516 case KVM_CAP_PPC_PAIRED_SINGLES:
517 case KVM_CAP_PPC_OSI:
518 case KVM_CAP_PPC_GET_PVINFO:
519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
520 case KVM_CAP_SW_TLB:
521 #endif
522 /* We support this only for PR */
523 r = !hv_enabled;
524 break;
525 #ifdef CONFIG_KVM_MMIO
526 case KVM_CAP_COALESCED_MMIO:
527 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
528 break;
529 #endif
530 #ifdef CONFIG_KVM_MPIC
531 case KVM_CAP_IRQ_MPIC:
532 r = 1;
533 break;
534 #endif
535
536 #ifdef CONFIG_PPC_BOOK3S_64
537 case KVM_CAP_SPAPR_TCE:
538 case KVM_CAP_SPAPR_TCE_64:
539 /* fallthrough */
540 case KVM_CAP_SPAPR_TCE_VFIO:
541 case KVM_CAP_PPC_RTAS:
542 case KVM_CAP_PPC_FIXUP_HCALL:
543 case KVM_CAP_PPC_ENABLE_HCALL:
544 #ifdef CONFIG_KVM_XICS
545 case KVM_CAP_IRQ_XICS:
546 #endif
547 r = 1;
548 break;
549
550 case KVM_CAP_PPC_ALLOC_HTAB:
551 r = hv_enabled;
552 break;
553 #endif /* CONFIG_PPC_BOOK3S_64 */
554 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
555 case KVM_CAP_PPC_SMT:
556 r = 0;
557 if (hv_enabled) {
558 if (cpu_has_feature(CPU_FTR_ARCH_300))
559 r = 1;
560 else
561 r = threads_per_subcore;
562 }
563 break;
564 case KVM_CAP_PPC_RMA:
565 r = 0;
566 break;
567 case KVM_CAP_PPC_HWRNG:
568 r = kvmppc_hwrng_present();
569 break;
570 case KVM_CAP_PPC_MMU_RADIX:
571 r = !!(hv_enabled && radix_enabled());
572 break;
573 case KVM_CAP_PPC_MMU_HASH_V3:
574 r = !!(hv_enabled && !radix_enabled() &&
575 cpu_has_feature(CPU_FTR_ARCH_300));
576 break;
577 #endif
578 case KVM_CAP_SYNC_MMU:
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 r = hv_enabled;
581 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
582 r = 1;
583 #else
584 r = 0;
585 #endif
586 break;
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588 case KVM_CAP_PPC_HTAB_FD:
589 r = hv_enabled;
590 break;
591 #endif
592 case KVM_CAP_NR_VCPUS:
593 /*
594 * Recommending a number of CPUs is somewhat arbitrary; we
595 * return the number of present CPUs for -HV (since a host
596 * will have secondary threads "offline"), and for other KVM
597 * implementations just count online CPUs.
598 */
599 if (hv_enabled)
600 r = num_present_cpus();
601 else
602 r = num_online_cpus();
603 break;
604 case KVM_CAP_NR_MEMSLOTS:
605 r = KVM_USER_MEM_SLOTS;
606 break;
607 case KVM_CAP_MAX_VCPUS:
608 r = KVM_MAX_VCPUS;
609 break;
610 #ifdef CONFIG_PPC_BOOK3S_64
611 case KVM_CAP_PPC_GET_SMMU_INFO:
612 r = 1;
613 break;
614 case KVM_CAP_SPAPR_MULTITCE:
615 r = 1;
616 break;
617 #endif
618 case KVM_CAP_PPC_HTM:
619 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
620 is_kvmppc_hv_enabled(kvm);
621 break;
622 default:
623 r = 0;
624 break;
625 }
626 return r;
627
628 }
629
630 long kvm_arch_dev_ioctl(struct file *filp,
631 unsigned int ioctl, unsigned long arg)
632 {
633 return -EINVAL;
634 }
635
636 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
637 struct kvm_memory_slot *dont)
638 {
639 kvmppc_core_free_memslot(kvm, free, dont);
640 }
641
642 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
643 unsigned long npages)
644 {
645 return kvmppc_core_create_memslot(kvm, slot, npages);
646 }
647
648 int kvm_arch_prepare_memory_region(struct kvm *kvm,
649 struct kvm_memory_slot *memslot,
650 const struct kvm_userspace_memory_region *mem,
651 enum kvm_mr_change change)
652 {
653 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
654 }
655
656 void kvm_arch_commit_memory_region(struct kvm *kvm,
657 const struct kvm_userspace_memory_region *mem,
658 const struct kvm_memory_slot *old,
659 const struct kvm_memory_slot *new,
660 enum kvm_mr_change change)
661 {
662 kvmppc_core_commit_memory_region(kvm, mem, old, new);
663 }
664
665 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
666 struct kvm_memory_slot *slot)
667 {
668 kvmppc_core_flush_memslot(kvm, slot);
669 }
670
671 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
672 {
673 struct kvm_vcpu *vcpu;
674 vcpu = kvmppc_core_vcpu_create(kvm, id);
675 if (!IS_ERR(vcpu)) {
676 vcpu->arch.wqp = &vcpu->wq;
677 kvmppc_create_vcpu_debugfs(vcpu, id);
678 }
679 return vcpu;
680 }
681
682 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
683 {
684 }
685
686 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
687 {
688 /* Make sure we're not using the vcpu anymore */
689 hrtimer_cancel(&vcpu->arch.dec_timer);
690
691 kvmppc_remove_vcpu_debugfs(vcpu);
692
693 switch (vcpu->arch.irq_type) {
694 case KVMPPC_IRQ_MPIC:
695 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
696 break;
697 case KVMPPC_IRQ_XICS:
698 kvmppc_xics_free_icp(vcpu);
699 break;
700 }
701
702 kvmppc_core_vcpu_free(vcpu);
703 }
704
705 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
706 {
707 kvm_arch_vcpu_free(vcpu);
708 }
709
710 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
711 {
712 return kvmppc_core_pending_dec(vcpu);
713 }
714
715 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
716 {
717 struct kvm_vcpu *vcpu;
718
719 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
720 kvmppc_decrementer_func(vcpu);
721
722 return HRTIMER_NORESTART;
723 }
724
725 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
726 {
727 int ret;
728
729 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
730 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
731 vcpu->arch.dec_expires = ~(u64)0;
732
733 #ifdef CONFIG_KVM_EXIT_TIMING
734 mutex_init(&vcpu->arch.exit_timing_lock);
735 #endif
736 ret = kvmppc_subarch_vcpu_init(vcpu);
737 return ret;
738 }
739
740 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
741 {
742 kvmppc_mmu_destroy(vcpu);
743 kvmppc_subarch_vcpu_uninit(vcpu);
744 }
745
746 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
747 {
748 #ifdef CONFIG_BOOKE
749 /*
750 * vrsave (formerly usprg0) isn't used by Linux, but may
751 * be used by the guest.
752 *
753 * On non-booke this is associated with Altivec and
754 * is handled by code in book3s.c.
755 */
756 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
757 #endif
758 kvmppc_core_vcpu_load(vcpu, cpu);
759 }
760
761 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
762 {
763 kvmppc_core_vcpu_put(vcpu);
764 #ifdef CONFIG_BOOKE
765 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
766 #endif
767 }
768
769 /*
770 * irq_bypass_add_producer and irq_bypass_del_producer are only
771 * useful if the architecture supports PCI passthrough.
772 * irq_bypass_stop and irq_bypass_start are not needed and so
773 * kvm_ops are not defined for them.
774 */
775 bool kvm_arch_has_irq_bypass(void)
776 {
777 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
778 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
779 }
780
781 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
782 struct irq_bypass_producer *prod)
783 {
784 struct kvm_kernel_irqfd *irqfd =
785 container_of(cons, struct kvm_kernel_irqfd, consumer);
786 struct kvm *kvm = irqfd->kvm;
787
788 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
789 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
790
791 return 0;
792 }
793
794 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
795 struct irq_bypass_producer *prod)
796 {
797 struct kvm_kernel_irqfd *irqfd =
798 container_of(cons, struct kvm_kernel_irqfd, consumer);
799 struct kvm *kvm = irqfd->kvm;
800
801 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
802 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
803 }
804
805 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
806 struct kvm_run *run)
807 {
808 u64 uninitialized_var(gpr);
809
810 if (run->mmio.len > sizeof(gpr)) {
811 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
812 return;
813 }
814
815 if (!vcpu->arch.mmio_host_swabbed) {
816 switch (run->mmio.len) {
817 case 8: gpr = *(u64 *)run->mmio.data; break;
818 case 4: gpr = *(u32 *)run->mmio.data; break;
819 case 2: gpr = *(u16 *)run->mmio.data; break;
820 case 1: gpr = *(u8 *)run->mmio.data; break;
821 }
822 } else {
823 switch (run->mmio.len) {
824 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
825 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
826 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
827 case 1: gpr = *(u8 *)run->mmio.data; break;
828 }
829 }
830
831 if (vcpu->arch.mmio_sign_extend) {
832 switch (run->mmio.len) {
833 #ifdef CONFIG_PPC64
834 case 4:
835 gpr = (s64)(s32)gpr;
836 break;
837 #endif
838 case 2:
839 gpr = (s64)(s16)gpr;
840 break;
841 case 1:
842 gpr = (s64)(s8)gpr;
843 break;
844 }
845 }
846
847 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
848
849 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
850 case KVM_MMIO_REG_GPR:
851 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
852 break;
853 case KVM_MMIO_REG_FPR:
854 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
855 break;
856 #ifdef CONFIG_PPC_BOOK3S
857 case KVM_MMIO_REG_QPR:
858 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
859 break;
860 case KVM_MMIO_REG_FQPR:
861 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
862 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
863 break;
864 #endif
865 default:
866 BUG();
867 }
868 }
869
870 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
871 unsigned int rt, unsigned int bytes,
872 int is_default_endian, int sign_extend)
873 {
874 int idx, ret;
875 bool host_swabbed;
876
877 /* Pity C doesn't have a logical XOR operator */
878 if (kvmppc_need_byteswap(vcpu)) {
879 host_swabbed = is_default_endian;
880 } else {
881 host_swabbed = !is_default_endian;
882 }
883
884 if (bytes > sizeof(run->mmio.data)) {
885 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
886 run->mmio.len);
887 }
888
889 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
890 run->mmio.len = bytes;
891 run->mmio.is_write = 0;
892
893 vcpu->arch.io_gpr = rt;
894 vcpu->arch.mmio_host_swabbed = host_swabbed;
895 vcpu->mmio_needed = 1;
896 vcpu->mmio_is_write = 0;
897 vcpu->arch.mmio_sign_extend = sign_extend;
898
899 idx = srcu_read_lock(&vcpu->kvm->srcu);
900
901 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
902 bytes, &run->mmio.data);
903
904 srcu_read_unlock(&vcpu->kvm->srcu, idx);
905
906 if (!ret) {
907 kvmppc_complete_mmio_load(vcpu, run);
908 vcpu->mmio_needed = 0;
909 return EMULATE_DONE;
910 }
911
912 return EMULATE_DO_MMIO;
913 }
914
915 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
916 unsigned int rt, unsigned int bytes,
917 int is_default_endian)
918 {
919 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
920 }
921 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
922
923 /* Same as above, but sign extends */
924 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
925 unsigned int rt, unsigned int bytes,
926 int is_default_endian)
927 {
928 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
929 }
930
931 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
932 u64 val, unsigned int bytes, int is_default_endian)
933 {
934 void *data = run->mmio.data;
935 int idx, ret;
936 bool host_swabbed;
937
938 /* Pity C doesn't have a logical XOR operator */
939 if (kvmppc_need_byteswap(vcpu)) {
940 host_swabbed = is_default_endian;
941 } else {
942 host_swabbed = !is_default_endian;
943 }
944
945 if (bytes > sizeof(run->mmio.data)) {
946 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
947 run->mmio.len);
948 }
949
950 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
951 run->mmio.len = bytes;
952 run->mmio.is_write = 1;
953 vcpu->mmio_needed = 1;
954 vcpu->mmio_is_write = 1;
955
956 /* Store the value at the lowest bytes in 'data'. */
957 if (!host_swabbed) {
958 switch (bytes) {
959 case 8: *(u64 *)data = val; break;
960 case 4: *(u32 *)data = val; break;
961 case 2: *(u16 *)data = val; break;
962 case 1: *(u8 *)data = val; break;
963 }
964 } else {
965 switch (bytes) {
966 case 8: *(u64 *)data = swab64(val); break;
967 case 4: *(u32 *)data = swab32(val); break;
968 case 2: *(u16 *)data = swab16(val); break;
969 case 1: *(u8 *)data = val; break;
970 }
971 }
972
973 idx = srcu_read_lock(&vcpu->kvm->srcu);
974
975 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
976 bytes, &run->mmio.data);
977
978 srcu_read_unlock(&vcpu->kvm->srcu, idx);
979
980 if (!ret) {
981 vcpu->mmio_needed = 0;
982 return EMULATE_DONE;
983 }
984
985 return EMULATE_DO_MMIO;
986 }
987 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
988
989 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
990 {
991 int r = 0;
992 union kvmppc_one_reg val;
993 int size;
994
995 size = one_reg_size(reg->id);
996 if (size > sizeof(val))
997 return -EINVAL;
998
999 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1000 if (r == -EINVAL) {
1001 r = 0;
1002 switch (reg->id) {
1003 #ifdef CONFIG_ALTIVEC
1004 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1005 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1006 r = -ENXIO;
1007 break;
1008 }
1009 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1010 break;
1011 case KVM_REG_PPC_VSCR:
1012 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1013 r = -ENXIO;
1014 break;
1015 }
1016 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1017 break;
1018 case KVM_REG_PPC_VRSAVE:
1019 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1020 break;
1021 #endif /* CONFIG_ALTIVEC */
1022 default:
1023 r = -EINVAL;
1024 break;
1025 }
1026 }
1027
1028 if (r)
1029 return r;
1030
1031 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1032 r = -EFAULT;
1033
1034 return r;
1035 }
1036
1037 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1038 {
1039 int r;
1040 union kvmppc_one_reg val;
1041 int size;
1042
1043 size = one_reg_size(reg->id);
1044 if (size > sizeof(val))
1045 return -EINVAL;
1046
1047 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1048 return -EFAULT;
1049
1050 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1051 if (r == -EINVAL) {
1052 r = 0;
1053 switch (reg->id) {
1054 #ifdef CONFIG_ALTIVEC
1055 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1056 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1057 r = -ENXIO;
1058 break;
1059 }
1060 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1061 break;
1062 case KVM_REG_PPC_VSCR:
1063 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1064 r = -ENXIO;
1065 break;
1066 }
1067 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1068 break;
1069 case KVM_REG_PPC_VRSAVE:
1070 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1071 r = -ENXIO;
1072 break;
1073 }
1074 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1075 break;
1076 #endif /* CONFIG_ALTIVEC */
1077 default:
1078 r = -EINVAL;
1079 break;
1080 }
1081 }
1082
1083 return r;
1084 }
1085
1086 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1087 {
1088 int r;
1089 sigset_t sigsaved;
1090
1091 if (vcpu->sigset_active)
1092 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1093
1094 if (vcpu->mmio_needed) {
1095 if (!vcpu->mmio_is_write)
1096 kvmppc_complete_mmio_load(vcpu, run);
1097 vcpu->mmio_needed = 0;
1098 } else if (vcpu->arch.osi_needed) {
1099 u64 *gprs = run->osi.gprs;
1100 int i;
1101
1102 for (i = 0; i < 32; i++)
1103 kvmppc_set_gpr(vcpu, i, gprs[i]);
1104 vcpu->arch.osi_needed = 0;
1105 } else if (vcpu->arch.hcall_needed) {
1106 int i;
1107
1108 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1109 for (i = 0; i < 9; ++i)
1110 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1111 vcpu->arch.hcall_needed = 0;
1112 #ifdef CONFIG_BOOKE
1113 } else if (vcpu->arch.epr_needed) {
1114 kvmppc_set_epr(vcpu, run->epr.epr);
1115 vcpu->arch.epr_needed = 0;
1116 #endif
1117 }
1118
1119 r = kvmppc_vcpu_run(run, vcpu);
1120
1121 if (vcpu->sigset_active)
1122 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1123
1124 return r;
1125 }
1126
1127 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1128 {
1129 if (irq->irq == KVM_INTERRUPT_UNSET) {
1130 kvmppc_core_dequeue_external(vcpu);
1131 return 0;
1132 }
1133
1134 kvmppc_core_queue_external(vcpu, irq);
1135
1136 kvm_vcpu_kick(vcpu);
1137
1138 return 0;
1139 }
1140
1141 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1142 struct kvm_enable_cap *cap)
1143 {
1144 int r;
1145
1146 if (cap->flags)
1147 return -EINVAL;
1148
1149 switch (cap->cap) {
1150 case KVM_CAP_PPC_OSI:
1151 r = 0;
1152 vcpu->arch.osi_enabled = true;
1153 break;
1154 case KVM_CAP_PPC_PAPR:
1155 r = 0;
1156 vcpu->arch.papr_enabled = true;
1157 break;
1158 case KVM_CAP_PPC_EPR:
1159 r = 0;
1160 if (cap->args[0])
1161 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1162 else
1163 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1164 break;
1165 #ifdef CONFIG_BOOKE
1166 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1167 r = 0;
1168 vcpu->arch.watchdog_enabled = true;
1169 break;
1170 #endif
1171 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1172 case KVM_CAP_SW_TLB: {
1173 struct kvm_config_tlb cfg;
1174 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1175
1176 r = -EFAULT;
1177 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1178 break;
1179
1180 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1181 break;
1182 }
1183 #endif
1184 #ifdef CONFIG_KVM_MPIC
1185 case KVM_CAP_IRQ_MPIC: {
1186 struct fd f;
1187 struct kvm_device *dev;
1188
1189 r = -EBADF;
1190 f = fdget(cap->args[0]);
1191 if (!f.file)
1192 break;
1193
1194 r = -EPERM;
1195 dev = kvm_device_from_filp(f.file);
1196 if (dev)
1197 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1198
1199 fdput(f);
1200 break;
1201 }
1202 #endif
1203 #ifdef CONFIG_KVM_XICS
1204 case KVM_CAP_IRQ_XICS: {
1205 struct fd f;
1206 struct kvm_device *dev;
1207
1208 r = -EBADF;
1209 f = fdget(cap->args[0]);
1210 if (!f.file)
1211 break;
1212
1213 r = -EPERM;
1214 dev = kvm_device_from_filp(f.file);
1215 if (dev)
1216 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1217
1218 fdput(f);
1219 break;
1220 }
1221 #endif /* CONFIG_KVM_XICS */
1222 default:
1223 r = -EINVAL;
1224 break;
1225 }
1226
1227 if (!r)
1228 r = kvmppc_sanity_check(vcpu);
1229
1230 return r;
1231 }
1232
1233 bool kvm_arch_intc_initialized(struct kvm *kvm)
1234 {
1235 #ifdef CONFIG_KVM_MPIC
1236 if (kvm->arch.mpic)
1237 return true;
1238 #endif
1239 #ifdef CONFIG_KVM_XICS
1240 if (kvm->arch.xics)
1241 return true;
1242 #endif
1243 return false;
1244 }
1245
1246 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1247 struct kvm_mp_state *mp_state)
1248 {
1249 return -EINVAL;
1250 }
1251
1252 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1253 struct kvm_mp_state *mp_state)
1254 {
1255 return -EINVAL;
1256 }
1257
1258 long kvm_arch_vcpu_ioctl(struct file *filp,
1259 unsigned int ioctl, unsigned long arg)
1260 {
1261 struct kvm_vcpu *vcpu = filp->private_data;
1262 void __user *argp = (void __user *)arg;
1263 long r;
1264
1265 switch (ioctl) {
1266 case KVM_INTERRUPT: {
1267 struct kvm_interrupt irq;
1268 r = -EFAULT;
1269 if (copy_from_user(&irq, argp, sizeof(irq)))
1270 goto out;
1271 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1272 goto out;
1273 }
1274
1275 case KVM_ENABLE_CAP:
1276 {
1277 struct kvm_enable_cap cap;
1278 r = -EFAULT;
1279 if (copy_from_user(&cap, argp, sizeof(cap)))
1280 goto out;
1281 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1282 break;
1283 }
1284
1285 case KVM_SET_ONE_REG:
1286 case KVM_GET_ONE_REG:
1287 {
1288 struct kvm_one_reg reg;
1289 r = -EFAULT;
1290 if (copy_from_user(&reg, argp, sizeof(reg)))
1291 goto out;
1292 if (ioctl == KVM_SET_ONE_REG)
1293 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1294 else
1295 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1296 break;
1297 }
1298
1299 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1300 case KVM_DIRTY_TLB: {
1301 struct kvm_dirty_tlb dirty;
1302 r = -EFAULT;
1303 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1304 goto out;
1305 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1306 break;
1307 }
1308 #endif
1309 default:
1310 r = -EINVAL;
1311 }
1312
1313 out:
1314 return r;
1315 }
1316
1317 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1318 {
1319 return VM_FAULT_SIGBUS;
1320 }
1321
1322 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1323 {
1324 u32 inst_nop = 0x60000000;
1325 #ifdef CONFIG_KVM_BOOKE_HV
1326 u32 inst_sc1 = 0x44000022;
1327 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1328 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1329 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1330 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1331 #else
1332 u32 inst_lis = 0x3c000000;
1333 u32 inst_ori = 0x60000000;
1334 u32 inst_sc = 0x44000002;
1335 u32 inst_imm_mask = 0xffff;
1336
1337 /*
1338 * The hypercall to get into KVM from within guest context is as
1339 * follows:
1340 *
1341 * lis r0, r0, KVM_SC_MAGIC_R0@h
1342 * ori r0, KVM_SC_MAGIC_R0@l
1343 * sc
1344 * nop
1345 */
1346 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1347 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1348 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1349 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1350 #endif
1351
1352 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1353
1354 return 0;
1355 }
1356
1357 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1358 bool line_status)
1359 {
1360 if (!irqchip_in_kernel(kvm))
1361 return -ENXIO;
1362
1363 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1364 irq_event->irq, irq_event->level,
1365 line_status);
1366 return 0;
1367 }
1368
1369
1370 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1371 struct kvm_enable_cap *cap)
1372 {
1373 int r;
1374
1375 if (cap->flags)
1376 return -EINVAL;
1377
1378 switch (cap->cap) {
1379 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1380 case KVM_CAP_PPC_ENABLE_HCALL: {
1381 unsigned long hcall = cap->args[0];
1382
1383 r = -EINVAL;
1384 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1385 cap->args[1] > 1)
1386 break;
1387 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1388 break;
1389 if (cap->args[1])
1390 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1391 else
1392 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1393 r = 0;
1394 break;
1395 }
1396 #endif
1397 default:
1398 r = -EINVAL;
1399 break;
1400 }
1401
1402 return r;
1403 }
1404
1405 long kvm_arch_vm_ioctl(struct file *filp,
1406 unsigned int ioctl, unsigned long arg)
1407 {
1408 struct kvm *kvm __maybe_unused = filp->private_data;
1409 void __user *argp = (void __user *)arg;
1410 long r;
1411
1412 switch (ioctl) {
1413 case KVM_PPC_GET_PVINFO: {
1414 struct kvm_ppc_pvinfo pvinfo;
1415 memset(&pvinfo, 0, sizeof(pvinfo));
1416 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1417 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1418 r = -EFAULT;
1419 goto out;
1420 }
1421
1422 break;
1423 }
1424 case KVM_ENABLE_CAP:
1425 {
1426 struct kvm_enable_cap cap;
1427 r = -EFAULT;
1428 if (copy_from_user(&cap, argp, sizeof(cap)))
1429 goto out;
1430 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1431 break;
1432 }
1433 #ifdef CONFIG_PPC_BOOK3S_64
1434 case KVM_CREATE_SPAPR_TCE_64: {
1435 struct kvm_create_spapr_tce_64 create_tce_64;
1436
1437 r = -EFAULT;
1438 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1439 goto out;
1440 if (create_tce_64.flags) {
1441 r = -EINVAL;
1442 goto out;
1443 }
1444 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1445 goto out;
1446 }
1447 case KVM_CREATE_SPAPR_TCE: {
1448 struct kvm_create_spapr_tce create_tce;
1449 struct kvm_create_spapr_tce_64 create_tce_64;
1450
1451 r = -EFAULT;
1452 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1453 goto out;
1454
1455 create_tce_64.liobn = create_tce.liobn;
1456 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1457 create_tce_64.offset = 0;
1458 create_tce_64.size = create_tce.window_size >>
1459 IOMMU_PAGE_SHIFT_4K;
1460 create_tce_64.flags = 0;
1461 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1462 goto out;
1463 }
1464 case KVM_PPC_GET_SMMU_INFO: {
1465 struct kvm_ppc_smmu_info info;
1466 struct kvm *kvm = filp->private_data;
1467
1468 memset(&info, 0, sizeof(info));
1469 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1470 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1471 r = -EFAULT;
1472 break;
1473 }
1474 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1475 struct kvm *kvm = filp->private_data;
1476
1477 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1478 break;
1479 }
1480 case KVM_PPC_CONFIGURE_V3_MMU: {
1481 struct kvm *kvm = filp->private_data;
1482 struct kvm_ppc_mmuv3_cfg cfg;
1483
1484 r = -EINVAL;
1485 if (!kvm->arch.kvm_ops->configure_mmu)
1486 goto out;
1487 r = -EFAULT;
1488 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1489 goto out;
1490 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1491 break;
1492 }
1493 case KVM_PPC_GET_RMMU_INFO: {
1494 struct kvm *kvm = filp->private_data;
1495 struct kvm_ppc_rmmu_info info;
1496
1497 r = -EINVAL;
1498 if (!kvm->arch.kvm_ops->get_rmmu_info)
1499 goto out;
1500 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1501 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1502 r = -EFAULT;
1503 break;
1504 }
1505 default: {
1506 struct kvm *kvm = filp->private_data;
1507 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1508 }
1509 #else /* CONFIG_PPC_BOOK3S_64 */
1510 default:
1511 r = -ENOTTY;
1512 #endif
1513 }
1514 out:
1515 return r;
1516 }
1517
1518 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1519 static unsigned long nr_lpids;
1520
1521 long kvmppc_alloc_lpid(void)
1522 {
1523 long lpid;
1524
1525 do {
1526 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1527 if (lpid >= nr_lpids) {
1528 pr_err("%s: No LPIDs free\n", __func__);
1529 return -ENOMEM;
1530 }
1531 } while (test_and_set_bit(lpid, lpid_inuse));
1532
1533 return lpid;
1534 }
1535 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1536
1537 void kvmppc_claim_lpid(long lpid)
1538 {
1539 set_bit(lpid, lpid_inuse);
1540 }
1541 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1542
1543 void kvmppc_free_lpid(long lpid)
1544 {
1545 clear_bit(lpid, lpid_inuse);
1546 }
1547 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1548
1549 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1550 {
1551 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1552 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1553 }
1554 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1555
1556 int kvm_arch_init(void *opaque)
1557 {
1558 return 0;
1559 }
1560
1561 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);