]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/powerpc.c
Merge branch 'kvm-ppc-next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54
55
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 return !!(v->arch.pending_exceptions) ||
59 v->requests;
60 }
61
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 return 1;
65 }
66
67 /*
68 * Common checks before entering the guest world. Call with interrupts
69 * disabled.
70 *
71 * returns:
72 *
73 * == 1 if we're ready to go into guest state
74 * <= 0 if we need to go back to the host with return value
75 */
76 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
77 {
78 int r;
79
80 WARN_ON(irqs_disabled());
81 hard_irq_disable();
82
83 while (true) {
84 if (need_resched()) {
85 local_irq_enable();
86 cond_resched();
87 hard_irq_disable();
88 continue;
89 }
90
91 if (signal_pending(current)) {
92 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
93 vcpu->run->exit_reason = KVM_EXIT_INTR;
94 r = -EINTR;
95 break;
96 }
97
98 vcpu->mode = IN_GUEST_MODE;
99
100 /*
101 * Reading vcpu->requests must happen after setting vcpu->mode,
102 * so we don't miss a request because the requester sees
103 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
104 * before next entering the guest (and thus doesn't IPI).
105 * This also orders the write to mode from any reads
106 * to the page tables done while the VCPU is running.
107 * Please see the comment in kvm_flush_remote_tlbs.
108 */
109 smp_mb();
110
111 if (vcpu->requests) {
112 /* Make sure we process requests preemptable */
113 local_irq_enable();
114 trace_kvm_check_requests(vcpu);
115 r = kvmppc_core_check_requests(vcpu);
116 hard_irq_disable();
117 if (r > 0)
118 continue;
119 break;
120 }
121
122 if (kvmppc_core_prepare_to_enter(vcpu)) {
123 /* interrupts got enabled in between, so we
124 are back at square 1 */
125 continue;
126 }
127
128 guest_enter_irqoff();
129 return 1;
130 }
131
132 /* return to host */
133 local_irq_enable();
134 return r;
135 }
136 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
137
138 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
139 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
140 {
141 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
142 int i;
143
144 shared->sprg0 = swab64(shared->sprg0);
145 shared->sprg1 = swab64(shared->sprg1);
146 shared->sprg2 = swab64(shared->sprg2);
147 shared->sprg3 = swab64(shared->sprg3);
148 shared->srr0 = swab64(shared->srr0);
149 shared->srr1 = swab64(shared->srr1);
150 shared->dar = swab64(shared->dar);
151 shared->msr = swab64(shared->msr);
152 shared->dsisr = swab32(shared->dsisr);
153 shared->int_pending = swab32(shared->int_pending);
154 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
155 shared->sr[i] = swab32(shared->sr[i]);
156 }
157 #endif
158
159 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
160 {
161 int nr = kvmppc_get_gpr(vcpu, 11);
162 int r;
163 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
164 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
165 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
166 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
167 unsigned long r2 = 0;
168
169 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
170 /* 32 bit mode */
171 param1 &= 0xffffffff;
172 param2 &= 0xffffffff;
173 param3 &= 0xffffffff;
174 param4 &= 0xffffffff;
175 }
176
177 switch (nr) {
178 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
179 {
180 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
181 /* Book3S can be little endian, find it out here */
182 int shared_big_endian = true;
183 if (vcpu->arch.intr_msr & MSR_LE)
184 shared_big_endian = false;
185 if (shared_big_endian != vcpu->arch.shared_big_endian)
186 kvmppc_swab_shared(vcpu);
187 vcpu->arch.shared_big_endian = shared_big_endian;
188 #endif
189
190 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
191 /*
192 * Older versions of the Linux magic page code had
193 * a bug where they would map their trampoline code
194 * NX. If that's the case, remove !PR NX capability.
195 */
196 vcpu->arch.disable_kernel_nx = true;
197 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
198 }
199
200 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
201 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
202
203 #ifdef CONFIG_PPC_64K_PAGES
204 /*
205 * Make sure our 4k magic page is in the same window of a 64k
206 * page within the guest and within the host's page.
207 */
208 if ((vcpu->arch.magic_page_pa & 0xf000) !=
209 ((ulong)vcpu->arch.shared & 0xf000)) {
210 void *old_shared = vcpu->arch.shared;
211 ulong shared = (ulong)vcpu->arch.shared;
212 void *new_shared;
213
214 shared &= PAGE_MASK;
215 shared |= vcpu->arch.magic_page_pa & 0xf000;
216 new_shared = (void*)shared;
217 memcpy(new_shared, old_shared, 0x1000);
218 vcpu->arch.shared = new_shared;
219 }
220 #endif
221
222 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
223
224 r = EV_SUCCESS;
225 break;
226 }
227 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
228 r = EV_SUCCESS;
229 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
230 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
231 #endif
232
233 /* Second return value is in r4 */
234 break;
235 case EV_HCALL_TOKEN(EV_IDLE):
236 r = EV_SUCCESS;
237 kvm_vcpu_block(vcpu);
238 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
239 break;
240 default:
241 r = EV_UNIMPLEMENTED;
242 break;
243 }
244
245 kvmppc_set_gpr(vcpu, 4, r2);
246
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
250
251 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
252 {
253 int r = false;
254
255 /* We have to know what CPU to virtualize */
256 if (!vcpu->arch.pvr)
257 goto out;
258
259 /* PAPR only works with book3s_64 */
260 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
261 goto out;
262
263 /* HV KVM can only do PAPR mode for now */
264 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
265 goto out;
266
267 #ifdef CONFIG_KVM_BOOKE_HV
268 if (!cpu_has_feature(CPU_FTR_EMB_HV))
269 goto out;
270 #endif
271
272 r = true;
273
274 out:
275 vcpu->arch.sane = r;
276 return r ? 0 : -EINVAL;
277 }
278 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
279
280 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
281 {
282 enum emulation_result er;
283 int r;
284
285 er = kvmppc_emulate_loadstore(vcpu);
286 switch (er) {
287 case EMULATE_DONE:
288 /* Future optimization: only reload non-volatiles if they were
289 * actually modified. */
290 r = RESUME_GUEST_NV;
291 break;
292 case EMULATE_AGAIN:
293 r = RESUME_GUEST;
294 break;
295 case EMULATE_DO_MMIO:
296 run->exit_reason = KVM_EXIT_MMIO;
297 /* We must reload nonvolatiles because "update" load/store
298 * instructions modify register state. */
299 /* Future optimization: only reload non-volatiles if they were
300 * actually modified. */
301 r = RESUME_HOST_NV;
302 break;
303 case EMULATE_FAIL:
304 {
305 u32 last_inst;
306
307 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
308 /* XXX Deliver Program interrupt to guest. */
309 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
310 r = RESUME_HOST;
311 break;
312 }
313 default:
314 WARN_ON(1);
315 r = RESUME_GUEST;
316 }
317
318 return r;
319 }
320 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
321
322 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
323 bool data)
324 {
325 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
326 struct kvmppc_pte pte;
327 int r;
328
329 vcpu->stat.st++;
330
331 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
332 XLATE_WRITE, &pte);
333 if (r < 0)
334 return r;
335
336 *eaddr = pte.raddr;
337
338 if (!pte.may_write)
339 return -EPERM;
340
341 /* Magic page override */
342 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
343 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
344 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
345 void *magic = vcpu->arch.shared;
346 magic += pte.eaddr & 0xfff;
347 memcpy(magic, ptr, size);
348 return EMULATE_DONE;
349 }
350
351 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
352 return EMULATE_DO_MMIO;
353
354 return EMULATE_DONE;
355 }
356 EXPORT_SYMBOL_GPL(kvmppc_st);
357
358 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
359 bool data)
360 {
361 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
362 struct kvmppc_pte pte;
363 int rc;
364
365 vcpu->stat.ld++;
366
367 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
368 XLATE_READ, &pte);
369 if (rc)
370 return rc;
371
372 *eaddr = pte.raddr;
373
374 if (!pte.may_read)
375 return -EPERM;
376
377 if (!data && !pte.may_execute)
378 return -ENOEXEC;
379
380 /* Magic page override */
381 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
382 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
383 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
384 void *magic = vcpu->arch.shared;
385 magic += pte.eaddr & 0xfff;
386 memcpy(ptr, magic, size);
387 return EMULATE_DONE;
388 }
389
390 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
391 return EMULATE_DO_MMIO;
392
393 return EMULATE_DONE;
394 }
395 EXPORT_SYMBOL_GPL(kvmppc_ld);
396
397 int kvm_arch_hardware_enable(void)
398 {
399 return 0;
400 }
401
402 int kvm_arch_hardware_setup(void)
403 {
404 return 0;
405 }
406
407 void kvm_arch_check_processor_compat(void *rtn)
408 {
409 *(int *)rtn = kvmppc_core_check_processor_compat();
410 }
411
412 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
413 {
414 struct kvmppc_ops *kvm_ops = NULL;
415 /*
416 * if we have both HV and PR enabled, default is HV
417 */
418 if (type == 0) {
419 if (kvmppc_hv_ops)
420 kvm_ops = kvmppc_hv_ops;
421 else
422 kvm_ops = kvmppc_pr_ops;
423 if (!kvm_ops)
424 goto err_out;
425 } else if (type == KVM_VM_PPC_HV) {
426 if (!kvmppc_hv_ops)
427 goto err_out;
428 kvm_ops = kvmppc_hv_ops;
429 } else if (type == KVM_VM_PPC_PR) {
430 if (!kvmppc_pr_ops)
431 goto err_out;
432 kvm_ops = kvmppc_pr_ops;
433 } else
434 goto err_out;
435
436 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
437 return -ENOENT;
438
439 kvm->arch.kvm_ops = kvm_ops;
440 return kvmppc_core_init_vm(kvm);
441 err_out:
442 return -EINVAL;
443 }
444
445 bool kvm_arch_has_vcpu_debugfs(void)
446 {
447 return false;
448 }
449
450 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
451 {
452 return 0;
453 }
454
455 void kvm_arch_destroy_vm(struct kvm *kvm)
456 {
457 unsigned int i;
458 struct kvm_vcpu *vcpu;
459
460 #ifdef CONFIG_KVM_XICS
461 /*
462 * We call kick_all_cpus_sync() to ensure that all
463 * CPUs have executed any pending IPIs before we
464 * continue and free VCPUs structures below.
465 */
466 if (is_kvmppc_hv_enabled(kvm))
467 kick_all_cpus_sync();
468 #endif
469
470 kvm_for_each_vcpu(i, vcpu, kvm)
471 kvm_arch_vcpu_free(vcpu);
472
473 mutex_lock(&kvm->lock);
474 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
475 kvm->vcpus[i] = NULL;
476
477 atomic_set(&kvm->online_vcpus, 0);
478
479 kvmppc_core_destroy_vm(kvm);
480
481 mutex_unlock(&kvm->lock);
482
483 /* drop the module reference */
484 module_put(kvm->arch.kvm_ops->owner);
485 }
486
487 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
488 {
489 int r;
490 /* Assume we're using HV mode when the HV module is loaded */
491 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
492
493 if (kvm) {
494 /*
495 * Hooray - we know which VM type we're running on. Depend on
496 * that rather than the guess above.
497 */
498 hv_enabled = is_kvmppc_hv_enabled(kvm);
499 }
500
501 switch (ext) {
502 #ifdef CONFIG_BOOKE
503 case KVM_CAP_PPC_BOOKE_SREGS:
504 case KVM_CAP_PPC_BOOKE_WATCHDOG:
505 case KVM_CAP_PPC_EPR:
506 #else
507 case KVM_CAP_PPC_SEGSTATE:
508 case KVM_CAP_PPC_HIOR:
509 case KVM_CAP_PPC_PAPR:
510 #endif
511 case KVM_CAP_PPC_UNSET_IRQ:
512 case KVM_CAP_PPC_IRQ_LEVEL:
513 case KVM_CAP_ENABLE_CAP:
514 case KVM_CAP_ENABLE_CAP_VM:
515 case KVM_CAP_ONE_REG:
516 case KVM_CAP_IOEVENTFD:
517 case KVM_CAP_DEVICE_CTRL:
518 case KVM_CAP_IMMEDIATE_EXIT:
519 r = 1;
520 break;
521 case KVM_CAP_PPC_PAIRED_SINGLES:
522 case KVM_CAP_PPC_OSI:
523 case KVM_CAP_PPC_GET_PVINFO:
524 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
525 case KVM_CAP_SW_TLB:
526 #endif
527 /* We support this only for PR */
528 r = !hv_enabled;
529 break;
530 #ifdef CONFIG_KVM_MPIC
531 case KVM_CAP_IRQ_MPIC:
532 r = 1;
533 break;
534 #endif
535
536 #ifdef CONFIG_PPC_BOOK3S_64
537 case KVM_CAP_SPAPR_TCE:
538 case KVM_CAP_SPAPR_TCE_64:
539 /* fallthrough */
540 case KVM_CAP_SPAPR_TCE_VFIO:
541 case KVM_CAP_PPC_RTAS:
542 case KVM_CAP_PPC_FIXUP_HCALL:
543 case KVM_CAP_PPC_ENABLE_HCALL:
544 #ifdef CONFIG_KVM_XICS
545 case KVM_CAP_IRQ_XICS:
546 #endif
547 r = 1;
548 break;
549
550 case KVM_CAP_PPC_ALLOC_HTAB:
551 r = hv_enabled;
552 break;
553 #endif /* CONFIG_PPC_BOOK3S_64 */
554 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
555 case KVM_CAP_PPC_SMT:
556 r = 0;
557 if (hv_enabled) {
558 if (cpu_has_feature(CPU_FTR_ARCH_300))
559 r = 1;
560 else
561 r = threads_per_subcore;
562 }
563 break;
564 case KVM_CAP_PPC_RMA:
565 r = 0;
566 break;
567 case KVM_CAP_PPC_HWRNG:
568 r = kvmppc_hwrng_present();
569 break;
570 case KVM_CAP_PPC_MMU_RADIX:
571 r = !!(hv_enabled && radix_enabled());
572 break;
573 case KVM_CAP_PPC_MMU_HASH_V3:
574 r = !!(hv_enabled && !radix_enabled() &&
575 cpu_has_feature(CPU_FTR_ARCH_300));
576 break;
577 #endif
578 case KVM_CAP_SYNC_MMU:
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 r = hv_enabled;
581 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
582 r = 1;
583 #else
584 r = 0;
585 #endif
586 break;
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588 case KVM_CAP_PPC_HTAB_FD:
589 r = hv_enabled;
590 break;
591 #endif
592 case KVM_CAP_NR_VCPUS:
593 /*
594 * Recommending a number of CPUs is somewhat arbitrary; we
595 * return the number of present CPUs for -HV (since a host
596 * will have secondary threads "offline"), and for other KVM
597 * implementations just count online CPUs.
598 */
599 if (hv_enabled)
600 r = num_present_cpus();
601 else
602 r = num_online_cpus();
603 break;
604 case KVM_CAP_NR_MEMSLOTS:
605 r = KVM_USER_MEM_SLOTS;
606 break;
607 case KVM_CAP_MAX_VCPUS:
608 r = KVM_MAX_VCPUS;
609 break;
610 #ifdef CONFIG_PPC_BOOK3S_64
611 case KVM_CAP_PPC_GET_SMMU_INFO:
612 r = 1;
613 break;
614 case KVM_CAP_SPAPR_MULTITCE:
615 r = 1;
616 break;
617 case KVM_CAP_SPAPR_RESIZE_HPT:
618 /* Disable this on POWER9 until code handles new HPTE format */
619 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
620 break;
621 #endif
622 case KVM_CAP_PPC_HTM:
623 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
624 is_kvmppc_hv_enabled(kvm);
625 break;
626 default:
627 r = 0;
628 break;
629 }
630 return r;
631
632 }
633
634 long kvm_arch_dev_ioctl(struct file *filp,
635 unsigned int ioctl, unsigned long arg)
636 {
637 return -EINVAL;
638 }
639
640 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
641 struct kvm_memory_slot *dont)
642 {
643 kvmppc_core_free_memslot(kvm, free, dont);
644 }
645
646 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
647 unsigned long npages)
648 {
649 return kvmppc_core_create_memslot(kvm, slot, npages);
650 }
651
652 int kvm_arch_prepare_memory_region(struct kvm *kvm,
653 struct kvm_memory_slot *memslot,
654 const struct kvm_userspace_memory_region *mem,
655 enum kvm_mr_change change)
656 {
657 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
658 }
659
660 void kvm_arch_commit_memory_region(struct kvm *kvm,
661 const struct kvm_userspace_memory_region *mem,
662 const struct kvm_memory_slot *old,
663 const struct kvm_memory_slot *new,
664 enum kvm_mr_change change)
665 {
666 kvmppc_core_commit_memory_region(kvm, mem, old, new);
667 }
668
669 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
670 struct kvm_memory_slot *slot)
671 {
672 kvmppc_core_flush_memslot(kvm, slot);
673 }
674
675 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
676 {
677 struct kvm_vcpu *vcpu;
678 vcpu = kvmppc_core_vcpu_create(kvm, id);
679 if (!IS_ERR(vcpu)) {
680 vcpu->arch.wqp = &vcpu->wq;
681 kvmppc_create_vcpu_debugfs(vcpu, id);
682 }
683 return vcpu;
684 }
685
686 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
687 {
688 }
689
690 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
691 {
692 /* Make sure we're not using the vcpu anymore */
693 hrtimer_cancel(&vcpu->arch.dec_timer);
694
695 kvmppc_remove_vcpu_debugfs(vcpu);
696
697 switch (vcpu->arch.irq_type) {
698 case KVMPPC_IRQ_MPIC:
699 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
700 break;
701 case KVMPPC_IRQ_XICS:
702 if (xive_enabled())
703 kvmppc_xive_cleanup_vcpu(vcpu);
704 else
705 kvmppc_xics_free_icp(vcpu);
706 break;
707 }
708
709 kvmppc_core_vcpu_free(vcpu);
710 }
711
712 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
713 {
714 kvm_arch_vcpu_free(vcpu);
715 }
716
717 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
718 {
719 return kvmppc_core_pending_dec(vcpu);
720 }
721
722 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
723 {
724 struct kvm_vcpu *vcpu;
725
726 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
727 kvmppc_decrementer_func(vcpu);
728
729 return HRTIMER_NORESTART;
730 }
731
732 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
733 {
734 int ret;
735
736 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
737 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
738 vcpu->arch.dec_expires = ~(u64)0;
739
740 #ifdef CONFIG_KVM_EXIT_TIMING
741 mutex_init(&vcpu->arch.exit_timing_lock);
742 #endif
743 ret = kvmppc_subarch_vcpu_init(vcpu);
744 return ret;
745 }
746
747 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
748 {
749 kvmppc_mmu_destroy(vcpu);
750 kvmppc_subarch_vcpu_uninit(vcpu);
751 }
752
753 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
754 {
755 #ifdef CONFIG_BOOKE
756 /*
757 * vrsave (formerly usprg0) isn't used by Linux, but may
758 * be used by the guest.
759 *
760 * On non-booke this is associated with Altivec and
761 * is handled by code in book3s.c.
762 */
763 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
764 #endif
765 kvmppc_core_vcpu_load(vcpu, cpu);
766 }
767
768 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
769 {
770 kvmppc_core_vcpu_put(vcpu);
771 #ifdef CONFIG_BOOKE
772 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
773 #endif
774 }
775
776 /*
777 * irq_bypass_add_producer and irq_bypass_del_producer are only
778 * useful if the architecture supports PCI passthrough.
779 * irq_bypass_stop and irq_bypass_start are not needed and so
780 * kvm_ops are not defined for them.
781 */
782 bool kvm_arch_has_irq_bypass(void)
783 {
784 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
785 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
786 }
787
788 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
789 struct irq_bypass_producer *prod)
790 {
791 struct kvm_kernel_irqfd *irqfd =
792 container_of(cons, struct kvm_kernel_irqfd, consumer);
793 struct kvm *kvm = irqfd->kvm;
794
795 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
796 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
797
798 return 0;
799 }
800
801 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
802 struct irq_bypass_producer *prod)
803 {
804 struct kvm_kernel_irqfd *irqfd =
805 container_of(cons, struct kvm_kernel_irqfd, consumer);
806 struct kvm *kvm = irqfd->kvm;
807
808 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
809 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
810 }
811
812 #ifdef CONFIG_VSX
813 static inline int kvmppc_get_vsr_dword_offset(int index)
814 {
815 int offset;
816
817 if ((index != 0) && (index != 1))
818 return -1;
819
820 #ifdef __BIG_ENDIAN
821 offset = index;
822 #else
823 offset = 1 - index;
824 #endif
825
826 return offset;
827 }
828
829 static inline int kvmppc_get_vsr_word_offset(int index)
830 {
831 int offset;
832
833 if ((index > 3) || (index < 0))
834 return -1;
835
836 #ifdef __BIG_ENDIAN
837 offset = index;
838 #else
839 offset = 3 - index;
840 #endif
841 return offset;
842 }
843
844 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
845 u64 gpr)
846 {
847 union kvmppc_one_reg val;
848 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
849 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
850
851 if (offset == -1)
852 return;
853
854 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
855 val.vval = VCPU_VSX_VR(vcpu, index);
856 val.vsxval[offset] = gpr;
857 VCPU_VSX_VR(vcpu, index) = val.vval;
858 } else {
859 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
860 }
861 }
862
863 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
864 u64 gpr)
865 {
866 union kvmppc_one_reg val;
867 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
868
869 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
870 val.vval = VCPU_VSX_VR(vcpu, index);
871 val.vsxval[0] = gpr;
872 val.vsxval[1] = gpr;
873 VCPU_VSX_VR(vcpu, index) = val.vval;
874 } else {
875 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
876 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
877 }
878 }
879
880 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
881 u32 gpr32)
882 {
883 union kvmppc_one_reg val;
884 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
885 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
886 int dword_offset, word_offset;
887
888 if (offset == -1)
889 return;
890
891 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
892 val.vval = VCPU_VSX_VR(vcpu, index);
893 val.vsx32val[offset] = gpr32;
894 VCPU_VSX_VR(vcpu, index) = val.vval;
895 } else {
896 dword_offset = offset / 2;
897 word_offset = offset % 2;
898 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
899 val.vsx32val[word_offset] = gpr32;
900 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
901 }
902 }
903 #endif /* CONFIG_VSX */
904
905 #ifdef CONFIG_PPC_FPU
906 static inline u64 sp_to_dp(u32 fprs)
907 {
908 u64 fprd;
909
910 preempt_disable();
911 enable_kernel_fp();
912 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
913 : "fr0");
914 preempt_enable();
915 return fprd;
916 }
917
918 static inline u32 dp_to_sp(u64 fprd)
919 {
920 u32 fprs;
921
922 preempt_disable();
923 enable_kernel_fp();
924 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
925 : "fr0");
926 preempt_enable();
927 return fprs;
928 }
929
930 #else
931 #define sp_to_dp(x) (x)
932 #define dp_to_sp(x) (x)
933 #endif /* CONFIG_PPC_FPU */
934
935 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
936 struct kvm_run *run)
937 {
938 u64 uninitialized_var(gpr);
939
940 if (run->mmio.len > sizeof(gpr)) {
941 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
942 return;
943 }
944
945 if (!vcpu->arch.mmio_host_swabbed) {
946 switch (run->mmio.len) {
947 case 8: gpr = *(u64 *)run->mmio.data; break;
948 case 4: gpr = *(u32 *)run->mmio.data; break;
949 case 2: gpr = *(u16 *)run->mmio.data; break;
950 case 1: gpr = *(u8 *)run->mmio.data; break;
951 }
952 } else {
953 switch (run->mmio.len) {
954 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
955 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
956 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
957 case 1: gpr = *(u8 *)run->mmio.data; break;
958 }
959 }
960
961 /* conversion between single and double precision */
962 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
963 gpr = sp_to_dp(gpr);
964
965 if (vcpu->arch.mmio_sign_extend) {
966 switch (run->mmio.len) {
967 #ifdef CONFIG_PPC64
968 case 4:
969 gpr = (s64)(s32)gpr;
970 break;
971 #endif
972 case 2:
973 gpr = (s64)(s16)gpr;
974 break;
975 case 1:
976 gpr = (s64)(s8)gpr;
977 break;
978 }
979 }
980
981 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
982 case KVM_MMIO_REG_GPR:
983 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
984 break;
985 case KVM_MMIO_REG_FPR:
986 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
987 break;
988 #ifdef CONFIG_PPC_BOOK3S
989 case KVM_MMIO_REG_QPR:
990 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
991 break;
992 case KVM_MMIO_REG_FQPR:
993 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
994 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
995 break;
996 #endif
997 #ifdef CONFIG_VSX
998 case KVM_MMIO_REG_VSX:
999 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1000 kvmppc_set_vsr_dword(vcpu, gpr);
1001 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1002 kvmppc_set_vsr_word(vcpu, gpr);
1003 else if (vcpu->arch.mmio_vsx_copy_type ==
1004 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1005 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1006 break;
1007 #endif
1008 default:
1009 BUG();
1010 }
1011 }
1012
1013 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1014 unsigned int rt, unsigned int bytes,
1015 int is_default_endian, int sign_extend)
1016 {
1017 int idx, ret;
1018 bool host_swabbed;
1019
1020 /* Pity C doesn't have a logical XOR operator */
1021 if (kvmppc_need_byteswap(vcpu)) {
1022 host_swabbed = is_default_endian;
1023 } else {
1024 host_swabbed = !is_default_endian;
1025 }
1026
1027 if (bytes > sizeof(run->mmio.data)) {
1028 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1029 run->mmio.len);
1030 }
1031
1032 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1033 run->mmio.len = bytes;
1034 run->mmio.is_write = 0;
1035
1036 vcpu->arch.io_gpr = rt;
1037 vcpu->arch.mmio_host_swabbed = host_swabbed;
1038 vcpu->mmio_needed = 1;
1039 vcpu->mmio_is_write = 0;
1040 vcpu->arch.mmio_sign_extend = sign_extend;
1041
1042 idx = srcu_read_lock(&vcpu->kvm->srcu);
1043
1044 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1045 bytes, &run->mmio.data);
1046
1047 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1048
1049 if (!ret) {
1050 kvmppc_complete_mmio_load(vcpu, run);
1051 vcpu->mmio_needed = 0;
1052 return EMULATE_DONE;
1053 }
1054
1055 return EMULATE_DO_MMIO;
1056 }
1057
1058 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1059 unsigned int rt, unsigned int bytes,
1060 int is_default_endian)
1061 {
1062 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1063 }
1064 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1065
1066 /* Same as above, but sign extends */
1067 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1068 unsigned int rt, unsigned int bytes,
1069 int is_default_endian)
1070 {
1071 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1072 }
1073
1074 #ifdef CONFIG_VSX
1075 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1076 unsigned int rt, unsigned int bytes,
1077 int is_default_endian, int mmio_sign_extend)
1078 {
1079 enum emulation_result emulated = EMULATE_DONE;
1080
1081 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1082 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1083 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1084 return EMULATE_FAIL;
1085 }
1086
1087 while (vcpu->arch.mmio_vsx_copy_nums) {
1088 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1089 is_default_endian, mmio_sign_extend);
1090
1091 if (emulated != EMULATE_DONE)
1092 break;
1093
1094 vcpu->arch.paddr_accessed += run->mmio.len;
1095
1096 vcpu->arch.mmio_vsx_copy_nums--;
1097 vcpu->arch.mmio_vsx_offset++;
1098 }
1099 return emulated;
1100 }
1101 #endif /* CONFIG_VSX */
1102
1103 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1104 u64 val, unsigned int bytes, int is_default_endian)
1105 {
1106 void *data = run->mmio.data;
1107 int idx, ret;
1108 bool host_swabbed;
1109
1110 /* Pity C doesn't have a logical XOR operator */
1111 if (kvmppc_need_byteswap(vcpu)) {
1112 host_swabbed = is_default_endian;
1113 } else {
1114 host_swabbed = !is_default_endian;
1115 }
1116
1117 if (bytes > sizeof(run->mmio.data)) {
1118 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1119 run->mmio.len);
1120 }
1121
1122 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1123 run->mmio.len = bytes;
1124 run->mmio.is_write = 1;
1125 vcpu->mmio_needed = 1;
1126 vcpu->mmio_is_write = 1;
1127
1128 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1129 val = dp_to_sp(val);
1130
1131 /* Store the value at the lowest bytes in 'data'. */
1132 if (!host_swabbed) {
1133 switch (bytes) {
1134 case 8: *(u64 *)data = val; break;
1135 case 4: *(u32 *)data = val; break;
1136 case 2: *(u16 *)data = val; break;
1137 case 1: *(u8 *)data = val; break;
1138 }
1139 } else {
1140 switch (bytes) {
1141 case 8: *(u64 *)data = swab64(val); break;
1142 case 4: *(u32 *)data = swab32(val); break;
1143 case 2: *(u16 *)data = swab16(val); break;
1144 case 1: *(u8 *)data = val; break;
1145 }
1146 }
1147
1148 idx = srcu_read_lock(&vcpu->kvm->srcu);
1149
1150 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1151 bytes, &run->mmio.data);
1152
1153 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1154
1155 if (!ret) {
1156 vcpu->mmio_needed = 0;
1157 return EMULATE_DONE;
1158 }
1159
1160 return EMULATE_DO_MMIO;
1161 }
1162 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1163
1164 #ifdef CONFIG_VSX
1165 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1166 {
1167 u32 dword_offset, word_offset;
1168 union kvmppc_one_reg reg;
1169 int vsx_offset = 0;
1170 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1171 int result = 0;
1172
1173 switch (copy_type) {
1174 case KVMPPC_VSX_COPY_DWORD:
1175 vsx_offset =
1176 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1177
1178 if (vsx_offset == -1) {
1179 result = -1;
1180 break;
1181 }
1182
1183 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1184 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1185 } else {
1186 reg.vval = VCPU_VSX_VR(vcpu, rs);
1187 *val = reg.vsxval[vsx_offset];
1188 }
1189 break;
1190
1191 case KVMPPC_VSX_COPY_WORD:
1192 vsx_offset =
1193 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1194
1195 if (vsx_offset == -1) {
1196 result = -1;
1197 break;
1198 }
1199
1200 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1201 dword_offset = vsx_offset / 2;
1202 word_offset = vsx_offset % 2;
1203 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1204 *val = reg.vsx32val[word_offset];
1205 } else {
1206 reg.vval = VCPU_VSX_VR(vcpu, rs);
1207 *val = reg.vsx32val[vsx_offset];
1208 }
1209 break;
1210
1211 default:
1212 result = -1;
1213 break;
1214 }
1215
1216 return result;
1217 }
1218
1219 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1220 int rs, unsigned int bytes, int is_default_endian)
1221 {
1222 u64 val;
1223 enum emulation_result emulated = EMULATE_DONE;
1224
1225 vcpu->arch.io_gpr = rs;
1226
1227 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1228 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1229 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1230 return EMULATE_FAIL;
1231 }
1232
1233 while (vcpu->arch.mmio_vsx_copy_nums) {
1234 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1235 return EMULATE_FAIL;
1236
1237 emulated = kvmppc_handle_store(run, vcpu,
1238 val, bytes, is_default_endian);
1239
1240 if (emulated != EMULATE_DONE)
1241 break;
1242
1243 vcpu->arch.paddr_accessed += run->mmio.len;
1244
1245 vcpu->arch.mmio_vsx_copy_nums--;
1246 vcpu->arch.mmio_vsx_offset++;
1247 }
1248
1249 return emulated;
1250 }
1251
1252 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1253 struct kvm_run *run)
1254 {
1255 enum emulation_result emulated = EMULATE_FAIL;
1256 int r;
1257
1258 vcpu->arch.paddr_accessed += run->mmio.len;
1259
1260 if (!vcpu->mmio_is_write) {
1261 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1262 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1263 } else {
1264 emulated = kvmppc_handle_vsx_store(run, vcpu,
1265 vcpu->arch.io_gpr, run->mmio.len, 1);
1266 }
1267
1268 switch (emulated) {
1269 case EMULATE_DO_MMIO:
1270 run->exit_reason = KVM_EXIT_MMIO;
1271 r = RESUME_HOST;
1272 break;
1273 case EMULATE_FAIL:
1274 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1275 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1276 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1277 r = RESUME_HOST;
1278 break;
1279 default:
1280 r = RESUME_GUEST;
1281 break;
1282 }
1283 return r;
1284 }
1285 #endif /* CONFIG_VSX */
1286
1287 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1288 {
1289 int r = 0;
1290 union kvmppc_one_reg val;
1291 int size;
1292
1293 size = one_reg_size(reg->id);
1294 if (size > sizeof(val))
1295 return -EINVAL;
1296
1297 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1298 if (r == -EINVAL) {
1299 r = 0;
1300 switch (reg->id) {
1301 #ifdef CONFIG_ALTIVEC
1302 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1303 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1304 r = -ENXIO;
1305 break;
1306 }
1307 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1308 break;
1309 case KVM_REG_PPC_VSCR:
1310 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1311 r = -ENXIO;
1312 break;
1313 }
1314 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1315 break;
1316 case KVM_REG_PPC_VRSAVE:
1317 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1318 break;
1319 #endif /* CONFIG_ALTIVEC */
1320 default:
1321 r = -EINVAL;
1322 break;
1323 }
1324 }
1325
1326 if (r)
1327 return r;
1328
1329 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1330 r = -EFAULT;
1331
1332 return r;
1333 }
1334
1335 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1336 {
1337 int r;
1338 union kvmppc_one_reg val;
1339 int size;
1340
1341 size = one_reg_size(reg->id);
1342 if (size > sizeof(val))
1343 return -EINVAL;
1344
1345 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1346 return -EFAULT;
1347
1348 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1349 if (r == -EINVAL) {
1350 r = 0;
1351 switch (reg->id) {
1352 #ifdef CONFIG_ALTIVEC
1353 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1354 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1355 r = -ENXIO;
1356 break;
1357 }
1358 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1359 break;
1360 case KVM_REG_PPC_VSCR:
1361 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1362 r = -ENXIO;
1363 break;
1364 }
1365 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1366 break;
1367 case KVM_REG_PPC_VRSAVE:
1368 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1369 r = -ENXIO;
1370 break;
1371 }
1372 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1373 break;
1374 #endif /* CONFIG_ALTIVEC */
1375 default:
1376 r = -EINVAL;
1377 break;
1378 }
1379 }
1380
1381 return r;
1382 }
1383
1384 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1385 {
1386 int r;
1387 sigset_t sigsaved;
1388
1389 if (vcpu->mmio_needed) {
1390 vcpu->mmio_needed = 0;
1391 if (!vcpu->mmio_is_write)
1392 kvmppc_complete_mmio_load(vcpu, run);
1393 #ifdef CONFIG_VSX
1394 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1395 vcpu->arch.mmio_vsx_copy_nums--;
1396 vcpu->arch.mmio_vsx_offset++;
1397 }
1398
1399 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1400 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1401 if (r == RESUME_HOST) {
1402 vcpu->mmio_needed = 1;
1403 return r;
1404 }
1405 }
1406 #endif
1407 } else if (vcpu->arch.osi_needed) {
1408 u64 *gprs = run->osi.gprs;
1409 int i;
1410
1411 for (i = 0; i < 32; i++)
1412 kvmppc_set_gpr(vcpu, i, gprs[i]);
1413 vcpu->arch.osi_needed = 0;
1414 } else if (vcpu->arch.hcall_needed) {
1415 int i;
1416
1417 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1418 for (i = 0; i < 9; ++i)
1419 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1420 vcpu->arch.hcall_needed = 0;
1421 #ifdef CONFIG_BOOKE
1422 } else if (vcpu->arch.epr_needed) {
1423 kvmppc_set_epr(vcpu, run->epr.epr);
1424 vcpu->arch.epr_needed = 0;
1425 #endif
1426 }
1427
1428 if (vcpu->sigset_active)
1429 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1430
1431 if (run->immediate_exit)
1432 r = -EINTR;
1433 else
1434 r = kvmppc_vcpu_run(run, vcpu);
1435
1436 if (vcpu->sigset_active)
1437 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1438
1439 return r;
1440 }
1441
1442 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1443 {
1444 if (irq->irq == KVM_INTERRUPT_UNSET) {
1445 kvmppc_core_dequeue_external(vcpu);
1446 return 0;
1447 }
1448
1449 kvmppc_core_queue_external(vcpu, irq);
1450
1451 kvm_vcpu_kick(vcpu);
1452
1453 return 0;
1454 }
1455
1456 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1457 struct kvm_enable_cap *cap)
1458 {
1459 int r;
1460
1461 if (cap->flags)
1462 return -EINVAL;
1463
1464 switch (cap->cap) {
1465 case KVM_CAP_PPC_OSI:
1466 r = 0;
1467 vcpu->arch.osi_enabled = true;
1468 break;
1469 case KVM_CAP_PPC_PAPR:
1470 r = 0;
1471 vcpu->arch.papr_enabled = true;
1472 break;
1473 case KVM_CAP_PPC_EPR:
1474 r = 0;
1475 if (cap->args[0])
1476 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1477 else
1478 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1479 break;
1480 #ifdef CONFIG_BOOKE
1481 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1482 r = 0;
1483 vcpu->arch.watchdog_enabled = true;
1484 break;
1485 #endif
1486 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1487 case KVM_CAP_SW_TLB: {
1488 struct kvm_config_tlb cfg;
1489 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1490
1491 r = -EFAULT;
1492 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1493 break;
1494
1495 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1496 break;
1497 }
1498 #endif
1499 #ifdef CONFIG_KVM_MPIC
1500 case KVM_CAP_IRQ_MPIC: {
1501 struct fd f;
1502 struct kvm_device *dev;
1503
1504 r = -EBADF;
1505 f = fdget(cap->args[0]);
1506 if (!f.file)
1507 break;
1508
1509 r = -EPERM;
1510 dev = kvm_device_from_filp(f.file);
1511 if (dev)
1512 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1513
1514 fdput(f);
1515 break;
1516 }
1517 #endif
1518 #ifdef CONFIG_KVM_XICS
1519 case KVM_CAP_IRQ_XICS: {
1520 struct fd f;
1521 struct kvm_device *dev;
1522
1523 r = -EBADF;
1524 f = fdget(cap->args[0]);
1525 if (!f.file)
1526 break;
1527
1528 r = -EPERM;
1529 dev = kvm_device_from_filp(f.file);
1530 if (dev) {
1531 if (xive_enabled())
1532 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1533 else
1534 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1535 }
1536
1537 fdput(f);
1538 break;
1539 }
1540 #endif /* CONFIG_KVM_XICS */
1541 default:
1542 r = -EINVAL;
1543 break;
1544 }
1545
1546 if (!r)
1547 r = kvmppc_sanity_check(vcpu);
1548
1549 return r;
1550 }
1551
1552 bool kvm_arch_intc_initialized(struct kvm *kvm)
1553 {
1554 #ifdef CONFIG_KVM_MPIC
1555 if (kvm->arch.mpic)
1556 return true;
1557 #endif
1558 #ifdef CONFIG_KVM_XICS
1559 if (kvm->arch.xics || kvm->arch.xive)
1560 return true;
1561 #endif
1562 return false;
1563 }
1564
1565 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1566 struct kvm_mp_state *mp_state)
1567 {
1568 return -EINVAL;
1569 }
1570
1571 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1572 struct kvm_mp_state *mp_state)
1573 {
1574 return -EINVAL;
1575 }
1576
1577 long kvm_arch_vcpu_ioctl(struct file *filp,
1578 unsigned int ioctl, unsigned long arg)
1579 {
1580 struct kvm_vcpu *vcpu = filp->private_data;
1581 void __user *argp = (void __user *)arg;
1582 long r;
1583
1584 switch (ioctl) {
1585 case KVM_INTERRUPT: {
1586 struct kvm_interrupt irq;
1587 r = -EFAULT;
1588 if (copy_from_user(&irq, argp, sizeof(irq)))
1589 goto out;
1590 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1591 goto out;
1592 }
1593
1594 case KVM_ENABLE_CAP:
1595 {
1596 struct kvm_enable_cap cap;
1597 r = -EFAULT;
1598 if (copy_from_user(&cap, argp, sizeof(cap)))
1599 goto out;
1600 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1601 break;
1602 }
1603
1604 case KVM_SET_ONE_REG:
1605 case KVM_GET_ONE_REG:
1606 {
1607 struct kvm_one_reg reg;
1608 r = -EFAULT;
1609 if (copy_from_user(&reg, argp, sizeof(reg)))
1610 goto out;
1611 if (ioctl == KVM_SET_ONE_REG)
1612 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1613 else
1614 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1615 break;
1616 }
1617
1618 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1619 case KVM_DIRTY_TLB: {
1620 struct kvm_dirty_tlb dirty;
1621 r = -EFAULT;
1622 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1623 goto out;
1624 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1625 break;
1626 }
1627 #endif
1628 default:
1629 r = -EINVAL;
1630 }
1631
1632 out:
1633 return r;
1634 }
1635
1636 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1637 {
1638 return VM_FAULT_SIGBUS;
1639 }
1640
1641 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1642 {
1643 u32 inst_nop = 0x60000000;
1644 #ifdef CONFIG_KVM_BOOKE_HV
1645 u32 inst_sc1 = 0x44000022;
1646 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1647 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1648 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1649 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1650 #else
1651 u32 inst_lis = 0x3c000000;
1652 u32 inst_ori = 0x60000000;
1653 u32 inst_sc = 0x44000002;
1654 u32 inst_imm_mask = 0xffff;
1655
1656 /*
1657 * The hypercall to get into KVM from within guest context is as
1658 * follows:
1659 *
1660 * lis r0, r0, KVM_SC_MAGIC_R0@h
1661 * ori r0, KVM_SC_MAGIC_R0@l
1662 * sc
1663 * nop
1664 */
1665 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1666 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1667 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1668 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1669 #endif
1670
1671 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1672
1673 return 0;
1674 }
1675
1676 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1677 bool line_status)
1678 {
1679 if (!irqchip_in_kernel(kvm))
1680 return -ENXIO;
1681
1682 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1683 irq_event->irq, irq_event->level,
1684 line_status);
1685 return 0;
1686 }
1687
1688
1689 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1690 struct kvm_enable_cap *cap)
1691 {
1692 int r;
1693
1694 if (cap->flags)
1695 return -EINVAL;
1696
1697 switch (cap->cap) {
1698 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1699 case KVM_CAP_PPC_ENABLE_HCALL: {
1700 unsigned long hcall = cap->args[0];
1701
1702 r = -EINVAL;
1703 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1704 cap->args[1] > 1)
1705 break;
1706 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1707 break;
1708 if (cap->args[1])
1709 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1710 else
1711 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1712 r = 0;
1713 break;
1714 }
1715 #endif
1716 default:
1717 r = -EINVAL;
1718 break;
1719 }
1720
1721 return r;
1722 }
1723
1724 long kvm_arch_vm_ioctl(struct file *filp,
1725 unsigned int ioctl, unsigned long arg)
1726 {
1727 struct kvm *kvm __maybe_unused = filp->private_data;
1728 void __user *argp = (void __user *)arg;
1729 long r;
1730
1731 switch (ioctl) {
1732 case KVM_PPC_GET_PVINFO: {
1733 struct kvm_ppc_pvinfo pvinfo;
1734 memset(&pvinfo, 0, sizeof(pvinfo));
1735 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1736 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1737 r = -EFAULT;
1738 goto out;
1739 }
1740
1741 break;
1742 }
1743 case KVM_ENABLE_CAP:
1744 {
1745 struct kvm_enable_cap cap;
1746 r = -EFAULT;
1747 if (copy_from_user(&cap, argp, sizeof(cap)))
1748 goto out;
1749 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1750 break;
1751 }
1752 #ifdef CONFIG_PPC_BOOK3S_64
1753 case KVM_CREATE_SPAPR_TCE_64: {
1754 struct kvm_create_spapr_tce_64 create_tce_64;
1755
1756 r = -EFAULT;
1757 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1758 goto out;
1759 if (create_tce_64.flags) {
1760 r = -EINVAL;
1761 goto out;
1762 }
1763 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1764 goto out;
1765 }
1766 case KVM_CREATE_SPAPR_TCE: {
1767 struct kvm_create_spapr_tce create_tce;
1768 struct kvm_create_spapr_tce_64 create_tce_64;
1769
1770 r = -EFAULT;
1771 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1772 goto out;
1773
1774 create_tce_64.liobn = create_tce.liobn;
1775 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1776 create_tce_64.offset = 0;
1777 create_tce_64.size = create_tce.window_size >>
1778 IOMMU_PAGE_SHIFT_4K;
1779 create_tce_64.flags = 0;
1780 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1781 goto out;
1782 }
1783 case KVM_PPC_GET_SMMU_INFO: {
1784 struct kvm_ppc_smmu_info info;
1785 struct kvm *kvm = filp->private_data;
1786
1787 memset(&info, 0, sizeof(info));
1788 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1789 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1790 r = -EFAULT;
1791 break;
1792 }
1793 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1794 struct kvm *kvm = filp->private_data;
1795
1796 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1797 break;
1798 }
1799 case KVM_PPC_CONFIGURE_V3_MMU: {
1800 struct kvm *kvm = filp->private_data;
1801 struct kvm_ppc_mmuv3_cfg cfg;
1802
1803 r = -EINVAL;
1804 if (!kvm->arch.kvm_ops->configure_mmu)
1805 goto out;
1806 r = -EFAULT;
1807 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1808 goto out;
1809 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1810 break;
1811 }
1812 case KVM_PPC_GET_RMMU_INFO: {
1813 struct kvm *kvm = filp->private_data;
1814 struct kvm_ppc_rmmu_info info;
1815
1816 r = -EINVAL;
1817 if (!kvm->arch.kvm_ops->get_rmmu_info)
1818 goto out;
1819 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1820 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1821 r = -EFAULT;
1822 break;
1823 }
1824 default: {
1825 struct kvm *kvm = filp->private_data;
1826 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1827 }
1828 #else /* CONFIG_PPC_BOOK3S_64 */
1829 default:
1830 r = -ENOTTY;
1831 #endif
1832 }
1833 out:
1834 return r;
1835 }
1836
1837 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1838 static unsigned long nr_lpids;
1839
1840 long kvmppc_alloc_lpid(void)
1841 {
1842 long lpid;
1843
1844 do {
1845 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1846 if (lpid >= nr_lpids) {
1847 pr_err("%s: No LPIDs free\n", __func__);
1848 return -ENOMEM;
1849 }
1850 } while (test_and_set_bit(lpid, lpid_inuse));
1851
1852 return lpid;
1853 }
1854 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1855
1856 void kvmppc_claim_lpid(long lpid)
1857 {
1858 set_bit(lpid, lpid_inuse);
1859 }
1860 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1861
1862 void kvmppc_free_lpid(long lpid)
1863 {
1864 clear_bit(lpid, lpid_inuse);
1865 }
1866 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1867
1868 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1869 {
1870 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1871 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1872 }
1873 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1874
1875 int kvm_arch_init(void *opaque)
1876 {
1877 return 0;
1878 }
1879
1880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);