]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include "timing.h"
42 #include "irq.h"
43 #include "../mm/mmu_decl.h"
44
45 #define CREATE_TRACE_POINTS
46 #include "trace.h"
47
48 struct kvmppc_ops *kvmppc_hv_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
50 struct kvmppc_ops *kvmppc_pr_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
52
53
54 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
55 {
56 return !!(v->arch.pending_exceptions) ||
57 v->requests;
58 }
59
60 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
61 {
62 return 1;
63 }
64
65 /*
66 * Common checks before entering the guest world. Call with interrupts
67 * disabled.
68 *
69 * returns:
70 *
71 * == 1 if we're ready to go into guest state
72 * <= 0 if we need to go back to the host with return value
73 */
74 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
75 {
76 int r;
77
78 WARN_ON(irqs_disabled());
79 hard_irq_disable();
80
81 while (true) {
82 if (need_resched()) {
83 local_irq_enable();
84 cond_resched();
85 hard_irq_disable();
86 continue;
87 }
88
89 if (signal_pending(current)) {
90 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
91 vcpu->run->exit_reason = KVM_EXIT_INTR;
92 r = -EINTR;
93 break;
94 }
95
96 vcpu->mode = IN_GUEST_MODE;
97
98 /*
99 * Reading vcpu->requests must happen after setting vcpu->mode,
100 * so we don't miss a request because the requester sees
101 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
102 * before next entering the guest (and thus doesn't IPI).
103 * This also orders the write to mode from any reads
104 * to the page tables done while the VCPU is running.
105 * Please see the comment in kvm_flush_remote_tlbs.
106 */
107 smp_mb();
108
109 if (vcpu->requests) {
110 /* Make sure we process requests preemptable */
111 local_irq_enable();
112 trace_kvm_check_requests(vcpu);
113 r = kvmppc_core_check_requests(vcpu);
114 hard_irq_disable();
115 if (r > 0)
116 continue;
117 break;
118 }
119
120 if (kvmppc_core_prepare_to_enter(vcpu)) {
121 /* interrupts got enabled in between, so we
122 are back at square 1 */
123 continue;
124 }
125
126 guest_enter_irqoff();
127 return 1;
128 }
129
130 /* return to host */
131 local_irq_enable();
132 return r;
133 }
134 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
135
136 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
137 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
138 {
139 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
140 int i;
141
142 shared->sprg0 = swab64(shared->sprg0);
143 shared->sprg1 = swab64(shared->sprg1);
144 shared->sprg2 = swab64(shared->sprg2);
145 shared->sprg3 = swab64(shared->sprg3);
146 shared->srr0 = swab64(shared->srr0);
147 shared->srr1 = swab64(shared->srr1);
148 shared->dar = swab64(shared->dar);
149 shared->msr = swab64(shared->msr);
150 shared->dsisr = swab32(shared->dsisr);
151 shared->int_pending = swab32(shared->int_pending);
152 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
153 shared->sr[i] = swab32(shared->sr[i]);
154 }
155 #endif
156
157 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
158 {
159 int nr = kvmppc_get_gpr(vcpu, 11);
160 int r;
161 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
162 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
163 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
164 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
165 unsigned long r2 = 0;
166
167 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
168 /* 32 bit mode */
169 param1 &= 0xffffffff;
170 param2 &= 0xffffffff;
171 param3 &= 0xffffffff;
172 param4 &= 0xffffffff;
173 }
174
175 switch (nr) {
176 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
177 {
178 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
179 /* Book3S can be little endian, find it out here */
180 int shared_big_endian = true;
181 if (vcpu->arch.intr_msr & MSR_LE)
182 shared_big_endian = false;
183 if (shared_big_endian != vcpu->arch.shared_big_endian)
184 kvmppc_swab_shared(vcpu);
185 vcpu->arch.shared_big_endian = shared_big_endian;
186 #endif
187
188 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
189 /*
190 * Older versions of the Linux magic page code had
191 * a bug where they would map their trampoline code
192 * NX. If that's the case, remove !PR NX capability.
193 */
194 vcpu->arch.disable_kernel_nx = true;
195 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
196 }
197
198 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
199 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
200
201 #ifdef CONFIG_PPC_64K_PAGES
202 /*
203 * Make sure our 4k magic page is in the same window of a 64k
204 * page within the guest and within the host's page.
205 */
206 if ((vcpu->arch.magic_page_pa & 0xf000) !=
207 ((ulong)vcpu->arch.shared & 0xf000)) {
208 void *old_shared = vcpu->arch.shared;
209 ulong shared = (ulong)vcpu->arch.shared;
210 void *new_shared;
211
212 shared &= PAGE_MASK;
213 shared |= vcpu->arch.magic_page_pa & 0xf000;
214 new_shared = (void*)shared;
215 memcpy(new_shared, old_shared, 0x1000);
216 vcpu->arch.shared = new_shared;
217 }
218 #endif
219
220 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
221
222 r = EV_SUCCESS;
223 break;
224 }
225 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
226 r = EV_SUCCESS;
227 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
228 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
229 #endif
230
231 /* Second return value is in r4 */
232 break;
233 case EV_HCALL_TOKEN(EV_IDLE):
234 r = EV_SUCCESS;
235 kvm_vcpu_block(vcpu);
236 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
237 break;
238 default:
239 r = EV_UNIMPLEMENTED;
240 break;
241 }
242
243 kvmppc_set_gpr(vcpu, 4, r2);
244
245 return r;
246 }
247 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
248
249 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
250 {
251 int r = false;
252
253 /* We have to know what CPU to virtualize */
254 if (!vcpu->arch.pvr)
255 goto out;
256
257 /* PAPR only works with book3s_64 */
258 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
259 goto out;
260
261 /* HV KVM can only do PAPR mode for now */
262 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
263 goto out;
264
265 #ifdef CONFIG_KVM_BOOKE_HV
266 if (!cpu_has_feature(CPU_FTR_EMB_HV))
267 goto out;
268 #endif
269
270 r = true;
271
272 out:
273 vcpu->arch.sane = r;
274 return r ? 0 : -EINVAL;
275 }
276 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
277
278 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
279 {
280 enum emulation_result er;
281 int r;
282
283 er = kvmppc_emulate_loadstore(vcpu);
284 switch (er) {
285 case EMULATE_DONE:
286 /* Future optimization: only reload non-volatiles if they were
287 * actually modified. */
288 r = RESUME_GUEST_NV;
289 break;
290 case EMULATE_AGAIN:
291 r = RESUME_GUEST;
292 break;
293 case EMULATE_DO_MMIO:
294 run->exit_reason = KVM_EXIT_MMIO;
295 /* We must reload nonvolatiles because "update" load/store
296 * instructions modify register state. */
297 /* Future optimization: only reload non-volatiles if they were
298 * actually modified. */
299 r = RESUME_HOST_NV;
300 break;
301 case EMULATE_FAIL:
302 {
303 u32 last_inst;
304
305 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
306 /* XXX Deliver Program interrupt to guest. */
307 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
308 r = RESUME_HOST;
309 break;
310 }
311 default:
312 WARN_ON(1);
313 r = RESUME_GUEST;
314 }
315
316 return r;
317 }
318 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
319
320 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
321 bool data)
322 {
323 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
324 struct kvmppc_pte pte;
325 int r;
326
327 vcpu->stat.st++;
328
329 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
330 XLATE_WRITE, &pte);
331 if (r < 0)
332 return r;
333
334 *eaddr = pte.raddr;
335
336 if (!pte.may_write)
337 return -EPERM;
338
339 /* Magic page override */
340 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
341 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
342 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
343 void *magic = vcpu->arch.shared;
344 magic += pte.eaddr & 0xfff;
345 memcpy(magic, ptr, size);
346 return EMULATE_DONE;
347 }
348
349 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
350 return EMULATE_DO_MMIO;
351
352 return EMULATE_DONE;
353 }
354 EXPORT_SYMBOL_GPL(kvmppc_st);
355
356 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
357 bool data)
358 {
359 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
360 struct kvmppc_pte pte;
361 int rc;
362
363 vcpu->stat.ld++;
364
365 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
366 XLATE_READ, &pte);
367 if (rc)
368 return rc;
369
370 *eaddr = pte.raddr;
371
372 if (!pte.may_read)
373 return -EPERM;
374
375 if (!data && !pte.may_execute)
376 return -ENOEXEC;
377
378 /* Magic page override */
379 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
380 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
381 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
382 void *magic = vcpu->arch.shared;
383 magic += pte.eaddr & 0xfff;
384 memcpy(ptr, magic, size);
385 return EMULATE_DONE;
386 }
387
388 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
389 return EMULATE_DO_MMIO;
390
391 return EMULATE_DONE;
392 }
393 EXPORT_SYMBOL_GPL(kvmppc_ld);
394
395 int kvm_arch_hardware_enable(void)
396 {
397 return 0;
398 }
399
400 int kvm_arch_hardware_setup(void)
401 {
402 return 0;
403 }
404
405 void kvm_arch_check_processor_compat(void *rtn)
406 {
407 *(int *)rtn = kvmppc_core_check_processor_compat();
408 }
409
410 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
411 {
412 struct kvmppc_ops *kvm_ops = NULL;
413 /*
414 * if we have both HV and PR enabled, default is HV
415 */
416 if (type == 0) {
417 if (kvmppc_hv_ops)
418 kvm_ops = kvmppc_hv_ops;
419 else
420 kvm_ops = kvmppc_pr_ops;
421 if (!kvm_ops)
422 goto err_out;
423 } else if (type == KVM_VM_PPC_HV) {
424 if (!kvmppc_hv_ops)
425 goto err_out;
426 kvm_ops = kvmppc_hv_ops;
427 } else if (type == KVM_VM_PPC_PR) {
428 if (!kvmppc_pr_ops)
429 goto err_out;
430 kvm_ops = kvmppc_pr_ops;
431 } else
432 goto err_out;
433
434 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
435 return -ENOENT;
436
437 kvm->arch.kvm_ops = kvm_ops;
438 return kvmppc_core_init_vm(kvm);
439 err_out:
440 return -EINVAL;
441 }
442
443 bool kvm_arch_has_vcpu_debugfs(void)
444 {
445 return false;
446 }
447
448 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
449 {
450 return 0;
451 }
452
453 void kvm_arch_destroy_vm(struct kvm *kvm)
454 {
455 unsigned int i;
456 struct kvm_vcpu *vcpu;
457
458 #ifdef CONFIG_KVM_XICS
459 /*
460 * We call kick_all_cpus_sync() to ensure that all
461 * CPUs have executed any pending IPIs before we
462 * continue and free VCPUs structures below.
463 */
464 if (is_kvmppc_hv_enabled(kvm))
465 kick_all_cpus_sync();
466 #endif
467
468 kvm_for_each_vcpu(i, vcpu, kvm)
469 kvm_arch_vcpu_free(vcpu);
470
471 mutex_lock(&kvm->lock);
472 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
473 kvm->vcpus[i] = NULL;
474
475 atomic_set(&kvm->online_vcpus, 0);
476
477 kvmppc_core_destroy_vm(kvm);
478
479 mutex_unlock(&kvm->lock);
480
481 /* drop the module reference */
482 module_put(kvm->arch.kvm_ops->owner);
483 }
484
485 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
486 {
487 int r;
488 /* Assume we're using HV mode when the HV module is loaded */
489 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
490
491 if (kvm) {
492 /*
493 * Hooray - we know which VM type we're running on. Depend on
494 * that rather than the guess above.
495 */
496 hv_enabled = is_kvmppc_hv_enabled(kvm);
497 }
498
499 switch (ext) {
500 #ifdef CONFIG_BOOKE
501 case KVM_CAP_PPC_BOOKE_SREGS:
502 case KVM_CAP_PPC_BOOKE_WATCHDOG:
503 case KVM_CAP_PPC_EPR:
504 #else
505 case KVM_CAP_PPC_SEGSTATE:
506 case KVM_CAP_PPC_HIOR:
507 case KVM_CAP_PPC_PAPR:
508 #endif
509 case KVM_CAP_PPC_UNSET_IRQ:
510 case KVM_CAP_PPC_IRQ_LEVEL:
511 case KVM_CAP_ENABLE_CAP:
512 case KVM_CAP_ENABLE_CAP_VM:
513 case KVM_CAP_ONE_REG:
514 case KVM_CAP_IOEVENTFD:
515 case KVM_CAP_DEVICE_CTRL:
516 case KVM_CAP_IMMEDIATE_EXIT:
517 r = 1;
518 break;
519 case KVM_CAP_PPC_PAIRED_SINGLES:
520 case KVM_CAP_PPC_OSI:
521 case KVM_CAP_PPC_GET_PVINFO:
522 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
523 case KVM_CAP_SW_TLB:
524 #endif
525 /* We support this only for PR */
526 r = !hv_enabled;
527 break;
528 #ifdef CONFIG_KVM_MPIC
529 case KVM_CAP_IRQ_MPIC:
530 r = 1;
531 break;
532 #endif
533
534 #ifdef CONFIG_PPC_BOOK3S_64
535 case KVM_CAP_SPAPR_TCE:
536 case KVM_CAP_SPAPR_TCE_64:
537 /* fallthrough */
538 case KVM_CAP_SPAPR_TCE_VFIO:
539 case KVM_CAP_PPC_RTAS:
540 case KVM_CAP_PPC_FIXUP_HCALL:
541 case KVM_CAP_PPC_ENABLE_HCALL:
542 #ifdef CONFIG_KVM_XICS
543 case KVM_CAP_IRQ_XICS:
544 #endif
545 r = 1;
546 break;
547
548 case KVM_CAP_PPC_ALLOC_HTAB:
549 r = hv_enabled;
550 break;
551 #endif /* CONFIG_PPC_BOOK3S_64 */
552 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
553 case KVM_CAP_PPC_SMT:
554 r = 0;
555 if (hv_enabled) {
556 if (cpu_has_feature(CPU_FTR_ARCH_300))
557 r = 1;
558 else
559 r = threads_per_subcore;
560 }
561 break;
562 case KVM_CAP_PPC_RMA:
563 r = 0;
564 break;
565 case KVM_CAP_PPC_HWRNG:
566 r = kvmppc_hwrng_present();
567 break;
568 case KVM_CAP_PPC_MMU_RADIX:
569 r = !!(hv_enabled && radix_enabled());
570 break;
571 case KVM_CAP_PPC_MMU_HASH_V3:
572 r = !!(hv_enabled && !radix_enabled() &&
573 cpu_has_feature(CPU_FTR_ARCH_300));
574 break;
575 #endif
576 case KVM_CAP_SYNC_MMU:
577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
578 r = hv_enabled;
579 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
580 r = 1;
581 #else
582 r = 0;
583 #endif
584 break;
585 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
586 case KVM_CAP_PPC_HTAB_FD:
587 r = hv_enabled;
588 break;
589 #endif
590 case KVM_CAP_NR_VCPUS:
591 /*
592 * Recommending a number of CPUs is somewhat arbitrary; we
593 * return the number of present CPUs for -HV (since a host
594 * will have secondary threads "offline"), and for other KVM
595 * implementations just count online CPUs.
596 */
597 if (hv_enabled)
598 r = num_present_cpus();
599 else
600 r = num_online_cpus();
601 break;
602 case KVM_CAP_NR_MEMSLOTS:
603 r = KVM_USER_MEM_SLOTS;
604 break;
605 case KVM_CAP_MAX_VCPUS:
606 r = KVM_MAX_VCPUS;
607 break;
608 #ifdef CONFIG_PPC_BOOK3S_64
609 case KVM_CAP_PPC_GET_SMMU_INFO:
610 r = 1;
611 break;
612 case KVM_CAP_SPAPR_MULTITCE:
613 r = 1;
614 break;
615 case KVM_CAP_SPAPR_RESIZE_HPT:
616 /* Disable this on POWER9 until code handles new HPTE format */
617 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
618 break;
619 #endif
620 case KVM_CAP_PPC_HTM:
621 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
622 is_kvmppc_hv_enabled(kvm);
623 break;
624 default:
625 r = 0;
626 break;
627 }
628 return r;
629
630 }
631
632 long kvm_arch_dev_ioctl(struct file *filp,
633 unsigned int ioctl, unsigned long arg)
634 {
635 return -EINVAL;
636 }
637
638 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
639 struct kvm_memory_slot *dont)
640 {
641 kvmppc_core_free_memslot(kvm, free, dont);
642 }
643
644 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
645 unsigned long npages)
646 {
647 return kvmppc_core_create_memslot(kvm, slot, npages);
648 }
649
650 int kvm_arch_prepare_memory_region(struct kvm *kvm,
651 struct kvm_memory_slot *memslot,
652 const struct kvm_userspace_memory_region *mem,
653 enum kvm_mr_change change)
654 {
655 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
656 }
657
658 void kvm_arch_commit_memory_region(struct kvm *kvm,
659 const struct kvm_userspace_memory_region *mem,
660 const struct kvm_memory_slot *old,
661 const struct kvm_memory_slot *new,
662 enum kvm_mr_change change)
663 {
664 kvmppc_core_commit_memory_region(kvm, mem, old, new);
665 }
666
667 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
668 struct kvm_memory_slot *slot)
669 {
670 kvmppc_core_flush_memslot(kvm, slot);
671 }
672
673 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
674 {
675 struct kvm_vcpu *vcpu;
676 vcpu = kvmppc_core_vcpu_create(kvm, id);
677 if (!IS_ERR(vcpu)) {
678 vcpu->arch.wqp = &vcpu->wq;
679 kvmppc_create_vcpu_debugfs(vcpu, id);
680 }
681 return vcpu;
682 }
683
684 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
685 {
686 }
687
688 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
689 {
690 /* Make sure we're not using the vcpu anymore */
691 hrtimer_cancel(&vcpu->arch.dec_timer);
692
693 kvmppc_remove_vcpu_debugfs(vcpu);
694
695 switch (vcpu->arch.irq_type) {
696 case KVMPPC_IRQ_MPIC:
697 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
698 break;
699 case KVMPPC_IRQ_XICS:
700 kvmppc_xics_free_icp(vcpu);
701 break;
702 }
703
704 kvmppc_core_vcpu_free(vcpu);
705 }
706
707 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
708 {
709 kvm_arch_vcpu_free(vcpu);
710 }
711
712 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
713 {
714 return kvmppc_core_pending_dec(vcpu);
715 }
716
717 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
718 {
719 struct kvm_vcpu *vcpu;
720
721 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
722 kvmppc_decrementer_func(vcpu);
723
724 return HRTIMER_NORESTART;
725 }
726
727 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
728 {
729 int ret;
730
731 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
732 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
733 vcpu->arch.dec_expires = ~(u64)0;
734
735 #ifdef CONFIG_KVM_EXIT_TIMING
736 mutex_init(&vcpu->arch.exit_timing_lock);
737 #endif
738 ret = kvmppc_subarch_vcpu_init(vcpu);
739 return ret;
740 }
741
742 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
743 {
744 kvmppc_mmu_destroy(vcpu);
745 kvmppc_subarch_vcpu_uninit(vcpu);
746 }
747
748 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
749 {
750 #ifdef CONFIG_BOOKE
751 /*
752 * vrsave (formerly usprg0) isn't used by Linux, but may
753 * be used by the guest.
754 *
755 * On non-booke this is associated with Altivec and
756 * is handled by code in book3s.c.
757 */
758 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
759 #endif
760 kvmppc_core_vcpu_load(vcpu, cpu);
761 }
762
763 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
764 {
765 kvmppc_core_vcpu_put(vcpu);
766 #ifdef CONFIG_BOOKE
767 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
768 #endif
769 }
770
771 /*
772 * irq_bypass_add_producer and irq_bypass_del_producer are only
773 * useful if the architecture supports PCI passthrough.
774 * irq_bypass_stop and irq_bypass_start are not needed and so
775 * kvm_ops are not defined for them.
776 */
777 bool kvm_arch_has_irq_bypass(void)
778 {
779 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
780 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
781 }
782
783 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
784 struct irq_bypass_producer *prod)
785 {
786 struct kvm_kernel_irqfd *irqfd =
787 container_of(cons, struct kvm_kernel_irqfd, consumer);
788 struct kvm *kvm = irqfd->kvm;
789
790 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
791 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
792
793 return 0;
794 }
795
796 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
797 struct irq_bypass_producer *prod)
798 {
799 struct kvm_kernel_irqfd *irqfd =
800 container_of(cons, struct kvm_kernel_irqfd, consumer);
801 struct kvm *kvm = irqfd->kvm;
802
803 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
804 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
805 }
806
807 #ifdef CONFIG_VSX
808 static inline int kvmppc_get_vsr_dword_offset(int index)
809 {
810 int offset;
811
812 if ((index != 0) && (index != 1))
813 return -1;
814
815 #ifdef __BIG_ENDIAN
816 offset = index;
817 #else
818 offset = 1 - index;
819 #endif
820
821 return offset;
822 }
823
824 static inline int kvmppc_get_vsr_word_offset(int index)
825 {
826 int offset;
827
828 if ((index > 3) || (index < 0))
829 return -1;
830
831 #ifdef __BIG_ENDIAN
832 offset = index;
833 #else
834 offset = 3 - index;
835 #endif
836 return offset;
837 }
838
839 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
840 u64 gpr)
841 {
842 union kvmppc_one_reg val;
843 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
844 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
845
846 if (offset == -1)
847 return;
848
849 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
850 val.vval = VCPU_VSX_VR(vcpu, index);
851 val.vsxval[offset] = gpr;
852 VCPU_VSX_VR(vcpu, index) = val.vval;
853 } else {
854 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
855 }
856 }
857
858 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
859 u64 gpr)
860 {
861 union kvmppc_one_reg val;
862 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
863
864 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
865 val.vval = VCPU_VSX_VR(vcpu, index);
866 val.vsxval[0] = gpr;
867 val.vsxval[1] = gpr;
868 VCPU_VSX_VR(vcpu, index) = val.vval;
869 } else {
870 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
871 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
872 }
873 }
874
875 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
876 u32 gpr32)
877 {
878 union kvmppc_one_reg val;
879 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
880 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
881 int dword_offset, word_offset;
882
883 if (offset == -1)
884 return;
885
886 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
887 val.vval = VCPU_VSX_VR(vcpu, index);
888 val.vsx32val[offset] = gpr32;
889 VCPU_VSX_VR(vcpu, index) = val.vval;
890 } else {
891 dword_offset = offset / 2;
892 word_offset = offset % 2;
893 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
894 val.vsx32val[word_offset] = gpr32;
895 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
896 }
897 }
898 #endif /* CONFIG_VSX */
899
900 #ifdef CONFIG_PPC_FPU
901 static inline u64 sp_to_dp(u32 fprs)
902 {
903 u64 fprd;
904
905 preempt_disable();
906 enable_kernel_fp();
907 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
908 : "fr0");
909 preempt_enable();
910 return fprd;
911 }
912
913 static inline u32 dp_to_sp(u64 fprd)
914 {
915 u32 fprs;
916
917 preempt_disable();
918 enable_kernel_fp();
919 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
920 : "fr0");
921 preempt_enable();
922 return fprs;
923 }
924
925 #else
926 #define sp_to_dp(x) (x)
927 #define dp_to_sp(x) (x)
928 #endif /* CONFIG_PPC_FPU */
929
930 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
931 struct kvm_run *run)
932 {
933 u64 uninitialized_var(gpr);
934
935 if (run->mmio.len > sizeof(gpr)) {
936 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
937 return;
938 }
939
940 if (!vcpu->arch.mmio_host_swabbed) {
941 switch (run->mmio.len) {
942 case 8: gpr = *(u64 *)run->mmio.data; break;
943 case 4: gpr = *(u32 *)run->mmio.data; break;
944 case 2: gpr = *(u16 *)run->mmio.data; break;
945 case 1: gpr = *(u8 *)run->mmio.data; break;
946 }
947 } else {
948 switch (run->mmio.len) {
949 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
950 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
951 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
952 case 1: gpr = *(u8 *)run->mmio.data; break;
953 }
954 }
955
956 /* conversion between single and double precision */
957 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
958 gpr = sp_to_dp(gpr);
959
960 if (vcpu->arch.mmio_sign_extend) {
961 switch (run->mmio.len) {
962 #ifdef CONFIG_PPC64
963 case 4:
964 gpr = (s64)(s32)gpr;
965 break;
966 #endif
967 case 2:
968 gpr = (s64)(s16)gpr;
969 break;
970 case 1:
971 gpr = (s64)(s8)gpr;
972 break;
973 }
974 }
975
976 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
977 case KVM_MMIO_REG_GPR:
978 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
979 break;
980 case KVM_MMIO_REG_FPR:
981 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
982 break;
983 #ifdef CONFIG_PPC_BOOK3S
984 case KVM_MMIO_REG_QPR:
985 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
986 break;
987 case KVM_MMIO_REG_FQPR:
988 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
989 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
990 break;
991 #endif
992 #ifdef CONFIG_VSX
993 case KVM_MMIO_REG_VSX:
994 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
995 kvmppc_set_vsr_dword(vcpu, gpr);
996 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
997 kvmppc_set_vsr_word(vcpu, gpr);
998 else if (vcpu->arch.mmio_vsx_copy_type ==
999 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1000 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1001 break;
1002 #endif
1003 default:
1004 BUG();
1005 }
1006 }
1007
1008 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1009 unsigned int rt, unsigned int bytes,
1010 int is_default_endian, int sign_extend)
1011 {
1012 int idx, ret;
1013 bool host_swabbed;
1014
1015 /* Pity C doesn't have a logical XOR operator */
1016 if (kvmppc_need_byteswap(vcpu)) {
1017 host_swabbed = is_default_endian;
1018 } else {
1019 host_swabbed = !is_default_endian;
1020 }
1021
1022 if (bytes > sizeof(run->mmio.data)) {
1023 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1024 run->mmio.len);
1025 }
1026
1027 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1028 run->mmio.len = bytes;
1029 run->mmio.is_write = 0;
1030
1031 vcpu->arch.io_gpr = rt;
1032 vcpu->arch.mmio_host_swabbed = host_swabbed;
1033 vcpu->mmio_needed = 1;
1034 vcpu->mmio_is_write = 0;
1035 vcpu->arch.mmio_sign_extend = sign_extend;
1036
1037 idx = srcu_read_lock(&vcpu->kvm->srcu);
1038
1039 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1040 bytes, &run->mmio.data);
1041
1042 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1043
1044 if (!ret) {
1045 kvmppc_complete_mmio_load(vcpu, run);
1046 vcpu->mmio_needed = 0;
1047 return EMULATE_DONE;
1048 }
1049
1050 return EMULATE_DO_MMIO;
1051 }
1052
1053 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1054 unsigned int rt, unsigned int bytes,
1055 int is_default_endian)
1056 {
1057 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1058 }
1059 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1060
1061 /* Same as above, but sign extends */
1062 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1063 unsigned int rt, unsigned int bytes,
1064 int is_default_endian)
1065 {
1066 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1067 }
1068
1069 #ifdef CONFIG_VSX
1070 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1071 unsigned int rt, unsigned int bytes,
1072 int is_default_endian, int mmio_sign_extend)
1073 {
1074 enum emulation_result emulated = EMULATE_DONE;
1075
1076 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1077 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1078 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1079 return EMULATE_FAIL;
1080 }
1081
1082 while (vcpu->arch.mmio_vsx_copy_nums) {
1083 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1084 is_default_endian, mmio_sign_extend);
1085
1086 if (emulated != EMULATE_DONE)
1087 break;
1088
1089 vcpu->arch.paddr_accessed += run->mmio.len;
1090
1091 vcpu->arch.mmio_vsx_copy_nums--;
1092 vcpu->arch.mmio_vsx_offset++;
1093 }
1094 return emulated;
1095 }
1096 #endif /* CONFIG_VSX */
1097
1098 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1099 u64 val, unsigned int bytes, int is_default_endian)
1100 {
1101 void *data = run->mmio.data;
1102 int idx, ret;
1103 bool host_swabbed;
1104
1105 /* Pity C doesn't have a logical XOR operator */
1106 if (kvmppc_need_byteswap(vcpu)) {
1107 host_swabbed = is_default_endian;
1108 } else {
1109 host_swabbed = !is_default_endian;
1110 }
1111
1112 if (bytes > sizeof(run->mmio.data)) {
1113 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1114 run->mmio.len);
1115 }
1116
1117 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1118 run->mmio.len = bytes;
1119 run->mmio.is_write = 1;
1120 vcpu->mmio_needed = 1;
1121 vcpu->mmio_is_write = 1;
1122
1123 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1124 val = dp_to_sp(val);
1125
1126 /* Store the value at the lowest bytes in 'data'. */
1127 if (!host_swabbed) {
1128 switch (bytes) {
1129 case 8: *(u64 *)data = val; break;
1130 case 4: *(u32 *)data = val; break;
1131 case 2: *(u16 *)data = val; break;
1132 case 1: *(u8 *)data = val; break;
1133 }
1134 } else {
1135 switch (bytes) {
1136 case 8: *(u64 *)data = swab64(val); break;
1137 case 4: *(u32 *)data = swab32(val); break;
1138 case 2: *(u16 *)data = swab16(val); break;
1139 case 1: *(u8 *)data = val; break;
1140 }
1141 }
1142
1143 idx = srcu_read_lock(&vcpu->kvm->srcu);
1144
1145 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1146 bytes, &run->mmio.data);
1147
1148 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1149
1150 if (!ret) {
1151 vcpu->mmio_needed = 0;
1152 return EMULATE_DONE;
1153 }
1154
1155 return EMULATE_DO_MMIO;
1156 }
1157 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1158
1159 #ifdef CONFIG_VSX
1160 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1161 {
1162 u32 dword_offset, word_offset;
1163 union kvmppc_one_reg reg;
1164 int vsx_offset = 0;
1165 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1166 int result = 0;
1167
1168 switch (copy_type) {
1169 case KVMPPC_VSX_COPY_DWORD:
1170 vsx_offset =
1171 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1172
1173 if (vsx_offset == -1) {
1174 result = -1;
1175 break;
1176 }
1177
1178 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1179 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1180 } else {
1181 reg.vval = VCPU_VSX_VR(vcpu, rs);
1182 *val = reg.vsxval[vsx_offset];
1183 }
1184 break;
1185
1186 case KVMPPC_VSX_COPY_WORD:
1187 vsx_offset =
1188 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1189
1190 if (vsx_offset == -1) {
1191 result = -1;
1192 break;
1193 }
1194
1195 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1196 dword_offset = vsx_offset / 2;
1197 word_offset = vsx_offset % 2;
1198 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1199 *val = reg.vsx32val[word_offset];
1200 } else {
1201 reg.vval = VCPU_VSX_VR(vcpu, rs);
1202 *val = reg.vsx32val[vsx_offset];
1203 }
1204 break;
1205
1206 default:
1207 result = -1;
1208 break;
1209 }
1210
1211 return result;
1212 }
1213
1214 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1215 int rs, unsigned int bytes, int is_default_endian)
1216 {
1217 u64 val;
1218 enum emulation_result emulated = EMULATE_DONE;
1219
1220 vcpu->arch.io_gpr = rs;
1221
1222 /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1223 if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1224 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1225 return EMULATE_FAIL;
1226 }
1227
1228 while (vcpu->arch.mmio_vsx_copy_nums) {
1229 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1230 return EMULATE_FAIL;
1231
1232 emulated = kvmppc_handle_store(run, vcpu,
1233 val, bytes, is_default_endian);
1234
1235 if (emulated != EMULATE_DONE)
1236 break;
1237
1238 vcpu->arch.paddr_accessed += run->mmio.len;
1239
1240 vcpu->arch.mmio_vsx_copy_nums--;
1241 vcpu->arch.mmio_vsx_offset++;
1242 }
1243
1244 return emulated;
1245 }
1246
1247 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1248 struct kvm_run *run)
1249 {
1250 enum emulation_result emulated = EMULATE_FAIL;
1251 int r;
1252
1253 vcpu->arch.paddr_accessed += run->mmio.len;
1254
1255 if (!vcpu->mmio_is_write) {
1256 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1257 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1258 } else {
1259 emulated = kvmppc_handle_vsx_store(run, vcpu,
1260 vcpu->arch.io_gpr, run->mmio.len, 1);
1261 }
1262
1263 switch (emulated) {
1264 case EMULATE_DO_MMIO:
1265 run->exit_reason = KVM_EXIT_MMIO;
1266 r = RESUME_HOST;
1267 break;
1268 case EMULATE_FAIL:
1269 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1270 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1271 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1272 r = RESUME_HOST;
1273 break;
1274 default:
1275 r = RESUME_GUEST;
1276 break;
1277 }
1278 return r;
1279 }
1280 #endif /* CONFIG_VSX */
1281
1282 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1283 {
1284 int r = 0;
1285 union kvmppc_one_reg val;
1286 int size;
1287
1288 size = one_reg_size(reg->id);
1289 if (size > sizeof(val))
1290 return -EINVAL;
1291
1292 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1293 if (r == -EINVAL) {
1294 r = 0;
1295 switch (reg->id) {
1296 #ifdef CONFIG_ALTIVEC
1297 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1298 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1299 r = -ENXIO;
1300 break;
1301 }
1302 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1303 break;
1304 case KVM_REG_PPC_VSCR:
1305 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1306 r = -ENXIO;
1307 break;
1308 }
1309 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1310 break;
1311 case KVM_REG_PPC_VRSAVE:
1312 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1313 break;
1314 #endif /* CONFIG_ALTIVEC */
1315 default:
1316 r = -EINVAL;
1317 break;
1318 }
1319 }
1320
1321 if (r)
1322 return r;
1323
1324 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1325 r = -EFAULT;
1326
1327 return r;
1328 }
1329
1330 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1331 {
1332 int r;
1333 union kvmppc_one_reg val;
1334 int size;
1335
1336 size = one_reg_size(reg->id);
1337 if (size > sizeof(val))
1338 return -EINVAL;
1339
1340 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1341 return -EFAULT;
1342
1343 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1344 if (r == -EINVAL) {
1345 r = 0;
1346 switch (reg->id) {
1347 #ifdef CONFIG_ALTIVEC
1348 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1349 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1350 r = -ENXIO;
1351 break;
1352 }
1353 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1354 break;
1355 case KVM_REG_PPC_VSCR:
1356 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1357 r = -ENXIO;
1358 break;
1359 }
1360 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1361 break;
1362 case KVM_REG_PPC_VRSAVE:
1363 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1364 r = -ENXIO;
1365 break;
1366 }
1367 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1368 break;
1369 #endif /* CONFIG_ALTIVEC */
1370 default:
1371 r = -EINVAL;
1372 break;
1373 }
1374 }
1375
1376 return r;
1377 }
1378
1379 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1380 {
1381 int r;
1382 sigset_t sigsaved;
1383
1384 if (vcpu->mmio_needed) {
1385 vcpu->mmio_needed = 0;
1386 if (!vcpu->mmio_is_write)
1387 kvmppc_complete_mmio_load(vcpu, run);
1388 #ifdef CONFIG_VSX
1389 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1390 vcpu->arch.mmio_vsx_copy_nums--;
1391 vcpu->arch.mmio_vsx_offset++;
1392 }
1393
1394 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1395 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1396 if (r == RESUME_HOST) {
1397 vcpu->mmio_needed = 1;
1398 return r;
1399 }
1400 }
1401 #endif
1402 } else if (vcpu->arch.osi_needed) {
1403 u64 *gprs = run->osi.gprs;
1404 int i;
1405
1406 for (i = 0; i < 32; i++)
1407 kvmppc_set_gpr(vcpu, i, gprs[i]);
1408 vcpu->arch.osi_needed = 0;
1409 } else if (vcpu->arch.hcall_needed) {
1410 int i;
1411
1412 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1413 for (i = 0; i < 9; ++i)
1414 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1415 vcpu->arch.hcall_needed = 0;
1416 #ifdef CONFIG_BOOKE
1417 } else if (vcpu->arch.epr_needed) {
1418 kvmppc_set_epr(vcpu, run->epr.epr);
1419 vcpu->arch.epr_needed = 0;
1420 #endif
1421 }
1422
1423 if (vcpu->sigset_active)
1424 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1425
1426 if (run->immediate_exit)
1427 r = -EINTR;
1428 else
1429 r = kvmppc_vcpu_run(run, vcpu);
1430
1431 if (vcpu->sigset_active)
1432 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1433
1434 return r;
1435 }
1436
1437 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1438 {
1439 if (irq->irq == KVM_INTERRUPT_UNSET) {
1440 kvmppc_core_dequeue_external(vcpu);
1441 return 0;
1442 }
1443
1444 kvmppc_core_queue_external(vcpu, irq);
1445
1446 kvm_vcpu_kick(vcpu);
1447
1448 return 0;
1449 }
1450
1451 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1452 struct kvm_enable_cap *cap)
1453 {
1454 int r;
1455
1456 if (cap->flags)
1457 return -EINVAL;
1458
1459 switch (cap->cap) {
1460 case KVM_CAP_PPC_OSI:
1461 r = 0;
1462 vcpu->arch.osi_enabled = true;
1463 break;
1464 case KVM_CAP_PPC_PAPR:
1465 r = 0;
1466 vcpu->arch.papr_enabled = true;
1467 break;
1468 case KVM_CAP_PPC_EPR:
1469 r = 0;
1470 if (cap->args[0])
1471 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1472 else
1473 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1474 break;
1475 #ifdef CONFIG_BOOKE
1476 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1477 r = 0;
1478 vcpu->arch.watchdog_enabled = true;
1479 break;
1480 #endif
1481 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1482 case KVM_CAP_SW_TLB: {
1483 struct kvm_config_tlb cfg;
1484 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1485
1486 r = -EFAULT;
1487 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1488 break;
1489
1490 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1491 break;
1492 }
1493 #endif
1494 #ifdef CONFIG_KVM_MPIC
1495 case KVM_CAP_IRQ_MPIC: {
1496 struct fd f;
1497 struct kvm_device *dev;
1498
1499 r = -EBADF;
1500 f = fdget(cap->args[0]);
1501 if (!f.file)
1502 break;
1503
1504 r = -EPERM;
1505 dev = kvm_device_from_filp(f.file);
1506 if (dev)
1507 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1508
1509 fdput(f);
1510 break;
1511 }
1512 #endif
1513 #ifdef CONFIG_KVM_XICS
1514 case KVM_CAP_IRQ_XICS: {
1515 struct fd f;
1516 struct kvm_device *dev;
1517
1518 r = -EBADF;
1519 f = fdget(cap->args[0]);
1520 if (!f.file)
1521 break;
1522
1523 r = -EPERM;
1524 dev = kvm_device_from_filp(f.file);
1525 if (dev)
1526 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1527
1528 fdput(f);
1529 break;
1530 }
1531 #endif /* CONFIG_KVM_XICS */
1532 default:
1533 r = -EINVAL;
1534 break;
1535 }
1536
1537 if (!r)
1538 r = kvmppc_sanity_check(vcpu);
1539
1540 return r;
1541 }
1542
1543 bool kvm_arch_intc_initialized(struct kvm *kvm)
1544 {
1545 #ifdef CONFIG_KVM_MPIC
1546 if (kvm->arch.mpic)
1547 return true;
1548 #endif
1549 #ifdef CONFIG_KVM_XICS
1550 if (kvm->arch.xics)
1551 return true;
1552 #endif
1553 return false;
1554 }
1555
1556 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1557 struct kvm_mp_state *mp_state)
1558 {
1559 return -EINVAL;
1560 }
1561
1562 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1563 struct kvm_mp_state *mp_state)
1564 {
1565 return -EINVAL;
1566 }
1567
1568 long kvm_arch_vcpu_ioctl(struct file *filp,
1569 unsigned int ioctl, unsigned long arg)
1570 {
1571 struct kvm_vcpu *vcpu = filp->private_data;
1572 void __user *argp = (void __user *)arg;
1573 long r;
1574
1575 switch (ioctl) {
1576 case KVM_INTERRUPT: {
1577 struct kvm_interrupt irq;
1578 r = -EFAULT;
1579 if (copy_from_user(&irq, argp, sizeof(irq)))
1580 goto out;
1581 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1582 goto out;
1583 }
1584
1585 case KVM_ENABLE_CAP:
1586 {
1587 struct kvm_enable_cap cap;
1588 r = -EFAULT;
1589 if (copy_from_user(&cap, argp, sizeof(cap)))
1590 goto out;
1591 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1592 break;
1593 }
1594
1595 case KVM_SET_ONE_REG:
1596 case KVM_GET_ONE_REG:
1597 {
1598 struct kvm_one_reg reg;
1599 r = -EFAULT;
1600 if (copy_from_user(&reg, argp, sizeof(reg)))
1601 goto out;
1602 if (ioctl == KVM_SET_ONE_REG)
1603 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1604 else
1605 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1606 break;
1607 }
1608
1609 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1610 case KVM_DIRTY_TLB: {
1611 struct kvm_dirty_tlb dirty;
1612 r = -EFAULT;
1613 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1614 goto out;
1615 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1616 break;
1617 }
1618 #endif
1619 default:
1620 r = -EINVAL;
1621 }
1622
1623 out:
1624 return r;
1625 }
1626
1627 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1628 {
1629 return VM_FAULT_SIGBUS;
1630 }
1631
1632 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1633 {
1634 u32 inst_nop = 0x60000000;
1635 #ifdef CONFIG_KVM_BOOKE_HV
1636 u32 inst_sc1 = 0x44000022;
1637 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1638 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1639 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1640 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1641 #else
1642 u32 inst_lis = 0x3c000000;
1643 u32 inst_ori = 0x60000000;
1644 u32 inst_sc = 0x44000002;
1645 u32 inst_imm_mask = 0xffff;
1646
1647 /*
1648 * The hypercall to get into KVM from within guest context is as
1649 * follows:
1650 *
1651 * lis r0, r0, KVM_SC_MAGIC_R0@h
1652 * ori r0, KVM_SC_MAGIC_R0@l
1653 * sc
1654 * nop
1655 */
1656 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1657 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1658 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1659 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1660 #endif
1661
1662 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1663
1664 return 0;
1665 }
1666
1667 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1668 bool line_status)
1669 {
1670 if (!irqchip_in_kernel(kvm))
1671 return -ENXIO;
1672
1673 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1674 irq_event->irq, irq_event->level,
1675 line_status);
1676 return 0;
1677 }
1678
1679
1680 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1681 struct kvm_enable_cap *cap)
1682 {
1683 int r;
1684
1685 if (cap->flags)
1686 return -EINVAL;
1687
1688 switch (cap->cap) {
1689 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1690 case KVM_CAP_PPC_ENABLE_HCALL: {
1691 unsigned long hcall = cap->args[0];
1692
1693 r = -EINVAL;
1694 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1695 cap->args[1] > 1)
1696 break;
1697 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1698 break;
1699 if (cap->args[1])
1700 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1701 else
1702 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1703 r = 0;
1704 break;
1705 }
1706 #endif
1707 default:
1708 r = -EINVAL;
1709 break;
1710 }
1711
1712 return r;
1713 }
1714
1715 long kvm_arch_vm_ioctl(struct file *filp,
1716 unsigned int ioctl, unsigned long arg)
1717 {
1718 struct kvm *kvm __maybe_unused = filp->private_data;
1719 void __user *argp = (void __user *)arg;
1720 long r;
1721
1722 switch (ioctl) {
1723 case KVM_PPC_GET_PVINFO: {
1724 struct kvm_ppc_pvinfo pvinfo;
1725 memset(&pvinfo, 0, sizeof(pvinfo));
1726 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1727 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1728 r = -EFAULT;
1729 goto out;
1730 }
1731
1732 break;
1733 }
1734 case KVM_ENABLE_CAP:
1735 {
1736 struct kvm_enable_cap cap;
1737 r = -EFAULT;
1738 if (copy_from_user(&cap, argp, sizeof(cap)))
1739 goto out;
1740 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1741 break;
1742 }
1743 #ifdef CONFIG_PPC_BOOK3S_64
1744 case KVM_CREATE_SPAPR_TCE_64: {
1745 struct kvm_create_spapr_tce_64 create_tce_64;
1746
1747 r = -EFAULT;
1748 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1749 goto out;
1750 if (create_tce_64.flags) {
1751 r = -EINVAL;
1752 goto out;
1753 }
1754 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1755 goto out;
1756 }
1757 case KVM_CREATE_SPAPR_TCE: {
1758 struct kvm_create_spapr_tce create_tce;
1759 struct kvm_create_spapr_tce_64 create_tce_64;
1760
1761 r = -EFAULT;
1762 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1763 goto out;
1764
1765 create_tce_64.liobn = create_tce.liobn;
1766 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1767 create_tce_64.offset = 0;
1768 create_tce_64.size = create_tce.window_size >>
1769 IOMMU_PAGE_SHIFT_4K;
1770 create_tce_64.flags = 0;
1771 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1772 goto out;
1773 }
1774 case KVM_PPC_GET_SMMU_INFO: {
1775 struct kvm_ppc_smmu_info info;
1776 struct kvm *kvm = filp->private_data;
1777
1778 memset(&info, 0, sizeof(info));
1779 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1780 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1781 r = -EFAULT;
1782 break;
1783 }
1784 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1785 struct kvm *kvm = filp->private_data;
1786
1787 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1788 break;
1789 }
1790 case KVM_PPC_CONFIGURE_V3_MMU: {
1791 struct kvm *kvm = filp->private_data;
1792 struct kvm_ppc_mmuv3_cfg cfg;
1793
1794 r = -EINVAL;
1795 if (!kvm->arch.kvm_ops->configure_mmu)
1796 goto out;
1797 r = -EFAULT;
1798 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1799 goto out;
1800 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1801 break;
1802 }
1803 case KVM_PPC_GET_RMMU_INFO: {
1804 struct kvm *kvm = filp->private_data;
1805 struct kvm_ppc_rmmu_info info;
1806
1807 r = -EINVAL;
1808 if (!kvm->arch.kvm_ops->get_rmmu_info)
1809 goto out;
1810 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1811 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1812 r = -EFAULT;
1813 break;
1814 }
1815 default: {
1816 struct kvm *kvm = filp->private_data;
1817 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1818 }
1819 #else /* CONFIG_PPC_BOOK3S_64 */
1820 default:
1821 r = -ENOTTY;
1822 #endif
1823 }
1824 out:
1825 return r;
1826 }
1827
1828 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1829 static unsigned long nr_lpids;
1830
1831 long kvmppc_alloc_lpid(void)
1832 {
1833 long lpid;
1834
1835 do {
1836 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1837 if (lpid >= nr_lpids) {
1838 pr_err("%s: No LPIDs free\n", __func__);
1839 return -ENOMEM;
1840 }
1841 } while (test_and_set_bit(lpid, lpid_inuse));
1842
1843 return lpid;
1844 }
1845 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1846
1847 void kvmppc_claim_lpid(long lpid)
1848 {
1849 set_bit(lpid, lpid_inuse);
1850 }
1851 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1852
1853 void kvmppc_free_lpid(long lpid)
1854 {
1855 clear_bit(lpid, lpid_inuse);
1856 }
1857 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1858
1859 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1860 {
1861 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1862 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1863 }
1864 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1865
1866 int kvm_arch_init(void *opaque)
1867 {
1868 return 0;
1869 }
1870
1871 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);