]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/powerpc.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include "timing.h"
41 #include "irq.h"
42 #include "../mm/mmu_decl.h"
43
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46
47 struct kvmppc_ops *kvmppc_hv_ops;
48 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
49 struct kvmppc_ops *kvmppc_pr_ops;
50 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
51
52
53 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
54 {
55 return !!(v->arch.pending_exceptions) ||
56 v->requests;
57 }
58
59 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
60 {
61 return 1;
62 }
63
64 /*
65 * Common checks before entering the guest world. Call with interrupts
66 * disabled.
67 *
68 * returns:
69 *
70 * == 1 if we're ready to go into guest state
71 * <= 0 if we need to go back to the host with return value
72 */
73 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
74 {
75 int r;
76
77 WARN_ON(irqs_disabled());
78 hard_irq_disable();
79
80 while (true) {
81 if (need_resched()) {
82 local_irq_enable();
83 cond_resched();
84 hard_irq_disable();
85 continue;
86 }
87
88 if (signal_pending(current)) {
89 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
90 vcpu->run->exit_reason = KVM_EXIT_INTR;
91 r = -EINTR;
92 break;
93 }
94
95 vcpu->mode = IN_GUEST_MODE;
96
97 /*
98 * Reading vcpu->requests must happen after setting vcpu->mode,
99 * so we don't miss a request because the requester sees
100 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
101 * before next entering the guest (and thus doesn't IPI).
102 * This also orders the write to mode from any reads
103 * to the page tables done while the VCPU is running.
104 * Please see the comment in kvm_flush_remote_tlbs.
105 */
106 smp_mb();
107
108 if (vcpu->requests) {
109 /* Make sure we process requests preemptable */
110 local_irq_enable();
111 trace_kvm_check_requests(vcpu);
112 r = kvmppc_core_check_requests(vcpu);
113 hard_irq_disable();
114 if (r > 0)
115 continue;
116 break;
117 }
118
119 if (kvmppc_core_prepare_to_enter(vcpu)) {
120 /* interrupts got enabled in between, so we
121 are back at square 1 */
122 continue;
123 }
124
125 guest_enter_irqoff();
126 return 1;
127 }
128
129 /* return to host */
130 local_irq_enable();
131 return r;
132 }
133 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
134
135 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
136 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
137 {
138 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
139 int i;
140
141 shared->sprg0 = swab64(shared->sprg0);
142 shared->sprg1 = swab64(shared->sprg1);
143 shared->sprg2 = swab64(shared->sprg2);
144 shared->sprg3 = swab64(shared->sprg3);
145 shared->srr0 = swab64(shared->srr0);
146 shared->srr1 = swab64(shared->srr1);
147 shared->dar = swab64(shared->dar);
148 shared->msr = swab64(shared->msr);
149 shared->dsisr = swab32(shared->dsisr);
150 shared->int_pending = swab32(shared->int_pending);
151 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
152 shared->sr[i] = swab32(shared->sr[i]);
153 }
154 #endif
155
156 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
157 {
158 int nr = kvmppc_get_gpr(vcpu, 11);
159 int r;
160 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
161 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
162 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
163 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
164 unsigned long r2 = 0;
165
166 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
167 /* 32 bit mode */
168 param1 &= 0xffffffff;
169 param2 &= 0xffffffff;
170 param3 &= 0xffffffff;
171 param4 &= 0xffffffff;
172 }
173
174 switch (nr) {
175 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
176 {
177 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
178 /* Book3S can be little endian, find it out here */
179 int shared_big_endian = true;
180 if (vcpu->arch.intr_msr & MSR_LE)
181 shared_big_endian = false;
182 if (shared_big_endian != vcpu->arch.shared_big_endian)
183 kvmppc_swab_shared(vcpu);
184 vcpu->arch.shared_big_endian = shared_big_endian;
185 #endif
186
187 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
188 /*
189 * Older versions of the Linux magic page code had
190 * a bug where they would map their trampoline code
191 * NX. If that's the case, remove !PR NX capability.
192 */
193 vcpu->arch.disable_kernel_nx = true;
194 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
195 }
196
197 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
198 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
199
200 #ifdef CONFIG_PPC_64K_PAGES
201 /*
202 * Make sure our 4k magic page is in the same window of a 64k
203 * page within the guest and within the host's page.
204 */
205 if ((vcpu->arch.magic_page_pa & 0xf000) !=
206 ((ulong)vcpu->arch.shared & 0xf000)) {
207 void *old_shared = vcpu->arch.shared;
208 ulong shared = (ulong)vcpu->arch.shared;
209 void *new_shared;
210
211 shared &= PAGE_MASK;
212 shared |= vcpu->arch.magic_page_pa & 0xf000;
213 new_shared = (void*)shared;
214 memcpy(new_shared, old_shared, 0x1000);
215 vcpu->arch.shared = new_shared;
216 }
217 #endif
218
219 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
220
221 r = EV_SUCCESS;
222 break;
223 }
224 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
225 r = EV_SUCCESS;
226 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
227 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
228 #endif
229
230 /* Second return value is in r4 */
231 break;
232 case EV_HCALL_TOKEN(EV_IDLE):
233 r = EV_SUCCESS;
234 kvm_vcpu_block(vcpu);
235 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
236 break;
237 default:
238 r = EV_UNIMPLEMENTED;
239 break;
240 }
241
242 kvmppc_set_gpr(vcpu, 4, r2);
243
244 return r;
245 }
246 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
247
248 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
249 {
250 int r = false;
251
252 /* We have to know what CPU to virtualize */
253 if (!vcpu->arch.pvr)
254 goto out;
255
256 /* PAPR only works with book3s_64 */
257 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
258 goto out;
259
260 /* HV KVM can only do PAPR mode for now */
261 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
262 goto out;
263
264 #ifdef CONFIG_KVM_BOOKE_HV
265 if (!cpu_has_feature(CPU_FTR_EMB_HV))
266 goto out;
267 #endif
268
269 r = true;
270
271 out:
272 vcpu->arch.sane = r;
273 return r ? 0 : -EINVAL;
274 }
275 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
276
277 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
278 {
279 enum emulation_result er;
280 int r;
281
282 er = kvmppc_emulate_loadstore(vcpu);
283 switch (er) {
284 case EMULATE_DONE:
285 /* Future optimization: only reload non-volatiles if they were
286 * actually modified. */
287 r = RESUME_GUEST_NV;
288 break;
289 case EMULATE_AGAIN:
290 r = RESUME_GUEST;
291 break;
292 case EMULATE_DO_MMIO:
293 run->exit_reason = KVM_EXIT_MMIO;
294 /* We must reload nonvolatiles because "update" load/store
295 * instructions modify register state. */
296 /* Future optimization: only reload non-volatiles if they were
297 * actually modified. */
298 r = RESUME_HOST_NV;
299 break;
300 case EMULATE_FAIL:
301 {
302 u32 last_inst;
303
304 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
305 /* XXX Deliver Program interrupt to guest. */
306 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
307 r = RESUME_HOST;
308 break;
309 }
310 default:
311 WARN_ON(1);
312 r = RESUME_GUEST;
313 }
314
315 return r;
316 }
317 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
318
319 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
320 bool data)
321 {
322 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
323 struct kvmppc_pte pte;
324 int r;
325
326 vcpu->stat.st++;
327
328 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
329 XLATE_WRITE, &pte);
330 if (r < 0)
331 return r;
332
333 *eaddr = pte.raddr;
334
335 if (!pte.may_write)
336 return -EPERM;
337
338 /* Magic page override */
339 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
340 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
341 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
342 void *magic = vcpu->arch.shared;
343 magic += pte.eaddr & 0xfff;
344 memcpy(magic, ptr, size);
345 return EMULATE_DONE;
346 }
347
348 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
349 return EMULATE_DO_MMIO;
350
351 return EMULATE_DONE;
352 }
353 EXPORT_SYMBOL_GPL(kvmppc_st);
354
355 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
356 bool data)
357 {
358 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
359 struct kvmppc_pte pte;
360 int rc;
361
362 vcpu->stat.ld++;
363
364 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
365 XLATE_READ, &pte);
366 if (rc)
367 return rc;
368
369 *eaddr = pte.raddr;
370
371 if (!pte.may_read)
372 return -EPERM;
373
374 if (!data && !pte.may_execute)
375 return -ENOEXEC;
376
377 /* Magic page override */
378 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
379 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
380 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
381 void *magic = vcpu->arch.shared;
382 magic += pte.eaddr & 0xfff;
383 memcpy(ptr, magic, size);
384 return EMULATE_DONE;
385 }
386
387 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
388 return EMULATE_DO_MMIO;
389
390 return EMULATE_DONE;
391 }
392 EXPORT_SYMBOL_GPL(kvmppc_ld);
393
394 int kvm_arch_hardware_enable(void)
395 {
396 return 0;
397 }
398
399 int kvm_arch_hardware_setup(void)
400 {
401 return 0;
402 }
403
404 void kvm_arch_check_processor_compat(void *rtn)
405 {
406 *(int *)rtn = kvmppc_core_check_processor_compat();
407 }
408
409 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
410 {
411 struct kvmppc_ops *kvm_ops = NULL;
412 /*
413 * if we have both HV and PR enabled, default is HV
414 */
415 if (type == 0) {
416 if (kvmppc_hv_ops)
417 kvm_ops = kvmppc_hv_ops;
418 else
419 kvm_ops = kvmppc_pr_ops;
420 if (!kvm_ops)
421 goto err_out;
422 } else if (type == KVM_VM_PPC_HV) {
423 if (!kvmppc_hv_ops)
424 goto err_out;
425 kvm_ops = kvmppc_hv_ops;
426 } else if (type == KVM_VM_PPC_PR) {
427 if (!kvmppc_pr_ops)
428 goto err_out;
429 kvm_ops = kvmppc_pr_ops;
430 } else
431 goto err_out;
432
433 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
434 return -ENOENT;
435
436 kvm->arch.kvm_ops = kvm_ops;
437 return kvmppc_core_init_vm(kvm);
438 err_out:
439 return -EINVAL;
440 }
441
442 bool kvm_arch_has_vcpu_debugfs(void)
443 {
444 return false;
445 }
446
447 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
448 {
449 return 0;
450 }
451
452 void kvm_arch_destroy_vm(struct kvm *kvm)
453 {
454 unsigned int i;
455 struct kvm_vcpu *vcpu;
456
457 #ifdef CONFIG_KVM_XICS
458 /*
459 * We call kick_all_cpus_sync() to ensure that all
460 * CPUs have executed any pending IPIs before we
461 * continue and free VCPUs structures below.
462 */
463 if (is_kvmppc_hv_enabled(kvm))
464 kick_all_cpus_sync();
465 #endif
466
467 kvm_for_each_vcpu(i, vcpu, kvm)
468 kvm_arch_vcpu_free(vcpu);
469
470 mutex_lock(&kvm->lock);
471 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
472 kvm->vcpus[i] = NULL;
473
474 atomic_set(&kvm->online_vcpus, 0);
475
476 kvmppc_core_destroy_vm(kvm);
477
478 mutex_unlock(&kvm->lock);
479
480 /* drop the module reference */
481 module_put(kvm->arch.kvm_ops->owner);
482 }
483
484 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
485 {
486 int r;
487 /* Assume we're using HV mode when the HV module is loaded */
488 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
489
490 if (kvm) {
491 /*
492 * Hooray - we know which VM type we're running on. Depend on
493 * that rather than the guess above.
494 */
495 hv_enabled = is_kvmppc_hv_enabled(kvm);
496 }
497
498 switch (ext) {
499 #ifdef CONFIG_BOOKE
500 case KVM_CAP_PPC_BOOKE_SREGS:
501 case KVM_CAP_PPC_BOOKE_WATCHDOG:
502 case KVM_CAP_PPC_EPR:
503 #else
504 case KVM_CAP_PPC_SEGSTATE:
505 case KVM_CAP_PPC_HIOR:
506 case KVM_CAP_PPC_PAPR:
507 #endif
508 case KVM_CAP_PPC_UNSET_IRQ:
509 case KVM_CAP_PPC_IRQ_LEVEL:
510 case KVM_CAP_ENABLE_CAP:
511 case KVM_CAP_ENABLE_CAP_VM:
512 case KVM_CAP_ONE_REG:
513 case KVM_CAP_IOEVENTFD:
514 case KVM_CAP_DEVICE_CTRL:
515 case KVM_CAP_IMMEDIATE_EXIT:
516 r = 1;
517 break;
518 case KVM_CAP_PPC_PAIRED_SINGLES:
519 case KVM_CAP_PPC_OSI:
520 case KVM_CAP_PPC_GET_PVINFO:
521 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
522 case KVM_CAP_SW_TLB:
523 #endif
524 /* We support this only for PR */
525 r = !hv_enabled;
526 break;
527 #ifdef CONFIG_KVM_MMIO
528 case KVM_CAP_COALESCED_MMIO:
529 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
530 break;
531 #endif
532 #ifdef CONFIG_KVM_MPIC
533 case KVM_CAP_IRQ_MPIC:
534 r = 1;
535 break;
536 #endif
537
538 #ifdef CONFIG_PPC_BOOK3S_64
539 case KVM_CAP_SPAPR_TCE:
540 case KVM_CAP_SPAPR_TCE_64:
541 case KVM_CAP_PPC_RTAS:
542 case KVM_CAP_PPC_FIXUP_HCALL:
543 case KVM_CAP_PPC_ENABLE_HCALL:
544 #ifdef CONFIG_KVM_XICS
545 case KVM_CAP_IRQ_XICS:
546 #endif
547 r = 1;
548 break;
549
550 case KVM_CAP_PPC_ALLOC_HTAB:
551 r = hv_enabled;
552 break;
553 #endif /* CONFIG_PPC_BOOK3S_64 */
554 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
555 case KVM_CAP_PPC_SMT:
556 r = 0;
557 if (hv_enabled) {
558 if (cpu_has_feature(CPU_FTR_ARCH_300))
559 r = 1;
560 else
561 r = threads_per_subcore;
562 }
563 break;
564 case KVM_CAP_PPC_RMA:
565 r = 0;
566 break;
567 case KVM_CAP_PPC_HWRNG:
568 r = kvmppc_hwrng_present();
569 break;
570 case KVM_CAP_PPC_MMU_RADIX:
571 r = !!(hv_enabled && radix_enabled());
572 break;
573 case KVM_CAP_PPC_MMU_HASH_V3:
574 r = !!(hv_enabled && !radix_enabled() &&
575 cpu_has_feature(CPU_FTR_ARCH_300));
576 break;
577 #endif
578 case KVM_CAP_SYNC_MMU:
579 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580 r = hv_enabled;
581 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
582 r = 1;
583 #else
584 r = 0;
585 #endif
586 break;
587 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
588 case KVM_CAP_PPC_HTAB_FD:
589 r = hv_enabled;
590 break;
591 #endif
592 case KVM_CAP_NR_VCPUS:
593 /*
594 * Recommending a number of CPUs is somewhat arbitrary; we
595 * return the number of present CPUs for -HV (since a host
596 * will have secondary threads "offline"), and for other KVM
597 * implementations just count online CPUs.
598 */
599 if (hv_enabled)
600 r = num_present_cpus();
601 else
602 r = num_online_cpus();
603 break;
604 case KVM_CAP_NR_MEMSLOTS:
605 r = KVM_USER_MEM_SLOTS;
606 break;
607 case KVM_CAP_MAX_VCPUS:
608 r = KVM_MAX_VCPUS;
609 break;
610 #ifdef CONFIG_PPC_BOOK3S_64
611 case KVM_CAP_PPC_GET_SMMU_INFO:
612 r = 1;
613 break;
614 case KVM_CAP_SPAPR_MULTITCE:
615 r = 1;
616 break;
617 case KVM_CAP_SPAPR_RESIZE_HPT:
618 /* Disable this on POWER9 until code handles new HPTE format */
619 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
620 break;
621 #endif
622 case KVM_CAP_PPC_HTM:
623 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
624 is_kvmppc_hv_enabled(kvm);
625 break;
626 default:
627 r = 0;
628 break;
629 }
630 return r;
631
632 }
633
634 long kvm_arch_dev_ioctl(struct file *filp,
635 unsigned int ioctl, unsigned long arg)
636 {
637 return -EINVAL;
638 }
639
640 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
641 struct kvm_memory_slot *dont)
642 {
643 kvmppc_core_free_memslot(kvm, free, dont);
644 }
645
646 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
647 unsigned long npages)
648 {
649 return kvmppc_core_create_memslot(kvm, slot, npages);
650 }
651
652 int kvm_arch_prepare_memory_region(struct kvm *kvm,
653 struct kvm_memory_slot *memslot,
654 const struct kvm_userspace_memory_region *mem,
655 enum kvm_mr_change change)
656 {
657 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
658 }
659
660 void kvm_arch_commit_memory_region(struct kvm *kvm,
661 const struct kvm_userspace_memory_region *mem,
662 const struct kvm_memory_slot *old,
663 const struct kvm_memory_slot *new,
664 enum kvm_mr_change change)
665 {
666 kvmppc_core_commit_memory_region(kvm, mem, old, new);
667 }
668
669 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
670 struct kvm_memory_slot *slot)
671 {
672 kvmppc_core_flush_memslot(kvm, slot);
673 }
674
675 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
676 {
677 struct kvm_vcpu *vcpu;
678 vcpu = kvmppc_core_vcpu_create(kvm, id);
679 if (!IS_ERR(vcpu)) {
680 vcpu->arch.wqp = &vcpu->wq;
681 kvmppc_create_vcpu_debugfs(vcpu, id);
682 }
683 return vcpu;
684 }
685
686 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
687 {
688 }
689
690 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
691 {
692 /* Make sure we're not using the vcpu anymore */
693 hrtimer_cancel(&vcpu->arch.dec_timer);
694
695 kvmppc_remove_vcpu_debugfs(vcpu);
696
697 switch (vcpu->arch.irq_type) {
698 case KVMPPC_IRQ_MPIC:
699 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
700 break;
701 case KVMPPC_IRQ_XICS:
702 kvmppc_xics_free_icp(vcpu);
703 break;
704 }
705
706 kvmppc_core_vcpu_free(vcpu);
707 }
708
709 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
710 {
711 kvm_arch_vcpu_free(vcpu);
712 }
713
714 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
715 {
716 return kvmppc_core_pending_dec(vcpu);
717 }
718
719 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
720 {
721 struct kvm_vcpu *vcpu;
722
723 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
724 kvmppc_decrementer_func(vcpu);
725
726 return HRTIMER_NORESTART;
727 }
728
729 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
730 {
731 int ret;
732
733 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
734 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
735 vcpu->arch.dec_expires = ~(u64)0;
736
737 #ifdef CONFIG_KVM_EXIT_TIMING
738 mutex_init(&vcpu->arch.exit_timing_lock);
739 #endif
740 ret = kvmppc_subarch_vcpu_init(vcpu);
741 return ret;
742 }
743
744 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
745 {
746 kvmppc_mmu_destroy(vcpu);
747 kvmppc_subarch_vcpu_uninit(vcpu);
748 }
749
750 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
751 {
752 #ifdef CONFIG_BOOKE
753 /*
754 * vrsave (formerly usprg0) isn't used by Linux, but may
755 * be used by the guest.
756 *
757 * On non-booke this is associated with Altivec and
758 * is handled by code in book3s.c.
759 */
760 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
761 #endif
762 kvmppc_core_vcpu_load(vcpu, cpu);
763 }
764
765 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
766 {
767 kvmppc_core_vcpu_put(vcpu);
768 #ifdef CONFIG_BOOKE
769 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
770 #endif
771 }
772
773 /*
774 * irq_bypass_add_producer and irq_bypass_del_producer are only
775 * useful if the architecture supports PCI passthrough.
776 * irq_bypass_stop and irq_bypass_start are not needed and so
777 * kvm_ops are not defined for them.
778 */
779 bool kvm_arch_has_irq_bypass(void)
780 {
781 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
782 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
783 }
784
785 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
786 struct irq_bypass_producer *prod)
787 {
788 struct kvm_kernel_irqfd *irqfd =
789 container_of(cons, struct kvm_kernel_irqfd, consumer);
790 struct kvm *kvm = irqfd->kvm;
791
792 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
793 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
794
795 return 0;
796 }
797
798 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
799 struct irq_bypass_producer *prod)
800 {
801 struct kvm_kernel_irqfd *irqfd =
802 container_of(cons, struct kvm_kernel_irqfd, consumer);
803 struct kvm *kvm = irqfd->kvm;
804
805 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
806 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
807 }
808
809 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
810 struct kvm_run *run)
811 {
812 u64 uninitialized_var(gpr);
813
814 if (run->mmio.len > sizeof(gpr)) {
815 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
816 return;
817 }
818
819 if (!vcpu->arch.mmio_host_swabbed) {
820 switch (run->mmio.len) {
821 case 8: gpr = *(u64 *)run->mmio.data; break;
822 case 4: gpr = *(u32 *)run->mmio.data; break;
823 case 2: gpr = *(u16 *)run->mmio.data; break;
824 case 1: gpr = *(u8 *)run->mmio.data; break;
825 }
826 } else {
827 switch (run->mmio.len) {
828 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
829 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
830 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
831 case 1: gpr = *(u8 *)run->mmio.data; break;
832 }
833 }
834
835 if (vcpu->arch.mmio_sign_extend) {
836 switch (run->mmio.len) {
837 #ifdef CONFIG_PPC64
838 case 4:
839 gpr = (s64)(s32)gpr;
840 break;
841 #endif
842 case 2:
843 gpr = (s64)(s16)gpr;
844 break;
845 case 1:
846 gpr = (s64)(s8)gpr;
847 break;
848 }
849 }
850
851 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
852
853 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
854 case KVM_MMIO_REG_GPR:
855 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
856 break;
857 case KVM_MMIO_REG_FPR:
858 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
859 break;
860 #ifdef CONFIG_PPC_BOOK3S
861 case KVM_MMIO_REG_QPR:
862 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
863 break;
864 case KVM_MMIO_REG_FQPR:
865 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
866 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
867 break;
868 #endif
869 default:
870 BUG();
871 }
872 }
873
874 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
875 unsigned int rt, unsigned int bytes,
876 int is_default_endian, int sign_extend)
877 {
878 int idx, ret;
879 bool host_swabbed;
880
881 /* Pity C doesn't have a logical XOR operator */
882 if (kvmppc_need_byteswap(vcpu)) {
883 host_swabbed = is_default_endian;
884 } else {
885 host_swabbed = !is_default_endian;
886 }
887
888 if (bytes > sizeof(run->mmio.data)) {
889 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
890 run->mmio.len);
891 }
892
893 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
894 run->mmio.len = bytes;
895 run->mmio.is_write = 0;
896
897 vcpu->arch.io_gpr = rt;
898 vcpu->arch.mmio_host_swabbed = host_swabbed;
899 vcpu->mmio_needed = 1;
900 vcpu->mmio_is_write = 0;
901 vcpu->arch.mmio_sign_extend = sign_extend;
902
903 idx = srcu_read_lock(&vcpu->kvm->srcu);
904
905 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
906 bytes, &run->mmio.data);
907
908 srcu_read_unlock(&vcpu->kvm->srcu, idx);
909
910 if (!ret) {
911 kvmppc_complete_mmio_load(vcpu, run);
912 vcpu->mmio_needed = 0;
913 return EMULATE_DONE;
914 }
915
916 return EMULATE_DO_MMIO;
917 }
918
919 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
920 unsigned int rt, unsigned int bytes,
921 int is_default_endian)
922 {
923 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
924 }
925 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
926
927 /* Same as above, but sign extends */
928 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
929 unsigned int rt, unsigned int bytes,
930 int is_default_endian)
931 {
932 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
933 }
934
935 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
936 u64 val, unsigned int bytes, int is_default_endian)
937 {
938 void *data = run->mmio.data;
939 int idx, ret;
940 bool host_swabbed;
941
942 /* Pity C doesn't have a logical XOR operator */
943 if (kvmppc_need_byteswap(vcpu)) {
944 host_swabbed = is_default_endian;
945 } else {
946 host_swabbed = !is_default_endian;
947 }
948
949 if (bytes > sizeof(run->mmio.data)) {
950 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
951 run->mmio.len);
952 }
953
954 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
955 run->mmio.len = bytes;
956 run->mmio.is_write = 1;
957 vcpu->mmio_needed = 1;
958 vcpu->mmio_is_write = 1;
959
960 /* Store the value at the lowest bytes in 'data'. */
961 if (!host_swabbed) {
962 switch (bytes) {
963 case 8: *(u64 *)data = val; break;
964 case 4: *(u32 *)data = val; break;
965 case 2: *(u16 *)data = val; break;
966 case 1: *(u8 *)data = val; break;
967 }
968 } else {
969 switch (bytes) {
970 case 8: *(u64 *)data = swab64(val); break;
971 case 4: *(u32 *)data = swab32(val); break;
972 case 2: *(u16 *)data = swab16(val); break;
973 case 1: *(u8 *)data = val; break;
974 }
975 }
976
977 idx = srcu_read_lock(&vcpu->kvm->srcu);
978
979 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
980 bytes, &run->mmio.data);
981
982 srcu_read_unlock(&vcpu->kvm->srcu, idx);
983
984 if (!ret) {
985 vcpu->mmio_needed = 0;
986 return EMULATE_DONE;
987 }
988
989 return EMULATE_DO_MMIO;
990 }
991 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
992
993 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
994 {
995 int r = 0;
996 union kvmppc_one_reg val;
997 int size;
998
999 size = one_reg_size(reg->id);
1000 if (size > sizeof(val))
1001 return -EINVAL;
1002
1003 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1004 if (r == -EINVAL) {
1005 r = 0;
1006 switch (reg->id) {
1007 #ifdef CONFIG_ALTIVEC
1008 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1009 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1010 r = -ENXIO;
1011 break;
1012 }
1013 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1014 break;
1015 case KVM_REG_PPC_VSCR:
1016 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1017 r = -ENXIO;
1018 break;
1019 }
1020 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1021 break;
1022 case KVM_REG_PPC_VRSAVE:
1023 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1024 break;
1025 #endif /* CONFIG_ALTIVEC */
1026 default:
1027 r = -EINVAL;
1028 break;
1029 }
1030 }
1031
1032 if (r)
1033 return r;
1034
1035 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1036 r = -EFAULT;
1037
1038 return r;
1039 }
1040
1041 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1042 {
1043 int r;
1044 union kvmppc_one_reg val;
1045 int size;
1046
1047 size = one_reg_size(reg->id);
1048 if (size > sizeof(val))
1049 return -EINVAL;
1050
1051 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1052 return -EFAULT;
1053
1054 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1055 if (r == -EINVAL) {
1056 r = 0;
1057 switch (reg->id) {
1058 #ifdef CONFIG_ALTIVEC
1059 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1060 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1061 r = -ENXIO;
1062 break;
1063 }
1064 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1065 break;
1066 case KVM_REG_PPC_VSCR:
1067 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1068 r = -ENXIO;
1069 break;
1070 }
1071 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1072 break;
1073 case KVM_REG_PPC_VRSAVE:
1074 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1075 r = -ENXIO;
1076 break;
1077 }
1078 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1079 break;
1080 #endif /* CONFIG_ALTIVEC */
1081 default:
1082 r = -EINVAL;
1083 break;
1084 }
1085 }
1086
1087 return r;
1088 }
1089
1090 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1091 {
1092 int r;
1093 sigset_t sigsaved;
1094
1095 if (vcpu->sigset_active)
1096 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1097
1098 if (vcpu->mmio_needed) {
1099 if (!vcpu->mmio_is_write)
1100 kvmppc_complete_mmio_load(vcpu, run);
1101 vcpu->mmio_needed = 0;
1102 } else if (vcpu->arch.osi_needed) {
1103 u64 *gprs = run->osi.gprs;
1104 int i;
1105
1106 for (i = 0; i < 32; i++)
1107 kvmppc_set_gpr(vcpu, i, gprs[i]);
1108 vcpu->arch.osi_needed = 0;
1109 } else if (vcpu->arch.hcall_needed) {
1110 int i;
1111
1112 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1113 for (i = 0; i < 9; ++i)
1114 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1115 vcpu->arch.hcall_needed = 0;
1116 #ifdef CONFIG_BOOKE
1117 } else if (vcpu->arch.epr_needed) {
1118 kvmppc_set_epr(vcpu, run->epr.epr);
1119 vcpu->arch.epr_needed = 0;
1120 #endif
1121 }
1122
1123 if (run->immediate_exit)
1124 r = -EINTR;
1125 else
1126 r = kvmppc_vcpu_run(run, vcpu);
1127
1128 if (vcpu->sigset_active)
1129 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1130
1131 return r;
1132 }
1133
1134 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1135 {
1136 if (irq->irq == KVM_INTERRUPT_UNSET) {
1137 kvmppc_core_dequeue_external(vcpu);
1138 return 0;
1139 }
1140
1141 kvmppc_core_queue_external(vcpu, irq);
1142
1143 kvm_vcpu_kick(vcpu);
1144
1145 return 0;
1146 }
1147
1148 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1149 struct kvm_enable_cap *cap)
1150 {
1151 int r;
1152
1153 if (cap->flags)
1154 return -EINVAL;
1155
1156 switch (cap->cap) {
1157 case KVM_CAP_PPC_OSI:
1158 r = 0;
1159 vcpu->arch.osi_enabled = true;
1160 break;
1161 case KVM_CAP_PPC_PAPR:
1162 r = 0;
1163 vcpu->arch.papr_enabled = true;
1164 break;
1165 case KVM_CAP_PPC_EPR:
1166 r = 0;
1167 if (cap->args[0])
1168 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1169 else
1170 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1171 break;
1172 #ifdef CONFIG_BOOKE
1173 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1174 r = 0;
1175 vcpu->arch.watchdog_enabled = true;
1176 break;
1177 #endif
1178 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1179 case KVM_CAP_SW_TLB: {
1180 struct kvm_config_tlb cfg;
1181 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1182
1183 r = -EFAULT;
1184 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1185 break;
1186
1187 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1188 break;
1189 }
1190 #endif
1191 #ifdef CONFIG_KVM_MPIC
1192 case KVM_CAP_IRQ_MPIC: {
1193 struct fd f;
1194 struct kvm_device *dev;
1195
1196 r = -EBADF;
1197 f = fdget(cap->args[0]);
1198 if (!f.file)
1199 break;
1200
1201 r = -EPERM;
1202 dev = kvm_device_from_filp(f.file);
1203 if (dev)
1204 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1205
1206 fdput(f);
1207 break;
1208 }
1209 #endif
1210 #ifdef CONFIG_KVM_XICS
1211 case KVM_CAP_IRQ_XICS: {
1212 struct fd f;
1213 struct kvm_device *dev;
1214
1215 r = -EBADF;
1216 f = fdget(cap->args[0]);
1217 if (!f.file)
1218 break;
1219
1220 r = -EPERM;
1221 dev = kvm_device_from_filp(f.file);
1222 if (dev)
1223 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1224
1225 fdput(f);
1226 break;
1227 }
1228 #endif /* CONFIG_KVM_XICS */
1229 default:
1230 r = -EINVAL;
1231 break;
1232 }
1233
1234 if (!r)
1235 r = kvmppc_sanity_check(vcpu);
1236
1237 return r;
1238 }
1239
1240 bool kvm_arch_intc_initialized(struct kvm *kvm)
1241 {
1242 #ifdef CONFIG_KVM_MPIC
1243 if (kvm->arch.mpic)
1244 return true;
1245 #endif
1246 #ifdef CONFIG_KVM_XICS
1247 if (kvm->arch.xics)
1248 return true;
1249 #endif
1250 return false;
1251 }
1252
1253 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1254 struct kvm_mp_state *mp_state)
1255 {
1256 return -EINVAL;
1257 }
1258
1259 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1260 struct kvm_mp_state *mp_state)
1261 {
1262 return -EINVAL;
1263 }
1264
1265 long kvm_arch_vcpu_ioctl(struct file *filp,
1266 unsigned int ioctl, unsigned long arg)
1267 {
1268 struct kvm_vcpu *vcpu = filp->private_data;
1269 void __user *argp = (void __user *)arg;
1270 long r;
1271
1272 switch (ioctl) {
1273 case KVM_INTERRUPT: {
1274 struct kvm_interrupt irq;
1275 r = -EFAULT;
1276 if (copy_from_user(&irq, argp, sizeof(irq)))
1277 goto out;
1278 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1279 goto out;
1280 }
1281
1282 case KVM_ENABLE_CAP:
1283 {
1284 struct kvm_enable_cap cap;
1285 r = -EFAULT;
1286 if (copy_from_user(&cap, argp, sizeof(cap)))
1287 goto out;
1288 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1289 break;
1290 }
1291
1292 case KVM_SET_ONE_REG:
1293 case KVM_GET_ONE_REG:
1294 {
1295 struct kvm_one_reg reg;
1296 r = -EFAULT;
1297 if (copy_from_user(&reg, argp, sizeof(reg)))
1298 goto out;
1299 if (ioctl == KVM_SET_ONE_REG)
1300 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1301 else
1302 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1303 break;
1304 }
1305
1306 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1307 case KVM_DIRTY_TLB: {
1308 struct kvm_dirty_tlb dirty;
1309 r = -EFAULT;
1310 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1311 goto out;
1312 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1313 break;
1314 }
1315 #endif
1316 default:
1317 r = -EINVAL;
1318 }
1319
1320 out:
1321 return r;
1322 }
1323
1324 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1325 {
1326 return VM_FAULT_SIGBUS;
1327 }
1328
1329 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1330 {
1331 u32 inst_nop = 0x60000000;
1332 #ifdef CONFIG_KVM_BOOKE_HV
1333 u32 inst_sc1 = 0x44000022;
1334 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1335 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1336 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1337 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1338 #else
1339 u32 inst_lis = 0x3c000000;
1340 u32 inst_ori = 0x60000000;
1341 u32 inst_sc = 0x44000002;
1342 u32 inst_imm_mask = 0xffff;
1343
1344 /*
1345 * The hypercall to get into KVM from within guest context is as
1346 * follows:
1347 *
1348 * lis r0, r0, KVM_SC_MAGIC_R0@h
1349 * ori r0, KVM_SC_MAGIC_R0@l
1350 * sc
1351 * nop
1352 */
1353 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1354 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1355 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1356 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1357 #endif
1358
1359 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1360
1361 return 0;
1362 }
1363
1364 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1365 bool line_status)
1366 {
1367 if (!irqchip_in_kernel(kvm))
1368 return -ENXIO;
1369
1370 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1371 irq_event->irq, irq_event->level,
1372 line_status);
1373 return 0;
1374 }
1375
1376
1377 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1378 struct kvm_enable_cap *cap)
1379 {
1380 int r;
1381
1382 if (cap->flags)
1383 return -EINVAL;
1384
1385 switch (cap->cap) {
1386 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1387 case KVM_CAP_PPC_ENABLE_HCALL: {
1388 unsigned long hcall = cap->args[0];
1389
1390 r = -EINVAL;
1391 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1392 cap->args[1] > 1)
1393 break;
1394 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1395 break;
1396 if (cap->args[1])
1397 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1398 else
1399 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1400 r = 0;
1401 break;
1402 }
1403 #endif
1404 default:
1405 r = -EINVAL;
1406 break;
1407 }
1408
1409 return r;
1410 }
1411
1412 long kvm_arch_vm_ioctl(struct file *filp,
1413 unsigned int ioctl, unsigned long arg)
1414 {
1415 struct kvm *kvm __maybe_unused = filp->private_data;
1416 void __user *argp = (void __user *)arg;
1417 long r;
1418
1419 switch (ioctl) {
1420 case KVM_PPC_GET_PVINFO: {
1421 struct kvm_ppc_pvinfo pvinfo;
1422 memset(&pvinfo, 0, sizeof(pvinfo));
1423 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1424 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1425 r = -EFAULT;
1426 goto out;
1427 }
1428
1429 break;
1430 }
1431 case KVM_ENABLE_CAP:
1432 {
1433 struct kvm_enable_cap cap;
1434 r = -EFAULT;
1435 if (copy_from_user(&cap, argp, sizeof(cap)))
1436 goto out;
1437 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1438 break;
1439 }
1440 #ifdef CONFIG_PPC_BOOK3S_64
1441 case KVM_CREATE_SPAPR_TCE_64: {
1442 struct kvm_create_spapr_tce_64 create_tce_64;
1443
1444 r = -EFAULT;
1445 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1446 goto out;
1447 if (create_tce_64.flags) {
1448 r = -EINVAL;
1449 goto out;
1450 }
1451 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1452 goto out;
1453 }
1454 case KVM_CREATE_SPAPR_TCE: {
1455 struct kvm_create_spapr_tce create_tce;
1456 struct kvm_create_spapr_tce_64 create_tce_64;
1457
1458 r = -EFAULT;
1459 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1460 goto out;
1461
1462 create_tce_64.liobn = create_tce.liobn;
1463 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1464 create_tce_64.offset = 0;
1465 create_tce_64.size = create_tce.window_size >>
1466 IOMMU_PAGE_SHIFT_4K;
1467 create_tce_64.flags = 0;
1468 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1469 goto out;
1470 }
1471 case KVM_PPC_GET_SMMU_INFO: {
1472 struct kvm_ppc_smmu_info info;
1473 struct kvm *kvm = filp->private_data;
1474
1475 memset(&info, 0, sizeof(info));
1476 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1477 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1478 r = -EFAULT;
1479 break;
1480 }
1481 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1482 struct kvm *kvm = filp->private_data;
1483
1484 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1485 break;
1486 }
1487 case KVM_PPC_CONFIGURE_V3_MMU: {
1488 struct kvm *kvm = filp->private_data;
1489 struct kvm_ppc_mmuv3_cfg cfg;
1490
1491 r = -EINVAL;
1492 if (!kvm->arch.kvm_ops->configure_mmu)
1493 goto out;
1494 r = -EFAULT;
1495 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1496 goto out;
1497 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1498 break;
1499 }
1500 case KVM_PPC_GET_RMMU_INFO: {
1501 struct kvm *kvm = filp->private_data;
1502 struct kvm_ppc_rmmu_info info;
1503
1504 r = -EINVAL;
1505 if (!kvm->arch.kvm_ops->get_rmmu_info)
1506 goto out;
1507 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1508 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1509 r = -EFAULT;
1510 break;
1511 }
1512 default: {
1513 struct kvm *kvm = filp->private_data;
1514 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1515 }
1516 #else /* CONFIG_PPC_BOOK3S_64 */
1517 default:
1518 r = -ENOTTY;
1519 #endif
1520 }
1521 out:
1522 return r;
1523 }
1524
1525 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1526 static unsigned long nr_lpids;
1527
1528 long kvmppc_alloc_lpid(void)
1529 {
1530 long lpid;
1531
1532 do {
1533 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1534 if (lpid >= nr_lpids) {
1535 pr_err("%s: No LPIDs free\n", __func__);
1536 return -ENOMEM;
1537 }
1538 } while (test_and_set_bit(lpid, lpid_inuse));
1539
1540 return lpid;
1541 }
1542 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1543
1544 void kvmppc_claim_lpid(long lpid)
1545 {
1546 set_bit(lpid, lpid_inuse);
1547 }
1548 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1549
1550 void kvmppc_free_lpid(long lpid)
1551 {
1552 clear_bit(lpid, lpid_inuse);
1553 }
1554 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1555
1556 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1557 {
1558 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1559 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1560 }
1561 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1562
1563 int kvm_arch_init(void *opaque)
1564 {
1565 return 0;
1566 }
1567
1568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);