]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/powerpc.c
Merge branches 'for-4.10/upstream-fixes', 'for-4.11/intel-ish', 'for-4.11/mayflash...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <linux/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50
51
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54 return !!(v->arch.pending_exceptions) ||
55 v->requests;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60 return 1;
61 }
62
63 /*
64 * Common checks before entering the guest world. Call with interrupts
65 * disabled.
66 *
67 * returns:
68 *
69 * == 1 if we're ready to go into guest state
70 * <= 0 if we need to go back to the host with return value
71 */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74 int r;
75
76 WARN_ON(irqs_disabled());
77 hard_irq_disable();
78
79 while (true) {
80 if (need_resched()) {
81 local_irq_enable();
82 cond_resched();
83 hard_irq_disable();
84 continue;
85 }
86
87 if (signal_pending(current)) {
88 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89 vcpu->run->exit_reason = KVM_EXIT_INTR;
90 r = -EINTR;
91 break;
92 }
93
94 vcpu->mode = IN_GUEST_MODE;
95
96 /*
97 * Reading vcpu->requests must happen after setting vcpu->mode,
98 * so we don't miss a request because the requester sees
99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100 * before next entering the guest (and thus doesn't IPI).
101 * This also orders the write to mode from any reads
102 * to the page tables done while the VCPU is running.
103 * Please see the comment in kvm_flush_remote_tlbs.
104 */
105 smp_mb();
106
107 if (vcpu->requests) {
108 /* Make sure we process requests preemptable */
109 local_irq_enable();
110 trace_kvm_check_requests(vcpu);
111 r = kvmppc_core_check_requests(vcpu);
112 hard_irq_disable();
113 if (r > 0)
114 continue;
115 break;
116 }
117
118 if (kvmppc_core_prepare_to_enter(vcpu)) {
119 /* interrupts got enabled in between, so we
120 are back at square 1 */
121 continue;
122 }
123
124 guest_enter_irqoff();
125 return 1;
126 }
127
128 /* return to host */
129 local_irq_enable();
130 return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138 int i;
139
140 shared->sprg0 = swab64(shared->sprg0);
141 shared->sprg1 = swab64(shared->sprg1);
142 shared->sprg2 = swab64(shared->sprg2);
143 shared->sprg3 = swab64(shared->sprg3);
144 shared->srr0 = swab64(shared->srr0);
145 shared->srr1 = swab64(shared->srr1);
146 shared->dar = swab64(shared->dar);
147 shared->msr = swab64(shared->msr);
148 shared->dsisr = swab32(shared->dsisr);
149 shared->int_pending = swab32(shared->int_pending);
150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157 int nr = kvmppc_get_gpr(vcpu, 11);
158 int r;
159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163 unsigned long r2 = 0;
164
165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166 /* 32 bit mode */
167 param1 &= 0xffffffff;
168 param2 &= 0xffffffff;
169 param3 &= 0xffffffff;
170 param4 &= 0xffffffff;
171 }
172
173 switch (nr) {
174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175 {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177 /* Book3S can be little endian, find it out here */
178 int shared_big_endian = true;
179 if (vcpu->arch.intr_msr & MSR_LE)
180 shared_big_endian = false;
181 if (shared_big_endian != vcpu->arch.shared_big_endian)
182 kvmppc_swab_shared(vcpu);
183 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187 /*
188 * Older versions of the Linux magic page code had
189 * a bug where they would map their trampoline code
190 * NX. If that's the case, remove !PR NX capability.
191 */
192 vcpu->arch.disable_kernel_nx = true;
193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194 }
195
196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200 /*
201 * Make sure our 4k magic page is in the same window of a 64k
202 * page within the guest and within the host's page.
203 */
204 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205 ((ulong)vcpu->arch.shared & 0xf000)) {
206 void *old_shared = vcpu->arch.shared;
207 ulong shared = (ulong)vcpu->arch.shared;
208 void *new_shared;
209
210 shared &= PAGE_MASK;
211 shared |= vcpu->arch.magic_page_pa & 0xf000;
212 new_shared = (void*)shared;
213 memcpy(new_shared, old_shared, 0x1000);
214 vcpu->arch.shared = new_shared;
215 }
216 #endif
217
218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220 r = EV_SUCCESS;
221 break;
222 }
223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229 /* Second return value is in r4 */
230 break;
231 case EV_HCALL_TOKEN(EV_IDLE):
232 r = EV_SUCCESS;
233 kvm_vcpu_block(vcpu);
234 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235 break;
236 default:
237 r = EV_UNIMPLEMENTED;
238 break;
239 }
240
241 kvmppc_set_gpr(vcpu, 4, r2);
242
243 return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249 int r = false;
250
251 /* We have to know what CPU to virtualize */
252 if (!vcpu->arch.pvr)
253 goto out;
254
255 /* PAPR only works with book3s_64 */
256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257 goto out;
258
259 /* HV KVM can only do PAPR mode for now */
260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264 if (!cpu_has_feature(CPU_FTR_EMB_HV))
265 goto out;
266 #endif
267
268 r = true;
269
270 out:
271 vcpu->arch.sane = r;
272 return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278 enum emulation_result er;
279 int r;
280
281 er = kvmppc_emulate_loadstore(vcpu);
282 switch (er) {
283 case EMULATE_DONE:
284 /* Future optimization: only reload non-volatiles if they were
285 * actually modified. */
286 r = RESUME_GUEST_NV;
287 break;
288 case EMULATE_AGAIN:
289 r = RESUME_GUEST;
290 break;
291 case EMULATE_DO_MMIO:
292 run->exit_reason = KVM_EXIT_MMIO;
293 /* We must reload nonvolatiles because "update" load/store
294 * instructions modify register state. */
295 /* Future optimization: only reload non-volatiles if they were
296 * actually modified. */
297 r = RESUME_HOST_NV;
298 break;
299 case EMULATE_FAIL:
300 {
301 u32 last_inst;
302
303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304 /* XXX Deliver Program interrupt to guest. */
305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306 r = RESUME_HOST;
307 break;
308 }
309 default:
310 WARN_ON(1);
311 r = RESUME_GUEST;
312 }
313
314 return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319 bool data)
320 {
321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322 struct kvmppc_pte pte;
323 int r;
324
325 vcpu->stat.st++;
326
327 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328 XLATE_WRITE, &pte);
329 if (r < 0)
330 return r;
331
332 *eaddr = pte.raddr;
333
334 if (!pte.may_write)
335 return -EPERM;
336
337 /* Magic page override */
338 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341 void *magic = vcpu->arch.shared;
342 magic += pte.eaddr & 0xfff;
343 memcpy(magic, ptr, size);
344 return EMULATE_DONE;
345 }
346
347 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348 return EMULATE_DO_MMIO;
349
350 return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355 bool data)
356 {
357 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358 struct kvmppc_pte pte;
359 int rc;
360
361 vcpu->stat.ld++;
362
363 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364 XLATE_READ, &pte);
365 if (rc)
366 return rc;
367
368 *eaddr = pte.raddr;
369
370 if (!pte.may_read)
371 return -EPERM;
372
373 if (!data && !pte.may_execute)
374 return -ENOEXEC;
375
376 /* Magic page override */
377 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380 void *magic = vcpu->arch.shared;
381 magic += pte.eaddr & 0xfff;
382 memcpy(ptr, magic, size);
383 return EMULATE_DONE;
384 }
385
386 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387 return EMULATE_DO_MMIO;
388
389 return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392
393 int kvm_arch_hardware_enable(void)
394 {
395 return 0;
396 }
397
398 int kvm_arch_hardware_setup(void)
399 {
400 return 0;
401 }
402
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405 *(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410 struct kvmppc_ops *kvm_ops = NULL;
411 /*
412 * if we have both HV and PR enabled, default is HV
413 */
414 if (type == 0) {
415 if (kvmppc_hv_ops)
416 kvm_ops = kvmppc_hv_ops;
417 else
418 kvm_ops = kvmppc_pr_ops;
419 if (!kvm_ops)
420 goto err_out;
421 } else if (type == KVM_VM_PPC_HV) {
422 if (!kvmppc_hv_ops)
423 goto err_out;
424 kvm_ops = kvmppc_hv_ops;
425 } else if (type == KVM_VM_PPC_PR) {
426 if (!kvmppc_pr_ops)
427 goto err_out;
428 kvm_ops = kvmppc_pr_ops;
429 } else
430 goto err_out;
431
432 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433 return -ENOENT;
434
435 kvm->arch.kvm_ops = kvm_ops;
436 return kvmppc_core_init_vm(kvm);
437 err_out:
438 return -EINVAL;
439 }
440
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443 return false;
444 }
445
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448 return 0;
449 }
450
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453 unsigned int i;
454 struct kvm_vcpu *vcpu;
455
456 #ifdef CONFIG_KVM_XICS
457 /*
458 * We call kick_all_cpus_sync() to ensure that all
459 * CPUs have executed any pending IPIs before we
460 * continue and free VCPUs structures below.
461 */
462 if (is_kvmppc_hv_enabled(kvm))
463 kick_all_cpus_sync();
464 #endif
465
466 kvm_for_each_vcpu(i, vcpu, kvm)
467 kvm_arch_vcpu_free(vcpu);
468
469 mutex_lock(&kvm->lock);
470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471 kvm->vcpus[i] = NULL;
472
473 atomic_set(&kvm->online_vcpus, 0);
474
475 kvmppc_core_destroy_vm(kvm);
476
477 mutex_unlock(&kvm->lock);
478
479 /* drop the module reference */
480 module_put(kvm->arch.kvm_ops->owner);
481 }
482
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485 int r;
486 /* Assume we're using HV mode when the HV module is loaded */
487 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488
489 if (kvm) {
490 /*
491 * Hooray - we know which VM type we're running on. Depend on
492 * that rather than the guess above.
493 */
494 hv_enabled = is_kvmppc_hv_enabled(kvm);
495 }
496
497 switch (ext) {
498 #ifdef CONFIG_BOOKE
499 case KVM_CAP_PPC_BOOKE_SREGS:
500 case KVM_CAP_PPC_BOOKE_WATCHDOG:
501 case KVM_CAP_PPC_EPR:
502 #else
503 case KVM_CAP_PPC_SEGSTATE:
504 case KVM_CAP_PPC_HIOR:
505 case KVM_CAP_PPC_PAPR:
506 #endif
507 case KVM_CAP_PPC_UNSET_IRQ:
508 case KVM_CAP_PPC_IRQ_LEVEL:
509 case KVM_CAP_ENABLE_CAP:
510 case KVM_CAP_ENABLE_CAP_VM:
511 case KVM_CAP_ONE_REG:
512 case KVM_CAP_IOEVENTFD:
513 case KVM_CAP_DEVICE_CTRL:
514 r = 1;
515 break;
516 case KVM_CAP_PPC_PAIRED_SINGLES:
517 case KVM_CAP_PPC_OSI:
518 case KVM_CAP_PPC_GET_PVINFO:
519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
520 case KVM_CAP_SW_TLB:
521 #endif
522 /* We support this only for PR */
523 r = !hv_enabled;
524 break;
525 #ifdef CONFIG_KVM_MMIO
526 case KVM_CAP_COALESCED_MMIO:
527 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
528 break;
529 #endif
530 #ifdef CONFIG_KVM_MPIC
531 case KVM_CAP_IRQ_MPIC:
532 r = 1;
533 break;
534 #endif
535
536 #ifdef CONFIG_PPC_BOOK3S_64
537 case KVM_CAP_SPAPR_TCE:
538 case KVM_CAP_SPAPR_TCE_64:
539 case KVM_CAP_PPC_RTAS:
540 case KVM_CAP_PPC_FIXUP_HCALL:
541 case KVM_CAP_PPC_ENABLE_HCALL:
542 #ifdef CONFIG_KVM_XICS
543 case KVM_CAP_IRQ_XICS:
544 #endif
545 r = 1;
546 break;
547
548 case KVM_CAP_PPC_ALLOC_HTAB:
549 r = hv_enabled;
550 break;
551 #endif /* CONFIG_PPC_BOOK3S_64 */
552 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
553 case KVM_CAP_PPC_SMT:
554 r = 0;
555 if (hv_enabled) {
556 if (cpu_has_feature(CPU_FTR_ARCH_300))
557 r = 1;
558 else
559 r = threads_per_subcore;
560 }
561 break;
562 case KVM_CAP_PPC_RMA:
563 r = 0;
564 break;
565 case KVM_CAP_PPC_HWRNG:
566 r = kvmppc_hwrng_present();
567 break;
568 #endif
569 case KVM_CAP_SYNC_MMU:
570 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
571 r = hv_enabled;
572 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573 r = 1;
574 #else
575 r = 0;
576 #endif
577 break;
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579 case KVM_CAP_PPC_HTAB_FD:
580 r = hv_enabled;
581 break;
582 #endif
583 case KVM_CAP_NR_VCPUS:
584 /*
585 * Recommending a number of CPUs is somewhat arbitrary; we
586 * return the number of present CPUs for -HV (since a host
587 * will have secondary threads "offline"), and for other KVM
588 * implementations just count online CPUs.
589 */
590 if (hv_enabled)
591 r = num_present_cpus();
592 else
593 r = num_online_cpus();
594 break;
595 case KVM_CAP_NR_MEMSLOTS:
596 r = KVM_USER_MEM_SLOTS;
597 break;
598 case KVM_CAP_MAX_VCPUS:
599 r = KVM_MAX_VCPUS;
600 break;
601 #ifdef CONFIG_PPC_BOOK3S_64
602 case KVM_CAP_PPC_GET_SMMU_INFO:
603 r = 1;
604 break;
605 case KVM_CAP_SPAPR_MULTITCE:
606 r = 1;
607 break;
608 #endif
609 case KVM_CAP_PPC_HTM:
610 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
611 is_kvmppc_hv_enabled(kvm);
612 break;
613 default:
614 r = 0;
615 break;
616 }
617 return r;
618
619 }
620
621 long kvm_arch_dev_ioctl(struct file *filp,
622 unsigned int ioctl, unsigned long arg)
623 {
624 return -EINVAL;
625 }
626
627 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
628 struct kvm_memory_slot *dont)
629 {
630 kvmppc_core_free_memslot(kvm, free, dont);
631 }
632
633 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
634 unsigned long npages)
635 {
636 return kvmppc_core_create_memslot(kvm, slot, npages);
637 }
638
639 int kvm_arch_prepare_memory_region(struct kvm *kvm,
640 struct kvm_memory_slot *memslot,
641 const struct kvm_userspace_memory_region *mem,
642 enum kvm_mr_change change)
643 {
644 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
645 }
646
647 void kvm_arch_commit_memory_region(struct kvm *kvm,
648 const struct kvm_userspace_memory_region *mem,
649 const struct kvm_memory_slot *old,
650 const struct kvm_memory_slot *new,
651 enum kvm_mr_change change)
652 {
653 kvmppc_core_commit_memory_region(kvm, mem, old, new);
654 }
655
656 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
657 struct kvm_memory_slot *slot)
658 {
659 kvmppc_core_flush_memslot(kvm, slot);
660 }
661
662 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
663 {
664 struct kvm_vcpu *vcpu;
665 vcpu = kvmppc_core_vcpu_create(kvm, id);
666 if (!IS_ERR(vcpu)) {
667 vcpu->arch.wqp = &vcpu->wq;
668 kvmppc_create_vcpu_debugfs(vcpu, id);
669 }
670 return vcpu;
671 }
672
673 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
674 {
675 }
676
677 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
678 {
679 /* Make sure we're not using the vcpu anymore */
680 hrtimer_cancel(&vcpu->arch.dec_timer);
681
682 kvmppc_remove_vcpu_debugfs(vcpu);
683
684 switch (vcpu->arch.irq_type) {
685 case KVMPPC_IRQ_MPIC:
686 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
687 break;
688 case KVMPPC_IRQ_XICS:
689 kvmppc_xics_free_icp(vcpu);
690 break;
691 }
692
693 kvmppc_core_vcpu_free(vcpu);
694 }
695
696 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
697 {
698 kvm_arch_vcpu_free(vcpu);
699 }
700
701 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
702 {
703 return kvmppc_core_pending_dec(vcpu);
704 }
705
706 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
707 {
708 struct kvm_vcpu *vcpu;
709
710 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
711 kvmppc_decrementer_func(vcpu);
712
713 return HRTIMER_NORESTART;
714 }
715
716 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
717 {
718 int ret;
719
720 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
721 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
722 vcpu->arch.dec_expires = ~(u64)0;
723
724 #ifdef CONFIG_KVM_EXIT_TIMING
725 mutex_init(&vcpu->arch.exit_timing_lock);
726 #endif
727 ret = kvmppc_subarch_vcpu_init(vcpu);
728 return ret;
729 }
730
731 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
732 {
733 kvmppc_mmu_destroy(vcpu);
734 kvmppc_subarch_vcpu_uninit(vcpu);
735 }
736
737 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
738 {
739 #ifdef CONFIG_BOOKE
740 /*
741 * vrsave (formerly usprg0) isn't used by Linux, but may
742 * be used by the guest.
743 *
744 * On non-booke this is associated with Altivec and
745 * is handled by code in book3s.c.
746 */
747 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
748 #endif
749 kvmppc_core_vcpu_load(vcpu, cpu);
750 }
751
752 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
753 {
754 kvmppc_core_vcpu_put(vcpu);
755 #ifdef CONFIG_BOOKE
756 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
757 #endif
758 }
759
760 /*
761 * irq_bypass_add_producer and irq_bypass_del_producer are only
762 * useful if the architecture supports PCI passthrough.
763 * irq_bypass_stop and irq_bypass_start are not needed and so
764 * kvm_ops are not defined for them.
765 */
766 bool kvm_arch_has_irq_bypass(void)
767 {
768 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
769 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
770 }
771
772 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
773 struct irq_bypass_producer *prod)
774 {
775 struct kvm_kernel_irqfd *irqfd =
776 container_of(cons, struct kvm_kernel_irqfd, consumer);
777 struct kvm *kvm = irqfd->kvm;
778
779 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
780 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
781
782 return 0;
783 }
784
785 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
786 struct irq_bypass_producer *prod)
787 {
788 struct kvm_kernel_irqfd *irqfd =
789 container_of(cons, struct kvm_kernel_irqfd, consumer);
790 struct kvm *kvm = irqfd->kvm;
791
792 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
793 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
794 }
795
796 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
797 struct kvm_run *run)
798 {
799 u64 uninitialized_var(gpr);
800
801 if (run->mmio.len > sizeof(gpr)) {
802 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
803 return;
804 }
805
806 if (!vcpu->arch.mmio_host_swabbed) {
807 switch (run->mmio.len) {
808 case 8: gpr = *(u64 *)run->mmio.data; break;
809 case 4: gpr = *(u32 *)run->mmio.data; break;
810 case 2: gpr = *(u16 *)run->mmio.data; break;
811 case 1: gpr = *(u8 *)run->mmio.data; break;
812 }
813 } else {
814 switch (run->mmio.len) {
815 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
816 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
817 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
818 case 1: gpr = *(u8 *)run->mmio.data; break;
819 }
820 }
821
822 if (vcpu->arch.mmio_sign_extend) {
823 switch (run->mmio.len) {
824 #ifdef CONFIG_PPC64
825 case 4:
826 gpr = (s64)(s32)gpr;
827 break;
828 #endif
829 case 2:
830 gpr = (s64)(s16)gpr;
831 break;
832 case 1:
833 gpr = (s64)(s8)gpr;
834 break;
835 }
836 }
837
838 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
839
840 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
841 case KVM_MMIO_REG_GPR:
842 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
843 break;
844 case KVM_MMIO_REG_FPR:
845 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
846 break;
847 #ifdef CONFIG_PPC_BOOK3S
848 case KVM_MMIO_REG_QPR:
849 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
850 break;
851 case KVM_MMIO_REG_FQPR:
852 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
853 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
854 break;
855 #endif
856 default:
857 BUG();
858 }
859 }
860
861 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
862 unsigned int rt, unsigned int bytes,
863 int is_default_endian, int sign_extend)
864 {
865 int idx, ret;
866 bool host_swabbed;
867
868 /* Pity C doesn't have a logical XOR operator */
869 if (kvmppc_need_byteswap(vcpu)) {
870 host_swabbed = is_default_endian;
871 } else {
872 host_swabbed = !is_default_endian;
873 }
874
875 if (bytes > sizeof(run->mmio.data)) {
876 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
877 run->mmio.len);
878 }
879
880 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
881 run->mmio.len = bytes;
882 run->mmio.is_write = 0;
883
884 vcpu->arch.io_gpr = rt;
885 vcpu->arch.mmio_host_swabbed = host_swabbed;
886 vcpu->mmio_needed = 1;
887 vcpu->mmio_is_write = 0;
888 vcpu->arch.mmio_sign_extend = sign_extend;
889
890 idx = srcu_read_lock(&vcpu->kvm->srcu);
891
892 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
893 bytes, &run->mmio.data);
894
895 srcu_read_unlock(&vcpu->kvm->srcu, idx);
896
897 if (!ret) {
898 kvmppc_complete_mmio_load(vcpu, run);
899 vcpu->mmio_needed = 0;
900 return EMULATE_DONE;
901 }
902
903 return EMULATE_DO_MMIO;
904 }
905
906 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
907 unsigned int rt, unsigned int bytes,
908 int is_default_endian)
909 {
910 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
911 }
912 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
913
914 /* Same as above, but sign extends */
915 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
916 unsigned int rt, unsigned int bytes,
917 int is_default_endian)
918 {
919 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
920 }
921
922 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
923 u64 val, unsigned int bytes, int is_default_endian)
924 {
925 void *data = run->mmio.data;
926 int idx, ret;
927 bool host_swabbed;
928
929 /* Pity C doesn't have a logical XOR operator */
930 if (kvmppc_need_byteswap(vcpu)) {
931 host_swabbed = is_default_endian;
932 } else {
933 host_swabbed = !is_default_endian;
934 }
935
936 if (bytes > sizeof(run->mmio.data)) {
937 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
938 run->mmio.len);
939 }
940
941 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
942 run->mmio.len = bytes;
943 run->mmio.is_write = 1;
944 vcpu->mmio_needed = 1;
945 vcpu->mmio_is_write = 1;
946
947 /* Store the value at the lowest bytes in 'data'. */
948 if (!host_swabbed) {
949 switch (bytes) {
950 case 8: *(u64 *)data = val; break;
951 case 4: *(u32 *)data = val; break;
952 case 2: *(u16 *)data = val; break;
953 case 1: *(u8 *)data = val; break;
954 }
955 } else {
956 switch (bytes) {
957 case 8: *(u64 *)data = swab64(val); break;
958 case 4: *(u32 *)data = swab32(val); break;
959 case 2: *(u16 *)data = swab16(val); break;
960 case 1: *(u8 *)data = val; break;
961 }
962 }
963
964 idx = srcu_read_lock(&vcpu->kvm->srcu);
965
966 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
967 bytes, &run->mmio.data);
968
969 srcu_read_unlock(&vcpu->kvm->srcu, idx);
970
971 if (!ret) {
972 vcpu->mmio_needed = 0;
973 return EMULATE_DONE;
974 }
975
976 return EMULATE_DO_MMIO;
977 }
978 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
979
980 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
981 {
982 int r = 0;
983 union kvmppc_one_reg val;
984 int size;
985
986 size = one_reg_size(reg->id);
987 if (size > sizeof(val))
988 return -EINVAL;
989
990 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
991 if (r == -EINVAL) {
992 r = 0;
993 switch (reg->id) {
994 #ifdef CONFIG_ALTIVEC
995 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
996 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
997 r = -ENXIO;
998 break;
999 }
1000 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1001 break;
1002 case KVM_REG_PPC_VSCR:
1003 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1004 r = -ENXIO;
1005 break;
1006 }
1007 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1008 break;
1009 case KVM_REG_PPC_VRSAVE:
1010 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1011 break;
1012 #endif /* CONFIG_ALTIVEC */
1013 default:
1014 r = -EINVAL;
1015 break;
1016 }
1017 }
1018
1019 if (r)
1020 return r;
1021
1022 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1023 r = -EFAULT;
1024
1025 return r;
1026 }
1027
1028 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1029 {
1030 int r;
1031 union kvmppc_one_reg val;
1032 int size;
1033
1034 size = one_reg_size(reg->id);
1035 if (size > sizeof(val))
1036 return -EINVAL;
1037
1038 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1039 return -EFAULT;
1040
1041 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1042 if (r == -EINVAL) {
1043 r = 0;
1044 switch (reg->id) {
1045 #ifdef CONFIG_ALTIVEC
1046 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1047 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1048 r = -ENXIO;
1049 break;
1050 }
1051 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1052 break;
1053 case KVM_REG_PPC_VSCR:
1054 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1055 r = -ENXIO;
1056 break;
1057 }
1058 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1059 break;
1060 case KVM_REG_PPC_VRSAVE:
1061 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1062 r = -ENXIO;
1063 break;
1064 }
1065 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1066 break;
1067 #endif /* CONFIG_ALTIVEC */
1068 default:
1069 r = -EINVAL;
1070 break;
1071 }
1072 }
1073
1074 return r;
1075 }
1076
1077 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1078 {
1079 int r;
1080 sigset_t sigsaved;
1081
1082 if (vcpu->sigset_active)
1083 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1084
1085 if (vcpu->mmio_needed) {
1086 if (!vcpu->mmio_is_write)
1087 kvmppc_complete_mmio_load(vcpu, run);
1088 vcpu->mmio_needed = 0;
1089 } else if (vcpu->arch.osi_needed) {
1090 u64 *gprs = run->osi.gprs;
1091 int i;
1092
1093 for (i = 0; i < 32; i++)
1094 kvmppc_set_gpr(vcpu, i, gprs[i]);
1095 vcpu->arch.osi_needed = 0;
1096 } else if (vcpu->arch.hcall_needed) {
1097 int i;
1098
1099 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1100 for (i = 0; i < 9; ++i)
1101 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1102 vcpu->arch.hcall_needed = 0;
1103 #ifdef CONFIG_BOOKE
1104 } else if (vcpu->arch.epr_needed) {
1105 kvmppc_set_epr(vcpu, run->epr.epr);
1106 vcpu->arch.epr_needed = 0;
1107 #endif
1108 }
1109
1110 r = kvmppc_vcpu_run(run, vcpu);
1111
1112 if (vcpu->sigset_active)
1113 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1114
1115 return r;
1116 }
1117
1118 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1119 {
1120 if (irq->irq == KVM_INTERRUPT_UNSET) {
1121 kvmppc_core_dequeue_external(vcpu);
1122 return 0;
1123 }
1124
1125 kvmppc_core_queue_external(vcpu, irq);
1126
1127 kvm_vcpu_kick(vcpu);
1128
1129 return 0;
1130 }
1131
1132 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1133 struct kvm_enable_cap *cap)
1134 {
1135 int r;
1136
1137 if (cap->flags)
1138 return -EINVAL;
1139
1140 switch (cap->cap) {
1141 case KVM_CAP_PPC_OSI:
1142 r = 0;
1143 vcpu->arch.osi_enabled = true;
1144 break;
1145 case KVM_CAP_PPC_PAPR:
1146 r = 0;
1147 vcpu->arch.papr_enabled = true;
1148 break;
1149 case KVM_CAP_PPC_EPR:
1150 r = 0;
1151 if (cap->args[0])
1152 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1153 else
1154 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1155 break;
1156 #ifdef CONFIG_BOOKE
1157 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1158 r = 0;
1159 vcpu->arch.watchdog_enabled = true;
1160 break;
1161 #endif
1162 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1163 case KVM_CAP_SW_TLB: {
1164 struct kvm_config_tlb cfg;
1165 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1166
1167 r = -EFAULT;
1168 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1169 break;
1170
1171 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1172 break;
1173 }
1174 #endif
1175 #ifdef CONFIG_KVM_MPIC
1176 case KVM_CAP_IRQ_MPIC: {
1177 struct fd f;
1178 struct kvm_device *dev;
1179
1180 r = -EBADF;
1181 f = fdget(cap->args[0]);
1182 if (!f.file)
1183 break;
1184
1185 r = -EPERM;
1186 dev = kvm_device_from_filp(f.file);
1187 if (dev)
1188 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1189
1190 fdput(f);
1191 break;
1192 }
1193 #endif
1194 #ifdef CONFIG_KVM_XICS
1195 case KVM_CAP_IRQ_XICS: {
1196 struct fd f;
1197 struct kvm_device *dev;
1198
1199 r = -EBADF;
1200 f = fdget(cap->args[0]);
1201 if (!f.file)
1202 break;
1203
1204 r = -EPERM;
1205 dev = kvm_device_from_filp(f.file);
1206 if (dev)
1207 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1208
1209 fdput(f);
1210 break;
1211 }
1212 #endif /* CONFIG_KVM_XICS */
1213 default:
1214 r = -EINVAL;
1215 break;
1216 }
1217
1218 if (!r)
1219 r = kvmppc_sanity_check(vcpu);
1220
1221 return r;
1222 }
1223
1224 bool kvm_arch_intc_initialized(struct kvm *kvm)
1225 {
1226 #ifdef CONFIG_KVM_MPIC
1227 if (kvm->arch.mpic)
1228 return true;
1229 #endif
1230 #ifdef CONFIG_KVM_XICS
1231 if (kvm->arch.xics)
1232 return true;
1233 #endif
1234 return false;
1235 }
1236
1237 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1238 struct kvm_mp_state *mp_state)
1239 {
1240 return -EINVAL;
1241 }
1242
1243 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1244 struct kvm_mp_state *mp_state)
1245 {
1246 return -EINVAL;
1247 }
1248
1249 long kvm_arch_vcpu_ioctl(struct file *filp,
1250 unsigned int ioctl, unsigned long arg)
1251 {
1252 struct kvm_vcpu *vcpu = filp->private_data;
1253 void __user *argp = (void __user *)arg;
1254 long r;
1255
1256 switch (ioctl) {
1257 case KVM_INTERRUPT: {
1258 struct kvm_interrupt irq;
1259 r = -EFAULT;
1260 if (copy_from_user(&irq, argp, sizeof(irq)))
1261 goto out;
1262 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1263 goto out;
1264 }
1265
1266 case KVM_ENABLE_CAP:
1267 {
1268 struct kvm_enable_cap cap;
1269 r = -EFAULT;
1270 if (copy_from_user(&cap, argp, sizeof(cap)))
1271 goto out;
1272 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1273 break;
1274 }
1275
1276 case KVM_SET_ONE_REG:
1277 case KVM_GET_ONE_REG:
1278 {
1279 struct kvm_one_reg reg;
1280 r = -EFAULT;
1281 if (copy_from_user(&reg, argp, sizeof(reg)))
1282 goto out;
1283 if (ioctl == KVM_SET_ONE_REG)
1284 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1285 else
1286 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1287 break;
1288 }
1289
1290 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1291 case KVM_DIRTY_TLB: {
1292 struct kvm_dirty_tlb dirty;
1293 r = -EFAULT;
1294 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1295 goto out;
1296 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1297 break;
1298 }
1299 #endif
1300 default:
1301 r = -EINVAL;
1302 }
1303
1304 out:
1305 return r;
1306 }
1307
1308 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1309 {
1310 return VM_FAULT_SIGBUS;
1311 }
1312
1313 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1314 {
1315 u32 inst_nop = 0x60000000;
1316 #ifdef CONFIG_KVM_BOOKE_HV
1317 u32 inst_sc1 = 0x44000022;
1318 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1319 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1320 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1321 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1322 #else
1323 u32 inst_lis = 0x3c000000;
1324 u32 inst_ori = 0x60000000;
1325 u32 inst_sc = 0x44000002;
1326 u32 inst_imm_mask = 0xffff;
1327
1328 /*
1329 * The hypercall to get into KVM from within guest context is as
1330 * follows:
1331 *
1332 * lis r0, r0, KVM_SC_MAGIC_R0@h
1333 * ori r0, KVM_SC_MAGIC_R0@l
1334 * sc
1335 * nop
1336 */
1337 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1338 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1339 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1340 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1341 #endif
1342
1343 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1344
1345 return 0;
1346 }
1347
1348 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1349 bool line_status)
1350 {
1351 if (!irqchip_in_kernel(kvm))
1352 return -ENXIO;
1353
1354 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1355 irq_event->irq, irq_event->level,
1356 line_status);
1357 return 0;
1358 }
1359
1360
1361 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1362 struct kvm_enable_cap *cap)
1363 {
1364 int r;
1365
1366 if (cap->flags)
1367 return -EINVAL;
1368
1369 switch (cap->cap) {
1370 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1371 case KVM_CAP_PPC_ENABLE_HCALL: {
1372 unsigned long hcall = cap->args[0];
1373
1374 r = -EINVAL;
1375 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1376 cap->args[1] > 1)
1377 break;
1378 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1379 break;
1380 if (cap->args[1])
1381 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1382 else
1383 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1384 r = 0;
1385 break;
1386 }
1387 #endif
1388 default:
1389 r = -EINVAL;
1390 break;
1391 }
1392
1393 return r;
1394 }
1395
1396 long kvm_arch_vm_ioctl(struct file *filp,
1397 unsigned int ioctl, unsigned long arg)
1398 {
1399 struct kvm *kvm __maybe_unused = filp->private_data;
1400 void __user *argp = (void __user *)arg;
1401 long r;
1402
1403 switch (ioctl) {
1404 case KVM_PPC_GET_PVINFO: {
1405 struct kvm_ppc_pvinfo pvinfo;
1406 memset(&pvinfo, 0, sizeof(pvinfo));
1407 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1408 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1409 r = -EFAULT;
1410 goto out;
1411 }
1412
1413 break;
1414 }
1415 case KVM_ENABLE_CAP:
1416 {
1417 struct kvm_enable_cap cap;
1418 r = -EFAULT;
1419 if (copy_from_user(&cap, argp, sizeof(cap)))
1420 goto out;
1421 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1422 break;
1423 }
1424 #ifdef CONFIG_PPC_BOOK3S_64
1425 case KVM_CREATE_SPAPR_TCE_64: {
1426 struct kvm_create_spapr_tce_64 create_tce_64;
1427
1428 r = -EFAULT;
1429 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1430 goto out;
1431 if (create_tce_64.flags) {
1432 r = -EINVAL;
1433 goto out;
1434 }
1435 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1436 goto out;
1437 }
1438 case KVM_CREATE_SPAPR_TCE: {
1439 struct kvm_create_spapr_tce create_tce;
1440 struct kvm_create_spapr_tce_64 create_tce_64;
1441
1442 r = -EFAULT;
1443 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1444 goto out;
1445
1446 create_tce_64.liobn = create_tce.liobn;
1447 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1448 create_tce_64.offset = 0;
1449 create_tce_64.size = create_tce.window_size >>
1450 IOMMU_PAGE_SHIFT_4K;
1451 create_tce_64.flags = 0;
1452 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1453 goto out;
1454 }
1455 case KVM_PPC_GET_SMMU_INFO: {
1456 struct kvm_ppc_smmu_info info;
1457 struct kvm *kvm = filp->private_data;
1458
1459 memset(&info, 0, sizeof(info));
1460 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1461 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1462 r = -EFAULT;
1463 break;
1464 }
1465 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1466 struct kvm *kvm = filp->private_data;
1467
1468 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1469 break;
1470 }
1471 default: {
1472 struct kvm *kvm = filp->private_data;
1473 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1474 }
1475 #else /* CONFIG_PPC_BOOK3S_64 */
1476 default:
1477 r = -ENOTTY;
1478 #endif
1479 }
1480 out:
1481 return r;
1482 }
1483
1484 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1485 static unsigned long nr_lpids;
1486
1487 long kvmppc_alloc_lpid(void)
1488 {
1489 long lpid;
1490
1491 do {
1492 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1493 if (lpid >= nr_lpids) {
1494 pr_err("%s: No LPIDs free\n", __func__);
1495 return -ENOMEM;
1496 }
1497 } while (test_and_set_bit(lpid, lpid_inuse));
1498
1499 return lpid;
1500 }
1501 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1502
1503 void kvmppc_claim_lpid(long lpid)
1504 {
1505 set_bit(lpid, lpid_inuse);
1506 }
1507 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1508
1509 void kvmppc_free_lpid(long lpid)
1510 {
1511 clear_bit(lpid, lpid_inuse);
1512 }
1513 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1514
1515 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1516 {
1517 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1518 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1519 }
1520 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1521
1522 int kvm_arch_init(void *opaque)
1523 {
1524 return 0;
1525 }
1526
1527 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);