]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kvm/powerpc.c
Merge tag 'platform-drivers-x86-v4.11-1' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <linux/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50
51
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54 return !!(v->arch.pending_exceptions) ||
55 v->requests;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60 return 1;
61 }
62
63 /*
64 * Common checks before entering the guest world. Call with interrupts
65 * disabled.
66 *
67 * returns:
68 *
69 * == 1 if we're ready to go into guest state
70 * <= 0 if we need to go back to the host with return value
71 */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74 int r;
75
76 WARN_ON(irqs_disabled());
77 hard_irq_disable();
78
79 while (true) {
80 if (need_resched()) {
81 local_irq_enable();
82 cond_resched();
83 hard_irq_disable();
84 continue;
85 }
86
87 if (signal_pending(current)) {
88 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89 vcpu->run->exit_reason = KVM_EXIT_INTR;
90 r = -EINTR;
91 break;
92 }
93
94 vcpu->mode = IN_GUEST_MODE;
95
96 /*
97 * Reading vcpu->requests must happen after setting vcpu->mode,
98 * so we don't miss a request because the requester sees
99 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100 * before next entering the guest (and thus doesn't IPI).
101 * This also orders the write to mode from any reads
102 * to the page tables done while the VCPU is running.
103 * Please see the comment in kvm_flush_remote_tlbs.
104 */
105 smp_mb();
106
107 if (vcpu->requests) {
108 /* Make sure we process requests preemptable */
109 local_irq_enable();
110 trace_kvm_check_requests(vcpu);
111 r = kvmppc_core_check_requests(vcpu);
112 hard_irq_disable();
113 if (r > 0)
114 continue;
115 break;
116 }
117
118 if (kvmppc_core_prepare_to_enter(vcpu)) {
119 /* interrupts got enabled in between, so we
120 are back at square 1 */
121 continue;
122 }
123
124 guest_enter_irqoff();
125 return 1;
126 }
127
128 /* return to host */
129 local_irq_enable();
130 return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138 int i;
139
140 shared->sprg0 = swab64(shared->sprg0);
141 shared->sprg1 = swab64(shared->sprg1);
142 shared->sprg2 = swab64(shared->sprg2);
143 shared->sprg3 = swab64(shared->sprg3);
144 shared->srr0 = swab64(shared->srr0);
145 shared->srr1 = swab64(shared->srr1);
146 shared->dar = swab64(shared->dar);
147 shared->msr = swab64(shared->msr);
148 shared->dsisr = swab32(shared->dsisr);
149 shared->int_pending = swab32(shared->int_pending);
150 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157 int nr = kvmppc_get_gpr(vcpu, 11);
158 int r;
159 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163 unsigned long r2 = 0;
164
165 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166 /* 32 bit mode */
167 param1 &= 0xffffffff;
168 param2 &= 0xffffffff;
169 param3 &= 0xffffffff;
170 param4 &= 0xffffffff;
171 }
172
173 switch (nr) {
174 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175 {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177 /* Book3S can be little endian, find it out here */
178 int shared_big_endian = true;
179 if (vcpu->arch.intr_msr & MSR_LE)
180 shared_big_endian = false;
181 if (shared_big_endian != vcpu->arch.shared_big_endian)
182 kvmppc_swab_shared(vcpu);
183 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187 /*
188 * Older versions of the Linux magic page code had
189 * a bug where they would map their trampoline code
190 * NX. If that's the case, remove !PR NX capability.
191 */
192 vcpu->arch.disable_kernel_nx = true;
193 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194 }
195
196 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200 /*
201 * Make sure our 4k magic page is in the same window of a 64k
202 * page within the guest and within the host's page.
203 */
204 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205 ((ulong)vcpu->arch.shared & 0xf000)) {
206 void *old_shared = vcpu->arch.shared;
207 ulong shared = (ulong)vcpu->arch.shared;
208 void *new_shared;
209
210 shared &= PAGE_MASK;
211 shared |= vcpu->arch.magic_page_pa & 0xf000;
212 new_shared = (void*)shared;
213 memcpy(new_shared, old_shared, 0x1000);
214 vcpu->arch.shared = new_shared;
215 }
216 #endif
217
218 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220 r = EV_SUCCESS;
221 break;
222 }
223 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229 /* Second return value is in r4 */
230 break;
231 case EV_HCALL_TOKEN(EV_IDLE):
232 r = EV_SUCCESS;
233 kvm_vcpu_block(vcpu);
234 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235 break;
236 default:
237 r = EV_UNIMPLEMENTED;
238 break;
239 }
240
241 kvmppc_set_gpr(vcpu, 4, r2);
242
243 return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249 int r = false;
250
251 /* We have to know what CPU to virtualize */
252 if (!vcpu->arch.pvr)
253 goto out;
254
255 /* PAPR only works with book3s_64 */
256 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257 goto out;
258
259 /* HV KVM can only do PAPR mode for now */
260 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264 if (!cpu_has_feature(CPU_FTR_EMB_HV))
265 goto out;
266 #endif
267
268 r = true;
269
270 out:
271 vcpu->arch.sane = r;
272 return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278 enum emulation_result er;
279 int r;
280
281 er = kvmppc_emulate_loadstore(vcpu);
282 switch (er) {
283 case EMULATE_DONE:
284 /* Future optimization: only reload non-volatiles if they were
285 * actually modified. */
286 r = RESUME_GUEST_NV;
287 break;
288 case EMULATE_AGAIN:
289 r = RESUME_GUEST;
290 break;
291 case EMULATE_DO_MMIO:
292 run->exit_reason = KVM_EXIT_MMIO;
293 /* We must reload nonvolatiles because "update" load/store
294 * instructions modify register state. */
295 /* Future optimization: only reload non-volatiles if they were
296 * actually modified. */
297 r = RESUME_HOST_NV;
298 break;
299 case EMULATE_FAIL:
300 {
301 u32 last_inst;
302
303 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304 /* XXX Deliver Program interrupt to guest. */
305 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306 r = RESUME_HOST;
307 break;
308 }
309 default:
310 WARN_ON(1);
311 r = RESUME_GUEST;
312 }
313
314 return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319 bool data)
320 {
321 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322 struct kvmppc_pte pte;
323 int r;
324
325 vcpu->stat.st++;
326
327 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328 XLATE_WRITE, &pte);
329 if (r < 0)
330 return r;
331
332 *eaddr = pte.raddr;
333
334 if (!pte.may_write)
335 return -EPERM;
336
337 /* Magic page override */
338 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341 void *magic = vcpu->arch.shared;
342 magic += pte.eaddr & 0xfff;
343 memcpy(magic, ptr, size);
344 return EMULATE_DONE;
345 }
346
347 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348 return EMULATE_DO_MMIO;
349
350 return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355 bool data)
356 {
357 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358 struct kvmppc_pte pte;
359 int rc;
360
361 vcpu->stat.ld++;
362
363 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364 XLATE_READ, &pte);
365 if (rc)
366 return rc;
367
368 *eaddr = pte.raddr;
369
370 if (!pte.may_read)
371 return -EPERM;
372
373 if (!data && !pte.may_execute)
374 return -ENOEXEC;
375
376 /* Magic page override */
377 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380 void *magic = vcpu->arch.shared;
381 magic += pte.eaddr & 0xfff;
382 memcpy(ptr, magic, size);
383 return EMULATE_DONE;
384 }
385
386 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387 return EMULATE_DO_MMIO;
388
389 return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392
393 int kvm_arch_hardware_enable(void)
394 {
395 return 0;
396 }
397
398 int kvm_arch_hardware_setup(void)
399 {
400 return 0;
401 }
402
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405 *(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410 struct kvmppc_ops *kvm_ops = NULL;
411 /*
412 * if we have both HV and PR enabled, default is HV
413 */
414 if (type == 0) {
415 if (kvmppc_hv_ops)
416 kvm_ops = kvmppc_hv_ops;
417 else
418 kvm_ops = kvmppc_pr_ops;
419 if (!kvm_ops)
420 goto err_out;
421 } else if (type == KVM_VM_PPC_HV) {
422 if (!kvmppc_hv_ops)
423 goto err_out;
424 kvm_ops = kvmppc_hv_ops;
425 } else if (type == KVM_VM_PPC_PR) {
426 if (!kvmppc_pr_ops)
427 goto err_out;
428 kvm_ops = kvmppc_pr_ops;
429 } else
430 goto err_out;
431
432 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433 return -ENOENT;
434
435 kvm->arch.kvm_ops = kvm_ops;
436 return kvmppc_core_init_vm(kvm);
437 err_out:
438 return -EINVAL;
439 }
440
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443 return false;
444 }
445
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448 return 0;
449 }
450
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453 unsigned int i;
454 struct kvm_vcpu *vcpu;
455
456 #ifdef CONFIG_KVM_XICS
457 /*
458 * We call kick_all_cpus_sync() to ensure that all
459 * CPUs have executed any pending IPIs before we
460 * continue and free VCPUs structures below.
461 */
462 if (is_kvmppc_hv_enabled(kvm))
463 kick_all_cpus_sync();
464 #endif
465
466 kvm_for_each_vcpu(i, vcpu, kvm)
467 kvm_arch_vcpu_free(vcpu);
468
469 mutex_lock(&kvm->lock);
470 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471 kvm->vcpus[i] = NULL;
472
473 atomic_set(&kvm->online_vcpus, 0);
474
475 kvmppc_core_destroy_vm(kvm);
476
477 mutex_unlock(&kvm->lock);
478
479 /* drop the module reference */
480 module_put(kvm->arch.kvm_ops->owner);
481 }
482
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485 int r;
486 /* Assume we're using HV mode when the HV module is loaded */
487 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488
489 if (kvm) {
490 /*
491 * Hooray - we know which VM type we're running on. Depend on
492 * that rather than the guess above.
493 */
494 hv_enabled = is_kvmppc_hv_enabled(kvm);
495 }
496
497 switch (ext) {
498 #ifdef CONFIG_BOOKE
499 case KVM_CAP_PPC_BOOKE_SREGS:
500 case KVM_CAP_PPC_BOOKE_WATCHDOG:
501 case KVM_CAP_PPC_EPR:
502 #else
503 case KVM_CAP_PPC_SEGSTATE:
504 case KVM_CAP_PPC_HIOR:
505 case KVM_CAP_PPC_PAPR:
506 #endif
507 case KVM_CAP_PPC_UNSET_IRQ:
508 case KVM_CAP_PPC_IRQ_LEVEL:
509 case KVM_CAP_ENABLE_CAP:
510 case KVM_CAP_ENABLE_CAP_VM:
511 case KVM_CAP_ONE_REG:
512 case KVM_CAP_IOEVENTFD:
513 case KVM_CAP_DEVICE_CTRL:
514 case KVM_CAP_IMMEDIATE_EXIT:
515 r = 1;
516 break;
517 case KVM_CAP_PPC_PAIRED_SINGLES:
518 case KVM_CAP_PPC_OSI:
519 case KVM_CAP_PPC_GET_PVINFO:
520 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
521 case KVM_CAP_SW_TLB:
522 #endif
523 /* We support this only for PR */
524 r = !hv_enabled;
525 break;
526 #ifdef CONFIG_KVM_MMIO
527 case KVM_CAP_COALESCED_MMIO:
528 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
529 break;
530 #endif
531 #ifdef CONFIG_KVM_MPIC
532 case KVM_CAP_IRQ_MPIC:
533 r = 1;
534 break;
535 #endif
536
537 #ifdef CONFIG_PPC_BOOK3S_64
538 case KVM_CAP_SPAPR_TCE:
539 case KVM_CAP_SPAPR_TCE_64:
540 case KVM_CAP_PPC_RTAS:
541 case KVM_CAP_PPC_FIXUP_HCALL:
542 case KVM_CAP_PPC_ENABLE_HCALL:
543 #ifdef CONFIG_KVM_XICS
544 case KVM_CAP_IRQ_XICS:
545 #endif
546 r = 1;
547 break;
548
549 case KVM_CAP_PPC_ALLOC_HTAB:
550 r = hv_enabled;
551 break;
552 #endif /* CONFIG_PPC_BOOK3S_64 */
553 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
554 case KVM_CAP_PPC_SMT:
555 r = 0;
556 if (hv_enabled) {
557 if (cpu_has_feature(CPU_FTR_ARCH_300))
558 r = 1;
559 else
560 r = threads_per_subcore;
561 }
562 break;
563 case KVM_CAP_PPC_RMA:
564 r = 0;
565 break;
566 case KVM_CAP_PPC_HWRNG:
567 r = kvmppc_hwrng_present();
568 break;
569 case KVM_CAP_PPC_MMU_RADIX:
570 r = !!(hv_enabled && radix_enabled());
571 break;
572 case KVM_CAP_PPC_MMU_HASH_V3:
573 r = !!(hv_enabled && !radix_enabled() &&
574 cpu_has_feature(CPU_FTR_ARCH_300));
575 break;
576 #endif
577 case KVM_CAP_SYNC_MMU:
578 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579 r = hv_enabled;
580 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
581 r = 1;
582 #else
583 r = 0;
584 #endif
585 break;
586 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
587 case KVM_CAP_PPC_HTAB_FD:
588 r = hv_enabled;
589 break;
590 #endif
591 case KVM_CAP_NR_VCPUS:
592 /*
593 * Recommending a number of CPUs is somewhat arbitrary; we
594 * return the number of present CPUs for -HV (since a host
595 * will have secondary threads "offline"), and for other KVM
596 * implementations just count online CPUs.
597 */
598 if (hv_enabled)
599 r = num_present_cpus();
600 else
601 r = num_online_cpus();
602 break;
603 case KVM_CAP_NR_MEMSLOTS:
604 r = KVM_USER_MEM_SLOTS;
605 break;
606 case KVM_CAP_MAX_VCPUS:
607 r = KVM_MAX_VCPUS;
608 break;
609 #ifdef CONFIG_PPC_BOOK3S_64
610 case KVM_CAP_PPC_GET_SMMU_INFO:
611 r = 1;
612 break;
613 case KVM_CAP_SPAPR_MULTITCE:
614 r = 1;
615 break;
616 case KVM_CAP_SPAPR_RESIZE_HPT:
617 /* Disable this on POWER9 until code handles new HPTE format */
618 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
619 break;
620 #endif
621 case KVM_CAP_PPC_HTM:
622 r = cpu_has_feature(CPU_FTR_TM_COMP) &&
623 is_kvmppc_hv_enabled(kvm);
624 break;
625 default:
626 r = 0;
627 break;
628 }
629 return r;
630
631 }
632
633 long kvm_arch_dev_ioctl(struct file *filp,
634 unsigned int ioctl, unsigned long arg)
635 {
636 return -EINVAL;
637 }
638
639 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
640 struct kvm_memory_slot *dont)
641 {
642 kvmppc_core_free_memslot(kvm, free, dont);
643 }
644
645 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
646 unsigned long npages)
647 {
648 return kvmppc_core_create_memslot(kvm, slot, npages);
649 }
650
651 int kvm_arch_prepare_memory_region(struct kvm *kvm,
652 struct kvm_memory_slot *memslot,
653 const struct kvm_userspace_memory_region *mem,
654 enum kvm_mr_change change)
655 {
656 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
657 }
658
659 void kvm_arch_commit_memory_region(struct kvm *kvm,
660 const struct kvm_userspace_memory_region *mem,
661 const struct kvm_memory_slot *old,
662 const struct kvm_memory_slot *new,
663 enum kvm_mr_change change)
664 {
665 kvmppc_core_commit_memory_region(kvm, mem, old, new);
666 }
667
668 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
669 struct kvm_memory_slot *slot)
670 {
671 kvmppc_core_flush_memslot(kvm, slot);
672 }
673
674 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
675 {
676 struct kvm_vcpu *vcpu;
677 vcpu = kvmppc_core_vcpu_create(kvm, id);
678 if (!IS_ERR(vcpu)) {
679 vcpu->arch.wqp = &vcpu->wq;
680 kvmppc_create_vcpu_debugfs(vcpu, id);
681 }
682 return vcpu;
683 }
684
685 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
686 {
687 }
688
689 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
690 {
691 /* Make sure we're not using the vcpu anymore */
692 hrtimer_cancel(&vcpu->arch.dec_timer);
693
694 kvmppc_remove_vcpu_debugfs(vcpu);
695
696 switch (vcpu->arch.irq_type) {
697 case KVMPPC_IRQ_MPIC:
698 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
699 break;
700 case KVMPPC_IRQ_XICS:
701 kvmppc_xics_free_icp(vcpu);
702 break;
703 }
704
705 kvmppc_core_vcpu_free(vcpu);
706 }
707
708 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
709 {
710 kvm_arch_vcpu_free(vcpu);
711 }
712
713 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
714 {
715 return kvmppc_core_pending_dec(vcpu);
716 }
717
718 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
719 {
720 struct kvm_vcpu *vcpu;
721
722 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
723 kvmppc_decrementer_func(vcpu);
724
725 return HRTIMER_NORESTART;
726 }
727
728 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
729 {
730 int ret;
731
732 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
733 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
734 vcpu->arch.dec_expires = ~(u64)0;
735
736 #ifdef CONFIG_KVM_EXIT_TIMING
737 mutex_init(&vcpu->arch.exit_timing_lock);
738 #endif
739 ret = kvmppc_subarch_vcpu_init(vcpu);
740 return ret;
741 }
742
743 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
744 {
745 kvmppc_mmu_destroy(vcpu);
746 kvmppc_subarch_vcpu_uninit(vcpu);
747 }
748
749 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
750 {
751 #ifdef CONFIG_BOOKE
752 /*
753 * vrsave (formerly usprg0) isn't used by Linux, but may
754 * be used by the guest.
755 *
756 * On non-booke this is associated with Altivec and
757 * is handled by code in book3s.c.
758 */
759 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
760 #endif
761 kvmppc_core_vcpu_load(vcpu, cpu);
762 }
763
764 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
765 {
766 kvmppc_core_vcpu_put(vcpu);
767 #ifdef CONFIG_BOOKE
768 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
769 #endif
770 }
771
772 /*
773 * irq_bypass_add_producer and irq_bypass_del_producer are only
774 * useful if the architecture supports PCI passthrough.
775 * irq_bypass_stop and irq_bypass_start are not needed and so
776 * kvm_ops are not defined for them.
777 */
778 bool kvm_arch_has_irq_bypass(void)
779 {
780 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
781 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
782 }
783
784 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
785 struct irq_bypass_producer *prod)
786 {
787 struct kvm_kernel_irqfd *irqfd =
788 container_of(cons, struct kvm_kernel_irqfd, consumer);
789 struct kvm *kvm = irqfd->kvm;
790
791 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
792 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
793
794 return 0;
795 }
796
797 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
798 struct irq_bypass_producer *prod)
799 {
800 struct kvm_kernel_irqfd *irqfd =
801 container_of(cons, struct kvm_kernel_irqfd, consumer);
802 struct kvm *kvm = irqfd->kvm;
803
804 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
805 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
806 }
807
808 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
809 struct kvm_run *run)
810 {
811 u64 uninitialized_var(gpr);
812
813 if (run->mmio.len > sizeof(gpr)) {
814 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
815 return;
816 }
817
818 if (!vcpu->arch.mmio_host_swabbed) {
819 switch (run->mmio.len) {
820 case 8: gpr = *(u64 *)run->mmio.data; break;
821 case 4: gpr = *(u32 *)run->mmio.data; break;
822 case 2: gpr = *(u16 *)run->mmio.data; break;
823 case 1: gpr = *(u8 *)run->mmio.data; break;
824 }
825 } else {
826 switch (run->mmio.len) {
827 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
828 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
829 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
830 case 1: gpr = *(u8 *)run->mmio.data; break;
831 }
832 }
833
834 if (vcpu->arch.mmio_sign_extend) {
835 switch (run->mmio.len) {
836 #ifdef CONFIG_PPC64
837 case 4:
838 gpr = (s64)(s32)gpr;
839 break;
840 #endif
841 case 2:
842 gpr = (s64)(s16)gpr;
843 break;
844 case 1:
845 gpr = (s64)(s8)gpr;
846 break;
847 }
848 }
849
850 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
851
852 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
853 case KVM_MMIO_REG_GPR:
854 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
855 break;
856 case KVM_MMIO_REG_FPR:
857 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
858 break;
859 #ifdef CONFIG_PPC_BOOK3S
860 case KVM_MMIO_REG_QPR:
861 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
862 break;
863 case KVM_MMIO_REG_FQPR:
864 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
865 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
866 break;
867 #endif
868 default:
869 BUG();
870 }
871 }
872
873 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
874 unsigned int rt, unsigned int bytes,
875 int is_default_endian, int sign_extend)
876 {
877 int idx, ret;
878 bool host_swabbed;
879
880 /* Pity C doesn't have a logical XOR operator */
881 if (kvmppc_need_byteswap(vcpu)) {
882 host_swabbed = is_default_endian;
883 } else {
884 host_swabbed = !is_default_endian;
885 }
886
887 if (bytes > sizeof(run->mmio.data)) {
888 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
889 run->mmio.len);
890 }
891
892 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
893 run->mmio.len = bytes;
894 run->mmio.is_write = 0;
895
896 vcpu->arch.io_gpr = rt;
897 vcpu->arch.mmio_host_swabbed = host_swabbed;
898 vcpu->mmio_needed = 1;
899 vcpu->mmio_is_write = 0;
900 vcpu->arch.mmio_sign_extend = sign_extend;
901
902 idx = srcu_read_lock(&vcpu->kvm->srcu);
903
904 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
905 bytes, &run->mmio.data);
906
907 srcu_read_unlock(&vcpu->kvm->srcu, idx);
908
909 if (!ret) {
910 kvmppc_complete_mmio_load(vcpu, run);
911 vcpu->mmio_needed = 0;
912 return EMULATE_DONE;
913 }
914
915 return EMULATE_DO_MMIO;
916 }
917
918 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
919 unsigned int rt, unsigned int bytes,
920 int is_default_endian)
921 {
922 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
923 }
924 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
925
926 /* Same as above, but sign extends */
927 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
928 unsigned int rt, unsigned int bytes,
929 int is_default_endian)
930 {
931 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
932 }
933
934 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
935 u64 val, unsigned int bytes, int is_default_endian)
936 {
937 void *data = run->mmio.data;
938 int idx, ret;
939 bool host_swabbed;
940
941 /* Pity C doesn't have a logical XOR operator */
942 if (kvmppc_need_byteswap(vcpu)) {
943 host_swabbed = is_default_endian;
944 } else {
945 host_swabbed = !is_default_endian;
946 }
947
948 if (bytes > sizeof(run->mmio.data)) {
949 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
950 run->mmio.len);
951 }
952
953 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
954 run->mmio.len = bytes;
955 run->mmio.is_write = 1;
956 vcpu->mmio_needed = 1;
957 vcpu->mmio_is_write = 1;
958
959 /* Store the value at the lowest bytes in 'data'. */
960 if (!host_swabbed) {
961 switch (bytes) {
962 case 8: *(u64 *)data = val; break;
963 case 4: *(u32 *)data = val; break;
964 case 2: *(u16 *)data = val; break;
965 case 1: *(u8 *)data = val; break;
966 }
967 } else {
968 switch (bytes) {
969 case 8: *(u64 *)data = swab64(val); break;
970 case 4: *(u32 *)data = swab32(val); break;
971 case 2: *(u16 *)data = swab16(val); break;
972 case 1: *(u8 *)data = val; break;
973 }
974 }
975
976 idx = srcu_read_lock(&vcpu->kvm->srcu);
977
978 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
979 bytes, &run->mmio.data);
980
981 srcu_read_unlock(&vcpu->kvm->srcu, idx);
982
983 if (!ret) {
984 vcpu->mmio_needed = 0;
985 return EMULATE_DONE;
986 }
987
988 return EMULATE_DO_MMIO;
989 }
990 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
991
992 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
993 {
994 int r = 0;
995 union kvmppc_one_reg val;
996 int size;
997
998 size = one_reg_size(reg->id);
999 if (size > sizeof(val))
1000 return -EINVAL;
1001
1002 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1003 if (r == -EINVAL) {
1004 r = 0;
1005 switch (reg->id) {
1006 #ifdef CONFIG_ALTIVEC
1007 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1008 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1009 r = -ENXIO;
1010 break;
1011 }
1012 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1013 break;
1014 case KVM_REG_PPC_VSCR:
1015 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1016 r = -ENXIO;
1017 break;
1018 }
1019 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1020 break;
1021 case KVM_REG_PPC_VRSAVE:
1022 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1023 break;
1024 #endif /* CONFIG_ALTIVEC */
1025 default:
1026 r = -EINVAL;
1027 break;
1028 }
1029 }
1030
1031 if (r)
1032 return r;
1033
1034 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1035 r = -EFAULT;
1036
1037 return r;
1038 }
1039
1040 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1041 {
1042 int r;
1043 union kvmppc_one_reg val;
1044 int size;
1045
1046 size = one_reg_size(reg->id);
1047 if (size > sizeof(val))
1048 return -EINVAL;
1049
1050 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1051 return -EFAULT;
1052
1053 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1054 if (r == -EINVAL) {
1055 r = 0;
1056 switch (reg->id) {
1057 #ifdef CONFIG_ALTIVEC
1058 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1059 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1060 r = -ENXIO;
1061 break;
1062 }
1063 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1064 break;
1065 case KVM_REG_PPC_VSCR:
1066 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1067 r = -ENXIO;
1068 break;
1069 }
1070 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1071 break;
1072 case KVM_REG_PPC_VRSAVE:
1073 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1074 r = -ENXIO;
1075 break;
1076 }
1077 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1078 break;
1079 #endif /* CONFIG_ALTIVEC */
1080 default:
1081 r = -EINVAL;
1082 break;
1083 }
1084 }
1085
1086 return r;
1087 }
1088
1089 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1090 {
1091 int r;
1092 sigset_t sigsaved;
1093
1094 if (vcpu->sigset_active)
1095 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1096
1097 if (vcpu->mmio_needed) {
1098 if (!vcpu->mmio_is_write)
1099 kvmppc_complete_mmio_load(vcpu, run);
1100 vcpu->mmio_needed = 0;
1101 } else if (vcpu->arch.osi_needed) {
1102 u64 *gprs = run->osi.gprs;
1103 int i;
1104
1105 for (i = 0; i < 32; i++)
1106 kvmppc_set_gpr(vcpu, i, gprs[i]);
1107 vcpu->arch.osi_needed = 0;
1108 } else if (vcpu->arch.hcall_needed) {
1109 int i;
1110
1111 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1112 for (i = 0; i < 9; ++i)
1113 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1114 vcpu->arch.hcall_needed = 0;
1115 #ifdef CONFIG_BOOKE
1116 } else if (vcpu->arch.epr_needed) {
1117 kvmppc_set_epr(vcpu, run->epr.epr);
1118 vcpu->arch.epr_needed = 0;
1119 #endif
1120 }
1121
1122 if (run->immediate_exit)
1123 r = -EINTR;
1124 else
1125 r = kvmppc_vcpu_run(run, vcpu);
1126
1127 if (vcpu->sigset_active)
1128 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1129
1130 return r;
1131 }
1132
1133 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1134 {
1135 if (irq->irq == KVM_INTERRUPT_UNSET) {
1136 kvmppc_core_dequeue_external(vcpu);
1137 return 0;
1138 }
1139
1140 kvmppc_core_queue_external(vcpu, irq);
1141
1142 kvm_vcpu_kick(vcpu);
1143
1144 return 0;
1145 }
1146
1147 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1148 struct kvm_enable_cap *cap)
1149 {
1150 int r;
1151
1152 if (cap->flags)
1153 return -EINVAL;
1154
1155 switch (cap->cap) {
1156 case KVM_CAP_PPC_OSI:
1157 r = 0;
1158 vcpu->arch.osi_enabled = true;
1159 break;
1160 case KVM_CAP_PPC_PAPR:
1161 r = 0;
1162 vcpu->arch.papr_enabled = true;
1163 break;
1164 case KVM_CAP_PPC_EPR:
1165 r = 0;
1166 if (cap->args[0])
1167 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1168 else
1169 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1170 break;
1171 #ifdef CONFIG_BOOKE
1172 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1173 r = 0;
1174 vcpu->arch.watchdog_enabled = true;
1175 break;
1176 #endif
1177 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1178 case KVM_CAP_SW_TLB: {
1179 struct kvm_config_tlb cfg;
1180 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1181
1182 r = -EFAULT;
1183 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1184 break;
1185
1186 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1187 break;
1188 }
1189 #endif
1190 #ifdef CONFIG_KVM_MPIC
1191 case KVM_CAP_IRQ_MPIC: {
1192 struct fd f;
1193 struct kvm_device *dev;
1194
1195 r = -EBADF;
1196 f = fdget(cap->args[0]);
1197 if (!f.file)
1198 break;
1199
1200 r = -EPERM;
1201 dev = kvm_device_from_filp(f.file);
1202 if (dev)
1203 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1204
1205 fdput(f);
1206 break;
1207 }
1208 #endif
1209 #ifdef CONFIG_KVM_XICS
1210 case KVM_CAP_IRQ_XICS: {
1211 struct fd f;
1212 struct kvm_device *dev;
1213
1214 r = -EBADF;
1215 f = fdget(cap->args[0]);
1216 if (!f.file)
1217 break;
1218
1219 r = -EPERM;
1220 dev = kvm_device_from_filp(f.file);
1221 if (dev)
1222 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1223
1224 fdput(f);
1225 break;
1226 }
1227 #endif /* CONFIG_KVM_XICS */
1228 default:
1229 r = -EINVAL;
1230 break;
1231 }
1232
1233 if (!r)
1234 r = kvmppc_sanity_check(vcpu);
1235
1236 return r;
1237 }
1238
1239 bool kvm_arch_intc_initialized(struct kvm *kvm)
1240 {
1241 #ifdef CONFIG_KVM_MPIC
1242 if (kvm->arch.mpic)
1243 return true;
1244 #endif
1245 #ifdef CONFIG_KVM_XICS
1246 if (kvm->arch.xics)
1247 return true;
1248 #endif
1249 return false;
1250 }
1251
1252 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1253 struct kvm_mp_state *mp_state)
1254 {
1255 return -EINVAL;
1256 }
1257
1258 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1259 struct kvm_mp_state *mp_state)
1260 {
1261 return -EINVAL;
1262 }
1263
1264 long kvm_arch_vcpu_ioctl(struct file *filp,
1265 unsigned int ioctl, unsigned long arg)
1266 {
1267 struct kvm_vcpu *vcpu = filp->private_data;
1268 void __user *argp = (void __user *)arg;
1269 long r;
1270
1271 switch (ioctl) {
1272 case KVM_INTERRUPT: {
1273 struct kvm_interrupt irq;
1274 r = -EFAULT;
1275 if (copy_from_user(&irq, argp, sizeof(irq)))
1276 goto out;
1277 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1278 goto out;
1279 }
1280
1281 case KVM_ENABLE_CAP:
1282 {
1283 struct kvm_enable_cap cap;
1284 r = -EFAULT;
1285 if (copy_from_user(&cap, argp, sizeof(cap)))
1286 goto out;
1287 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1288 break;
1289 }
1290
1291 case KVM_SET_ONE_REG:
1292 case KVM_GET_ONE_REG:
1293 {
1294 struct kvm_one_reg reg;
1295 r = -EFAULT;
1296 if (copy_from_user(&reg, argp, sizeof(reg)))
1297 goto out;
1298 if (ioctl == KVM_SET_ONE_REG)
1299 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1300 else
1301 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1302 break;
1303 }
1304
1305 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1306 case KVM_DIRTY_TLB: {
1307 struct kvm_dirty_tlb dirty;
1308 r = -EFAULT;
1309 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1310 goto out;
1311 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1312 break;
1313 }
1314 #endif
1315 default:
1316 r = -EINVAL;
1317 }
1318
1319 out:
1320 return r;
1321 }
1322
1323 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1324 {
1325 return VM_FAULT_SIGBUS;
1326 }
1327
1328 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1329 {
1330 u32 inst_nop = 0x60000000;
1331 #ifdef CONFIG_KVM_BOOKE_HV
1332 u32 inst_sc1 = 0x44000022;
1333 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1334 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1335 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1336 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1337 #else
1338 u32 inst_lis = 0x3c000000;
1339 u32 inst_ori = 0x60000000;
1340 u32 inst_sc = 0x44000002;
1341 u32 inst_imm_mask = 0xffff;
1342
1343 /*
1344 * The hypercall to get into KVM from within guest context is as
1345 * follows:
1346 *
1347 * lis r0, r0, KVM_SC_MAGIC_R0@h
1348 * ori r0, KVM_SC_MAGIC_R0@l
1349 * sc
1350 * nop
1351 */
1352 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1353 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1354 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1355 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1356 #endif
1357
1358 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1359
1360 return 0;
1361 }
1362
1363 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1364 bool line_status)
1365 {
1366 if (!irqchip_in_kernel(kvm))
1367 return -ENXIO;
1368
1369 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1370 irq_event->irq, irq_event->level,
1371 line_status);
1372 return 0;
1373 }
1374
1375
1376 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1377 struct kvm_enable_cap *cap)
1378 {
1379 int r;
1380
1381 if (cap->flags)
1382 return -EINVAL;
1383
1384 switch (cap->cap) {
1385 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1386 case KVM_CAP_PPC_ENABLE_HCALL: {
1387 unsigned long hcall = cap->args[0];
1388
1389 r = -EINVAL;
1390 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1391 cap->args[1] > 1)
1392 break;
1393 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1394 break;
1395 if (cap->args[1])
1396 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1397 else
1398 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1399 r = 0;
1400 break;
1401 }
1402 #endif
1403 default:
1404 r = -EINVAL;
1405 break;
1406 }
1407
1408 return r;
1409 }
1410
1411 long kvm_arch_vm_ioctl(struct file *filp,
1412 unsigned int ioctl, unsigned long arg)
1413 {
1414 struct kvm *kvm __maybe_unused = filp->private_data;
1415 void __user *argp = (void __user *)arg;
1416 long r;
1417
1418 switch (ioctl) {
1419 case KVM_PPC_GET_PVINFO: {
1420 struct kvm_ppc_pvinfo pvinfo;
1421 memset(&pvinfo, 0, sizeof(pvinfo));
1422 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1423 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1424 r = -EFAULT;
1425 goto out;
1426 }
1427
1428 break;
1429 }
1430 case KVM_ENABLE_CAP:
1431 {
1432 struct kvm_enable_cap cap;
1433 r = -EFAULT;
1434 if (copy_from_user(&cap, argp, sizeof(cap)))
1435 goto out;
1436 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1437 break;
1438 }
1439 #ifdef CONFIG_PPC_BOOK3S_64
1440 case KVM_CREATE_SPAPR_TCE_64: {
1441 struct kvm_create_spapr_tce_64 create_tce_64;
1442
1443 r = -EFAULT;
1444 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1445 goto out;
1446 if (create_tce_64.flags) {
1447 r = -EINVAL;
1448 goto out;
1449 }
1450 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1451 goto out;
1452 }
1453 case KVM_CREATE_SPAPR_TCE: {
1454 struct kvm_create_spapr_tce create_tce;
1455 struct kvm_create_spapr_tce_64 create_tce_64;
1456
1457 r = -EFAULT;
1458 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1459 goto out;
1460
1461 create_tce_64.liobn = create_tce.liobn;
1462 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1463 create_tce_64.offset = 0;
1464 create_tce_64.size = create_tce.window_size >>
1465 IOMMU_PAGE_SHIFT_4K;
1466 create_tce_64.flags = 0;
1467 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1468 goto out;
1469 }
1470 case KVM_PPC_GET_SMMU_INFO: {
1471 struct kvm_ppc_smmu_info info;
1472 struct kvm *kvm = filp->private_data;
1473
1474 memset(&info, 0, sizeof(info));
1475 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1476 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1477 r = -EFAULT;
1478 break;
1479 }
1480 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1481 struct kvm *kvm = filp->private_data;
1482
1483 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1484 break;
1485 }
1486 case KVM_PPC_CONFIGURE_V3_MMU: {
1487 struct kvm *kvm = filp->private_data;
1488 struct kvm_ppc_mmuv3_cfg cfg;
1489
1490 r = -EINVAL;
1491 if (!kvm->arch.kvm_ops->configure_mmu)
1492 goto out;
1493 r = -EFAULT;
1494 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1495 goto out;
1496 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1497 break;
1498 }
1499 case KVM_PPC_GET_RMMU_INFO: {
1500 struct kvm *kvm = filp->private_data;
1501 struct kvm_ppc_rmmu_info info;
1502
1503 r = -EINVAL;
1504 if (!kvm->arch.kvm_ops->get_rmmu_info)
1505 goto out;
1506 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1507 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1508 r = -EFAULT;
1509 break;
1510 }
1511 default: {
1512 struct kvm *kvm = filp->private_data;
1513 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1514 }
1515 #else /* CONFIG_PPC_BOOK3S_64 */
1516 default:
1517 r = -ENOTTY;
1518 #endif
1519 }
1520 out:
1521 return r;
1522 }
1523
1524 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1525 static unsigned long nr_lpids;
1526
1527 long kvmppc_alloc_lpid(void)
1528 {
1529 long lpid;
1530
1531 do {
1532 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1533 if (lpid >= nr_lpids) {
1534 pr_err("%s: No LPIDs free\n", __func__);
1535 return -ENOMEM;
1536 }
1537 } while (test_and_set_bit(lpid, lpid_inuse));
1538
1539 return lpid;
1540 }
1541 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1542
1543 void kvmppc_claim_lpid(long lpid)
1544 {
1545 set_bit(lpid, lpid_inuse);
1546 }
1547 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1548
1549 void kvmppc_free_lpid(long lpid)
1550 {
1551 clear_bit(lpid, lpid_inuse);
1552 }
1553 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1554
1555 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1556 {
1557 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1558 memset(lpid_inuse, 0, sizeof(lpid_inuse));
1559 }
1560 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1561
1562 int kvm_arch_init(void *opaque)
1563 {
1564 return 0;
1565 }
1566
1567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);