]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/mm/book3s64/hash_pgtable.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / mm / book3s64 / hash_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2005, Paul Mackerras, IBM Corporation.
4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/pgtable.h>
14 #include <asm/sections.h>
15 #include <asm/mmu.h>
16 #include <asm/tlb.h>
17
18 #include <mm/mmu_decl.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/thp.h>
22
23 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
24 #warning Limited user VSID range means pagetable space is wasted
25 #endif
26
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29 * vmemmap is the starting address of the virtual address space where
30 * struct pages are allocated for all possible PFNs present on the system
31 * including holes and bad memory (hence sparse). These virtual struct
32 * pages are stored in sequence in this virtual address space irrespective
33 * of the fact whether the corresponding PFN is valid or not. This achieves
34 * constant relationship between address of struct page and its PFN.
35 *
36 * During boot or memory hotplug operation when a new memory section is
37 * added, physical memory allocation (including hash table bolting) will
38 * be performed for the set of struct pages which are part of the memory
39 * section. This saves memory by not allocating struct pages for PFNs
40 * which are not valid.
41 *
42 * ----------------------------------------------
43 * | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44 * ----------------------------------------------
45 *
46 * f000000000000000 c000000000000000
47 * vmemmap +--------------+ +--------------+
48 * + | page struct | +--------------> | page struct |
49 * | +--------------+ +--------------+
50 * | | page struct | +--------------> | page struct |
51 * | +--------------+ | +--------------+
52 * | | page struct | + +------> | page struct |
53 * | +--------------+ | +--------------+
54 * | | page struct | | +--> | page struct |
55 * | +--------------+ | | +--------------+
56 * | | page struct | | |
57 * | +--------------+ | |
58 * | | page struct | | |
59 * | +--------------+ | |
60 * | | page struct | | |
61 * | +--------------+ | |
62 * | | page struct | | |
63 * | +--------------+ | |
64 * | | page struct | +-------+ |
65 * | +--------------+ |
66 * | | page struct | +-----------+
67 * | +--------------+
68 * | | page struct | No mapping
69 * | +--------------+
70 * | | page struct | No mapping
71 * v +--------------+
72 *
73 * -----------------------------------------
74 * | RELATION BETWEEN STRUCT PAGES AND PFNS|
75 * -----------------------------------------
76 *
77 * vmemmap +--------------+ +---------------+
78 * + | page struct | +-------------> | PFN |
79 * | +--------------+ +---------------+
80 * | | page struct | +-------------> | PFN |
81 * | +--------------+ +---------------+
82 * | | page struct | +-------------> | PFN |
83 * | +--------------+ +---------------+
84 * | | page struct | +-------------> | PFN |
85 * | +--------------+ +---------------+
86 * | | |
87 * | +--------------+
88 * | | |
89 * | +--------------+
90 * | | |
91 * | +--------------+ +---------------+
92 * | | page struct | +-------------> | PFN |
93 * | +--------------+ +---------------+
94 * | | |
95 * | +--------------+
96 * | | |
97 * | +--------------+ +---------------+
98 * | | page struct | +-------------> | PFN |
99 * | +--------------+ +---------------+
100 * | | page struct | +-------------> | PFN |
101 * v +--------------+ +---------------+
102 */
103 /*
104 * On hash-based CPUs, the vmemmap is bolted in the hash table.
105 *
106 */
107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108 unsigned long page_size,
109 unsigned long phys)
110 {
111 int rc;
112
113 if ((start + page_size) >= H_VMEMMAP_END) {
114 pr_warn("Outside the supported range\n");
115 return -1;
116 }
117
118 rc = htab_bolt_mapping(start, start + page_size, phys,
119 pgprot_val(PAGE_KERNEL),
120 mmu_vmemmap_psize, mmu_kernel_ssize);
121 if (rc < 0) {
122 int rc2 = htab_remove_mapping(start, start + page_size,
123 mmu_vmemmap_psize,
124 mmu_kernel_ssize);
125 BUG_ON(rc2 && (rc2 != -ENOENT));
126 }
127 return rc;
128 }
129
130 #ifdef CONFIG_MEMORY_HOTPLUG
131 void hash__vmemmap_remove_mapping(unsigned long start,
132 unsigned long page_size)
133 {
134 int rc = htab_remove_mapping(start, start + page_size,
135 mmu_vmemmap_psize,
136 mmu_kernel_ssize);
137 BUG_ON((rc < 0) && (rc != -ENOENT));
138 WARN_ON(rc == -ENOENT);
139 }
140 #endif
141 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
142
143 /*
144 * map_kernel_page currently only called by __ioremap
145 * map_kernel_page adds an entry to the ioremap page table
146 * and adds an entry to the HPT, possibly bolting it
147 */
148 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
149 {
150 pgd_t *pgdp;
151 p4d_t *p4dp;
152 pud_t *pudp;
153 pmd_t *pmdp;
154 pte_t *ptep;
155
156 BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
157 if (slab_is_available()) {
158 pgdp = pgd_offset_k(ea);
159 p4dp = p4d_offset(pgdp, ea);
160 pudp = pud_alloc(&init_mm, p4dp, ea);
161 if (!pudp)
162 return -ENOMEM;
163 pmdp = pmd_alloc(&init_mm, pudp, ea);
164 if (!pmdp)
165 return -ENOMEM;
166 ptep = pte_alloc_kernel(pmdp, ea);
167 if (!ptep)
168 return -ENOMEM;
169 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
170 } else {
171 /*
172 * If the mm subsystem is not fully up, we cannot create a
173 * linux page table entry for this mapping. Simply bolt an
174 * entry in the hardware page table.
175 *
176 */
177 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
178 mmu_io_psize, mmu_kernel_ssize)) {
179 printk(KERN_ERR "Failed to do bolted mapping IO "
180 "memory at %016lx !\n", pa);
181 return -ENOMEM;
182 }
183 }
184
185 smp_wmb();
186 return 0;
187 }
188
189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
190
191 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
192 pmd_t *pmdp, unsigned long clr,
193 unsigned long set)
194 {
195 __be64 old_be, tmp;
196 unsigned long old;
197
198 #ifdef CONFIG_DEBUG_VM
199 WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
200 assert_spin_locked(pmd_lockptr(mm, pmdp));
201 #endif
202
203 __asm__ __volatile__(
204 "1: ldarx %0,0,%3\n\
205 and. %1,%0,%6\n\
206 bne- 1b \n\
207 andc %1,%0,%4 \n\
208 or %1,%1,%7\n\
209 stdcx. %1,0,%3 \n\
210 bne- 1b"
211 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
212 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
213 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
214 : "cc" );
215
216 old = be64_to_cpu(old_be);
217
218 trace_hugepage_update(addr, old, clr, set);
219 if (old & H_PAGE_HASHPTE)
220 hpte_do_hugepage_flush(mm, addr, pmdp, old);
221 return old;
222 }
223
224 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
225 pmd_t *pmdp)
226 {
227 pmd_t pmd;
228
229 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
230 VM_BUG_ON(pmd_trans_huge(*pmdp));
231 VM_BUG_ON(pmd_devmap(*pmdp));
232
233 pmd = *pmdp;
234 pmd_clear(pmdp);
235 /*
236 * Wait for all pending hash_page to finish. This is needed
237 * in case of subpage collapse. When we collapse normal pages
238 * to hugepage, we first clear the pmd, then invalidate all
239 * the PTE entries. The assumption here is that any low level
240 * page fault will see a none pmd and take the slow path that
241 * will wait on mmap_sem. But we could very well be in a
242 * hash_page with local ptep pointer value. Such a hash page
243 * can result in adding new HPTE entries for normal subpages.
244 * That means we could be modifying the page content as we
245 * copy them to a huge page. So wait for parallel hash_page
246 * to finish before invalidating HPTE entries. We can do this
247 * by sending an IPI to all the cpus and executing a dummy
248 * function there.
249 */
250 serialize_against_pte_lookup(vma->vm_mm);
251 /*
252 * Now invalidate the hpte entries in the range
253 * covered by pmd. This make sure we take a
254 * fault and will find the pmd as none, which will
255 * result in a major fault which takes mmap_sem and
256 * hence wait for collapse to complete. Without this
257 * the __collapse_huge_page_copy can result in copying
258 * the old content.
259 */
260 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
261 return pmd;
262 }
263
264 /*
265 * We want to put the pgtable in pmd and use pgtable for tracking
266 * the base page size hptes
267 */
268 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
269 pgtable_t pgtable)
270 {
271 pgtable_t *pgtable_slot;
272
273 assert_spin_locked(pmd_lockptr(mm, pmdp));
274 /*
275 * we store the pgtable in the second half of PMD
276 */
277 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
278 *pgtable_slot = pgtable;
279 /*
280 * expose the deposited pgtable to other cpus.
281 * before we set the hugepage PTE at pmd level
282 * hash fault code looks at the deposted pgtable
283 * to store hash index values.
284 */
285 smp_wmb();
286 }
287
288 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
289 {
290 pgtable_t pgtable;
291 pgtable_t *pgtable_slot;
292
293 assert_spin_locked(pmd_lockptr(mm, pmdp));
294
295 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
296 pgtable = *pgtable_slot;
297 /*
298 * Once we withdraw, mark the entry NULL.
299 */
300 *pgtable_slot = NULL;
301 /*
302 * We store HPTE information in the deposited PTE fragment.
303 * zero out the content on withdraw.
304 */
305 memset(pgtable, 0, PTE_FRAG_SIZE);
306 return pgtable;
307 }
308
309 /*
310 * A linux hugepage PMD was changed and the corresponding hash table entries
311 * neesd to be flushed.
312 */
313 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
314 pmd_t *pmdp, unsigned long old_pmd)
315 {
316 int ssize;
317 unsigned int psize;
318 unsigned long vsid;
319 unsigned long flags = 0;
320
321 /* get the base page size,vsid and segment size */
322 #ifdef CONFIG_DEBUG_VM
323 psize = get_slice_psize(mm, addr);
324 BUG_ON(psize == MMU_PAGE_16M);
325 #endif
326 if (old_pmd & H_PAGE_COMBO)
327 psize = MMU_PAGE_4K;
328 else
329 psize = MMU_PAGE_64K;
330
331 if (!is_kernel_addr(addr)) {
332 ssize = user_segment_size(addr);
333 vsid = get_user_vsid(&mm->context, addr, ssize);
334 WARN_ON(vsid == 0);
335 } else {
336 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
337 ssize = mmu_kernel_ssize;
338 }
339
340 if (mm_is_thread_local(mm))
341 flags |= HPTE_LOCAL_UPDATE;
342
343 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
344 }
345
346 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
347 unsigned long addr, pmd_t *pmdp)
348 {
349 pmd_t old_pmd;
350 pgtable_t pgtable;
351 unsigned long old;
352 pgtable_t *pgtable_slot;
353
354 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
355 old_pmd = __pmd(old);
356 /*
357 * We have pmd == none and we are holding page_table_lock.
358 * So we can safely go and clear the pgtable hash
359 * index info.
360 */
361 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
362 pgtable = *pgtable_slot;
363 /*
364 * Let's zero out old valid and hash index details
365 * hash fault look at them.
366 */
367 memset(pgtable, 0, PTE_FRAG_SIZE);
368 return old_pmd;
369 }
370
371 int hash__has_transparent_hugepage(void)
372 {
373
374 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
375 return 0;
376 /*
377 * We support THP only if PMD_SIZE is 16MB.
378 */
379 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
380 return 0;
381 /*
382 * We need to make sure that we support 16MB hugepage in a segement
383 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
384 * of 64K.
385 */
386 /*
387 * If we have 64K HPTE, we will be using that by default
388 */
389 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
390 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
391 return 0;
392 /*
393 * Ok we only have 4K HPTE
394 */
395 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
396 return 0;
397
398 return 1;
399 }
400 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
401
402 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
403
404 #ifdef CONFIG_STRICT_KERNEL_RWX
405 static bool hash__change_memory_range(unsigned long start, unsigned long end,
406 unsigned long newpp)
407 {
408 unsigned long idx;
409 unsigned int step, shift;
410
411 shift = mmu_psize_defs[mmu_linear_psize].shift;
412 step = 1 << shift;
413
414 start = ALIGN_DOWN(start, step);
415 end = ALIGN(end, step); // aligns up
416
417 if (start >= end)
418 return false;
419
420 pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
421 start, end, newpp, step);
422
423 for (idx = start; idx < end; idx += step)
424 /* Not sure if we can do much with the return value */
425 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
426 mmu_kernel_ssize);
427
428 return true;
429 }
430
431 void hash__mark_rodata_ro(void)
432 {
433 unsigned long start, end;
434
435 start = (unsigned long)_stext;
436 end = (unsigned long)__init_begin;
437
438 WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
439 }
440
441 void hash__mark_initmem_nx(void)
442 {
443 unsigned long start, end, pp;
444
445 start = (unsigned long)__init_begin;
446 end = (unsigned long)__init_end;
447
448 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
449
450 WARN_ON(!hash__change_memory_range(start, end, pp));
451 }
452 #endif