]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/mm/book3s64/slb.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / mm / book3s64 / slb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC64 SLB support.
4 *
5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6 * Based on earlier code written by:
7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8 * Copyright (c) 2001 Dave Engebretsen
9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10 */
11
12 #include <asm/asm-prototypes.h>
13 #include <asm/pgtable.h>
14 #include <asm/mmu.h>
15 #include <asm/mmu_context.h>
16 #include <asm/paca.h>
17 #include <asm/ppc-opcode.h>
18 #include <asm/cputable.h>
19 #include <asm/cacheflush.h>
20 #include <asm/smp.h>
21 #include <linux/compiler.h>
22 #include <linux/context_tracking.h>
23 #include <linux/mm_types.h>
24
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27
28 enum slb_index {
29 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
30 KSTACK_INDEX = 1, /* Kernel stack map */
31 };
32
33 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
34
35 #define slb_esid_mask(ssize) \
36 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
37
38 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
39 enum slb_index index)
40 {
41 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
42 }
43
44 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
45 unsigned long flags)
46 {
47 return (vsid << slb_vsid_shift(ssize)) | flags |
48 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
49 }
50
51 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
52 unsigned long flags)
53 {
54 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
55 }
56
57 static void assert_slb_presence(bool present, unsigned long ea)
58 {
59 #ifdef CONFIG_DEBUG_VM
60 unsigned long tmp;
61
62 WARN_ON_ONCE(mfmsr() & MSR_EE);
63
64 if (!cpu_has_feature(CPU_FTR_ARCH_206))
65 return;
66
67 /*
68 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
69 * ignores all other bits from 0-27, so just clear them all.
70 */
71 ea &= ~((1UL << 28) - 1);
72 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
73
74 WARN_ON(present == (tmp == 0));
75 #endif
76 }
77
78 static inline void slb_shadow_update(unsigned long ea, int ssize,
79 unsigned long flags,
80 enum slb_index index)
81 {
82 struct slb_shadow *p = get_slb_shadow();
83
84 /*
85 * Clear the ESID first so the entry is not valid while we are
86 * updating it. No write barriers are needed here, provided
87 * we only update the current CPU's SLB shadow buffer.
88 */
89 WRITE_ONCE(p->save_area[index].esid, 0);
90 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
91 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
92 }
93
94 static inline void slb_shadow_clear(enum slb_index index)
95 {
96 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
97 }
98
99 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
100 unsigned long flags,
101 enum slb_index index)
102 {
103 /*
104 * Updating the shadow buffer before writing the SLB ensures
105 * we don't get a stale entry here if we get preempted by PHYP
106 * between these two statements.
107 */
108 slb_shadow_update(ea, ssize, flags, index);
109
110 assert_slb_presence(false, ea);
111 asm volatile("slbmte %0,%1" :
112 : "r" (mk_vsid_data(ea, ssize, flags)),
113 "r" (mk_esid_data(ea, ssize, index))
114 : "memory" );
115 }
116
117 /*
118 * Insert bolted entries into SLB (which may not be empty, so don't clear
119 * slb_cache_ptr).
120 */
121 void __slb_restore_bolted_realmode(void)
122 {
123 struct slb_shadow *p = get_slb_shadow();
124 enum slb_index index;
125
126 /* No isync needed because realmode. */
127 for (index = 0; index < SLB_NUM_BOLTED; index++) {
128 asm volatile("slbmte %0,%1" :
129 : "r" (be64_to_cpu(p->save_area[index].vsid)),
130 "r" (be64_to_cpu(p->save_area[index].esid)));
131 }
132
133 assert_slb_presence(true, local_paca->kstack);
134 }
135
136 /*
137 * Insert the bolted entries into an empty SLB.
138 */
139 void slb_restore_bolted_realmode(void)
140 {
141 __slb_restore_bolted_realmode();
142 get_paca()->slb_cache_ptr = 0;
143
144 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
145 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
146 }
147
148 /*
149 * This flushes all SLB entries including 0, so it must be realmode.
150 */
151 void slb_flush_all_realmode(void)
152 {
153 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
154 }
155
156 /*
157 * This flushes non-bolted entries, it can be run in virtual mode. Must
158 * be called with interrupts disabled.
159 */
160 void slb_flush_and_restore_bolted(void)
161 {
162 struct slb_shadow *p = get_slb_shadow();
163
164 BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
165
166 WARN_ON(!irqs_disabled());
167
168 /*
169 * We can't take a PMU exception in the following code, so hard
170 * disable interrupts.
171 */
172 hard_irq_disable();
173
174 asm volatile("isync\n"
175 "slbia\n"
176 "slbmte %0, %1\n"
177 "isync\n"
178 :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
179 "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
180 : "memory");
181 assert_slb_presence(true, get_paca()->kstack);
182
183 get_paca()->slb_cache_ptr = 0;
184
185 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
186 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
187 }
188
189 void slb_save_contents(struct slb_entry *slb_ptr)
190 {
191 int i;
192 unsigned long e, v;
193
194 /* Save slb_cache_ptr value. */
195 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
196
197 if (!slb_ptr)
198 return;
199
200 for (i = 0; i < mmu_slb_size; i++) {
201 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i));
202 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i));
203 slb_ptr->esid = e;
204 slb_ptr->vsid = v;
205 slb_ptr++;
206 }
207 }
208
209 void slb_dump_contents(struct slb_entry *slb_ptr)
210 {
211 int i, n;
212 unsigned long e, v;
213 unsigned long llp;
214
215 if (!slb_ptr)
216 return;
217
218 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
219 pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
220
221 for (i = 0; i < mmu_slb_size; i++) {
222 e = slb_ptr->esid;
223 v = slb_ptr->vsid;
224 slb_ptr++;
225
226 if (!e && !v)
227 continue;
228
229 pr_err("%02d %016lx %016lx\n", i, e, v);
230
231 if (!(e & SLB_ESID_V)) {
232 pr_err("\n");
233 continue;
234 }
235 llp = v & SLB_VSID_LLP;
236 if (v & SLB_VSID_B_1T) {
237 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
238 GET_ESID_1T(e),
239 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
240 } else {
241 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
242 GET_ESID(e),
243 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
244 }
245 }
246 pr_err("----------------------------------\n");
247
248 /* Dump slb cache entires as well. */
249 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
250 pr_err("Valid SLB cache entries:\n");
251 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
252 for (i = 0; i < n; i++)
253 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
254 pr_err("Rest of SLB cache entries:\n");
255 for (i = n; i < SLB_CACHE_ENTRIES; i++)
256 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
257 }
258
259 void slb_vmalloc_update(void)
260 {
261 /*
262 * vmalloc is not bolted, so just have to flush non-bolted.
263 */
264 slb_flush_and_restore_bolted();
265 }
266
267 static bool preload_hit(struct thread_info *ti, unsigned long esid)
268 {
269 unsigned char i;
270
271 for (i = 0; i < ti->slb_preload_nr; i++) {
272 unsigned char idx;
273
274 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
275 if (esid == ti->slb_preload_esid[idx])
276 return true;
277 }
278 return false;
279 }
280
281 static bool preload_add(struct thread_info *ti, unsigned long ea)
282 {
283 unsigned char idx;
284 unsigned long esid;
285
286 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
287 /* EAs are stored >> 28 so 256MB segments don't need clearing */
288 if (ea & ESID_MASK_1T)
289 ea &= ESID_MASK_1T;
290 }
291
292 esid = ea >> SID_SHIFT;
293
294 if (preload_hit(ti, esid))
295 return false;
296
297 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
298 ti->slb_preload_esid[idx] = esid;
299 if (ti->slb_preload_nr == SLB_PRELOAD_NR)
300 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
301 else
302 ti->slb_preload_nr++;
303
304 return true;
305 }
306
307 static void preload_age(struct thread_info *ti)
308 {
309 if (!ti->slb_preload_nr)
310 return;
311 ti->slb_preload_nr--;
312 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
313 }
314
315 void slb_setup_new_exec(void)
316 {
317 struct thread_info *ti = current_thread_info();
318 struct mm_struct *mm = current->mm;
319 unsigned long exec = 0x10000000;
320
321 WARN_ON(irqs_disabled());
322
323 /*
324 * preload cache can only be used to determine whether a SLB
325 * entry exists if it does not start to overflow.
326 */
327 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
328 return;
329
330 hard_irq_disable();
331
332 /*
333 * We have no good place to clear the slb preload cache on exec,
334 * flush_thread is about the earliest arch hook but that happens
335 * after we switch to the mm and have aleady preloaded the SLBEs.
336 *
337 * For the most part that's probably okay to use entries from the
338 * previous exec, they will age out if unused. It may turn out to
339 * be an advantage to clear the cache before switching to it,
340 * however.
341 */
342
343 /*
344 * preload some userspace segments into the SLB.
345 * Almost all 32 and 64bit PowerPC executables are linked at
346 * 0x10000000 so it makes sense to preload this segment.
347 */
348 if (!is_kernel_addr(exec)) {
349 if (preload_add(ti, exec))
350 slb_allocate_user(mm, exec);
351 }
352
353 /* Libraries and mmaps. */
354 if (!is_kernel_addr(mm->mmap_base)) {
355 if (preload_add(ti, mm->mmap_base))
356 slb_allocate_user(mm, mm->mmap_base);
357 }
358
359 /* see switch_slb */
360 asm volatile("isync" : : : "memory");
361
362 local_irq_enable();
363 }
364
365 void preload_new_slb_context(unsigned long start, unsigned long sp)
366 {
367 struct thread_info *ti = current_thread_info();
368 struct mm_struct *mm = current->mm;
369 unsigned long heap = mm->start_brk;
370
371 WARN_ON(irqs_disabled());
372
373 /* see above */
374 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
375 return;
376
377 hard_irq_disable();
378
379 /* Userspace entry address. */
380 if (!is_kernel_addr(start)) {
381 if (preload_add(ti, start))
382 slb_allocate_user(mm, start);
383 }
384
385 /* Top of stack, grows down. */
386 if (!is_kernel_addr(sp)) {
387 if (preload_add(ti, sp))
388 slb_allocate_user(mm, sp);
389 }
390
391 /* Bottom of heap, grows up. */
392 if (heap && !is_kernel_addr(heap)) {
393 if (preload_add(ti, heap))
394 slb_allocate_user(mm, heap);
395 }
396
397 /* see switch_slb */
398 asm volatile("isync" : : : "memory");
399
400 local_irq_enable();
401 }
402
403
404 /* Flush all user entries from the segment table of the current processor. */
405 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
406 {
407 struct thread_info *ti = task_thread_info(tsk);
408 unsigned char i;
409
410 /*
411 * We need interrupts hard-disabled here, not just soft-disabled,
412 * so that a PMU interrupt can't occur, which might try to access
413 * user memory (to get a stack trace) and possible cause an SLB miss
414 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
415 */
416 hard_irq_disable();
417 asm volatile("isync" : : : "memory");
418 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
419 /*
420 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
421 * associated lookaside structures, which matches what
422 * switch_slb wants. So ARCH_300 does not use the slb
423 * cache.
424 */
425 asm volatile(PPC_SLBIA(3));
426 } else {
427 unsigned long offset = get_paca()->slb_cache_ptr;
428
429 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
430 offset <= SLB_CACHE_ENTRIES) {
431 unsigned long slbie_data = 0;
432
433 for (i = 0; i < offset; i++) {
434 unsigned long ea;
435
436 ea = (unsigned long)
437 get_paca()->slb_cache[i] << SID_SHIFT;
438 /*
439 * Could assert_slb_presence(true) here, but
440 * hypervisor or machine check could have come
441 * in and removed the entry at this point.
442 */
443
444 slbie_data = ea;
445 slbie_data |= user_segment_size(slbie_data)
446 << SLBIE_SSIZE_SHIFT;
447 slbie_data |= SLBIE_C; /* user slbs have C=1 */
448 asm volatile("slbie %0" : : "r" (slbie_data));
449 }
450
451 /* Workaround POWER5 < DD2.1 issue */
452 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
453 asm volatile("slbie %0" : : "r" (slbie_data));
454
455 } else {
456 struct slb_shadow *p = get_slb_shadow();
457 unsigned long ksp_esid_data =
458 be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
459 unsigned long ksp_vsid_data =
460 be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
461
462 asm volatile(PPC_SLBIA(1) "\n"
463 "slbmte %0,%1\n"
464 "isync"
465 :: "r"(ksp_vsid_data),
466 "r"(ksp_esid_data));
467
468 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
469 }
470
471 get_paca()->slb_cache_ptr = 0;
472 }
473 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
474
475 copy_mm_to_paca(mm);
476
477 /*
478 * We gradually age out SLBs after a number of context switches to
479 * reduce reload overhead of unused entries (like we do with FP/VEC
480 * reload). Each time we wrap 256 switches, take an entry out of the
481 * SLB preload cache.
482 */
483 tsk->thread.load_slb++;
484 if (!tsk->thread.load_slb) {
485 unsigned long pc = KSTK_EIP(tsk);
486
487 preload_age(ti);
488 preload_add(ti, pc);
489 }
490
491 for (i = 0; i < ti->slb_preload_nr; i++) {
492 unsigned char idx;
493 unsigned long ea;
494
495 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
496 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
497
498 slb_allocate_user(mm, ea);
499 }
500
501 /*
502 * Synchronize slbmte preloads with possible subsequent user memory
503 * address accesses by the kernel (user mode won't happen until
504 * rfid, which is safe).
505 */
506 asm volatile("isync" : : : "memory");
507 }
508
509 void slb_set_size(u16 size)
510 {
511 mmu_slb_size = size;
512 }
513
514 void slb_initialize(void)
515 {
516 unsigned long linear_llp, vmalloc_llp, io_llp;
517 unsigned long lflags;
518 static int slb_encoding_inited;
519 #ifdef CONFIG_SPARSEMEM_VMEMMAP
520 unsigned long vmemmap_llp;
521 #endif
522
523 /* Prepare our SLB miss handler based on our page size */
524 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
525 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
526 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
527 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
528 #ifdef CONFIG_SPARSEMEM_VMEMMAP
529 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
530 #endif
531 if (!slb_encoding_inited) {
532 slb_encoding_inited = 1;
533 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
534 pr_devel("SLB: io LLP = %04lx\n", io_llp);
535 #ifdef CONFIG_SPARSEMEM_VMEMMAP
536 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
537 #endif
538 }
539
540 get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
541 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
542 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
543
544 lflags = SLB_VSID_KERNEL | linear_llp;
545
546 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
547 asm volatile("isync":::"memory");
548 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
549 asm volatile("isync; slbia; isync":::"memory");
550 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
551
552 /*
553 * For the boot cpu, we're running on the stack in init_thread_union,
554 * which is in the first segment of the linear mapping, and also
555 * get_paca()->kstack hasn't been initialized yet.
556 * For secondary cpus, we need to bolt the kernel stack entry now.
557 */
558 slb_shadow_clear(KSTACK_INDEX);
559 if (raw_smp_processor_id() != boot_cpuid &&
560 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
561 create_shadowed_slbe(get_paca()->kstack,
562 mmu_kernel_ssize, lflags, KSTACK_INDEX);
563
564 asm volatile("isync":::"memory");
565 }
566
567 static void slb_cache_update(unsigned long esid_data)
568 {
569 int slb_cache_index;
570
571 if (cpu_has_feature(CPU_FTR_ARCH_300))
572 return; /* ISAv3.0B and later does not use slb_cache */
573
574 /*
575 * Now update slb cache entries
576 */
577 slb_cache_index = local_paca->slb_cache_ptr;
578 if (slb_cache_index < SLB_CACHE_ENTRIES) {
579 /*
580 * We have space in slb cache for optimized switch_slb().
581 * Top 36 bits from esid_data as per ISA
582 */
583 local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
584 local_paca->slb_cache_ptr++;
585 } else {
586 /*
587 * Our cache is full and the current cache content strictly
588 * doesn't indicate the active SLB conents. Bump the ptr
589 * so that switch_slb() will ignore the cache.
590 */
591 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
592 }
593 }
594
595 static enum slb_index alloc_slb_index(bool kernel)
596 {
597 enum slb_index index;
598
599 /*
600 * The allocation bitmaps can become out of synch with the SLB
601 * when the _switch code does slbie when bolting a new stack
602 * segment and it must not be anywhere else in the SLB. This leaves
603 * a kernel allocated entry that is unused in the SLB. With very
604 * large systems or small segment sizes, the bitmaps could slowly
605 * fill with these entries. They will eventually be cleared out
606 * by the round robin allocator in that case, so it's probably not
607 * worth accounting for.
608 */
609
610 /*
611 * SLBs beyond 32 entries are allocated with stab_rr only
612 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
613 * future CPU has more.
614 */
615 if (local_paca->slb_used_bitmap != U32_MAX) {
616 index = ffz(local_paca->slb_used_bitmap);
617 local_paca->slb_used_bitmap |= 1U << index;
618 if (kernel)
619 local_paca->slb_kern_bitmap |= 1U << index;
620 } else {
621 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
622 index = local_paca->stab_rr;
623 if (index < (mmu_slb_size - 1))
624 index++;
625 else
626 index = SLB_NUM_BOLTED;
627 local_paca->stab_rr = index;
628 if (index < 32) {
629 if (kernel)
630 local_paca->slb_kern_bitmap |= 1U << index;
631 else
632 local_paca->slb_kern_bitmap &= ~(1U << index);
633 }
634 }
635 BUG_ON(index < SLB_NUM_BOLTED);
636
637 return index;
638 }
639
640 static long slb_insert_entry(unsigned long ea, unsigned long context,
641 unsigned long flags, int ssize, bool kernel)
642 {
643 unsigned long vsid;
644 unsigned long vsid_data, esid_data;
645 enum slb_index index;
646
647 vsid = get_vsid(context, ea, ssize);
648 if (!vsid)
649 return -EFAULT;
650
651 /*
652 * There must not be a kernel SLB fault in alloc_slb_index or before
653 * slbmte here or the allocation bitmaps could get out of whack with
654 * the SLB.
655 *
656 * User SLB faults or preloads take this path which might get inlined
657 * into the caller, so add compiler barriers here to ensure unsafe
658 * memory accesses do not come between.
659 */
660 barrier();
661
662 index = alloc_slb_index(kernel);
663
664 vsid_data = __mk_vsid_data(vsid, ssize, flags);
665 esid_data = mk_esid_data(ea, ssize, index);
666
667 /*
668 * No need for an isync before or after this slbmte. The exception
669 * we enter with and the rfid we exit with are context synchronizing.
670 * User preloads should add isync afterwards in case the kernel
671 * accesses user memory before it returns to userspace with rfid.
672 */
673 assert_slb_presence(false, ea);
674 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
675
676 barrier();
677
678 if (!kernel)
679 slb_cache_update(esid_data);
680
681 return 0;
682 }
683
684 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
685 {
686 unsigned long context;
687 unsigned long flags;
688 int ssize;
689
690 if (id == LINEAR_MAP_REGION_ID) {
691
692 /* We only support upto MAX_PHYSMEM_BITS */
693 if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
694 return -EFAULT;
695
696 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
697
698 #ifdef CONFIG_SPARSEMEM_VMEMMAP
699 } else if (id == VMEMMAP_REGION_ID) {
700
701 if (ea >= H_VMEMMAP_END)
702 return -EFAULT;
703
704 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
705 #endif
706 } else if (id == VMALLOC_REGION_ID) {
707
708 if (ea >= H_VMALLOC_END)
709 return -EFAULT;
710
711 flags = local_paca->vmalloc_sllp;
712
713 } else if (id == IO_REGION_ID) {
714
715 if (ea >= H_KERN_IO_END)
716 return -EFAULT;
717
718 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
719
720 } else {
721 return -EFAULT;
722 }
723
724 ssize = MMU_SEGSIZE_1T;
725 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
726 ssize = MMU_SEGSIZE_256M;
727
728 context = get_kernel_context(ea);
729
730 return slb_insert_entry(ea, context, flags, ssize, true);
731 }
732
733 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
734 {
735 unsigned long context;
736 unsigned long flags;
737 int bpsize;
738 int ssize;
739
740 /*
741 * consider this as bad access if we take a SLB miss
742 * on an address above addr limit.
743 */
744 if (ea >= mm_ctx_slb_addr_limit(&mm->context))
745 return -EFAULT;
746
747 context = get_user_context(&mm->context, ea);
748 if (!context)
749 return -EFAULT;
750
751 if (unlikely(ea >= H_PGTABLE_RANGE)) {
752 WARN_ON(1);
753 return -EFAULT;
754 }
755
756 ssize = user_segment_size(ea);
757
758 bpsize = get_slice_psize(mm, ea);
759 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
760
761 return slb_insert_entry(ea, context, flags, ssize, false);
762 }
763
764 long do_slb_fault(struct pt_regs *regs, unsigned long ea)
765 {
766 unsigned long id = get_region_id(ea);
767
768 /* IRQs are not reconciled here, so can't check irqs_disabled */
769 VM_WARN_ON(mfmsr() & MSR_EE);
770
771 if (unlikely(!(regs->msr & MSR_RI)))
772 return -EINVAL;
773
774 /*
775 * SLB kernel faults must be very careful not to touch anything
776 * that is not bolted. E.g., PACA and global variables are okay,
777 * mm->context stuff is not.
778 *
779 * SLB user faults can access all of kernel memory, but must be
780 * careful not to touch things like IRQ state because it is not
781 * "reconciled" here. The difficulty is that we must use
782 * fast_exception_return to return from kernel SLB faults without
783 * looking at possible non-bolted memory. We could test user vs
784 * kernel faults in the interrupt handler asm and do a full fault,
785 * reconcile, ret_from_except for user faults which would make them
786 * first class kernel code. But for performance it's probably nicer
787 * if they go via fast_exception_return too.
788 */
789 if (id >= LINEAR_MAP_REGION_ID) {
790 long err;
791 #ifdef CONFIG_DEBUG_VM
792 /* Catch recursive kernel SLB faults. */
793 BUG_ON(local_paca->in_kernel_slb_handler);
794 local_paca->in_kernel_slb_handler = 1;
795 #endif
796 err = slb_allocate_kernel(ea, id);
797 #ifdef CONFIG_DEBUG_VM
798 local_paca->in_kernel_slb_handler = 0;
799 #endif
800 return err;
801 } else {
802 struct mm_struct *mm = current->mm;
803 long err;
804
805 if (unlikely(!mm))
806 return -EFAULT;
807
808 err = slb_allocate_user(mm, ea);
809 if (!err)
810 preload_add(current_thread_info(), ea);
811
812 return err;
813 }
814 }
815
816 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
817 {
818 if (err == -EFAULT) {
819 if (user_mode(regs))
820 _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
821 else
822 bad_page_fault(regs, ea, SIGSEGV);
823 } else if (err == -EINVAL) {
824 unrecoverable_exception(regs);
825 } else {
826 BUG();
827 }
828 }