]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/mm/fault.c
signal: Remove the task parameter from force_sig_fault
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / mm / fault.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 #include <asm/kup.h>
48
49 static inline bool notify_page_fault(struct pt_regs *regs)
50 {
51 bool ret = false;
52
53 #ifdef CONFIG_KPROBES
54 /* kprobe_running() needs smp_processor_id() */
55 if (!user_mode(regs)) {
56 preempt_disable();
57 if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 ret = true;
59 preempt_enable();
60 }
61 #endif /* CONFIG_KPROBES */
62
63 if (unlikely(debugger_fault_handler(regs)))
64 ret = true;
65
66 return ret;
67 }
68
69 /*
70 * Check whether the instruction inst is a store using
71 * an update addressing form which will update r1.
72 */
73 static bool store_updates_sp(unsigned int inst)
74 {
75 /* check for 1 in the rA field */
76 if (((inst >> 16) & 0x1f) != 1)
77 return false;
78 /* check major opcode */
79 switch (inst >> 26) {
80 case OP_STWU:
81 case OP_STBU:
82 case OP_STHU:
83 case OP_STFSU:
84 case OP_STFDU:
85 return true;
86 case OP_STD: /* std or stdu */
87 return (inst & 3) == 1;
88 case OP_31:
89 /* check minor opcode */
90 switch ((inst >> 1) & 0x3ff) {
91 case OP_31_XOP_STDUX:
92 case OP_31_XOP_STWUX:
93 case OP_31_XOP_STBUX:
94 case OP_31_XOP_STHUX:
95 case OP_31_XOP_STFSUX:
96 case OP_31_XOP_STFDUX:
97 return true;
98 }
99 }
100 return false;
101 }
102 /*
103 * do_page_fault error handling helpers
104 */
105
106 static int
107 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
108 {
109 /*
110 * If we are in kernel mode, bail out with a SEGV, this will
111 * be caught by the assembly which will restore the non-volatile
112 * registers before calling bad_page_fault()
113 */
114 if (!user_mode(regs))
115 return SIGSEGV;
116
117 _exception(SIGSEGV, regs, si_code, address);
118
119 return 0;
120 }
121
122 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
123 {
124 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
125 }
126
127 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
128 {
129 struct mm_struct *mm = current->mm;
130
131 /*
132 * Something tried to access memory that isn't in our memory map..
133 * Fix it, but check if it's kernel or user first..
134 */
135 up_read(&mm->mmap_sem);
136
137 return __bad_area_nosemaphore(regs, address, si_code);
138 }
139
140 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
141 {
142 return __bad_area(regs, address, SEGV_MAPERR);
143 }
144
145 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
146 int pkey)
147 {
148 /*
149 * If we are in kernel mode, bail out with a SEGV, this will
150 * be caught by the assembly which will restore the non-volatile
151 * registers before calling bad_page_fault()
152 */
153 if (!user_mode(regs))
154 return SIGSEGV;
155
156 _exception_pkey(regs, address, pkey);
157
158 return 0;
159 }
160
161 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
162 {
163 return __bad_area(regs, address, SEGV_ACCERR);
164 }
165
166 static int do_sigbus(struct pt_regs *regs, unsigned long address,
167 vm_fault_t fault)
168 {
169 if (!user_mode(regs))
170 return SIGBUS;
171
172 current->thread.trap_nr = BUS_ADRERR;
173 #ifdef CONFIG_MEMORY_FAILURE
174 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
175 unsigned int lsb = 0; /* shutup gcc */
176
177 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178 current->comm, current->pid, address);
179
180 if (fault & VM_FAULT_HWPOISON_LARGE)
181 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
182 if (fault & VM_FAULT_HWPOISON)
183 lsb = PAGE_SHIFT;
184
185 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
186 return 0;
187 }
188
189 #endif
190 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
191 return 0;
192 }
193
194 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
195 vm_fault_t fault)
196 {
197 /*
198 * Kernel page fault interrupted by SIGKILL. We have no reason to
199 * continue processing.
200 */
201 if (fatal_signal_pending(current) && !user_mode(regs))
202 return SIGKILL;
203
204 /* Out of memory */
205 if (fault & VM_FAULT_OOM) {
206 /*
207 * We ran out of memory, or some other thing happened to us that
208 * made us unable to handle the page fault gracefully.
209 */
210 if (!user_mode(regs))
211 return SIGSEGV;
212 pagefault_out_of_memory();
213 } else {
214 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
215 VM_FAULT_HWPOISON_LARGE))
216 return do_sigbus(regs, addr, fault);
217 else if (fault & VM_FAULT_SIGSEGV)
218 return bad_area_nosemaphore(regs, addr);
219 else
220 BUG();
221 }
222 return 0;
223 }
224
225 /* Is this a bad kernel fault ? */
226 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
227 unsigned long address, bool is_write)
228 {
229 int is_exec = TRAP(regs) == 0x400;
230
231 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
232 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
233 DSISR_PROTFAULT))) {
234 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
235 address >= TASK_SIZE ? "exec-protected" : "user",
236 address,
237 from_kuid(&init_user_ns, current_uid()));
238
239 // Kernel exec fault is always bad
240 return true;
241 }
242
243 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
244 !search_exception_tables(regs->nip)) {
245 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
246 address,
247 from_kuid(&init_user_ns, current_uid()));
248 }
249
250 // Kernel fault on kernel address is bad
251 if (address >= TASK_SIZE)
252 return true;
253
254 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
255 if (!search_exception_tables(regs->nip))
256 return true;
257
258 // Read/write fault in a valid region (the exception table search passed
259 // above), but blocked by KUAP is bad, it can never succeed.
260 if (bad_kuap_fault(regs, is_write))
261 return true;
262
263 // What's left? Kernel fault on user in well defined regions (extable
264 // matched), and allowed by KUAP in the faulting context.
265 return false;
266 }
267
268 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
269 struct vm_area_struct *vma, unsigned int flags,
270 bool *must_retry)
271 {
272 /*
273 * N.B. The POWER/Open ABI allows programs to access up to
274 * 288 bytes below the stack pointer.
275 * The kernel signal delivery code writes up to about 1.5kB
276 * below the stack pointer (r1) before decrementing it.
277 * The exec code can write slightly over 640kB to the stack
278 * before setting the user r1. Thus we allow the stack to
279 * expand to 1MB without further checks.
280 */
281 if (address + 0x100000 < vma->vm_end) {
282 unsigned int __user *nip = (unsigned int __user *)regs->nip;
283 /* get user regs even if this fault is in kernel mode */
284 struct pt_regs *uregs = current->thread.regs;
285 if (uregs == NULL)
286 return true;
287
288 /*
289 * A user-mode access to an address a long way below
290 * the stack pointer is only valid if the instruction
291 * is one which would update the stack pointer to the
292 * address accessed if the instruction completed,
293 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
294 * (or the byte, halfword, float or double forms).
295 *
296 * If we don't check this then any write to the area
297 * between the last mapped region and the stack will
298 * expand the stack rather than segfaulting.
299 */
300 if (address + 2048 >= uregs->gpr[1])
301 return false;
302
303 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
304 access_ok(nip, sizeof(*nip))) {
305 unsigned int inst;
306 int res;
307
308 pagefault_disable();
309 res = __get_user_inatomic(inst, nip);
310 pagefault_enable();
311 if (!res)
312 return !store_updates_sp(inst);
313 *must_retry = true;
314 }
315 return true;
316 }
317 return false;
318 }
319
320 static bool access_error(bool is_write, bool is_exec,
321 struct vm_area_struct *vma)
322 {
323 /*
324 * Allow execution from readable areas if the MMU does not
325 * provide separate controls over reading and executing.
326 *
327 * Note: That code used to not be enabled for 4xx/BookE.
328 * It is now as I/D cache coherency for these is done at
329 * set_pte_at() time and I see no reason why the test
330 * below wouldn't be valid on those processors. This -may-
331 * break programs compiled with a really old ABI though.
332 */
333 if (is_exec) {
334 return !(vma->vm_flags & VM_EXEC) &&
335 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
336 !(vma->vm_flags & (VM_READ | VM_WRITE)));
337 }
338
339 if (is_write) {
340 if (unlikely(!(vma->vm_flags & VM_WRITE)))
341 return true;
342 return false;
343 }
344
345 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
346 return true;
347 /*
348 * We should ideally do the vma pkey access check here. But in the
349 * fault path, handle_mm_fault() also does the same check. To avoid
350 * these multiple checks, we skip it here and handle access error due
351 * to pkeys later.
352 */
353 return false;
354 }
355
356 #ifdef CONFIG_PPC_SMLPAR
357 static inline void cmo_account_page_fault(void)
358 {
359 if (firmware_has_feature(FW_FEATURE_CMO)) {
360 u32 page_ins;
361
362 preempt_disable();
363 page_ins = be32_to_cpu(get_lppaca()->page_ins);
364 page_ins += 1 << PAGE_FACTOR;
365 get_lppaca()->page_ins = cpu_to_be32(page_ins);
366 preempt_enable();
367 }
368 }
369 #else
370 static inline void cmo_account_page_fault(void) { }
371 #endif /* CONFIG_PPC_SMLPAR */
372
373 #ifdef CONFIG_PPC_BOOK3S
374 static void sanity_check_fault(bool is_write, bool is_user,
375 unsigned long error_code, unsigned long address)
376 {
377 /*
378 * Userspace trying to access kernel address, we get PROTFAULT for that.
379 */
380 if (is_user && address >= TASK_SIZE) {
381 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
382 current->comm, current->pid, address,
383 from_kuid(&init_user_ns, current_uid()));
384 return;
385 }
386
387 /*
388 * For hash translation mode, we should never get a
389 * PROTFAULT. Any update to pte to reduce access will result in us
390 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
391 * fault instead of DSISR_PROTFAULT.
392 *
393 * A pte update to relax the access will not result in a hash page table
394 * entry invalidate and hence can result in DSISR_PROTFAULT.
395 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
396 * the special !is_write in the below conditional.
397 *
398 * For platforms that doesn't supports coherent icache and do support
399 * per page noexec bit, we do setup things such that we do the
400 * sync between D/I cache via fault. But that is handled via low level
401 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
402 * here in such case.
403 *
404 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
405 * check should handle those and hence we should fall to the bad_area
406 * handling correctly.
407 *
408 * For embedded with per page exec support that doesn't support coherent
409 * icache we do get PROTFAULT and we handle that D/I cache sync in
410 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
411 * is conditional for server MMU.
412 *
413 * For radix, we can get prot fault for autonuma case, because radix
414 * page table will have them marked noaccess for user.
415 */
416 if (radix_enabled() || is_write)
417 return;
418
419 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
420 }
421 #else
422 static void sanity_check_fault(bool is_write, bool is_user,
423 unsigned long error_code, unsigned long address) { }
424 #endif /* CONFIG_PPC_BOOK3S */
425
426 /*
427 * Define the correct "is_write" bit in error_code based
428 * on the processor family
429 */
430 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
431 #define page_fault_is_write(__err) ((__err) & ESR_DST)
432 #define page_fault_is_bad(__err) (0)
433 #else
434 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
435 #if defined(CONFIG_PPC_8xx)
436 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
437 #elif defined(CONFIG_PPC64)
438 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
439 #else
440 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
441 #endif
442 #endif
443
444 /*
445 * For 600- and 800-family processors, the error_code parameter is DSISR
446 * for a data fault, SRR1 for an instruction fault. For 400-family processors
447 * the error_code parameter is ESR for a data fault, 0 for an instruction
448 * fault.
449 * For 64-bit processors, the error_code parameter is
450 * - DSISR for a non-SLB data access fault,
451 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
452 * - 0 any SLB fault.
453 *
454 * The return value is 0 if the fault was handled, or the signal
455 * number if this is a kernel fault that can't be handled here.
456 */
457 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
458 unsigned long error_code)
459 {
460 struct vm_area_struct * vma;
461 struct mm_struct *mm = current->mm;
462 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
463 int is_exec = TRAP(regs) == 0x400;
464 int is_user = user_mode(regs);
465 int is_write = page_fault_is_write(error_code);
466 vm_fault_t fault, major = 0;
467 bool must_retry = false;
468
469 if (notify_page_fault(regs))
470 return 0;
471
472 if (unlikely(page_fault_is_bad(error_code))) {
473 if (is_user) {
474 _exception(SIGBUS, regs, BUS_OBJERR, address);
475 return 0;
476 }
477 return SIGBUS;
478 }
479
480 /* Additional sanity check(s) */
481 sanity_check_fault(is_write, is_user, error_code, address);
482
483 /*
484 * The kernel should never take an execute fault nor should it
485 * take a page fault to a kernel address or a page fault to a user
486 * address outside of dedicated places
487 */
488 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
489 return SIGSEGV;
490
491 /*
492 * If we're in an interrupt, have no user context or are running
493 * in a region with pagefaults disabled then we must not take the fault
494 */
495 if (unlikely(faulthandler_disabled() || !mm)) {
496 if (is_user)
497 printk_ratelimited(KERN_ERR "Page fault in user mode"
498 " with faulthandler_disabled()=%d"
499 " mm=%p\n",
500 faulthandler_disabled(), mm);
501 return bad_area_nosemaphore(regs, address);
502 }
503
504 /* We restore the interrupt state now */
505 if (!arch_irq_disabled_regs(regs))
506 local_irq_enable();
507
508 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
509
510 if (error_code & DSISR_KEYFAULT)
511 return bad_key_fault_exception(regs, address,
512 get_mm_addr_key(mm, address));
513
514 /*
515 * We want to do this outside mmap_sem, because reading code around nip
516 * can result in fault, which will cause a deadlock when called with
517 * mmap_sem held
518 */
519 if (is_user)
520 flags |= FAULT_FLAG_USER;
521 if (is_write)
522 flags |= FAULT_FLAG_WRITE;
523 if (is_exec)
524 flags |= FAULT_FLAG_INSTRUCTION;
525
526 /* When running in the kernel we expect faults to occur only to
527 * addresses in user space. All other faults represent errors in the
528 * kernel and should generate an OOPS. Unfortunately, in the case of an
529 * erroneous fault occurring in a code path which already holds mmap_sem
530 * we will deadlock attempting to validate the fault against the
531 * address space. Luckily the kernel only validly references user
532 * space from well defined areas of code, which are listed in the
533 * exceptions table.
534 *
535 * As the vast majority of faults will be valid we will only perform
536 * the source reference check when there is a possibility of a deadlock.
537 * Attempt to lock the address space, if we cannot we then validate the
538 * source. If this is invalid we can skip the address space check,
539 * thus avoiding the deadlock.
540 */
541 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
542 if (!is_user && !search_exception_tables(regs->nip))
543 return bad_area_nosemaphore(regs, address);
544
545 retry:
546 down_read(&mm->mmap_sem);
547 } else {
548 /*
549 * The above down_read_trylock() might have succeeded in
550 * which case we'll have missed the might_sleep() from
551 * down_read():
552 */
553 might_sleep();
554 }
555
556 vma = find_vma(mm, address);
557 if (unlikely(!vma))
558 return bad_area(regs, address);
559 if (likely(vma->vm_start <= address))
560 goto good_area;
561 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
562 return bad_area(regs, address);
563
564 /* The stack is being expanded, check if it's valid */
565 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
566 &must_retry))) {
567 if (!must_retry)
568 return bad_area(regs, address);
569
570 up_read(&mm->mmap_sem);
571 if (fault_in_pages_readable((const char __user *)regs->nip,
572 sizeof(unsigned int)))
573 return bad_area_nosemaphore(regs, address);
574 goto retry;
575 }
576
577 /* Try to expand it */
578 if (unlikely(expand_stack(vma, address)))
579 return bad_area(regs, address);
580
581 good_area:
582 if (unlikely(access_error(is_write, is_exec, vma)))
583 return bad_access(regs, address);
584
585 /*
586 * If for any reason at all we couldn't handle the fault,
587 * make sure we exit gracefully rather than endlessly redo
588 * the fault.
589 */
590 fault = handle_mm_fault(vma, address, flags);
591
592 #ifdef CONFIG_PPC_MEM_KEYS
593 /*
594 * we skipped checking for access error due to key earlier.
595 * Check that using handle_mm_fault error return.
596 */
597 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
598 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
599
600 int pkey = vma_pkey(vma);
601
602 up_read(&mm->mmap_sem);
603 return bad_key_fault_exception(regs, address, pkey);
604 }
605 #endif /* CONFIG_PPC_MEM_KEYS */
606
607 major |= fault & VM_FAULT_MAJOR;
608
609 /*
610 * Handle the retry right now, the mmap_sem has been released in that
611 * case.
612 */
613 if (unlikely(fault & VM_FAULT_RETRY)) {
614 /* We retry only once */
615 if (flags & FAULT_FLAG_ALLOW_RETRY) {
616 /*
617 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
618 * of starvation.
619 */
620 flags &= ~FAULT_FLAG_ALLOW_RETRY;
621 flags |= FAULT_FLAG_TRIED;
622 if (!fatal_signal_pending(current))
623 goto retry;
624 }
625
626 /*
627 * User mode? Just return to handle the fatal exception otherwise
628 * return to bad_page_fault
629 */
630 return is_user ? 0 : SIGBUS;
631 }
632
633 up_read(&current->mm->mmap_sem);
634
635 if (unlikely(fault & VM_FAULT_ERROR))
636 return mm_fault_error(regs, address, fault);
637
638 /*
639 * Major/minor page fault accounting.
640 */
641 if (major) {
642 current->maj_flt++;
643 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
644 cmo_account_page_fault();
645 } else {
646 current->min_flt++;
647 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
648 }
649 return 0;
650 }
651 NOKPROBE_SYMBOL(__do_page_fault);
652
653 int do_page_fault(struct pt_regs *regs, unsigned long address,
654 unsigned long error_code)
655 {
656 enum ctx_state prev_state = exception_enter();
657 int rc = __do_page_fault(regs, address, error_code);
658 exception_exit(prev_state);
659 return rc;
660 }
661 NOKPROBE_SYMBOL(do_page_fault);
662
663 /*
664 * bad_page_fault is called when we have a bad access from the kernel.
665 * It is called from the DSI and ISI handlers in head.S and from some
666 * of the procedures in traps.c.
667 */
668 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
669 {
670 const struct exception_table_entry *entry;
671
672 /* Are we prepared to handle this fault? */
673 if ((entry = search_exception_tables(regs->nip)) != NULL) {
674 regs->nip = extable_fixup(entry);
675 return;
676 }
677
678 /* kernel has accessed a bad area */
679
680 switch (TRAP(regs)) {
681 case 0x300:
682 case 0x380:
683 case 0xe00:
684 pr_alert("BUG: %s at 0x%08lx\n",
685 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
686 "Unable to handle kernel data access", regs->dar);
687 break;
688 case 0x400:
689 case 0x480:
690 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
691 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
692 break;
693 case 0x600:
694 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
695 regs->dar);
696 break;
697 default:
698 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
699 regs->dar);
700 break;
701 }
702 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
703 regs->nip);
704
705 if (task_stack_end_corrupted(current))
706 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
707
708 die("Kernel access of bad area", regs, sig);
709 }