]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/mm/fault.c
Pull regset into release branch
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / fault.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu.h>
36 #include <asm/mmu_context.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/siginfo.h>
41
42
43 #ifdef CONFIG_KPROBES
44 static inline int notify_page_fault(struct pt_regs *regs)
45 {
46 int ret = 0;
47
48 /* kprobe_running() needs smp_processor_id() */
49 if (!user_mode(regs)) {
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 11))
52 ret = 1;
53 preempt_enable();
54 }
55
56 return ret;
57 }
58 #else
59 static inline int notify_page_fault(struct pt_regs *regs)
60 {
61 return 0;
62 }
63 #endif
64
65 /*
66 * Check whether the instruction at regs->nip is a store using
67 * an update addressing form which will update r1.
68 */
69 static int store_updates_sp(struct pt_regs *regs)
70 {
71 unsigned int inst;
72
73 if (get_user(inst, (unsigned int __user *)regs->nip))
74 return 0;
75 /* check for 1 in the rA field */
76 if (((inst >> 16) & 0x1f) != 1)
77 return 0;
78 /* check major opcode */
79 switch (inst >> 26) {
80 case 37: /* stwu */
81 case 39: /* stbu */
82 case 45: /* sthu */
83 case 53: /* stfsu */
84 case 55: /* stfdu */
85 return 1;
86 case 62: /* std or stdu */
87 return (inst & 3) == 1;
88 case 31:
89 /* check minor opcode */
90 switch ((inst >> 1) & 0x3ff) {
91 case 181: /* stdux */
92 case 183: /* stwux */
93 case 247: /* stbux */
94 case 439: /* sthux */
95 case 695: /* stfsux */
96 case 759: /* stfdux */
97 return 1;
98 }
99 }
100 return 0;
101 }
102
103 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
104 static void do_dabr(struct pt_regs *regs, unsigned long address,
105 unsigned long error_code)
106 {
107 siginfo_t info;
108
109 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
110 11, SIGSEGV) == NOTIFY_STOP)
111 return;
112
113 if (debugger_dabr_match(regs))
114 return;
115
116 /* Clear the DABR */
117 set_dabr(0);
118
119 /* Deliver the signal to userspace */
120 info.si_signo = SIGTRAP;
121 info.si_errno = 0;
122 info.si_code = TRAP_HWBKPT;
123 info.si_addr = (void __user *)address;
124 force_sig_info(SIGTRAP, &info, current);
125 }
126 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
127
128 /*
129 * For 600- and 800-family processors, the error_code parameter is DSISR
130 * for a data fault, SRR1 for an instruction fault. For 400-family processors
131 * the error_code parameter is ESR for a data fault, 0 for an instruction
132 * fault.
133 * For 64-bit processors, the error_code parameter is
134 * - DSISR for a non-SLB data access fault,
135 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
136 * - 0 any SLB fault.
137 *
138 * The return value is 0 if the fault was handled, or the signal
139 * number if this is a kernel fault that can't be handled here.
140 */
141 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
142 unsigned long error_code)
143 {
144 struct vm_area_struct * vma;
145 struct mm_struct *mm = current->mm;
146 siginfo_t info;
147 int code = SEGV_MAPERR;
148 int is_write = 0, ret;
149 int trap = TRAP(regs);
150 int is_exec = trap == 0x400;
151
152 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
153 /*
154 * Fortunately the bit assignments in SRR1 for an instruction
155 * fault and DSISR for a data fault are mostly the same for the
156 * bits we are interested in. But there are some bits which
157 * indicate errors in DSISR but can validly be set in SRR1.
158 */
159 if (trap == 0x400)
160 error_code &= 0x48200000;
161 else
162 is_write = error_code & DSISR_ISSTORE;
163 #else
164 is_write = error_code & ESR_DST;
165 #endif /* CONFIG_4xx || CONFIG_BOOKE */
166
167 if (notify_page_fault(regs))
168 return 0;
169
170 if (unlikely(debugger_fault_handler(regs)))
171 return 0;
172
173 /* On a kernel SLB miss we can only check for a valid exception entry */
174 if (!user_mode(regs) && (address >= TASK_SIZE))
175 return SIGSEGV;
176
177 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
178 if (error_code & DSISR_DABRMATCH) {
179 /* DABR match */
180 do_dabr(regs, address, error_code);
181 return 0;
182 }
183 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
184
185 if (in_atomic() || mm == NULL) {
186 if (!user_mode(regs))
187 return SIGSEGV;
188 /* in_atomic() in user mode is really bad,
189 as is current->mm == NULL. */
190 printk(KERN_EMERG "Page fault in user mode with "
191 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
192 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
193 regs->nip, regs->msr);
194 die("Weird page fault", regs, SIGSEGV);
195 }
196
197 /* When running in the kernel we expect faults to occur only to
198 * addresses in user space. All other faults represent errors in the
199 * kernel and should generate an OOPS. Unfortunately, in the case of an
200 * erroneous fault occurring in a code path which already holds mmap_sem
201 * we will deadlock attempting to validate the fault against the
202 * address space. Luckily the kernel only validly references user
203 * space from well defined areas of code, which are listed in the
204 * exceptions table.
205 *
206 * As the vast majority of faults will be valid we will only perform
207 * the source reference check when there is a possibility of a deadlock.
208 * Attempt to lock the address space, if we cannot we then validate the
209 * source. If this is invalid we can skip the address space check,
210 * thus avoiding the deadlock.
211 */
212 if (!down_read_trylock(&mm->mmap_sem)) {
213 if (!user_mode(regs) && !search_exception_tables(regs->nip))
214 goto bad_area_nosemaphore;
215
216 down_read(&mm->mmap_sem);
217 }
218
219 vma = find_vma(mm, address);
220 if (!vma)
221 goto bad_area;
222 if (vma->vm_start <= address)
223 goto good_area;
224 if (!(vma->vm_flags & VM_GROWSDOWN))
225 goto bad_area;
226
227 /*
228 * N.B. The POWER/Open ABI allows programs to access up to
229 * 288 bytes below the stack pointer.
230 * The kernel signal delivery code writes up to about 1.5kB
231 * below the stack pointer (r1) before decrementing it.
232 * The exec code can write slightly over 640kB to the stack
233 * before setting the user r1. Thus we allow the stack to
234 * expand to 1MB without further checks.
235 */
236 if (address + 0x100000 < vma->vm_end) {
237 /* get user regs even if this fault is in kernel mode */
238 struct pt_regs *uregs = current->thread.regs;
239 if (uregs == NULL)
240 goto bad_area;
241
242 /*
243 * A user-mode access to an address a long way below
244 * the stack pointer is only valid if the instruction
245 * is one which would update the stack pointer to the
246 * address accessed if the instruction completed,
247 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
248 * (or the byte, halfword, float or double forms).
249 *
250 * If we don't check this then any write to the area
251 * between the last mapped region and the stack will
252 * expand the stack rather than segfaulting.
253 */
254 if (address + 2048 < uregs->gpr[1]
255 && (!user_mode(regs) || !store_updates_sp(regs)))
256 goto bad_area;
257 }
258 if (expand_stack(vma, address))
259 goto bad_area;
260
261 good_area:
262 code = SEGV_ACCERR;
263 #if defined(CONFIG_6xx)
264 if (error_code & 0x95700000)
265 /* an error such as lwarx to I/O controller space,
266 address matching DABR, eciwx, etc. */
267 goto bad_area;
268 #endif /* CONFIG_6xx */
269 #if defined(CONFIG_8xx)
270 /* The MPC8xx seems to always set 0x80000000, which is
271 * "undefined". Of those that can be set, this is the only
272 * one which seems bad.
273 */
274 if (error_code & 0x10000000)
275 /* Guarded storage error. */
276 goto bad_area;
277 #endif /* CONFIG_8xx */
278
279 if (is_exec) {
280 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
281 /* protection fault */
282 if (error_code & DSISR_PROTFAULT)
283 goto bad_area;
284 /*
285 * Allow execution from readable areas if the MMU does not
286 * provide separate controls over reading and executing.
287 */
288 if (!(vma->vm_flags & VM_EXEC) &&
289 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
290 !(vma->vm_flags & (VM_READ | VM_WRITE))))
291 goto bad_area;
292 #else
293 pte_t *ptep;
294 pmd_t *pmdp;
295
296 /* Since 4xx/Book-E supports per-page execute permission,
297 * we lazily flush dcache to icache. */
298 ptep = NULL;
299 if (get_pteptr(mm, address, &ptep, &pmdp)) {
300 spinlock_t *ptl = pte_lockptr(mm, pmdp);
301 spin_lock(ptl);
302 if (pte_present(*ptep)) {
303 struct page *page = pte_page(*ptep);
304
305 if (!test_bit(PG_arch_1, &page->flags)) {
306 flush_dcache_icache_page(page);
307 set_bit(PG_arch_1, &page->flags);
308 }
309 pte_update(ptep, 0, _PAGE_HWEXEC);
310 _tlbie(address, mm->context.id);
311 pte_unmap_unlock(ptep, ptl);
312 up_read(&mm->mmap_sem);
313 return 0;
314 }
315 pte_unmap_unlock(ptep, ptl);
316 }
317 #endif
318 /* a write */
319 } else if (is_write) {
320 if (!(vma->vm_flags & VM_WRITE))
321 goto bad_area;
322 /* a read */
323 } else {
324 /* protection fault */
325 if (error_code & 0x08000000)
326 goto bad_area;
327 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
328 goto bad_area;
329 }
330
331 /*
332 * If for any reason at all we couldn't handle the fault,
333 * make sure we exit gracefully rather than endlessly redo
334 * the fault.
335 */
336 survive:
337 ret = handle_mm_fault(mm, vma, address, is_write);
338 if (unlikely(ret & VM_FAULT_ERROR)) {
339 if (ret & VM_FAULT_OOM)
340 goto out_of_memory;
341 else if (ret & VM_FAULT_SIGBUS)
342 goto do_sigbus;
343 BUG();
344 }
345 if (ret & VM_FAULT_MAJOR)
346 current->maj_flt++;
347 else
348 current->min_flt++;
349 up_read(&mm->mmap_sem);
350 return 0;
351
352 bad_area:
353 up_read(&mm->mmap_sem);
354
355 bad_area_nosemaphore:
356 /* User mode accesses cause a SIGSEGV */
357 if (user_mode(regs)) {
358 _exception(SIGSEGV, regs, code, address);
359 return 0;
360 }
361
362 if (is_exec && (error_code & DSISR_PROTFAULT)
363 && printk_ratelimit())
364 printk(KERN_CRIT "kernel tried to execute NX-protected"
365 " page (%lx) - exploit attempt? (uid: %d)\n",
366 address, current->uid);
367
368 return SIGSEGV;
369
370 /*
371 * We ran out of memory, or some other thing happened to us that made
372 * us unable to handle the page fault gracefully.
373 */
374 out_of_memory:
375 up_read(&mm->mmap_sem);
376 if (is_global_init(current)) {
377 yield();
378 down_read(&mm->mmap_sem);
379 goto survive;
380 }
381 printk("VM: killing process %s\n", current->comm);
382 if (user_mode(regs))
383 do_group_exit(SIGKILL);
384 return SIGKILL;
385
386 do_sigbus:
387 up_read(&mm->mmap_sem);
388 if (user_mode(regs)) {
389 info.si_signo = SIGBUS;
390 info.si_errno = 0;
391 info.si_code = BUS_ADRERR;
392 info.si_addr = (void __user *)address;
393 force_sig_info(SIGBUS, &info, current);
394 return 0;
395 }
396 return SIGBUS;
397 }
398
399 /*
400 * bad_page_fault is called when we have a bad access from the kernel.
401 * It is called from the DSI and ISI handlers in head.S and from some
402 * of the procedures in traps.c.
403 */
404 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
405 {
406 const struct exception_table_entry *entry;
407
408 /* Are we prepared to handle this fault? */
409 if ((entry = search_exception_tables(regs->nip)) != NULL) {
410 regs->nip = entry->fixup;
411 return;
412 }
413
414 /* kernel has accessed a bad area */
415
416 switch (regs->trap) {
417 case 0x300:
418 case 0x380:
419 printk(KERN_ALERT "Unable to handle kernel paging request for "
420 "data at address 0x%08lx\n", regs->dar);
421 break;
422 case 0x400:
423 case 0x480:
424 printk(KERN_ALERT "Unable to handle kernel paging request for "
425 "instruction fetch\n");
426 break;
427 default:
428 printk(KERN_ALERT "Unable to handle kernel paging request for "
429 "unknown fault\n");
430 break;
431 }
432 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
433 regs->nip);
434
435 die("Kernel access of bad area", regs, sig);
436 }