]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/fault.c
Merge ../linux-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / fault.c
1 /*
2 * arch/ppc/mm/fault.c
3 *
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 *
10 * Modified by Cort Dougan and Paul Mackerras.
11 *
12 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/config.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu.h>
38 #include <asm/mmu_context.h>
39 #include <asm/system.h>
40 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/kdebug.h>
43 #include <asm/siginfo.h>
44
45 /*
46 * Check whether the instruction at regs->nip is a store using
47 * an update addressing form which will update r1.
48 */
49 static int store_updates_sp(struct pt_regs *regs)
50 {
51 unsigned int inst;
52
53 if (get_user(inst, (unsigned int __user *)regs->nip))
54 return 0;
55 /* check for 1 in the rA field */
56 if (((inst >> 16) & 0x1f) != 1)
57 return 0;
58 /* check major opcode */
59 switch (inst >> 26) {
60 case 37: /* stwu */
61 case 39: /* stbu */
62 case 45: /* sthu */
63 case 53: /* stfsu */
64 case 55: /* stfdu */
65 return 1;
66 case 62: /* std or stdu */
67 return (inst & 3) == 1;
68 case 31:
69 /* check minor opcode */
70 switch ((inst >> 1) & 0x3ff) {
71 case 181: /* stdux */
72 case 183: /* stwux */
73 case 247: /* stbux */
74 case 439: /* sthux */
75 case 695: /* stfsux */
76 case 759: /* stfdux */
77 return 1;
78 }
79 }
80 return 0;
81 }
82
83 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
84 static void do_dabr(struct pt_regs *regs, unsigned long error_code)
85 {
86 siginfo_t info;
87
88 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
89 11, SIGSEGV) == NOTIFY_STOP)
90 return;
91
92 if (debugger_dabr_match(regs))
93 return;
94
95 /* Clear the DABR */
96 set_dabr(0);
97
98 /* Deliver the signal to userspace */
99 info.si_signo = SIGTRAP;
100 info.si_errno = 0;
101 info.si_code = TRAP_HWBKPT;
102 info.si_addr = (void __user *)regs->nip;
103 force_sig_info(SIGTRAP, &info, current);
104 }
105 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
106
107 /*
108 * For 600- and 800-family processors, the error_code parameter is DSISR
109 * for a data fault, SRR1 for an instruction fault. For 400-family processors
110 * the error_code parameter is ESR for a data fault, 0 for an instruction
111 * fault.
112 * For 64-bit processors, the error_code parameter is
113 * - DSISR for a non-SLB data access fault,
114 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
115 * - 0 any SLB fault.
116 *
117 * The return value is 0 if the fault was handled, or the signal
118 * number if this is a kernel fault that can't be handled here.
119 */
120 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
121 unsigned long error_code)
122 {
123 struct vm_area_struct * vma;
124 struct mm_struct *mm = current->mm;
125 siginfo_t info;
126 int code = SEGV_MAPERR;
127 int is_write = 0;
128 int trap = TRAP(regs);
129 int is_exec = trap == 0x400;
130
131 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
132 /*
133 * Fortunately the bit assignments in SRR1 for an instruction
134 * fault and DSISR for a data fault are mostly the same for the
135 * bits we are interested in. But there are some bits which
136 * indicate errors in DSISR but can validly be set in SRR1.
137 */
138 if (trap == 0x400)
139 error_code &= 0x48200000;
140 else
141 is_write = error_code & DSISR_ISSTORE;
142 #else
143 is_write = error_code & ESR_DST;
144 #endif /* CONFIG_4xx || CONFIG_BOOKE */
145
146 if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
147 11, SIGSEGV) == NOTIFY_STOP)
148 return 0;
149
150 if (trap == 0x300) {
151 if (debugger_fault_handler(regs))
152 return 0;
153 }
154
155 /* On a kernel SLB miss we can only check for a valid exception entry */
156 if (!user_mode(regs) && (address >= TASK_SIZE))
157 return SIGSEGV;
158
159 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
160 if (error_code & DSISR_DABRMATCH) {
161 /* DABR match */
162 do_dabr(regs, error_code);
163 return 0;
164 }
165 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
166
167 if (in_atomic() || mm == NULL) {
168 if (!user_mode(regs))
169 return SIGSEGV;
170 /* in_atomic() in user mode is really bad,
171 as is current->mm == NULL. */
172 printk(KERN_EMERG "Page fault in user mode with"
173 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
174 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
175 regs->nip, regs->msr);
176 die("Weird page fault", regs, SIGSEGV);
177 }
178
179 /* When running in the kernel we expect faults to occur only to
180 * addresses in user space. All other faults represent errors in the
181 * kernel and should generate an OOPS. Unfortunatly, in the case of an
182 * erroneous fault occuring in a code path which already holds mmap_sem
183 * we will deadlock attempting to validate the fault against the
184 * address space. Luckily the kernel only validly references user
185 * space from well defined areas of code, which are listed in the
186 * exceptions table.
187 *
188 * As the vast majority of faults will be valid we will only perform
189 * the source reference check when there is a possibilty of a deadlock.
190 * Attempt to lock the address space, if we cannot we then validate the
191 * source. If this is invalid we can skip the address space check,
192 * thus avoiding the deadlock.
193 */
194 if (!down_read_trylock(&mm->mmap_sem)) {
195 if (!user_mode(regs) && !search_exception_tables(regs->nip))
196 goto bad_area_nosemaphore;
197
198 down_read(&mm->mmap_sem);
199 }
200
201 vma = find_vma(mm, address);
202 if (!vma)
203 goto bad_area;
204 if (vma->vm_start <= address)
205 goto good_area;
206 if (!(vma->vm_flags & VM_GROWSDOWN))
207 goto bad_area;
208
209 /*
210 * N.B. The POWER/Open ABI allows programs to access up to
211 * 288 bytes below the stack pointer.
212 * The kernel signal delivery code writes up to about 1.5kB
213 * below the stack pointer (r1) before decrementing it.
214 * The exec code can write slightly over 640kB to the stack
215 * before setting the user r1. Thus we allow the stack to
216 * expand to 1MB without further checks.
217 */
218 if (address + 0x100000 < vma->vm_end) {
219 /* get user regs even if this fault is in kernel mode */
220 struct pt_regs *uregs = current->thread.regs;
221 if (uregs == NULL)
222 goto bad_area;
223
224 /*
225 * A user-mode access to an address a long way below
226 * the stack pointer is only valid if the instruction
227 * is one which would update the stack pointer to the
228 * address accessed if the instruction completed,
229 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
230 * (or the byte, halfword, float or double forms).
231 *
232 * If we don't check this then any write to the area
233 * between the last mapped region and the stack will
234 * expand the stack rather than segfaulting.
235 */
236 if (address + 2048 < uregs->gpr[1]
237 && (!user_mode(regs) || !store_updates_sp(regs)))
238 goto bad_area;
239 }
240 if (expand_stack(vma, address))
241 goto bad_area;
242
243 good_area:
244 code = SEGV_ACCERR;
245 #if defined(CONFIG_6xx)
246 if (error_code & 0x95700000)
247 /* an error such as lwarx to I/O controller space,
248 address matching DABR, eciwx, etc. */
249 goto bad_area;
250 #endif /* CONFIG_6xx */
251 #if defined(CONFIG_8xx)
252 /* The MPC8xx seems to always set 0x80000000, which is
253 * "undefined". Of those that can be set, this is the only
254 * one which seems bad.
255 */
256 if (error_code & 0x10000000)
257 /* Guarded storage error. */
258 goto bad_area;
259 #endif /* CONFIG_8xx */
260
261 if (is_exec) {
262 #ifdef CONFIG_PPC64
263 /* protection fault */
264 if (error_code & DSISR_PROTFAULT)
265 goto bad_area;
266 if (!(vma->vm_flags & VM_EXEC))
267 goto bad_area;
268 #endif
269 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
270 pte_t *ptep;
271
272 /* Since 4xx/Book-E supports per-page execute permission,
273 * we lazily flush dcache to icache. */
274 ptep = NULL;
275 if (get_pteptr(mm, address, &ptep) && pte_present(*ptep)) {
276 struct page *page = pte_page(*ptep);
277
278 if (! test_bit(PG_arch_1, &page->flags)) {
279 flush_dcache_icache_page(page);
280 set_bit(PG_arch_1, &page->flags);
281 }
282 pte_update(ptep, 0, _PAGE_HWEXEC);
283 _tlbie(address);
284 pte_unmap(ptep);
285 up_read(&mm->mmap_sem);
286 return 0;
287 }
288 if (ptep != NULL)
289 pte_unmap(ptep);
290 #endif
291 /* a write */
292 } else if (is_write) {
293 if (!(vma->vm_flags & VM_WRITE))
294 goto bad_area;
295 /* a read */
296 } else {
297 /* protection fault */
298 if (error_code & 0x08000000)
299 goto bad_area;
300 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
301 goto bad_area;
302 }
303
304 /*
305 * If for any reason at all we couldn't handle the fault,
306 * make sure we exit gracefully rather than endlessly redo
307 * the fault.
308 */
309 survive:
310 switch (handle_mm_fault(mm, vma, address, is_write)) {
311
312 case VM_FAULT_MINOR:
313 current->min_flt++;
314 break;
315 case VM_FAULT_MAJOR:
316 current->maj_flt++;
317 break;
318 case VM_FAULT_SIGBUS:
319 goto do_sigbus;
320 case VM_FAULT_OOM:
321 goto out_of_memory;
322 default:
323 BUG();
324 }
325
326 up_read(&mm->mmap_sem);
327 return 0;
328
329 bad_area:
330 up_read(&mm->mmap_sem);
331
332 bad_area_nosemaphore:
333 /* User mode accesses cause a SIGSEGV */
334 if (user_mode(regs)) {
335 _exception(SIGSEGV, regs, code, address);
336 return 0;
337 }
338
339 if (is_exec && (error_code & DSISR_PROTFAULT)
340 && printk_ratelimit())
341 printk(KERN_CRIT "kernel tried to execute NX-protected"
342 " page (%lx) - exploit attempt? (uid: %d)\n",
343 address, current->uid);
344
345 return SIGSEGV;
346
347 /*
348 * We ran out of memory, or some other thing happened to us that made
349 * us unable to handle the page fault gracefully.
350 */
351 out_of_memory:
352 up_read(&mm->mmap_sem);
353 if (current->pid == 1) {
354 yield();
355 down_read(&mm->mmap_sem);
356 goto survive;
357 }
358 printk("VM: killing process %s\n", current->comm);
359 if (user_mode(regs))
360 do_exit(SIGKILL);
361 return SIGKILL;
362
363 do_sigbus:
364 up_read(&mm->mmap_sem);
365 if (user_mode(regs)) {
366 info.si_signo = SIGBUS;
367 info.si_errno = 0;
368 info.si_code = BUS_ADRERR;
369 info.si_addr = (void __user *)address;
370 force_sig_info(SIGBUS, &info, current);
371 return 0;
372 }
373 return SIGBUS;
374 }
375
376 /*
377 * bad_page_fault is called when we have a bad access from the kernel.
378 * It is called from the DSI and ISI handlers in head.S and from some
379 * of the procedures in traps.c.
380 */
381 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
382 {
383 const struct exception_table_entry *entry;
384
385 /* Are we prepared to handle this fault? */
386 if ((entry = search_exception_tables(regs->nip)) != NULL) {
387 regs->nip = entry->fixup;
388 return;
389 }
390
391 /* kernel has accessed a bad area */
392
393 printk(KERN_ALERT "Unable to handle kernel paging request for ");
394 switch (regs->trap) {
395 case 0x300:
396 case 0x380:
397 printk("data at address 0x%08lx\n", regs->dar);
398 break;
399 case 0x400:
400 case 0x480:
401 printk("instruction fetch\n");
402 break;
403 default:
404 printk("unknown fault\n");
405 }
406 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
407 regs->nip);
408
409 die("Kernel access of bad area", regs, sig);
410 }