]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/powerpc/mm/fault.c
mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
[mirror_ubuntu-kernels.git] / arch / powerpc / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/siginfo.h>
41 #include <asm/debug.h>
42 #include <asm/kup.h>
43 #include <asm/inst.h>
44
45 /*
46 * Check whether the instruction inst is a store using
47 * an update addressing form which will update r1.
48 */
49 static bool store_updates_sp(struct ppc_inst inst)
50 {
51 /* check for 1 in the rA field */
52 if (((ppc_inst_val(inst) >> 16) & 0x1f) != 1)
53 return false;
54 /* check major opcode */
55 switch (ppc_inst_primary_opcode(inst)) {
56 case OP_STWU:
57 case OP_STBU:
58 case OP_STHU:
59 case OP_STFSU:
60 case OP_STFDU:
61 return true;
62 case OP_STD: /* std or stdu */
63 return (ppc_inst_val(inst) & 3) == 1;
64 case OP_31:
65 /* check minor opcode */
66 switch ((ppc_inst_val(inst) >> 1) & 0x3ff) {
67 case OP_31_XOP_STDUX:
68 case OP_31_XOP_STWUX:
69 case OP_31_XOP_STBUX:
70 case OP_31_XOP_STHUX:
71 case OP_31_XOP_STFSUX:
72 case OP_31_XOP_STFDUX:
73 return true;
74 }
75 }
76 return false;
77 }
78 /*
79 * do_page_fault error handling helpers
80 */
81
82 static int
83 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
84 {
85 /*
86 * If we are in kernel mode, bail out with a SEGV, this will
87 * be caught by the assembly which will restore the non-volatile
88 * registers before calling bad_page_fault()
89 */
90 if (!user_mode(regs))
91 return SIGSEGV;
92
93 _exception(SIGSEGV, regs, si_code, address);
94
95 return 0;
96 }
97
98 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
99 {
100 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
101 }
102
103 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
104 {
105 struct mm_struct *mm = current->mm;
106
107 /*
108 * Something tried to access memory that isn't in our memory map..
109 * Fix it, but check if it's kernel or user first..
110 */
111 mmap_read_unlock(mm);
112
113 return __bad_area_nosemaphore(regs, address, si_code);
114 }
115
116 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
117 {
118 return __bad_area(regs, address, SEGV_MAPERR);
119 }
120
121 #ifdef CONFIG_PPC_MEM_KEYS
122 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
123 struct vm_area_struct *vma)
124 {
125 struct mm_struct *mm = current->mm;
126 int pkey;
127
128 /*
129 * We don't try to fetch the pkey from page table because reading
130 * page table without locking doesn't guarantee stable pte value.
131 * Hence the pkey value that we return to userspace can be different
132 * from the pkey that actually caused access error.
133 *
134 * It does *not* guarantee that the VMA we find here
135 * was the one that we faulted on.
136 *
137 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
138 * 2. T1 : set AMR to deny access to pkey=4, touches, page
139 * 3. T1 : faults...
140 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
141 * 5. T1 : enters fault handler, takes mmap_sem, etc...
142 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
143 * faulted on a pte with its pkey=4.
144 */
145 pkey = vma_pkey(vma);
146
147 mmap_read_unlock(mm);
148
149 /*
150 * If we are in kernel mode, bail out with a SEGV, this will
151 * be caught by the assembly which will restore the non-volatile
152 * registers before calling bad_page_fault()
153 */
154 if (!user_mode(regs))
155 return SIGSEGV;
156
157 _exception_pkey(regs, address, pkey);
158
159 return 0;
160 }
161 #endif
162
163 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
164 {
165 return __bad_area(regs, address, SEGV_ACCERR);
166 }
167
168 static int do_sigbus(struct pt_regs *regs, unsigned long address,
169 vm_fault_t fault)
170 {
171 if (!user_mode(regs))
172 return SIGBUS;
173
174 current->thread.trap_nr = BUS_ADRERR;
175 #ifdef CONFIG_MEMORY_FAILURE
176 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
177 unsigned int lsb = 0; /* shutup gcc */
178
179 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
180 current->comm, current->pid, address);
181
182 if (fault & VM_FAULT_HWPOISON_LARGE)
183 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
184 if (fault & VM_FAULT_HWPOISON)
185 lsb = PAGE_SHIFT;
186
187 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
188 return 0;
189 }
190
191 #endif
192 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
193 return 0;
194 }
195
196 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
197 vm_fault_t fault)
198 {
199 /*
200 * Kernel page fault interrupted by SIGKILL. We have no reason to
201 * continue processing.
202 */
203 if (fatal_signal_pending(current) && !user_mode(regs))
204 return SIGKILL;
205
206 /* Out of memory */
207 if (fault & VM_FAULT_OOM) {
208 /*
209 * We ran out of memory, or some other thing happened to us that
210 * made us unable to handle the page fault gracefully.
211 */
212 if (!user_mode(regs))
213 return SIGSEGV;
214 pagefault_out_of_memory();
215 } else {
216 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
217 VM_FAULT_HWPOISON_LARGE))
218 return do_sigbus(regs, addr, fault);
219 else if (fault & VM_FAULT_SIGSEGV)
220 return bad_area_nosemaphore(regs, addr);
221 else
222 BUG();
223 }
224 return 0;
225 }
226
227 /* Is this a bad kernel fault ? */
228 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
229 unsigned long address, bool is_write)
230 {
231 int is_exec = TRAP(regs) == 0x400;
232
233 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */
234 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT |
235 DSISR_PROTFAULT))) {
236 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
237 address >= TASK_SIZE ? "exec-protected" : "user",
238 address,
239 from_kuid(&init_user_ns, current_uid()));
240
241 // Kernel exec fault is always bad
242 return true;
243 }
244
245 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
246 !search_exception_tables(regs->nip)) {
247 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
248 address,
249 from_kuid(&init_user_ns, current_uid()));
250 }
251
252 // Kernel fault on kernel address is bad
253 if (address >= TASK_SIZE)
254 return true;
255
256 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
257 if (!search_exception_tables(regs->nip))
258 return true;
259
260 // Read/write fault in a valid region (the exception table search passed
261 // above), but blocked by KUAP is bad, it can never succeed.
262 if (bad_kuap_fault(regs, address, is_write))
263 return true;
264
265 // What's left? Kernel fault on user in well defined regions (extable
266 // matched), and allowed by KUAP in the faulting context.
267 return false;
268 }
269
270 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
271 struct vm_area_struct *vma, unsigned int flags,
272 bool *must_retry)
273 {
274 /*
275 * N.B. The POWER/Open ABI allows programs to access up to
276 * 288 bytes below the stack pointer.
277 * The kernel signal delivery code writes up to about 1.5kB
278 * below the stack pointer (r1) before decrementing it.
279 * The exec code can write slightly over 640kB to the stack
280 * before setting the user r1. Thus we allow the stack to
281 * expand to 1MB without further checks.
282 */
283 if (address + 0x100000 < vma->vm_end) {
284 struct ppc_inst __user *nip = (struct ppc_inst __user *)regs->nip;
285 /* get user regs even if this fault is in kernel mode */
286 struct pt_regs *uregs = current->thread.regs;
287 if (uregs == NULL)
288 return true;
289
290 /*
291 * A user-mode access to an address a long way below
292 * the stack pointer is only valid if the instruction
293 * is one which would update the stack pointer to the
294 * address accessed if the instruction completed,
295 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
296 * (or the byte, halfword, float or double forms).
297 *
298 * If we don't check this then any write to the area
299 * between the last mapped region and the stack will
300 * expand the stack rather than segfaulting.
301 */
302 if (address + 2048 >= uregs->gpr[1])
303 return false;
304
305 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
306 access_ok(nip, sizeof(*nip))) {
307 struct ppc_inst inst;
308
309 if (!probe_user_read_inst(&inst, nip))
310 return !store_updates_sp(inst);
311 *must_retry = true;
312 }
313 return true;
314 }
315 return false;
316 }
317
318 #ifdef CONFIG_PPC_MEM_KEYS
319 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
320 struct vm_area_struct *vma)
321 {
322 /*
323 * Make sure to check the VMA so that we do not perform
324 * faults just to hit a pkey fault as soon as we fill in a
325 * page. Only called for current mm, hence foreign == 0
326 */
327 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
328 return true;
329
330 return false;
331 }
332 #endif
333
334 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
335 {
336 /*
337 * Allow execution from readable areas if the MMU does not
338 * provide separate controls over reading and executing.
339 *
340 * Note: That code used to not be enabled for 4xx/BookE.
341 * It is now as I/D cache coherency for these is done at
342 * set_pte_at() time and I see no reason why the test
343 * below wouldn't be valid on those processors. This -may-
344 * break programs compiled with a really old ABI though.
345 */
346 if (is_exec) {
347 return !(vma->vm_flags & VM_EXEC) &&
348 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
349 !(vma->vm_flags & (VM_READ | VM_WRITE)));
350 }
351
352 if (is_write) {
353 if (unlikely(!(vma->vm_flags & VM_WRITE)))
354 return true;
355 return false;
356 }
357
358 if (unlikely(!vma_is_accessible(vma)))
359 return true;
360 /*
361 * We should ideally do the vma pkey access check here. But in the
362 * fault path, handle_mm_fault() also does the same check. To avoid
363 * these multiple checks, we skip it here and handle access error due
364 * to pkeys later.
365 */
366 return false;
367 }
368
369 #ifdef CONFIG_PPC_SMLPAR
370 static inline void cmo_account_page_fault(void)
371 {
372 if (firmware_has_feature(FW_FEATURE_CMO)) {
373 u32 page_ins;
374
375 preempt_disable();
376 page_ins = be32_to_cpu(get_lppaca()->page_ins);
377 page_ins += 1 << PAGE_FACTOR;
378 get_lppaca()->page_ins = cpu_to_be32(page_ins);
379 preempt_enable();
380 }
381 }
382 #else
383 static inline void cmo_account_page_fault(void) { }
384 #endif /* CONFIG_PPC_SMLPAR */
385
386 #ifdef CONFIG_PPC_BOOK3S
387 static void sanity_check_fault(bool is_write, bool is_user,
388 unsigned long error_code, unsigned long address)
389 {
390 /*
391 * Userspace trying to access kernel address, we get PROTFAULT for that.
392 */
393 if (is_user && address >= TASK_SIZE) {
394 if ((long)address == -1)
395 return;
396
397 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
398 current->comm, current->pid, address,
399 from_kuid(&init_user_ns, current_uid()));
400 return;
401 }
402
403 /*
404 * For hash translation mode, we should never get a
405 * PROTFAULT. Any update to pte to reduce access will result in us
406 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
407 * fault instead of DSISR_PROTFAULT.
408 *
409 * A pte update to relax the access will not result in a hash page table
410 * entry invalidate and hence can result in DSISR_PROTFAULT.
411 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
412 * the special !is_write in the below conditional.
413 *
414 * For platforms that doesn't supports coherent icache and do support
415 * per page noexec bit, we do setup things such that we do the
416 * sync between D/I cache via fault. But that is handled via low level
417 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
418 * here in such case.
419 *
420 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
421 * check should handle those and hence we should fall to the bad_area
422 * handling correctly.
423 *
424 * For embedded with per page exec support that doesn't support coherent
425 * icache we do get PROTFAULT and we handle that D/I cache sync in
426 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
427 * is conditional for server MMU.
428 *
429 * For radix, we can get prot fault for autonuma case, because radix
430 * page table will have them marked noaccess for user.
431 */
432 if (radix_enabled() || is_write)
433 return;
434
435 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
436 }
437 #else
438 static void sanity_check_fault(bool is_write, bool is_user,
439 unsigned long error_code, unsigned long address) { }
440 #endif /* CONFIG_PPC_BOOK3S */
441
442 /*
443 * Define the correct "is_write" bit in error_code based
444 * on the processor family
445 */
446 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
447 #define page_fault_is_write(__err) ((__err) & ESR_DST)
448 #define page_fault_is_bad(__err) (0)
449 #else
450 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
451 #if defined(CONFIG_PPC_8xx)
452 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
453 #elif defined(CONFIG_PPC64)
454 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
455 #else
456 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
457 #endif
458 #endif
459
460 /*
461 * For 600- and 800-family processors, the error_code parameter is DSISR
462 * for a data fault, SRR1 for an instruction fault. For 400-family processors
463 * the error_code parameter is ESR for a data fault, 0 for an instruction
464 * fault.
465 * For 64-bit processors, the error_code parameter is
466 * - DSISR for a non-SLB data access fault,
467 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
468 * - 0 any SLB fault.
469 *
470 * The return value is 0 if the fault was handled, or the signal
471 * number if this is a kernel fault that can't be handled here.
472 */
473 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
474 unsigned long error_code)
475 {
476 struct vm_area_struct * vma;
477 struct mm_struct *mm = current->mm;
478 unsigned int flags = FAULT_FLAG_DEFAULT;
479 int is_exec = TRAP(regs) == 0x400;
480 int is_user = user_mode(regs);
481 int is_write = page_fault_is_write(error_code);
482 vm_fault_t fault, major = 0;
483 bool must_retry = false;
484 bool kprobe_fault = kprobe_page_fault(regs, 11);
485
486 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
487 return 0;
488
489 if (unlikely(page_fault_is_bad(error_code))) {
490 if (is_user) {
491 _exception(SIGBUS, regs, BUS_OBJERR, address);
492 return 0;
493 }
494 return SIGBUS;
495 }
496
497 /* Additional sanity check(s) */
498 sanity_check_fault(is_write, is_user, error_code, address);
499
500 /*
501 * The kernel should never take an execute fault nor should it
502 * take a page fault to a kernel address or a page fault to a user
503 * address outside of dedicated places
504 */
505 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
506 return SIGSEGV;
507
508 /*
509 * If we're in an interrupt, have no user context or are running
510 * in a region with pagefaults disabled then we must not take the fault
511 */
512 if (unlikely(faulthandler_disabled() || !mm)) {
513 if (is_user)
514 printk_ratelimited(KERN_ERR "Page fault in user mode"
515 " with faulthandler_disabled()=%d"
516 " mm=%p\n",
517 faulthandler_disabled(), mm);
518 return bad_area_nosemaphore(regs, address);
519 }
520
521 /* We restore the interrupt state now */
522 if (!arch_irq_disabled_regs(regs))
523 local_irq_enable();
524
525 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
526
527 /*
528 * We want to do this outside mmap_sem, because reading code around nip
529 * can result in fault, which will cause a deadlock when called with
530 * mmap_sem held
531 */
532 if (is_user)
533 flags |= FAULT_FLAG_USER;
534 if (is_write)
535 flags |= FAULT_FLAG_WRITE;
536 if (is_exec)
537 flags |= FAULT_FLAG_INSTRUCTION;
538
539 /* When running in the kernel we expect faults to occur only to
540 * addresses in user space. All other faults represent errors in the
541 * kernel and should generate an OOPS. Unfortunately, in the case of an
542 * erroneous fault occurring in a code path which already holds mmap_sem
543 * we will deadlock attempting to validate the fault against the
544 * address space. Luckily the kernel only validly references user
545 * space from well defined areas of code, which are listed in the
546 * exceptions table.
547 *
548 * As the vast majority of faults will be valid we will only perform
549 * the source reference check when there is a possibility of a deadlock.
550 * Attempt to lock the address space, if we cannot we then validate the
551 * source. If this is invalid we can skip the address space check,
552 * thus avoiding the deadlock.
553 */
554 if (unlikely(!mmap_read_trylock(mm))) {
555 if (!is_user && !search_exception_tables(regs->nip))
556 return bad_area_nosemaphore(regs, address);
557
558 retry:
559 mmap_read_lock(mm);
560 } else {
561 /*
562 * The above down_read_trylock() might have succeeded in
563 * which case we'll have missed the might_sleep() from
564 * down_read():
565 */
566 might_sleep();
567 }
568
569 vma = find_vma(mm, address);
570 if (unlikely(!vma))
571 return bad_area(regs, address);
572 if (likely(vma->vm_start <= address))
573 goto good_area;
574 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
575 return bad_area(regs, address);
576
577 /* The stack is being expanded, check if it's valid */
578 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
579 &must_retry))) {
580 if (!must_retry)
581 return bad_area(regs, address);
582
583 mmap_read_unlock(mm);
584 if (fault_in_pages_readable((const char __user *)regs->nip,
585 sizeof(unsigned int)))
586 return bad_area_nosemaphore(regs, address);
587 goto retry;
588 }
589
590 /* Try to expand it */
591 if (unlikely(expand_stack(vma, address)))
592 return bad_area(regs, address);
593
594 good_area:
595
596 #ifdef CONFIG_PPC_MEM_KEYS
597 if (unlikely(access_pkey_error(is_write, is_exec,
598 (error_code & DSISR_KEYFAULT), vma)))
599 return bad_access_pkey(regs, address, vma);
600 #endif /* CONFIG_PPC_MEM_KEYS */
601
602 if (unlikely(access_error(is_write, is_exec, vma)))
603 return bad_access(regs, address);
604
605 /*
606 * If for any reason at all we couldn't handle the fault,
607 * make sure we exit gracefully rather than endlessly redo
608 * the fault.
609 */
610 fault = handle_mm_fault(vma, address, flags);
611
612 major |= fault & VM_FAULT_MAJOR;
613
614 if (fault_signal_pending(fault, regs))
615 return user_mode(regs) ? 0 : SIGBUS;
616
617 /*
618 * Handle the retry right now, the mmap_sem has been released in that
619 * case.
620 */
621 if (unlikely(fault & VM_FAULT_RETRY)) {
622 if (flags & FAULT_FLAG_ALLOW_RETRY) {
623 flags |= FAULT_FLAG_TRIED;
624 goto retry;
625 }
626 }
627
628 mmap_read_unlock(current->mm);
629
630 if (unlikely(fault & VM_FAULT_ERROR))
631 return mm_fault_error(regs, address, fault);
632
633 /*
634 * Major/minor page fault accounting.
635 */
636 if (major) {
637 current->maj_flt++;
638 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
639 cmo_account_page_fault();
640 } else {
641 current->min_flt++;
642 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
643 }
644 return 0;
645 }
646 NOKPROBE_SYMBOL(__do_page_fault);
647
648 int do_page_fault(struct pt_regs *regs, unsigned long address,
649 unsigned long error_code)
650 {
651 enum ctx_state prev_state = exception_enter();
652 int rc = __do_page_fault(regs, address, error_code);
653 exception_exit(prev_state);
654 return rc;
655 }
656 NOKPROBE_SYMBOL(do_page_fault);
657
658 /*
659 * bad_page_fault is called when we have a bad access from the kernel.
660 * It is called from the DSI and ISI handlers in head.S and from some
661 * of the procedures in traps.c.
662 */
663 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
664 {
665 const struct exception_table_entry *entry;
666 int is_write = page_fault_is_write(regs->dsisr);
667
668 /* Are we prepared to handle this fault? */
669 if ((entry = search_exception_tables(regs->nip)) != NULL) {
670 regs->nip = extable_fixup(entry);
671 return;
672 }
673
674 /* kernel has accessed a bad area */
675
676 switch (TRAP(regs)) {
677 case 0x300:
678 case 0x380:
679 case 0xe00:
680 pr_alert("BUG: %s on %s at 0x%08lx\n",
681 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
682 "Unable to handle kernel data access",
683 is_write ? "write" : "read", regs->dar);
684 break;
685 case 0x400:
686 case 0x480:
687 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
688 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
689 break;
690 case 0x600:
691 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
692 regs->dar);
693 break;
694 default:
695 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
696 regs->dar);
697 break;
698 }
699 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
700 regs->nip);
701
702 if (task_stack_end_corrupted(current))
703 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
704
705 die("Kernel access of bad area", regs, sig);
706 }