]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/hash_utils_64.c
powerpc/mm: Remove the dependency on pte bit position in asm code
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/copro.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60 #include <asm/trace.h>
61
62 #ifdef DEBUG
63 #define DBG(fmt...) udbg_printf(fmt)
64 #else
65 #define DBG(fmt...)
66 #endif
67
68 #ifdef DEBUG_LOW
69 #define DBG_LOW(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG_LOW(fmt...)
72 #endif
73
74 #define KB (1024)
75 #define MB (1024*KB)
76 #define GB (1024L*MB)
77
78 /*
79 * Note: pte --> Linux PTE
80 * HPTE --> PowerPC Hashed Page Table Entry
81 *
82 * Execution context:
83 * htab_initialize is called with the MMU off (of course), but
84 * the kernel has been copied down to zero so it can directly
85 * reference global data. At this point it is very difficult
86 * to print debug info.
87 *
88 */
89
90 #ifdef CONFIG_U3_DART
91 extern unsigned long dart_tablebase;
92 #endif /* CONFIG_U3_DART */
93
94 static unsigned long _SDR1;
95 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
96 EXPORT_SYMBOL_GPL(mmu_psize_defs);
97
98 struct hash_pte *htab_address;
99 unsigned long htab_size_bytes;
100 unsigned long htab_hash_mask;
101 EXPORT_SYMBOL_GPL(htab_hash_mask);
102 int mmu_linear_psize = MMU_PAGE_4K;
103 EXPORT_SYMBOL_GPL(mmu_linear_psize);
104 int mmu_virtual_psize = MMU_PAGE_4K;
105 int mmu_vmalloc_psize = MMU_PAGE_4K;
106 #ifdef CONFIG_SPARSEMEM_VMEMMAP
107 int mmu_vmemmap_psize = MMU_PAGE_4K;
108 #endif
109 int mmu_io_psize = MMU_PAGE_4K;
110 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
111 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
112 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
113 u16 mmu_slb_size = 64;
114 EXPORT_SYMBOL_GPL(mmu_slb_size);
115 #ifdef CONFIG_PPC_64K_PAGES
116 int mmu_ci_restrictions;
117 #endif
118 #ifdef CONFIG_DEBUG_PAGEALLOC
119 static u8 *linear_map_hash_slots;
120 static unsigned long linear_map_hash_count;
121 static DEFINE_SPINLOCK(linear_map_hash_lock);
122 #endif /* CONFIG_DEBUG_PAGEALLOC */
123
124 /* There are definitions of page sizes arrays to be used when none
125 * is provided by the firmware.
126 */
127
128 /* Pre-POWER4 CPUs (4k pages only)
129 */
130 static struct mmu_psize_def mmu_psize_defaults_old[] = {
131 [MMU_PAGE_4K] = {
132 .shift = 12,
133 .sllp = 0,
134 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
135 .avpnm = 0,
136 .tlbiel = 0,
137 },
138 };
139
140 /* POWER4, GPUL, POWER5
141 *
142 * Support for 16Mb large pages
143 */
144 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
145 [MMU_PAGE_4K] = {
146 .shift = 12,
147 .sllp = 0,
148 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
149 .avpnm = 0,
150 .tlbiel = 1,
151 },
152 [MMU_PAGE_16M] = {
153 .shift = 24,
154 .sllp = SLB_VSID_L,
155 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
156 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
157 .avpnm = 0x1UL,
158 .tlbiel = 0,
159 },
160 };
161
162 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
163 {
164 unsigned long rflags = pteflags & 0x1fa;
165
166 /* _PAGE_EXEC -> NOEXEC */
167 if ((pteflags & _PAGE_EXEC) == 0)
168 rflags |= HPTE_R_N;
169
170 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
171 * need to add in 0x1 if it's a read-only user page
172 */
173 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
174 (pteflags & _PAGE_DIRTY)))
175 rflags |= 1;
176 /*
177 * Always add "C" bit for perf. Memory coherence is always enabled
178 */
179 return rflags | HPTE_R_C | HPTE_R_M;
180 }
181
182 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
183 unsigned long pstart, unsigned long prot,
184 int psize, int ssize)
185 {
186 unsigned long vaddr, paddr;
187 unsigned int step, shift;
188 int ret = 0;
189
190 shift = mmu_psize_defs[psize].shift;
191 step = 1 << shift;
192
193 prot = htab_convert_pte_flags(prot);
194
195 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
196 vstart, vend, pstart, prot, psize, ssize);
197
198 for (vaddr = vstart, paddr = pstart; vaddr < vend;
199 vaddr += step, paddr += step) {
200 unsigned long hash, hpteg;
201 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
202 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
203 unsigned long tprot = prot;
204
205 /*
206 * If we hit a bad address return error.
207 */
208 if (!vsid)
209 return -1;
210 /* Make kernel text executable */
211 if (overlaps_kernel_text(vaddr, vaddr + step))
212 tprot &= ~HPTE_R_N;
213
214 /* Make kvm guest trampolines executable */
215 if (overlaps_kvm_tmp(vaddr, vaddr + step))
216 tprot &= ~HPTE_R_N;
217
218 /*
219 * If relocatable, check if it overlaps interrupt vectors that
220 * are copied down to real 0. For relocatable kernel
221 * (e.g. kdump case) we copy interrupt vectors down to real
222 * address 0. Mark that region as executable. This is
223 * because on p8 system with relocation on exception feature
224 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
225 * in order to execute the interrupt handlers in virtual
226 * mode the vector region need to be marked as executable.
227 */
228 if ((PHYSICAL_START > MEMORY_START) &&
229 overlaps_interrupt_vector_text(vaddr, vaddr + step))
230 tprot &= ~HPTE_R_N;
231
232 hash = hpt_hash(vpn, shift, ssize);
233 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
234
235 BUG_ON(!ppc_md.hpte_insert);
236 ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
237 HPTE_V_BOLTED, psize, psize, ssize);
238
239 if (ret < 0)
240 break;
241 #ifdef CONFIG_DEBUG_PAGEALLOC
242 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
243 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
244 #endif /* CONFIG_DEBUG_PAGEALLOC */
245 }
246 return ret < 0 ? ret : 0;
247 }
248
249 #ifdef CONFIG_MEMORY_HOTPLUG
250 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
251 int psize, int ssize)
252 {
253 unsigned long vaddr;
254 unsigned int step, shift;
255
256 shift = mmu_psize_defs[psize].shift;
257 step = 1 << shift;
258
259 if (!ppc_md.hpte_removebolted) {
260 printk(KERN_WARNING "Platform doesn't implement "
261 "hpte_removebolted\n");
262 return -EINVAL;
263 }
264
265 for (vaddr = vstart; vaddr < vend; vaddr += step)
266 ppc_md.hpte_removebolted(vaddr, psize, ssize);
267
268 return 0;
269 }
270 #endif /* CONFIG_MEMORY_HOTPLUG */
271
272 static int __init htab_dt_scan_seg_sizes(unsigned long node,
273 const char *uname, int depth,
274 void *data)
275 {
276 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
277 const __be32 *prop;
278 int size = 0;
279
280 /* We are scanning "cpu" nodes only */
281 if (type == NULL || strcmp(type, "cpu") != 0)
282 return 0;
283
284 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
285 if (prop == NULL)
286 return 0;
287 for (; size >= 4; size -= 4, ++prop) {
288 if (be32_to_cpu(prop[0]) == 40) {
289 DBG("1T segment support detected\n");
290 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
291 return 1;
292 }
293 }
294 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
295 return 0;
296 }
297
298 static void __init htab_init_seg_sizes(void)
299 {
300 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
301 }
302
303 static int __init get_idx_from_shift(unsigned int shift)
304 {
305 int idx = -1;
306
307 switch (shift) {
308 case 0xc:
309 idx = MMU_PAGE_4K;
310 break;
311 case 0x10:
312 idx = MMU_PAGE_64K;
313 break;
314 case 0x14:
315 idx = MMU_PAGE_1M;
316 break;
317 case 0x18:
318 idx = MMU_PAGE_16M;
319 break;
320 case 0x22:
321 idx = MMU_PAGE_16G;
322 break;
323 }
324 return idx;
325 }
326
327 static int __init htab_dt_scan_page_sizes(unsigned long node,
328 const char *uname, int depth,
329 void *data)
330 {
331 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
332 const __be32 *prop;
333 int size = 0;
334
335 /* We are scanning "cpu" nodes only */
336 if (type == NULL || strcmp(type, "cpu") != 0)
337 return 0;
338
339 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
340 if (!prop)
341 return 0;
342
343 pr_info("Page sizes from device-tree:\n");
344 size /= 4;
345 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
346 while(size > 0) {
347 unsigned int base_shift = be32_to_cpu(prop[0]);
348 unsigned int slbenc = be32_to_cpu(prop[1]);
349 unsigned int lpnum = be32_to_cpu(prop[2]);
350 struct mmu_psize_def *def;
351 int idx, base_idx;
352
353 size -= 3; prop += 3;
354 base_idx = get_idx_from_shift(base_shift);
355 if (base_idx < 0) {
356 /* skip the pte encoding also */
357 prop += lpnum * 2; size -= lpnum * 2;
358 continue;
359 }
360 def = &mmu_psize_defs[base_idx];
361 if (base_idx == MMU_PAGE_16M)
362 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
363
364 def->shift = base_shift;
365 if (base_shift <= 23)
366 def->avpnm = 0;
367 else
368 def->avpnm = (1 << (base_shift - 23)) - 1;
369 def->sllp = slbenc;
370 /*
371 * We don't know for sure what's up with tlbiel, so
372 * for now we only set it for 4K and 64K pages
373 */
374 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
375 def->tlbiel = 1;
376 else
377 def->tlbiel = 0;
378
379 while (size > 0 && lpnum) {
380 unsigned int shift = be32_to_cpu(prop[0]);
381 int penc = be32_to_cpu(prop[1]);
382
383 prop += 2; size -= 2;
384 lpnum--;
385
386 idx = get_idx_from_shift(shift);
387 if (idx < 0)
388 continue;
389
390 if (penc == -1)
391 pr_err("Invalid penc for base_shift=%d "
392 "shift=%d\n", base_shift, shift);
393
394 def->penc[idx] = penc;
395 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
396 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
397 base_shift, shift, def->sllp,
398 def->avpnm, def->tlbiel, def->penc[idx]);
399 }
400 }
401
402 return 1;
403 }
404
405 #ifdef CONFIG_HUGETLB_PAGE
406 /* Scan for 16G memory blocks that have been set aside for huge pages
407 * and reserve those blocks for 16G huge pages.
408 */
409 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
410 const char *uname, int depth,
411 void *data) {
412 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
413 const __be64 *addr_prop;
414 const __be32 *page_count_prop;
415 unsigned int expected_pages;
416 long unsigned int phys_addr;
417 long unsigned int block_size;
418
419 /* We are scanning "memory" nodes only */
420 if (type == NULL || strcmp(type, "memory") != 0)
421 return 0;
422
423 /* This property is the log base 2 of the number of virtual pages that
424 * will represent this memory block. */
425 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
426 if (page_count_prop == NULL)
427 return 0;
428 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
429 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
430 if (addr_prop == NULL)
431 return 0;
432 phys_addr = be64_to_cpu(addr_prop[0]);
433 block_size = be64_to_cpu(addr_prop[1]);
434 if (block_size != (16 * GB))
435 return 0;
436 printk(KERN_INFO "Huge page(16GB) memory: "
437 "addr = 0x%lX size = 0x%lX pages = %d\n",
438 phys_addr, block_size, expected_pages);
439 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
440 memblock_reserve(phys_addr, block_size * expected_pages);
441 add_gpage(phys_addr, block_size, expected_pages);
442 }
443 return 0;
444 }
445 #endif /* CONFIG_HUGETLB_PAGE */
446
447 static void mmu_psize_set_default_penc(void)
448 {
449 int bpsize, apsize;
450 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
451 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
452 mmu_psize_defs[bpsize].penc[apsize] = -1;
453 }
454
455 #ifdef CONFIG_PPC_64K_PAGES
456
457 static bool might_have_hea(void)
458 {
459 /*
460 * The HEA ethernet adapter requires awareness of the
461 * GX bus. Without that awareness we can easily assume
462 * we will never see an HEA ethernet device.
463 */
464 #ifdef CONFIG_IBMEBUS
465 return !cpu_has_feature(CPU_FTR_ARCH_207S);
466 #else
467 return false;
468 #endif
469 }
470
471 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
472
473 static void __init htab_init_page_sizes(void)
474 {
475 int rc;
476
477 /* se the invalid penc to -1 */
478 mmu_psize_set_default_penc();
479
480 /* Default to 4K pages only */
481 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
482 sizeof(mmu_psize_defaults_old));
483
484 /*
485 * Try to find the available page sizes in the device-tree
486 */
487 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
488 if (rc != 0) /* Found */
489 goto found;
490
491 /*
492 * Not in the device-tree, let's fallback on known size
493 * list for 16M capable GP & GR
494 */
495 if (mmu_has_feature(MMU_FTR_16M_PAGE))
496 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
497 sizeof(mmu_psize_defaults_gp));
498 found:
499 #ifndef CONFIG_DEBUG_PAGEALLOC
500 /*
501 * Pick a size for the linear mapping. Currently, we only support
502 * 16M, 1M and 4K which is the default
503 */
504 if (mmu_psize_defs[MMU_PAGE_16M].shift)
505 mmu_linear_psize = MMU_PAGE_16M;
506 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
507 mmu_linear_psize = MMU_PAGE_1M;
508 #endif /* CONFIG_DEBUG_PAGEALLOC */
509
510 #ifdef CONFIG_PPC_64K_PAGES
511 /*
512 * Pick a size for the ordinary pages. Default is 4K, we support
513 * 64K for user mappings and vmalloc if supported by the processor.
514 * We only use 64k for ioremap if the processor
515 * (and firmware) support cache-inhibited large pages.
516 * If not, we use 4k and set mmu_ci_restrictions so that
517 * hash_page knows to switch processes that use cache-inhibited
518 * mappings to 4k pages.
519 */
520 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
521 mmu_virtual_psize = MMU_PAGE_64K;
522 mmu_vmalloc_psize = MMU_PAGE_64K;
523 if (mmu_linear_psize == MMU_PAGE_4K)
524 mmu_linear_psize = MMU_PAGE_64K;
525 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
526 /*
527 * When running on pSeries using 64k pages for ioremap
528 * would stop us accessing the HEA ethernet. So if we
529 * have the chance of ever seeing one, stay at 4k.
530 */
531 if (!might_have_hea() || !machine_is(pseries))
532 mmu_io_psize = MMU_PAGE_64K;
533 } else
534 mmu_ci_restrictions = 1;
535 }
536 #endif /* CONFIG_PPC_64K_PAGES */
537
538 #ifdef CONFIG_SPARSEMEM_VMEMMAP
539 /* We try to use 16M pages for vmemmap if that is supported
540 * and we have at least 1G of RAM at boot
541 */
542 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
543 memblock_phys_mem_size() >= 0x40000000)
544 mmu_vmemmap_psize = MMU_PAGE_16M;
545 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
546 mmu_vmemmap_psize = MMU_PAGE_64K;
547 else
548 mmu_vmemmap_psize = MMU_PAGE_4K;
549 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
550
551 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
552 "virtual = %d, io = %d"
553 #ifdef CONFIG_SPARSEMEM_VMEMMAP
554 ", vmemmap = %d"
555 #endif
556 "\n",
557 mmu_psize_defs[mmu_linear_psize].shift,
558 mmu_psize_defs[mmu_virtual_psize].shift,
559 mmu_psize_defs[mmu_io_psize].shift
560 #ifdef CONFIG_SPARSEMEM_VMEMMAP
561 ,mmu_psize_defs[mmu_vmemmap_psize].shift
562 #endif
563 );
564
565 #ifdef CONFIG_HUGETLB_PAGE
566 /* Reserve 16G huge page memory sections for huge pages */
567 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
568 #endif /* CONFIG_HUGETLB_PAGE */
569 }
570
571 static int __init htab_dt_scan_pftsize(unsigned long node,
572 const char *uname, int depth,
573 void *data)
574 {
575 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
576 const __be32 *prop;
577
578 /* We are scanning "cpu" nodes only */
579 if (type == NULL || strcmp(type, "cpu") != 0)
580 return 0;
581
582 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
583 if (prop != NULL) {
584 /* pft_size[0] is the NUMA CEC cookie */
585 ppc64_pft_size = be32_to_cpu(prop[1]);
586 return 1;
587 }
588 return 0;
589 }
590
591 static unsigned long __init htab_get_table_size(void)
592 {
593 unsigned long mem_size, rnd_mem_size, pteg_count, psize;
594
595 /* If hash size isn't already provided by the platform, we try to
596 * retrieve it from the device-tree. If it's not there neither, we
597 * calculate it now based on the total RAM size
598 */
599 if (ppc64_pft_size == 0)
600 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
601 if (ppc64_pft_size)
602 return 1UL << ppc64_pft_size;
603
604 /* round mem_size up to next power of 2 */
605 mem_size = memblock_phys_mem_size();
606 rnd_mem_size = 1UL << __ilog2(mem_size);
607 if (rnd_mem_size < mem_size)
608 rnd_mem_size <<= 1;
609
610 /* # pages / 2 */
611 psize = mmu_psize_defs[mmu_virtual_psize].shift;
612 pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
613
614 return pteg_count << 7;
615 }
616
617 #ifdef CONFIG_MEMORY_HOTPLUG
618 int create_section_mapping(unsigned long start, unsigned long end)
619 {
620 return htab_bolt_mapping(start, end, __pa(start),
621 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
622 mmu_kernel_ssize);
623 }
624
625 int remove_section_mapping(unsigned long start, unsigned long end)
626 {
627 return htab_remove_mapping(start, end, mmu_linear_psize,
628 mmu_kernel_ssize);
629 }
630 #endif /* CONFIG_MEMORY_HOTPLUG */
631
632 extern u32 htab_call_hpte_insert1[];
633 extern u32 htab_call_hpte_insert2[];
634 extern u32 htab_call_hpte_remove[];
635 extern u32 htab_call_hpte_updatepp[];
636 extern u32 ht64_call_hpte_insert1[];
637 extern u32 ht64_call_hpte_insert2[];
638 extern u32 ht64_call_hpte_remove[];
639 extern u32 ht64_call_hpte_updatepp[];
640
641 static void __init htab_finish_init(void)
642 {
643 #ifdef CONFIG_PPC_64K_PAGES
644 patch_branch(ht64_call_hpte_insert1,
645 ppc_function_entry(ppc_md.hpte_insert),
646 BRANCH_SET_LINK);
647 patch_branch(ht64_call_hpte_insert2,
648 ppc_function_entry(ppc_md.hpte_insert),
649 BRANCH_SET_LINK);
650 patch_branch(ht64_call_hpte_remove,
651 ppc_function_entry(ppc_md.hpte_remove),
652 BRANCH_SET_LINK);
653 patch_branch(ht64_call_hpte_updatepp,
654 ppc_function_entry(ppc_md.hpte_updatepp),
655 BRANCH_SET_LINK);
656 #else /* !CONFIG_PPC_64K_PAGES */
657
658 patch_branch(htab_call_hpte_insert1,
659 ppc_function_entry(ppc_md.hpte_insert),
660 BRANCH_SET_LINK);
661 patch_branch(htab_call_hpte_insert2,
662 ppc_function_entry(ppc_md.hpte_insert),
663 BRANCH_SET_LINK);
664 patch_branch(htab_call_hpte_remove,
665 ppc_function_entry(ppc_md.hpte_remove),
666 BRANCH_SET_LINK);
667 patch_branch(htab_call_hpte_updatepp,
668 ppc_function_entry(ppc_md.hpte_updatepp),
669 BRANCH_SET_LINK);
670 #endif
671
672 }
673
674 static void __init htab_initialize(void)
675 {
676 unsigned long table;
677 unsigned long pteg_count;
678 unsigned long prot;
679 unsigned long base = 0, size = 0, limit;
680 struct memblock_region *reg;
681
682 DBG(" -> htab_initialize()\n");
683
684 /* Initialize segment sizes */
685 htab_init_seg_sizes();
686
687 /* Initialize page sizes */
688 htab_init_page_sizes();
689
690 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
691 mmu_kernel_ssize = MMU_SEGSIZE_1T;
692 mmu_highuser_ssize = MMU_SEGSIZE_1T;
693 printk(KERN_INFO "Using 1TB segments\n");
694 }
695
696 /*
697 * Calculate the required size of the htab. We want the number of
698 * PTEGs to equal one half the number of real pages.
699 */
700 htab_size_bytes = htab_get_table_size();
701 pteg_count = htab_size_bytes >> 7;
702
703 htab_hash_mask = pteg_count - 1;
704
705 if (firmware_has_feature(FW_FEATURE_LPAR)) {
706 /* Using a hypervisor which owns the htab */
707 htab_address = NULL;
708 _SDR1 = 0;
709 #ifdef CONFIG_FA_DUMP
710 /*
711 * If firmware assisted dump is active firmware preserves
712 * the contents of htab along with entire partition memory.
713 * Clear the htab if firmware assisted dump is active so
714 * that we dont end up using old mappings.
715 */
716 if (is_fadump_active() && ppc_md.hpte_clear_all)
717 ppc_md.hpte_clear_all();
718 #endif
719 } else {
720 /* Find storage for the HPT. Must be contiguous in
721 * the absolute address space. On cell we want it to be
722 * in the first 2 Gig so we can use it for IOMMU hacks.
723 */
724 if (machine_is(cell))
725 limit = 0x80000000;
726 else
727 limit = MEMBLOCK_ALLOC_ANYWHERE;
728
729 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
730
731 DBG("Hash table allocated at %lx, size: %lx\n", table,
732 htab_size_bytes);
733
734 htab_address = __va(table);
735
736 /* htab absolute addr + encoded htabsize */
737 _SDR1 = table + __ilog2(pteg_count) - 11;
738
739 /* Initialize the HPT with no entries */
740 memset((void *)table, 0, htab_size_bytes);
741
742 /* Set SDR1 */
743 mtspr(SPRN_SDR1, _SDR1);
744 }
745
746 prot = pgprot_val(PAGE_KERNEL);
747
748 #ifdef CONFIG_DEBUG_PAGEALLOC
749 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
750 linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
751 1, ppc64_rma_size));
752 memset(linear_map_hash_slots, 0, linear_map_hash_count);
753 #endif /* CONFIG_DEBUG_PAGEALLOC */
754
755 /* On U3 based machines, we need to reserve the DART area and
756 * _NOT_ map it to avoid cache paradoxes as it's remapped non
757 * cacheable later on
758 */
759
760 /* create bolted the linear mapping in the hash table */
761 for_each_memblock(memory, reg) {
762 base = (unsigned long)__va(reg->base);
763 size = reg->size;
764
765 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
766 base, size, prot);
767
768 #ifdef CONFIG_U3_DART
769 /* Do not map the DART space. Fortunately, it will be aligned
770 * in such a way that it will not cross two memblock regions and
771 * will fit within a single 16Mb page.
772 * The DART space is assumed to be a full 16Mb region even if
773 * we only use 2Mb of that space. We will use more of it later
774 * for AGP GART. We have to use a full 16Mb large page.
775 */
776 DBG("DART base: %lx\n", dart_tablebase);
777
778 if (dart_tablebase != 0 && dart_tablebase >= base
779 && dart_tablebase < (base + size)) {
780 unsigned long dart_table_end = dart_tablebase + 16 * MB;
781 if (base != dart_tablebase)
782 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
783 __pa(base), prot,
784 mmu_linear_psize,
785 mmu_kernel_ssize));
786 if ((base + size) > dart_table_end)
787 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
788 base + size,
789 __pa(dart_table_end),
790 prot,
791 mmu_linear_psize,
792 mmu_kernel_ssize));
793 continue;
794 }
795 #endif /* CONFIG_U3_DART */
796 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
797 prot, mmu_linear_psize, mmu_kernel_ssize));
798 }
799 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
800
801 /*
802 * If we have a memory_limit and we've allocated TCEs then we need to
803 * explicitly map the TCE area at the top of RAM. We also cope with the
804 * case that the TCEs start below memory_limit.
805 * tce_alloc_start/end are 16MB aligned so the mapping should work
806 * for either 4K or 16MB pages.
807 */
808 if (tce_alloc_start) {
809 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
810 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
811
812 if (base + size >= tce_alloc_start)
813 tce_alloc_start = base + size + 1;
814
815 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
816 __pa(tce_alloc_start), prot,
817 mmu_linear_psize, mmu_kernel_ssize));
818 }
819
820 htab_finish_init();
821
822 DBG(" <- htab_initialize()\n");
823 }
824 #undef KB
825 #undef MB
826
827 void __init early_init_mmu(void)
828 {
829 /* Initialize the MMU Hash table and create the linear mapping
830 * of memory. Has to be done before SLB initialization as this is
831 * currently where the page size encoding is obtained.
832 */
833 htab_initialize();
834
835 /* Initialize SLB management */
836 slb_initialize();
837 }
838
839 #ifdef CONFIG_SMP
840 void early_init_mmu_secondary(void)
841 {
842 /* Initialize hash table for that CPU */
843 if (!firmware_has_feature(FW_FEATURE_LPAR))
844 mtspr(SPRN_SDR1, _SDR1);
845
846 /* Initialize SLB */
847 slb_initialize();
848 }
849 #endif /* CONFIG_SMP */
850
851 /*
852 * Called by asm hashtable.S for doing lazy icache flush
853 */
854 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
855 {
856 struct page *page;
857
858 if (!pfn_valid(pte_pfn(pte)))
859 return pp;
860
861 page = pte_page(pte);
862
863 /* page is dirty */
864 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
865 if (trap == 0x400) {
866 flush_dcache_icache_page(page);
867 set_bit(PG_arch_1, &page->flags);
868 } else
869 pp |= HPTE_R_N;
870 }
871 return pp;
872 }
873
874 #ifdef CONFIG_PPC_MM_SLICES
875 static unsigned int get_paca_psize(unsigned long addr)
876 {
877 u64 lpsizes;
878 unsigned char *hpsizes;
879 unsigned long index, mask_index;
880
881 if (addr < SLICE_LOW_TOP) {
882 lpsizes = get_paca()->context.low_slices_psize;
883 index = GET_LOW_SLICE_INDEX(addr);
884 return (lpsizes >> (index * 4)) & 0xF;
885 }
886 hpsizes = get_paca()->context.high_slices_psize;
887 index = GET_HIGH_SLICE_INDEX(addr);
888 mask_index = index & 0x1;
889 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
890 }
891
892 #else
893 unsigned int get_paca_psize(unsigned long addr)
894 {
895 return get_paca()->context.user_psize;
896 }
897 #endif
898
899 /*
900 * Demote a segment to using 4k pages.
901 * For now this makes the whole process use 4k pages.
902 */
903 #ifdef CONFIG_PPC_64K_PAGES
904 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
905 {
906 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
907 return;
908 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
909 copro_flush_all_slbs(mm);
910 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
911 get_paca()->context = mm->context;
912 slb_flush_and_rebolt();
913 }
914 }
915 #endif /* CONFIG_PPC_64K_PAGES */
916
917 #ifdef CONFIG_PPC_SUBPAGE_PROT
918 /*
919 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
920 * Userspace sets the subpage permissions using the subpage_prot system call.
921 *
922 * Result is 0: full permissions, _PAGE_RW: read-only,
923 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
924 */
925 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
926 {
927 struct subpage_prot_table *spt = &mm->context.spt;
928 u32 spp = 0;
929 u32 **sbpm, *sbpp;
930
931 if (ea >= spt->maxaddr)
932 return 0;
933 if (ea < 0x100000000UL) {
934 /* addresses below 4GB use spt->low_prot */
935 sbpm = spt->low_prot;
936 } else {
937 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
938 if (!sbpm)
939 return 0;
940 }
941 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
942 if (!sbpp)
943 return 0;
944 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
945
946 /* extract 2-bit bitfield for this 4k subpage */
947 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
948
949 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
950 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
951 return spp;
952 }
953
954 #else /* CONFIG_PPC_SUBPAGE_PROT */
955 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
956 {
957 return 0;
958 }
959 #endif
960
961 void hash_failure_debug(unsigned long ea, unsigned long access,
962 unsigned long vsid, unsigned long trap,
963 int ssize, int psize, int lpsize, unsigned long pte)
964 {
965 if (!printk_ratelimit())
966 return;
967 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
968 ea, access, current->comm);
969 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
970 trap, vsid, ssize, psize, lpsize, pte);
971 }
972
973 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
974 int psize, bool user_region)
975 {
976 if (user_region) {
977 if (psize != get_paca_psize(ea)) {
978 get_paca()->context = mm->context;
979 slb_flush_and_rebolt();
980 }
981 } else if (get_paca()->vmalloc_sllp !=
982 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
983 get_paca()->vmalloc_sllp =
984 mmu_psize_defs[mmu_vmalloc_psize].sllp;
985 slb_vmalloc_update();
986 }
987 }
988
989 /* Result code is:
990 * 0 - handled
991 * 1 - normal page fault
992 * -1 - critical hash insertion error
993 * -2 - access not permitted by subpage protection mechanism
994 */
995 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
996 unsigned long access, unsigned long trap,
997 unsigned long flags)
998 {
999 bool is_thp;
1000 enum ctx_state prev_state = exception_enter();
1001 pgd_t *pgdir;
1002 unsigned long vsid;
1003 pte_t *ptep;
1004 unsigned hugeshift;
1005 const struct cpumask *tmp;
1006 int rc, user_region = 0;
1007 int psize, ssize;
1008
1009 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1010 ea, access, trap);
1011 trace_hash_fault(ea, access, trap);
1012
1013 /* Get region & vsid */
1014 switch (REGION_ID(ea)) {
1015 case USER_REGION_ID:
1016 user_region = 1;
1017 if (! mm) {
1018 DBG_LOW(" user region with no mm !\n");
1019 rc = 1;
1020 goto bail;
1021 }
1022 psize = get_slice_psize(mm, ea);
1023 ssize = user_segment_size(ea);
1024 vsid = get_vsid(mm->context.id, ea, ssize);
1025 break;
1026 case VMALLOC_REGION_ID:
1027 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1028 if (ea < VMALLOC_END)
1029 psize = mmu_vmalloc_psize;
1030 else
1031 psize = mmu_io_psize;
1032 ssize = mmu_kernel_ssize;
1033 break;
1034 default:
1035 /* Not a valid range
1036 * Send the problem up to do_page_fault
1037 */
1038 rc = 1;
1039 goto bail;
1040 }
1041 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1042
1043 /* Bad address. */
1044 if (!vsid) {
1045 DBG_LOW("Bad address!\n");
1046 rc = 1;
1047 goto bail;
1048 }
1049 /* Get pgdir */
1050 pgdir = mm->pgd;
1051 if (pgdir == NULL) {
1052 rc = 1;
1053 goto bail;
1054 }
1055
1056 /* Check CPU locality */
1057 tmp = cpumask_of(smp_processor_id());
1058 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1059 flags |= HPTE_LOCAL_UPDATE;
1060
1061 #ifndef CONFIG_PPC_64K_PAGES
1062 /* If we use 4K pages and our psize is not 4K, then we might
1063 * be hitting a special driver mapping, and need to align the
1064 * address before we fetch the PTE.
1065 *
1066 * It could also be a hugepage mapping, in which case this is
1067 * not necessary, but it's not harmful, either.
1068 */
1069 if (psize != MMU_PAGE_4K)
1070 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1071 #endif /* CONFIG_PPC_64K_PAGES */
1072
1073 /* Get PTE and page size from page tables */
1074 ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1075 if (ptep == NULL || !pte_present(*ptep)) {
1076 DBG_LOW(" no PTE !\n");
1077 rc = 1;
1078 goto bail;
1079 }
1080
1081 /* Add _PAGE_PRESENT to the required access perm */
1082 access |= _PAGE_PRESENT;
1083
1084 /* Pre-check access permissions (will be re-checked atomically
1085 * in __hash_page_XX but this pre-check is a fast path
1086 */
1087 if (access & ~pte_val(*ptep)) {
1088 DBG_LOW(" no access !\n");
1089 rc = 1;
1090 goto bail;
1091 }
1092
1093 if (hugeshift) {
1094 if (is_thp)
1095 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1096 trap, flags, ssize, psize);
1097 #ifdef CONFIG_HUGETLB_PAGE
1098 else
1099 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1100 flags, ssize, hugeshift, psize);
1101 #else
1102 else {
1103 /*
1104 * if we have hugeshift, and is not transhuge with
1105 * hugetlb disabled, something is really wrong.
1106 */
1107 rc = 1;
1108 WARN_ON(1);
1109 }
1110 #endif
1111 if (current->mm == mm)
1112 check_paca_psize(ea, mm, psize, user_region);
1113
1114 goto bail;
1115 }
1116
1117 #ifndef CONFIG_PPC_64K_PAGES
1118 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1119 #else
1120 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1121 pte_val(*(ptep + PTRS_PER_PTE)));
1122 #endif
1123 /* Do actual hashing */
1124 #ifdef CONFIG_PPC_64K_PAGES
1125 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1126 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1127 demote_segment_4k(mm, ea);
1128 psize = MMU_PAGE_4K;
1129 }
1130
1131 /* If this PTE is non-cacheable and we have restrictions on
1132 * using non cacheable large pages, then we switch to 4k
1133 */
1134 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1135 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1136 if (user_region) {
1137 demote_segment_4k(mm, ea);
1138 psize = MMU_PAGE_4K;
1139 } else if (ea < VMALLOC_END) {
1140 /*
1141 * some driver did a non-cacheable mapping
1142 * in vmalloc space, so switch vmalloc
1143 * to 4k pages
1144 */
1145 printk(KERN_ALERT "Reducing vmalloc segment "
1146 "to 4kB pages because of "
1147 "non-cacheable mapping\n");
1148 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1149 copro_flush_all_slbs(mm);
1150 }
1151 }
1152
1153 #endif /* CONFIG_PPC_64K_PAGES */
1154
1155 if (current->mm == mm)
1156 check_paca_psize(ea, mm, psize, user_region);
1157
1158 #ifdef CONFIG_PPC_64K_PAGES
1159 if (psize == MMU_PAGE_64K)
1160 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1161 flags, ssize);
1162 else
1163 #endif /* CONFIG_PPC_64K_PAGES */
1164 {
1165 int spp = subpage_protection(mm, ea);
1166 if (access & spp)
1167 rc = -2;
1168 else
1169 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1170 flags, ssize, spp);
1171 }
1172
1173 /* Dump some info in case of hash insertion failure, they should
1174 * never happen so it is really useful to know if/when they do
1175 */
1176 if (rc == -1)
1177 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1178 psize, pte_val(*ptep));
1179 #ifndef CONFIG_PPC_64K_PAGES
1180 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1181 #else
1182 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1183 pte_val(*(ptep + PTRS_PER_PTE)));
1184 #endif
1185 DBG_LOW(" -> rc=%d\n", rc);
1186
1187 bail:
1188 exception_exit(prev_state);
1189 return rc;
1190 }
1191 EXPORT_SYMBOL_GPL(hash_page_mm);
1192
1193 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1194 unsigned long dsisr)
1195 {
1196 unsigned long flags = 0;
1197 struct mm_struct *mm = current->mm;
1198
1199 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1200 mm = &init_mm;
1201
1202 if (dsisr & DSISR_NOHPTE)
1203 flags |= HPTE_NOHPTE_UPDATE;
1204
1205 return hash_page_mm(mm, ea, access, trap, flags);
1206 }
1207 EXPORT_SYMBOL_GPL(hash_page);
1208
1209 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1210 unsigned long dsisr)
1211 {
1212 unsigned long access = _PAGE_PRESENT;
1213 unsigned long flags = 0;
1214 struct mm_struct *mm = current->mm;
1215
1216 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1217 mm = &init_mm;
1218
1219 if (dsisr & DSISR_NOHPTE)
1220 flags |= HPTE_NOHPTE_UPDATE;
1221
1222 if (dsisr & DSISR_ISSTORE)
1223 access |= _PAGE_RW;
1224 /*
1225 * We need to set the _PAGE_USER bit if MSR_PR is set or if we are
1226 * accessing a userspace segment (even from the kernel). We assume
1227 * kernel addresses always have the high bit set.
1228 */
1229 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1230 access |= _PAGE_USER;
1231
1232 if (trap == 0x400)
1233 access |= _PAGE_EXEC;
1234
1235 return hash_page_mm(mm, ea, access, trap, flags);
1236 }
1237
1238 void hash_preload(struct mm_struct *mm, unsigned long ea,
1239 unsigned long access, unsigned long trap)
1240 {
1241 int hugepage_shift;
1242 unsigned long vsid;
1243 pgd_t *pgdir;
1244 pte_t *ptep;
1245 unsigned long flags;
1246 int rc, ssize, update_flags = 0;
1247
1248 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1249
1250 #ifdef CONFIG_PPC_MM_SLICES
1251 /* We only prefault standard pages for now */
1252 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1253 return;
1254 #endif
1255
1256 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1257 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1258
1259 /* Get Linux PTE if available */
1260 pgdir = mm->pgd;
1261 if (pgdir == NULL)
1262 return;
1263
1264 /* Get VSID */
1265 ssize = user_segment_size(ea);
1266 vsid = get_vsid(mm->context.id, ea, ssize);
1267 if (!vsid)
1268 return;
1269 /*
1270 * Hash doesn't like irqs. Walking linux page table with irq disabled
1271 * saves us from holding multiple locks.
1272 */
1273 local_irq_save(flags);
1274
1275 /*
1276 * THP pages use update_mmu_cache_pmd. We don't do
1277 * hash preload there. Hence can ignore THP here
1278 */
1279 ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1280 if (!ptep)
1281 goto out_exit;
1282
1283 WARN_ON(hugepage_shift);
1284 #ifdef CONFIG_PPC_64K_PAGES
1285 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1286 * a 64K kernel), then we don't preload, hash_page() will take
1287 * care of it once we actually try to access the page.
1288 * That way we don't have to duplicate all of the logic for segment
1289 * page size demotion here
1290 */
1291 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1292 goto out_exit;
1293 #endif /* CONFIG_PPC_64K_PAGES */
1294
1295 /* Is that local to this CPU ? */
1296 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1297 update_flags |= HPTE_LOCAL_UPDATE;
1298
1299 /* Hash it in */
1300 #ifdef CONFIG_PPC_64K_PAGES
1301 if (mm->context.user_psize == MMU_PAGE_64K)
1302 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1303 update_flags, ssize);
1304 else
1305 #endif /* CONFIG_PPC_64K_PAGES */
1306 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1307 ssize, subpage_protection(mm, ea));
1308
1309 /* Dump some info in case of hash insertion failure, they should
1310 * never happen so it is really useful to know if/when they do
1311 */
1312 if (rc == -1)
1313 hash_failure_debug(ea, access, vsid, trap, ssize,
1314 mm->context.user_psize,
1315 mm->context.user_psize,
1316 pte_val(*ptep));
1317 out_exit:
1318 local_irq_restore(flags);
1319 }
1320
1321 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1322 * do not forget to update the assembly call site !
1323 */
1324 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1325 unsigned long flags)
1326 {
1327 unsigned long hash, index, shift, hidx, slot;
1328 int local = flags & HPTE_LOCAL_UPDATE;
1329
1330 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1331 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1332 hash = hpt_hash(vpn, shift, ssize);
1333 hidx = __rpte_to_hidx(pte, index);
1334 if (hidx & _PTEIDX_SECONDARY)
1335 hash = ~hash;
1336 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1337 slot += hidx & _PTEIDX_GROUP_IX;
1338 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1339 /*
1340 * We use same base page size and actual psize, because we don't
1341 * use these functions for hugepage
1342 */
1343 ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1344 } pte_iterate_hashed_end();
1345
1346 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1347 /* Transactions are not aborted by tlbiel, only tlbie.
1348 * Without, syncing a page back to a block device w/ PIO could pick up
1349 * transactional data (bad!) so we force an abort here. Before the
1350 * sync the page will be made read-only, which will flush_hash_page.
1351 * BIG ISSUE here: if the kernel uses a page from userspace without
1352 * unmapping it first, it may see the speculated version.
1353 */
1354 if (local && cpu_has_feature(CPU_FTR_TM) &&
1355 current->thread.regs &&
1356 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1357 tm_enable();
1358 tm_abort(TM_CAUSE_TLBI);
1359 }
1360 #endif
1361 }
1362
1363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1364 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1365 pmd_t *pmdp, unsigned int psize, int ssize,
1366 unsigned long flags)
1367 {
1368 int i, max_hpte_count, valid;
1369 unsigned long s_addr;
1370 unsigned char *hpte_slot_array;
1371 unsigned long hidx, shift, vpn, hash, slot;
1372 int local = flags & HPTE_LOCAL_UPDATE;
1373
1374 s_addr = addr & HPAGE_PMD_MASK;
1375 hpte_slot_array = get_hpte_slot_array(pmdp);
1376 /*
1377 * IF we try to do a HUGE PTE update after a withdraw is done.
1378 * we will find the below NULL. This happens when we do
1379 * split_huge_page_pmd
1380 */
1381 if (!hpte_slot_array)
1382 return;
1383
1384 if (ppc_md.hugepage_invalidate) {
1385 ppc_md.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1386 psize, ssize, local);
1387 goto tm_abort;
1388 }
1389 /*
1390 * No bluk hpte removal support, invalidate each entry
1391 */
1392 shift = mmu_psize_defs[psize].shift;
1393 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1394 for (i = 0; i < max_hpte_count; i++) {
1395 /*
1396 * 8 bits per each hpte entries
1397 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1398 */
1399 valid = hpte_valid(hpte_slot_array, i);
1400 if (!valid)
1401 continue;
1402 hidx = hpte_hash_index(hpte_slot_array, i);
1403
1404 /* get the vpn */
1405 addr = s_addr + (i * (1ul << shift));
1406 vpn = hpt_vpn(addr, vsid, ssize);
1407 hash = hpt_hash(vpn, shift, ssize);
1408 if (hidx & _PTEIDX_SECONDARY)
1409 hash = ~hash;
1410
1411 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1412 slot += hidx & _PTEIDX_GROUP_IX;
1413 ppc_md.hpte_invalidate(slot, vpn, psize,
1414 MMU_PAGE_16M, ssize, local);
1415 }
1416 tm_abort:
1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418 /* Transactions are not aborted by tlbiel, only tlbie.
1419 * Without, syncing a page back to a block device w/ PIO could pick up
1420 * transactional data (bad!) so we force an abort here. Before the
1421 * sync the page will be made read-only, which will flush_hash_page.
1422 * BIG ISSUE here: if the kernel uses a page from userspace without
1423 * unmapping it first, it may see the speculated version.
1424 */
1425 if (local && cpu_has_feature(CPU_FTR_TM) &&
1426 current->thread.regs &&
1427 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1428 tm_enable();
1429 tm_abort(TM_CAUSE_TLBI);
1430 }
1431 #endif
1432 return;
1433 }
1434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1435
1436 void flush_hash_range(unsigned long number, int local)
1437 {
1438 if (ppc_md.flush_hash_range)
1439 ppc_md.flush_hash_range(number, local);
1440 else {
1441 int i;
1442 struct ppc64_tlb_batch *batch =
1443 this_cpu_ptr(&ppc64_tlb_batch);
1444
1445 for (i = 0; i < number; i++)
1446 flush_hash_page(batch->vpn[i], batch->pte[i],
1447 batch->psize, batch->ssize, local);
1448 }
1449 }
1450
1451 /*
1452 * low_hash_fault is called when we the low level hash code failed
1453 * to instert a PTE due to an hypervisor error
1454 */
1455 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1456 {
1457 enum ctx_state prev_state = exception_enter();
1458
1459 if (user_mode(regs)) {
1460 #ifdef CONFIG_PPC_SUBPAGE_PROT
1461 if (rc == -2)
1462 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1463 else
1464 #endif
1465 _exception(SIGBUS, regs, BUS_ADRERR, address);
1466 } else
1467 bad_page_fault(regs, address, SIGBUS);
1468
1469 exception_exit(prev_state);
1470 }
1471
1472 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1473 unsigned long pa, unsigned long rflags,
1474 unsigned long vflags, int psize, int ssize)
1475 {
1476 unsigned long hpte_group;
1477 long slot;
1478
1479 repeat:
1480 hpte_group = ((hash & htab_hash_mask) *
1481 HPTES_PER_GROUP) & ~0x7UL;
1482
1483 /* Insert into the hash table, primary slot */
1484 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1485 psize, psize, ssize);
1486
1487 /* Primary is full, try the secondary */
1488 if (unlikely(slot == -1)) {
1489 hpte_group = ((~hash & htab_hash_mask) *
1490 HPTES_PER_GROUP) & ~0x7UL;
1491 slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1492 vflags | HPTE_V_SECONDARY,
1493 psize, psize, ssize);
1494 if (slot == -1) {
1495 if (mftb() & 0x1)
1496 hpte_group = ((hash & htab_hash_mask) *
1497 HPTES_PER_GROUP)&~0x7UL;
1498
1499 ppc_md.hpte_remove(hpte_group);
1500 goto repeat;
1501 }
1502 }
1503
1504 return slot;
1505 }
1506
1507 #ifdef CONFIG_DEBUG_PAGEALLOC
1508 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1509 {
1510 unsigned long hash;
1511 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1512 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1513 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1514 long ret;
1515
1516 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1517
1518 /* Don't create HPTE entries for bad address */
1519 if (!vsid)
1520 return;
1521
1522 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1523 HPTE_V_BOLTED,
1524 mmu_linear_psize, mmu_kernel_ssize);
1525
1526 BUG_ON (ret < 0);
1527 spin_lock(&linear_map_hash_lock);
1528 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1529 linear_map_hash_slots[lmi] = ret | 0x80;
1530 spin_unlock(&linear_map_hash_lock);
1531 }
1532
1533 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1534 {
1535 unsigned long hash, hidx, slot;
1536 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1537 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1538
1539 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1540 spin_lock(&linear_map_hash_lock);
1541 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1542 hidx = linear_map_hash_slots[lmi] & 0x7f;
1543 linear_map_hash_slots[lmi] = 0;
1544 spin_unlock(&linear_map_hash_lock);
1545 if (hidx & _PTEIDX_SECONDARY)
1546 hash = ~hash;
1547 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1548 slot += hidx & _PTEIDX_GROUP_IX;
1549 ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1550 mmu_kernel_ssize, 0);
1551 }
1552
1553 void __kernel_map_pages(struct page *page, int numpages, int enable)
1554 {
1555 unsigned long flags, vaddr, lmi;
1556 int i;
1557
1558 local_irq_save(flags);
1559 for (i = 0; i < numpages; i++, page++) {
1560 vaddr = (unsigned long)page_address(page);
1561 lmi = __pa(vaddr) >> PAGE_SHIFT;
1562 if (lmi >= linear_map_hash_count)
1563 continue;
1564 if (enable)
1565 kernel_map_linear_page(vaddr, lmi);
1566 else
1567 kernel_unmap_linear_page(vaddr, lmi);
1568 }
1569 local_irq_restore(flags);
1570 }
1571 #endif /* CONFIG_DEBUG_PAGEALLOC */
1572
1573 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1574 phys_addr_t first_memblock_size)
1575 {
1576 /* We don't currently support the first MEMBLOCK not mapping 0
1577 * physical on those processors
1578 */
1579 BUG_ON(first_memblock_base != 0);
1580
1581 /* On LPAR systems, the first entry is our RMA region,
1582 * non-LPAR 64-bit hash MMU systems don't have a limitation
1583 * on real mode access, but using the first entry works well
1584 * enough. We also clamp it to 1G to avoid some funky things
1585 * such as RTAS bugs etc...
1586 */
1587 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1588
1589 /* Finally limit subsequent allocations */
1590 memblock_set_current_limit(ppc64_rma_size);
1591 }