]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/powerpc/mm/hash_utils_64.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[mirror_ubuntu-kernels.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34
35 #include <asm/processor.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu.h>
38 #include <asm/mmu_context.h>
39 #include <asm/page.h>
40 #include <asm/types.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/machdep.h>
44 #include <asm/lmb.h>
45 #include <asm/abs_addr.h>
46 #include <asm/tlbflush.h>
47 #include <asm/io.h>
48 #include <asm/eeh.h>
49 #include <asm/tlb.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/spu.h>
54 #include <asm/udbg.h>
55
56 #ifdef DEBUG
57 #define DBG(fmt...) udbg_printf(fmt)
58 #else
59 #define DBG(fmt...)
60 #endif
61
62 #ifdef DEBUG_LOW
63 #define DBG_LOW(fmt...) udbg_printf(fmt)
64 #else
65 #define DBG_LOW(fmt...)
66 #endif
67
68 #define KB (1024)
69 #define MB (1024*KB)
70
71 /*
72 * Note: pte --> Linux PTE
73 * HPTE --> PowerPC Hashed Page Table Entry
74 *
75 * Execution context:
76 * htab_initialize is called with the MMU off (of course), but
77 * the kernel has been copied down to zero so it can directly
78 * reference global data. At this point it is very difficult
79 * to print debug info.
80 *
81 */
82
83 #ifdef CONFIG_U3_DART
84 extern unsigned long dart_tablebase;
85 #endif /* CONFIG_U3_DART */
86
87 static unsigned long _SDR1;
88 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
89
90 struct hash_pte *htab_address;
91 unsigned long htab_size_bytes;
92 unsigned long htab_hash_mask;
93 int mmu_linear_psize = MMU_PAGE_4K;
94 int mmu_virtual_psize = MMU_PAGE_4K;
95 int mmu_vmalloc_psize = MMU_PAGE_4K;
96 int mmu_io_psize = MMU_PAGE_4K;
97 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
98 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
99 #ifdef CONFIG_HUGETLB_PAGE
100 int mmu_huge_psize = MMU_PAGE_16M;
101 unsigned int HPAGE_SHIFT;
102 #endif
103 #ifdef CONFIG_PPC_64K_PAGES
104 int mmu_ci_restrictions;
105 #endif
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 static u8 *linear_map_hash_slots;
108 static unsigned long linear_map_hash_count;
109 static DEFINE_SPINLOCK(linear_map_hash_lock);
110 #endif /* CONFIG_DEBUG_PAGEALLOC */
111
112 /* There are definitions of page sizes arrays to be used when none
113 * is provided by the firmware.
114 */
115
116 /* Pre-POWER4 CPUs (4k pages only)
117 */
118 struct mmu_psize_def mmu_psize_defaults_old[] = {
119 [MMU_PAGE_4K] = {
120 .shift = 12,
121 .sllp = 0,
122 .penc = 0,
123 .avpnm = 0,
124 .tlbiel = 0,
125 },
126 };
127
128 /* POWER4, GPUL, POWER5
129 *
130 * Support for 16Mb large pages
131 */
132 struct mmu_psize_def mmu_psize_defaults_gp[] = {
133 [MMU_PAGE_4K] = {
134 .shift = 12,
135 .sllp = 0,
136 .penc = 0,
137 .avpnm = 0,
138 .tlbiel = 1,
139 },
140 [MMU_PAGE_16M] = {
141 .shift = 24,
142 .sllp = SLB_VSID_L,
143 .penc = 0,
144 .avpnm = 0x1UL,
145 .tlbiel = 0,
146 },
147 };
148
149
150 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
151 unsigned long pstart, unsigned long mode,
152 int psize, int ssize)
153 {
154 unsigned long vaddr, paddr;
155 unsigned int step, shift;
156 unsigned long tmp_mode;
157 int ret = 0;
158
159 shift = mmu_psize_defs[psize].shift;
160 step = 1 << shift;
161
162 for (vaddr = vstart, paddr = pstart; vaddr < vend;
163 vaddr += step, paddr += step) {
164 unsigned long hash, hpteg;
165 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
166 unsigned long va = hpt_va(vaddr, vsid, ssize);
167
168 tmp_mode = mode;
169
170 /* Make non-kernel text non-executable */
171 if (!in_kernel_text(vaddr))
172 tmp_mode = mode | HPTE_R_N;
173
174 hash = hpt_hash(va, shift, ssize);
175 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
176
177 DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert);
178
179 BUG_ON(!ppc_md.hpte_insert);
180 ret = ppc_md.hpte_insert(hpteg, va, paddr,
181 tmp_mode, HPTE_V_BOLTED, psize, ssize);
182
183 if (ret < 0)
184 break;
185 #ifdef CONFIG_DEBUG_PAGEALLOC
186 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
187 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
188 #endif /* CONFIG_DEBUG_PAGEALLOC */
189 }
190 return ret < 0 ? ret : 0;
191 }
192
193 static int __init htab_dt_scan_seg_sizes(unsigned long node,
194 const char *uname, int depth,
195 void *data)
196 {
197 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
198 u32 *prop;
199 unsigned long size = 0;
200
201 /* We are scanning "cpu" nodes only */
202 if (type == NULL || strcmp(type, "cpu") != 0)
203 return 0;
204
205 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
206 &size);
207 if (prop == NULL)
208 return 0;
209 for (; size >= 4; size -= 4, ++prop) {
210 if (prop[0] == 40) {
211 DBG("1T segment support detected\n");
212 cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
213 return 1;
214 }
215 }
216 cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
217 return 0;
218 }
219
220 static void __init htab_init_seg_sizes(void)
221 {
222 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
223 }
224
225 static int __init htab_dt_scan_page_sizes(unsigned long node,
226 const char *uname, int depth,
227 void *data)
228 {
229 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
230 u32 *prop;
231 unsigned long size = 0;
232
233 /* We are scanning "cpu" nodes only */
234 if (type == NULL || strcmp(type, "cpu") != 0)
235 return 0;
236
237 prop = (u32 *)of_get_flat_dt_prop(node,
238 "ibm,segment-page-sizes", &size);
239 if (prop != NULL) {
240 DBG("Page sizes from device-tree:\n");
241 size /= 4;
242 cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
243 while(size > 0) {
244 unsigned int shift = prop[0];
245 unsigned int slbenc = prop[1];
246 unsigned int lpnum = prop[2];
247 unsigned int lpenc = 0;
248 struct mmu_psize_def *def;
249 int idx = -1;
250
251 size -= 3; prop += 3;
252 while(size > 0 && lpnum) {
253 if (prop[0] == shift)
254 lpenc = prop[1];
255 prop += 2; size -= 2;
256 lpnum--;
257 }
258 switch(shift) {
259 case 0xc:
260 idx = MMU_PAGE_4K;
261 break;
262 case 0x10:
263 idx = MMU_PAGE_64K;
264 break;
265 case 0x14:
266 idx = MMU_PAGE_1M;
267 break;
268 case 0x18:
269 idx = MMU_PAGE_16M;
270 cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
271 break;
272 case 0x22:
273 idx = MMU_PAGE_16G;
274 break;
275 }
276 if (idx < 0)
277 continue;
278 def = &mmu_psize_defs[idx];
279 def->shift = shift;
280 if (shift <= 23)
281 def->avpnm = 0;
282 else
283 def->avpnm = (1 << (shift - 23)) - 1;
284 def->sllp = slbenc;
285 def->penc = lpenc;
286 /* We don't know for sure what's up with tlbiel, so
287 * for now we only set it for 4K and 64K pages
288 */
289 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
290 def->tlbiel = 1;
291 else
292 def->tlbiel = 0;
293
294 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
295 "tlbiel=%d, penc=%d\n",
296 idx, shift, def->sllp, def->avpnm, def->tlbiel,
297 def->penc);
298 }
299 return 1;
300 }
301 return 0;
302 }
303
304 static void __init htab_init_page_sizes(void)
305 {
306 int rc;
307
308 /* Default to 4K pages only */
309 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
310 sizeof(mmu_psize_defaults_old));
311
312 /*
313 * Try to find the available page sizes in the device-tree
314 */
315 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
316 if (rc != 0) /* Found */
317 goto found;
318
319 /*
320 * Not in the device-tree, let's fallback on known size
321 * list for 16M capable GP & GR
322 */
323 if (cpu_has_feature(CPU_FTR_16M_PAGE))
324 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
325 sizeof(mmu_psize_defaults_gp));
326 found:
327 #ifndef CONFIG_DEBUG_PAGEALLOC
328 /*
329 * Pick a size for the linear mapping. Currently, we only support
330 * 16M, 1M and 4K which is the default
331 */
332 if (mmu_psize_defs[MMU_PAGE_16M].shift)
333 mmu_linear_psize = MMU_PAGE_16M;
334 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
335 mmu_linear_psize = MMU_PAGE_1M;
336 #endif /* CONFIG_DEBUG_PAGEALLOC */
337
338 #ifdef CONFIG_PPC_64K_PAGES
339 /*
340 * Pick a size for the ordinary pages. Default is 4K, we support
341 * 64K for user mappings and vmalloc if supported by the processor.
342 * We only use 64k for ioremap if the processor
343 * (and firmware) support cache-inhibited large pages.
344 * If not, we use 4k and set mmu_ci_restrictions so that
345 * hash_page knows to switch processes that use cache-inhibited
346 * mappings to 4k pages.
347 */
348 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
349 mmu_virtual_psize = MMU_PAGE_64K;
350 mmu_vmalloc_psize = MMU_PAGE_64K;
351 if (mmu_linear_psize == MMU_PAGE_4K)
352 mmu_linear_psize = MMU_PAGE_64K;
353 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE))
354 mmu_io_psize = MMU_PAGE_64K;
355 else
356 mmu_ci_restrictions = 1;
357 }
358 #endif /* CONFIG_PPC_64K_PAGES */
359
360 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
361 "virtual = %d, io = %d\n",
362 mmu_psize_defs[mmu_linear_psize].shift,
363 mmu_psize_defs[mmu_virtual_psize].shift,
364 mmu_psize_defs[mmu_io_psize].shift);
365
366 #ifdef CONFIG_HUGETLB_PAGE
367 /* Init large page size. Currently, we pick 16M or 1M depending
368 * on what is available
369 */
370 if (mmu_psize_defs[MMU_PAGE_16M].shift)
371 mmu_huge_psize = MMU_PAGE_16M;
372 /* With 4k/4level pagetables, we can't (for now) cope with a
373 * huge page size < PMD_SIZE */
374 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
375 mmu_huge_psize = MMU_PAGE_1M;
376
377 /* Calculate HPAGE_SHIFT and sanity check it */
378 if (mmu_psize_defs[mmu_huge_psize].shift > MIN_HUGEPTE_SHIFT &&
379 mmu_psize_defs[mmu_huge_psize].shift < SID_SHIFT)
380 HPAGE_SHIFT = mmu_psize_defs[mmu_huge_psize].shift;
381 else
382 HPAGE_SHIFT = 0; /* No huge pages dude ! */
383 #endif /* CONFIG_HUGETLB_PAGE */
384 }
385
386 static int __init htab_dt_scan_pftsize(unsigned long node,
387 const char *uname, int depth,
388 void *data)
389 {
390 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
391 u32 *prop;
392
393 /* We are scanning "cpu" nodes only */
394 if (type == NULL || strcmp(type, "cpu") != 0)
395 return 0;
396
397 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
398 if (prop != NULL) {
399 /* pft_size[0] is the NUMA CEC cookie */
400 ppc64_pft_size = prop[1];
401 return 1;
402 }
403 return 0;
404 }
405
406 static unsigned long __init htab_get_table_size(void)
407 {
408 unsigned long mem_size, rnd_mem_size, pteg_count;
409
410 /* If hash size isn't already provided by the platform, we try to
411 * retrieve it from the device-tree. If it's not there neither, we
412 * calculate it now based on the total RAM size
413 */
414 if (ppc64_pft_size == 0)
415 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
416 if (ppc64_pft_size)
417 return 1UL << ppc64_pft_size;
418
419 /* round mem_size up to next power of 2 */
420 mem_size = lmb_phys_mem_size();
421 rnd_mem_size = 1UL << __ilog2(mem_size);
422 if (rnd_mem_size < mem_size)
423 rnd_mem_size <<= 1;
424
425 /* # pages / 2 */
426 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
427
428 return pteg_count << 7;
429 }
430
431 #ifdef CONFIG_MEMORY_HOTPLUG
432 void create_section_mapping(unsigned long start, unsigned long end)
433 {
434 BUG_ON(htab_bolt_mapping(start, end, __pa(start),
435 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX,
436 mmu_linear_psize, mmu_kernel_ssize));
437 }
438 #endif /* CONFIG_MEMORY_HOTPLUG */
439
440 static inline void make_bl(unsigned int *insn_addr, void *func)
441 {
442 unsigned long funcp = *((unsigned long *)func);
443 int offset = funcp - (unsigned long)insn_addr;
444
445 *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
446 flush_icache_range((unsigned long)insn_addr, 4+
447 (unsigned long)insn_addr);
448 }
449
450 static void __init htab_finish_init(void)
451 {
452 extern unsigned int *htab_call_hpte_insert1;
453 extern unsigned int *htab_call_hpte_insert2;
454 extern unsigned int *htab_call_hpte_remove;
455 extern unsigned int *htab_call_hpte_updatepp;
456
457 #ifdef CONFIG_PPC_HAS_HASH_64K
458 extern unsigned int *ht64_call_hpte_insert1;
459 extern unsigned int *ht64_call_hpte_insert2;
460 extern unsigned int *ht64_call_hpte_remove;
461 extern unsigned int *ht64_call_hpte_updatepp;
462
463 make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
464 make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
465 make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
466 make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
467 #endif /* CONFIG_PPC_HAS_HASH_64K */
468
469 make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
470 make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
471 make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
472 make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
473 }
474
475 void __init htab_initialize(void)
476 {
477 unsigned long table;
478 unsigned long pteg_count;
479 unsigned long mode_rw;
480 unsigned long base = 0, size = 0;
481 int i;
482
483 extern unsigned long tce_alloc_start, tce_alloc_end;
484
485 DBG(" -> htab_initialize()\n");
486
487 /* Initialize segment sizes */
488 htab_init_seg_sizes();
489
490 /* Initialize page sizes */
491 htab_init_page_sizes();
492
493 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
494 mmu_kernel_ssize = MMU_SEGSIZE_1T;
495 mmu_highuser_ssize = MMU_SEGSIZE_1T;
496 printk(KERN_INFO "Using 1TB segments\n");
497 }
498
499 /*
500 * Calculate the required size of the htab. We want the number of
501 * PTEGs to equal one half the number of real pages.
502 */
503 htab_size_bytes = htab_get_table_size();
504 pteg_count = htab_size_bytes >> 7;
505
506 htab_hash_mask = pteg_count - 1;
507
508 if (firmware_has_feature(FW_FEATURE_LPAR)) {
509 /* Using a hypervisor which owns the htab */
510 htab_address = NULL;
511 _SDR1 = 0;
512 } else {
513 /* Find storage for the HPT. Must be contiguous in
514 * the absolute address space.
515 */
516 table = lmb_alloc(htab_size_bytes, htab_size_bytes);
517
518 DBG("Hash table allocated at %lx, size: %lx\n", table,
519 htab_size_bytes);
520
521 htab_address = abs_to_virt(table);
522
523 /* htab absolute addr + encoded htabsize */
524 _SDR1 = table + __ilog2(pteg_count) - 11;
525
526 /* Initialize the HPT with no entries */
527 memset((void *)table, 0, htab_size_bytes);
528
529 /* Set SDR1 */
530 mtspr(SPRN_SDR1, _SDR1);
531 }
532
533 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
534
535 #ifdef CONFIG_DEBUG_PAGEALLOC
536 linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
537 linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
538 1, lmb.rmo_size));
539 memset(linear_map_hash_slots, 0, linear_map_hash_count);
540 #endif /* CONFIG_DEBUG_PAGEALLOC */
541
542 /* On U3 based machines, we need to reserve the DART area and
543 * _NOT_ map it to avoid cache paradoxes as it's remapped non
544 * cacheable later on
545 */
546
547 /* create bolted the linear mapping in the hash table */
548 for (i=0; i < lmb.memory.cnt; i++) {
549 base = (unsigned long)__va(lmb.memory.region[i].base);
550 size = lmb.memory.region[i].size;
551
552 DBG("creating mapping for region: %lx : %lx\n", base, size);
553
554 #ifdef CONFIG_U3_DART
555 /* Do not map the DART space. Fortunately, it will be aligned
556 * in such a way that it will not cross two lmb regions and
557 * will fit within a single 16Mb page.
558 * The DART space is assumed to be a full 16Mb region even if
559 * we only use 2Mb of that space. We will use more of it later
560 * for AGP GART. We have to use a full 16Mb large page.
561 */
562 DBG("DART base: %lx\n", dart_tablebase);
563
564 if (dart_tablebase != 0 && dart_tablebase >= base
565 && dart_tablebase < (base + size)) {
566 unsigned long dart_table_end = dart_tablebase + 16 * MB;
567 if (base != dart_tablebase)
568 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
569 __pa(base), mode_rw,
570 mmu_linear_psize,
571 mmu_kernel_ssize));
572 if ((base + size) > dart_table_end)
573 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
574 base + size,
575 __pa(dart_table_end),
576 mode_rw,
577 mmu_linear_psize,
578 mmu_kernel_ssize));
579 continue;
580 }
581 #endif /* CONFIG_U3_DART */
582 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
583 mode_rw, mmu_linear_psize, mmu_kernel_ssize));
584 }
585
586 /*
587 * If we have a memory_limit and we've allocated TCEs then we need to
588 * explicitly map the TCE area at the top of RAM. We also cope with the
589 * case that the TCEs start below memory_limit.
590 * tce_alloc_start/end are 16MB aligned so the mapping should work
591 * for either 4K or 16MB pages.
592 */
593 if (tce_alloc_start) {
594 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
595 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
596
597 if (base + size >= tce_alloc_start)
598 tce_alloc_start = base + size + 1;
599
600 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
601 __pa(tce_alloc_start), mode_rw,
602 mmu_linear_psize, mmu_kernel_ssize));
603 }
604
605 htab_finish_init();
606
607 DBG(" <- htab_initialize()\n");
608 }
609 #undef KB
610 #undef MB
611
612 void htab_initialize_secondary(void)
613 {
614 if (!firmware_has_feature(FW_FEATURE_LPAR))
615 mtspr(SPRN_SDR1, _SDR1);
616 }
617
618 /*
619 * Called by asm hashtable.S for doing lazy icache flush
620 */
621 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
622 {
623 struct page *page;
624
625 if (!pfn_valid(pte_pfn(pte)))
626 return pp;
627
628 page = pte_page(pte);
629
630 /* page is dirty */
631 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
632 if (trap == 0x400) {
633 __flush_dcache_icache(page_address(page));
634 set_bit(PG_arch_1, &page->flags);
635 } else
636 pp |= HPTE_R_N;
637 }
638 return pp;
639 }
640
641 /*
642 * Demote a segment to using 4k pages.
643 * For now this makes the whole process use 4k pages.
644 */
645 #ifdef CONFIG_PPC_64K_PAGES
646 static void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
647 {
648 if (mm->context.user_psize == MMU_PAGE_4K)
649 return;
650 slice_set_user_psize(mm, MMU_PAGE_4K);
651 #ifdef CONFIG_SPU_BASE
652 spu_flush_all_slbs(mm);
653 #endif
654 }
655 #endif /* CONFIG_PPC_64K_PAGES */
656
657 /* Result code is:
658 * 0 - handled
659 * 1 - normal page fault
660 * -1 - critical hash insertion error
661 */
662 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
663 {
664 void *pgdir;
665 unsigned long vsid;
666 struct mm_struct *mm;
667 pte_t *ptep;
668 cpumask_t tmp;
669 int rc, user_region = 0, local = 0;
670 int psize, ssize;
671
672 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
673 ea, access, trap);
674
675 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
676 DBG_LOW(" out of pgtable range !\n");
677 return 1;
678 }
679
680 /* Get region & vsid */
681 switch (REGION_ID(ea)) {
682 case USER_REGION_ID:
683 user_region = 1;
684 mm = current->mm;
685 if (! mm) {
686 DBG_LOW(" user region with no mm !\n");
687 return 1;
688 }
689 #ifdef CONFIG_PPC_MM_SLICES
690 psize = get_slice_psize(mm, ea);
691 #else
692 psize = mm->context.user_psize;
693 #endif
694 ssize = user_segment_size(ea);
695 vsid = get_vsid(mm->context.id, ea, ssize);
696 break;
697 case VMALLOC_REGION_ID:
698 mm = &init_mm;
699 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
700 if (ea < VMALLOC_END)
701 psize = mmu_vmalloc_psize;
702 else
703 psize = mmu_io_psize;
704 ssize = mmu_kernel_ssize;
705 break;
706 default:
707 /* Not a valid range
708 * Send the problem up to do_page_fault
709 */
710 return 1;
711 }
712 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
713
714 /* Get pgdir */
715 pgdir = mm->pgd;
716 if (pgdir == NULL)
717 return 1;
718
719 /* Check CPU locality */
720 tmp = cpumask_of_cpu(smp_processor_id());
721 if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
722 local = 1;
723
724 #ifdef CONFIG_HUGETLB_PAGE
725 /* Handle hugepage regions */
726 if (HPAGE_SHIFT && psize == mmu_huge_psize) {
727 DBG_LOW(" -> huge page !\n");
728 return hash_huge_page(mm, access, ea, vsid, local, trap);
729 }
730 #endif /* CONFIG_HUGETLB_PAGE */
731
732 #ifndef CONFIG_PPC_64K_PAGES
733 /* If we use 4K pages and our psize is not 4K, then we are hitting
734 * a special driver mapping, we need to align the address before
735 * we fetch the PTE
736 */
737 if (psize != MMU_PAGE_4K)
738 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
739 #endif /* CONFIG_PPC_64K_PAGES */
740
741 /* Get PTE and page size from page tables */
742 ptep = find_linux_pte(pgdir, ea);
743 if (ptep == NULL || !pte_present(*ptep)) {
744 DBG_LOW(" no PTE !\n");
745 return 1;
746 }
747
748 #ifndef CONFIG_PPC_64K_PAGES
749 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
750 #else
751 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
752 pte_val(*(ptep + PTRS_PER_PTE)));
753 #endif
754 /* Pre-check access permissions (will be re-checked atomically
755 * in __hash_page_XX but this pre-check is a fast path
756 */
757 if (access & ~pte_val(*ptep)) {
758 DBG_LOW(" no access !\n");
759 return 1;
760 }
761
762 /* Do actual hashing */
763 #ifdef CONFIG_PPC_64K_PAGES
764 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
765 if (pte_val(*ptep) & _PAGE_4K_PFN) {
766 demote_segment_4k(mm, ea);
767 psize = MMU_PAGE_4K;
768 }
769
770 /* If this PTE is non-cacheable and we have restrictions on
771 * using non cacheable large pages, then we switch to 4k
772 */
773 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
774 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
775 if (user_region) {
776 demote_segment_4k(mm, ea);
777 psize = MMU_PAGE_4K;
778 } else if (ea < VMALLOC_END) {
779 /*
780 * some driver did a non-cacheable mapping
781 * in vmalloc space, so switch vmalloc
782 * to 4k pages
783 */
784 printk(KERN_ALERT "Reducing vmalloc segment "
785 "to 4kB pages because of "
786 "non-cacheable mapping\n");
787 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
788 #ifdef CONFIG_SPU_BASE
789 spu_flush_all_slbs(mm);
790 #endif
791 }
792 }
793 if (user_region) {
794 if (psize != get_paca()->context.user_psize) {
795 get_paca()->context = mm->context;
796 slb_flush_and_rebolt();
797 }
798 } else if (get_paca()->vmalloc_sllp !=
799 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
800 get_paca()->vmalloc_sllp =
801 mmu_psize_defs[mmu_vmalloc_psize].sllp;
802 slb_vmalloc_update();
803 }
804 #endif /* CONFIG_PPC_64K_PAGES */
805
806 #ifdef CONFIG_PPC_HAS_HASH_64K
807 if (psize == MMU_PAGE_64K)
808 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
809 else
810 #endif /* CONFIG_PPC_HAS_HASH_64K */
811 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize);
812
813 #ifndef CONFIG_PPC_64K_PAGES
814 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
815 #else
816 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
817 pte_val(*(ptep + PTRS_PER_PTE)));
818 #endif
819 DBG_LOW(" -> rc=%d\n", rc);
820 return rc;
821 }
822 EXPORT_SYMBOL_GPL(hash_page);
823
824 void hash_preload(struct mm_struct *mm, unsigned long ea,
825 unsigned long access, unsigned long trap)
826 {
827 unsigned long vsid;
828 void *pgdir;
829 pte_t *ptep;
830 cpumask_t mask;
831 unsigned long flags;
832 int local = 0;
833 int ssize;
834
835 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
836
837 #ifdef CONFIG_PPC_MM_SLICES
838 /* We only prefault standard pages for now */
839 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
840 return;
841 #endif
842
843 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
844 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
845
846 /* Get Linux PTE if available */
847 pgdir = mm->pgd;
848 if (pgdir == NULL)
849 return;
850 ptep = find_linux_pte(pgdir, ea);
851 if (!ptep)
852 return;
853
854 #ifdef CONFIG_PPC_64K_PAGES
855 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
856 * a 64K kernel), then we don't preload, hash_page() will take
857 * care of it once we actually try to access the page.
858 * That way we don't have to duplicate all of the logic for segment
859 * page size demotion here
860 */
861 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
862 return;
863 #endif /* CONFIG_PPC_64K_PAGES */
864
865 /* Get VSID */
866 ssize = user_segment_size(ea);
867 vsid = get_vsid(mm->context.id, ea, ssize);
868
869 /* Hash doesn't like irqs */
870 local_irq_save(flags);
871
872 /* Is that local to this CPU ? */
873 mask = cpumask_of_cpu(smp_processor_id());
874 if (cpus_equal(mm->cpu_vm_mask, mask))
875 local = 1;
876
877 /* Hash it in */
878 #ifdef CONFIG_PPC_HAS_HASH_64K
879 if (mm->context.user_psize == MMU_PAGE_64K)
880 __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
881 else
882 #endif /* CONFIG_PPC_HAS_HASH_64K */
883 __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize);
884
885 local_irq_restore(flags);
886 }
887
888 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
889 * do not forget to update the assembly call site !
890 */
891 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
892 int local)
893 {
894 unsigned long hash, index, shift, hidx, slot;
895
896 DBG_LOW("flush_hash_page(va=%016x)\n", va);
897 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
898 hash = hpt_hash(va, shift, ssize);
899 hidx = __rpte_to_hidx(pte, index);
900 if (hidx & _PTEIDX_SECONDARY)
901 hash = ~hash;
902 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
903 slot += hidx & _PTEIDX_GROUP_IX;
904 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
905 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
906 } pte_iterate_hashed_end();
907 }
908
909 void flush_hash_range(unsigned long number, int local)
910 {
911 if (ppc_md.flush_hash_range)
912 ppc_md.flush_hash_range(number, local);
913 else {
914 int i;
915 struct ppc64_tlb_batch *batch =
916 &__get_cpu_var(ppc64_tlb_batch);
917
918 for (i = 0; i < number; i++)
919 flush_hash_page(batch->vaddr[i], batch->pte[i],
920 batch->psize, batch->ssize, local);
921 }
922 }
923
924 /*
925 * low_hash_fault is called when we the low level hash code failed
926 * to instert a PTE due to an hypervisor error
927 */
928 void low_hash_fault(struct pt_regs *regs, unsigned long address)
929 {
930 if (user_mode(regs)) {
931 siginfo_t info;
932
933 info.si_signo = SIGBUS;
934 info.si_errno = 0;
935 info.si_code = BUS_ADRERR;
936 info.si_addr = (void __user *)address;
937 force_sig_info(SIGBUS, &info, current);
938 return;
939 }
940 bad_page_fault(regs, address, SIGBUS);
941 }
942
943 #ifdef CONFIG_DEBUG_PAGEALLOC
944 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
945 {
946 unsigned long hash, hpteg;
947 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
948 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
949 unsigned long mode = _PAGE_ACCESSED | _PAGE_DIRTY |
950 _PAGE_COHERENT | PP_RWXX | HPTE_R_N;
951 int ret;
952
953 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
954 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
955
956 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
957 mode, HPTE_V_BOLTED,
958 mmu_linear_psize, mmu_kernel_ssize);
959 BUG_ON (ret < 0);
960 spin_lock(&linear_map_hash_lock);
961 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
962 linear_map_hash_slots[lmi] = ret | 0x80;
963 spin_unlock(&linear_map_hash_lock);
964 }
965
966 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
967 {
968 unsigned long hash, hidx, slot;
969 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
970 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
971
972 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
973 spin_lock(&linear_map_hash_lock);
974 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
975 hidx = linear_map_hash_slots[lmi] & 0x7f;
976 linear_map_hash_slots[lmi] = 0;
977 spin_unlock(&linear_map_hash_lock);
978 if (hidx & _PTEIDX_SECONDARY)
979 hash = ~hash;
980 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
981 slot += hidx & _PTEIDX_GROUP_IX;
982 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
983 }
984
985 void kernel_map_pages(struct page *page, int numpages, int enable)
986 {
987 unsigned long flags, vaddr, lmi;
988 int i;
989
990 local_irq_save(flags);
991 for (i = 0; i < numpages; i++, page++) {
992 vaddr = (unsigned long)page_address(page);
993 lmi = __pa(vaddr) >> PAGE_SHIFT;
994 if (lmi >= linear_map_hash_count)
995 continue;
996 if (enable)
997 kernel_map_linear_page(vaddr, lmi);
998 else
999 kernel_unmap_linear_page(vaddr, lmi);
1000 }
1001 local_irq_restore(flags);
1002 }
1003 #endif /* CONFIG_DEBUG_PAGEALLOC */