]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/powerpc/mm/hugetlbpage.c
Merge branch 'tip/perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <linux/moduleparam.h>
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/tlb.h>
22 #include <asm/setup.h>
23
24 #define PAGE_SHIFT_64K 16
25 #define PAGE_SHIFT_16M 24
26 #define PAGE_SHIFT_16G 34
27
28 unsigned int HPAGE_SHIFT;
29
30 /*
31 * Tracks gpages after the device tree is scanned and before the
32 * huge_boot_pages list is ready. On 64-bit implementations, this is
33 * just used to track 16G pages and so is a single array. 32-bit
34 * implementations may have more than one gpage size due to limitations
35 * of the memory allocators, so we need multiple arrays
36 */
37 #ifdef CONFIG_PPC64
38 #define MAX_NUMBER_GPAGES 1024
39 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
40 static unsigned nr_gpages;
41 #else
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #endif
49
50 static inline int shift_to_mmu_psize(unsigned int shift)
51 {
52 int psize;
53
54 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
55 if (mmu_psize_defs[psize].shift == shift)
56 return psize;
57 return -1;
58 }
59
60 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
61 {
62 if (mmu_psize_defs[mmu_psize].shift)
63 return mmu_psize_defs[mmu_psize].shift;
64 BUG();
65 }
66
67 #define hugepd_none(hpd) ((hpd).pd == 0)
68
69 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
70 {
71 pgd_t *pg;
72 pud_t *pu;
73 pmd_t *pm;
74 hugepd_t *hpdp = NULL;
75 unsigned pdshift = PGDIR_SHIFT;
76
77 if (shift)
78 *shift = 0;
79
80 pg = pgdir + pgd_index(ea);
81 if (is_hugepd(pg)) {
82 hpdp = (hugepd_t *)pg;
83 } else if (!pgd_none(*pg)) {
84 pdshift = PUD_SHIFT;
85 pu = pud_offset(pg, ea);
86 if (is_hugepd(pu))
87 hpdp = (hugepd_t *)pu;
88 else if (!pud_none(*pu)) {
89 pdshift = PMD_SHIFT;
90 pm = pmd_offset(pu, ea);
91 if (is_hugepd(pm))
92 hpdp = (hugepd_t *)pm;
93 else if (!pmd_none(*pm)) {
94 return pte_offset_kernel(pm, ea);
95 }
96 }
97 }
98
99 if (!hpdp)
100 return NULL;
101
102 if (shift)
103 *shift = hugepd_shift(*hpdp);
104 return hugepte_offset(hpdp, ea, pdshift);
105 }
106
107 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
108 {
109 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
110 }
111
112 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
113 unsigned long address, unsigned pdshift, unsigned pshift)
114 {
115 struct kmem_cache *cachep;
116 pte_t *new;
117
118 #ifdef CONFIG_PPC64
119 cachep = PGT_CACHE(pdshift - pshift);
120 #else
121 int i;
122 int num_hugepd = 1 << (pshift - pdshift);
123 cachep = hugepte_cache;
124 #endif
125
126 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
127
128 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
129 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
130
131 if (! new)
132 return -ENOMEM;
133
134 spin_lock(&mm->page_table_lock);
135 #ifdef CONFIG_PPC64
136 if (!hugepd_none(*hpdp))
137 kmem_cache_free(cachep, new);
138 else
139 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
140 #else
141 /*
142 * We have multiple higher-level entries that point to the same
143 * actual pte location. Fill in each as we go and backtrack on error.
144 * We need all of these so the DTLB pgtable walk code can find the
145 * right higher-level entry without knowing if it's a hugepage or not.
146 */
147 for (i = 0; i < num_hugepd; i++, hpdp++) {
148 if (unlikely(!hugepd_none(*hpdp)))
149 break;
150 else
151 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
152 }
153 /* If we bailed from the for loop early, an error occurred, clean up */
154 if (i < num_hugepd) {
155 for (i = i - 1 ; i >= 0; i--, hpdp--)
156 hpdp->pd = 0;
157 kmem_cache_free(cachep, new);
158 }
159 #endif
160 spin_unlock(&mm->page_table_lock);
161 return 0;
162 }
163
164 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
165 {
166 pgd_t *pg;
167 pud_t *pu;
168 pmd_t *pm;
169 hugepd_t *hpdp = NULL;
170 unsigned pshift = __ffs(sz);
171 unsigned pdshift = PGDIR_SHIFT;
172
173 addr &= ~(sz-1);
174
175 pg = pgd_offset(mm, addr);
176 if (pshift >= PUD_SHIFT) {
177 hpdp = (hugepd_t *)pg;
178 } else {
179 pdshift = PUD_SHIFT;
180 pu = pud_alloc(mm, pg, addr);
181 if (pshift >= PMD_SHIFT) {
182 hpdp = (hugepd_t *)pu;
183 } else {
184 pdshift = PMD_SHIFT;
185 pm = pmd_alloc(mm, pu, addr);
186 hpdp = (hugepd_t *)pm;
187 }
188 }
189
190 if (!hpdp)
191 return NULL;
192
193 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
194
195 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
196 return NULL;
197
198 return hugepte_offset(hpdp, addr, pdshift);
199 }
200
201 #ifdef CONFIG_PPC32
202 /* Build list of addresses of gigantic pages. This function is used in early
203 * boot before the buddy or bootmem allocator is setup.
204 */
205 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
206 {
207 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
208 int i;
209
210 if (addr == 0)
211 return;
212
213 gpage_freearray[idx].nr_gpages = number_of_pages;
214
215 for (i = 0; i < number_of_pages; i++) {
216 gpage_freearray[idx].gpage_list[i] = addr;
217 addr += page_size;
218 }
219 }
220
221 /*
222 * Moves the gigantic page addresses from the temporary list to the
223 * huge_boot_pages list.
224 */
225 int alloc_bootmem_huge_page(struct hstate *hstate)
226 {
227 struct huge_bootmem_page *m;
228 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
229 int nr_gpages = gpage_freearray[idx].nr_gpages;
230
231 if (nr_gpages == 0)
232 return 0;
233
234 #ifdef CONFIG_HIGHMEM
235 /*
236 * If gpages can be in highmem we can't use the trick of storing the
237 * data structure in the page; allocate space for this
238 */
239 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
240 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
241 #else
242 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
243 #endif
244
245 list_add(&m->list, &huge_boot_pages);
246 gpage_freearray[idx].nr_gpages = nr_gpages;
247 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
248 m->hstate = hstate;
249
250 return 1;
251 }
252 /*
253 * Scan the command line hugepagesz= options for gigantic pages; store those in
254 * a list that we use to allocate the memory once all options are parsed.
255 */
256
257 unsigned long gpage_npages[MMU_PAGE_COUNT];
258
259 static int __init do_gpage_early_setup(char *param, char *val)
260 {
261 static phys_addr_t size;
262 unsigned long npages;
263
264 /*
265 * The hugepagesz and hugepages cmdline options are interleaved. We
266 * use the size variable to keep track of whether or not this was done
267 * properly and skip over instances where it is incorrect. Other
268 * command-line parsing code will issue warnings, so we don't need to.
269 *
270 */
271 if ((strcmp(param, "default_hugepagesz") == 0) ||
272 (strcmp(param, "hugepagesz") == 0)) {
273 size = memparse(val, NULL);
274 } else if (strcmp(param, "hugepages") == 0) {
275 if (size != 0) {
276 if (sscanf(val, "%lu", &npages) <= 0)
277 npages = 0;
278 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
279 size = 0;
280 }
281 }
282 return 0;
283 }
284
285
286 /*
287 * This function allocates physical space for pages that are larger than the
288 * buddy allocator can handle. We want to allocate these in highmem because
289 * the amount of lowmem is limited. This means that this function MUST be
290 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
291 * allocate to grab highmem.
292 */
293 void __init reserve_hugetlb_gpages(void)
294 {
295 static __initdata char cmdline[COMMAND_LINE_SIZE];
296 phys_addr_t size, base;
297 int i;
298
299 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
300 parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
301
302 /*
303 * Walk gpage list in reverse, allocating larger page sizes first.
304 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
305 * When we reach the point in the list where pages are no longer
306 * considered gpages, we're done.
307 */
308 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
309 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
310 continue;
311 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
312 break;
313
314 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
315 base = memblock_alloc_base(size * gpage_npages[i], size,
316 MEMBLOCK_ALLOC_ANYWHERE);
317 add_gpage(base, size, gpage_npages[i]);
318 }
319 }
320
321 #else /* PPC64 */
322
323 /* Build list of addresses of gigantic pages. This function is used in early
324 * boot before the buddy or bootmem allocator is setup.
325 */
326 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
327 {
328 if (!addr)
329 return;
330 while (number_of_pages > 0) {
331 gpage_freearray[nr_gpages] = addr;
332 nr_gpages++;
333 number_of_pages--;
334 addr += page_size;
335 }
336 }
337
338 /* Moves the gigantic page addresses from the temporary list to the
339 * huge_boot_pages list.
340 */
341 int alloc_bootmem_huge_page(struct hstate *hstate)
342 {
343 struct huge_bootmem_page *m;
344 if (nr_gpages == 0)
345 return 0;
346 m = phys_to_virt(gpage_freearray[--nr_gpages]);
347 gpage_freearray[nr_gpages] = 0;
348 list_add(&m->list, &huge_boot_pages);
349 m->hstate = hstate;
350 return 1;
351 }
352 #endif
353
354 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
355 {
356 return 0;
357 }
358
359 #ifdef CONFIG_PPC32
360 #define HUGEPD_FREELIST_SIZE \
361 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
362
363 struct hugepd_freelist {
364 struct rcu_head rcu;
365 unsigned int index;
366 void *ptes[0];
367 };
368
369 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
370
371 static void hugepd_free_rcu_callback(struct rcu_head *head)
372 {
373 struct hugepd_freelist *batch =
374 container_of(head, struct hugepd_freelist, rcu);
375 unsigned int i;
376
377 for (i = 0; i < batch->index; i++)
378 kmem_cache_free(hugepte_cache, batch->ptes[i]);
379
380 free_page((unsigned long)batch);
381 }
382
383 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
384 {
385 struct hugepd_freelist **batchp;
386
387 batchp = &__get_cpu_var(hugepd_freelist_cur);
388
389 if (atomic_read(&tlb->mm->mm_users) < 2 ||
390 cpumask_equal(mm_cpumask(tlb->mm),
391 cpumask_of(smp_processor_id()))) {
392 kmem_cache_free(hugepte_cache, hugepte);
393 return;
394 }
395
396 if (*batchp == NULL) {
397 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
398 (*batchp)->index = 0;
399 }
400
401 (*batchp)->ptes[(*batchp)->index++] = hugepte;
402 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
403 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
404 *batchp = NULL;
405 }
406 }
407 #endif
408
409 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
410 unsigned long start, unsigned long end,
411 unsigned long floor, unsigned long ceiling)
412 {
413 pte_t *hugepte = hugepd_page(*hpdp);
414 int i;
415
416 unsigned long pdmask = ~((1UL << pdshift) - 1);
417 unsigned int num_hugepd = 1;
418
419 #ifdef CONFIG_PPC64
420 unsigned int shift = hugepd_shift(*hpdp);
421 #else
422 /* Note: On 32-bit the hpdp may be the first of several */
423 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
424 #endif
425
426 start &= pdmask;
427 if (start < floor)
428 return;
429 if (ceiling) {
430 ceiling &= pdmask;
431 if (! ceiling)
432 return;
433 }
434 if (end - 1 > ceiling - 1)
435 return;
436
437 for (i = 0; i < num_hugepd; i++, hpdp++)
438 hpdp->pd = 0;
439
440 tlb->need_flush = 1;
441 #ifdef CONFIG_PPC64
442 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
443 #else
444 hugepd_free(tlb, hugepte);
445 #endif
446 }
447
448 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
449 unsigned long addr, unsigned long end,
450 unsigned long floor, unsigned long ceiling)
451 {
452 pmd_t *pmd;
453 unsigned long next;
454 unsigned long start;
455
456 start = addr;
457 pmd = pmd_offset(pud, addr);
458 do {
459 next = pmd_addr_end(addr, end);
460 if (pmd_none(*pmd))
461 continue;
462 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
463 addr, next, floor, ceiling);
464 } while (pmd++, addr = next, addr != end);
465
466 start &= PUD_MASK;
467 if (start < floor)
468 return;
469 if (ceiling) {
470 ceiling &= PUD_MASK;
471 if (!ceiling)
472 return;
473 }
474 if (end - 1 > ceiling - 1)
475 return;
476
477 pmd = pmd_offset(pud, start);
478 pud_clear(pud);
479 pmd_free_tlb(tlb, pmd, start);
480 }
481
482 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
483 unsigned long addr, unsigned long end,
484 unsigned long floor, unsigned long ceiling)
485 {
486 pud_t *pud;
487 unsigned long next;
488 unsigned long start;
489
490 start = addr;
491 pud = pud_offset(pgd, addr);
492 do {
493 next = pud_addr_end(addr, end);
494 if (!is_hugepd(pud)) {
495 if (pud_none_or_clear_bad(pud))
496 continue;
497 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
498 ceiling);
499 } else {
500 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
501 addr, next, floor, ceiling);
502 }
503 } while (pud++, addr = next, addr != end);
504
505 start &= PGDIR_MASK;
506 if (start < floor)
507 return;
508 if (ceiling) {
509 ceiling &= PGDIR_MASK;
510 if (!ceiling)
511 return;
512 }
513 if (end - 1 > ceiling - 1)
514 return;
515
516 pud = pud_offset(pgd, start);
517 pgd_clear(pgd);
518 pud_free_tlb(tlb, pud, start);
519 }
520
521 /*
522 * This function frees user-level page tables of a process.
523 *
524 * Must be called with pagetable lock held.
525 */
526 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
527 unsigned long addr, unsigned long end,
528 unsigned long floor, unsigned long ceiling)
529 {
530 pgd_t *pgd;
531 unsigned long next;
532
533 /*
534 * Because there are a number of different possible pagetable
535 * layouts for hugepage ranges, we limit knowledge of how
536 * things should be laid out to the allocation path
537 * (huge_pte_alloc(), above). Everything else works out the
538 * structure as it goes from information in the hugepd
539 * pointers. That means that we can't here use the
540 * optimization used in the normal page free_pgd_range(), of
541 * checking whether we're actually covering a large enough
542 * range to have to do anything at the top level of the walk
543 * instead of at the bottom.
544 *
545 * To make sense of this, you should probably go read the big
546 * block comment at the top of the normal free_pgd_range(),
547 * too.
548 */
549
550 do {
551 next = pgd_addr_end(addr, end);
552 pgd = pgd_offset(tlb->mm, addr);
553 if (!is_hugepd(pgd)) {
554 if (pgd_none_or_clear_bad(pgd))
555 continue;
556 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
557 } else {
558 #ifdef CONFIG_PPC32
559 /*
560 * Increment next by the size of the huge mapping since
561 * on 32-bit there may be more than one entry at the pgd
562 * level for a single hugepage, but all of them point to
563 * the same kmem cache that holds the hugepte.
564 */
565 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
566 #endif
567 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
568 addr, next, floor, ceiling);
569 }
570 } while (addr = next, addr != end);
571 }
572
573 struct page *
574 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
575 {
576 pte_t *ptep;
577 struct page *page;
578 unsigned shift;
579 unsigned long mask;
580
581 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
582
583 /* Verify it is a huge page else bail. */
584 if (!ptep || !shift)
585 return ERR_PTR(-EINVAL);
586
587 mask = (1UL << shift) - 1;
588 page = pte_page(*ptep);
589 if (page)
590 page += (address & mask) / PAGE_SIZE;
591
592 return page;
593 }
594
595 int pmd_huge(pmd_t pmd)
596 {
597 return 0;
598 }
599
600 int pud_huge(pud_t pud)
601 {
602 return 0;
603 }
604
605 struct page *
606 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
607 pmd_t *pmd, int write)
608 {
609 BUG();
610 return NULL;
611 }
612
613 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
614 unsigned long end, int write, struct page **pages, int *nr)
615 {
616 unsigned long mask;
617 unsigned long pte_end;
618 struct page *head, *page, *tail;
619 pte_t pte;
620 int refs;
621
622 pte_end = (addr + sz) & ~(sz-1);
623 if (pte_end < end)
624 end = pte_end;
625
626 pte = *ptep;
627 mask = _PAGE_PRESENT | _PAGE_USER;
628 if (write)
629 mask |= _PAGE_RW;
630
631 if ((pte_val(pte) & mask) != mask)
632 return 0;
633
634 /* hugepages are never "special" */
635 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
636
637 refs = 0;
638 head = pte_page(pte);
639
640 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
641 tail = page;
642 do {
643 VM_BUG_ON(compound_head(page) != head);
644 pages[*nr] = page;
645 (*nr)++;
646 page++;
647 refs++;
648 } while (addr += PAGE_SIZE, addr != end);
649
650 if (!page_cache_add_speculative(head, refs)) {
651 *nr -= refs;
652 return 0;
653 }
654
655 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
656 /* Could be optimized better */
657 *nr -= refs;
658 while (refs--)
659 put_page(head);
660 return 0;
661 }
662
663 /*
664 * Any tail page need their mapcount reference taken before we
665 * return.
666 */
667 while (refs--) {
668 if (PageTail(tail))
669 get_huge_page_tail(tail);
670 tail++;
671 }
672
673 return 1;
674 }
675
676 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
677 unsigned long sz)
678 {
679 unsigned long __boundary = (addr + sz) & ~(sz-1);
680 return (__boundary - 1 < end - 1) ? __boundary : end;
681 }
682
683 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
684 unsigned long addr, unsigned long end,
685 int write, struct page **pages, int *nr)
686 {
687 pte_t *ptep;
688 unsigned long sz = 1UL << hugepd_shift(*hugepd);
689 unsigned long next;
690
691 ptep = hugepte_offset(hugepd, addr, pdshift);
692 do {
693 next = hugepte_addr_end(addr, end, sz);
694 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
695 return 0;
696 } while (ptep++, addr = next, addr != end);
697
698 return 1;
699 }
700
701 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
702 unsigned long len, unsigned long pgoff,
703 unsigned long flags)
704 {
705 #ifdef CONFIG_PPC_MM_SLICES
706 struct hstate *hstate = hstate_file(file);
707 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
708
709 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
710 #else
711 return get_unmapped_area(file, addr, len, pgoff, flags);
712 #endif
713 }
714
715 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
716 {
717 #ifdef CONFIG_PPC_MM_SLICES
718 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
719
720 return 1UL << mmu_psize_to_shift(psize);
721 #else
722 if (!is_vm_hugetlb_page(vma))
723 return PAGE_SIZE;
724
725 return huge_page_size(hstate_vma(vma));
726 #endif
727 }
728
729 static inline bool is_power_of_4(unsigned long x)
730 {
731 if (is_power_of_2(x))
732 return (__ilog2(x) % 2) ? false : true;
733 return false;
734 }
735
736 static int __init add_huge_page_size(unsigned long long size)
737 {
738 int shift = __ffs(size);
739 int mmu_psize;
740
741 /* Check that it is a page size supported by the hardware and
742 * that it fits within pagetable and slice limits. */
743 #ifdef CONFIG_PPC_FSL_BOOK3E
744 if ((size < PAGE_SIZE) || !is_power_of_4(size))
745 return -EINVAL;
746 #else
747 if (!is_power_of_2(size)
748 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
749 return -EINVAL;
750 #endif
751
752 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
753 return -EINVAL;
754
755 #ifdef CONFIG_SPU_FS_64K_LS
756 /* Disable support for 64K huge pages when 64K SPU local store
757 * support is enabled as the current implementation conflicts.
758 */
759 if (shift == PAGE_SHIFT_64K)
760 return -EINVAL;
761 #endif /* CONFIG_SPU_FS_64K_LS */
762
763 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
764
765 /* Return if huge page size has already been setup */
766 if (size_to_hstate(size))
767 return 0;
768
769 hugetlb_add_hstate(shift - PAGE_SHIFT);
770
771 return 0;
772 }
773
774 static int __init hugepage_setup_sz(char *str)
775 {
776 unsigned long long size;
777
778 size = memparse(str, &str);
779
780 if (add_huge_page_size(size) != 0)
781 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
782
783 return 1;
784 }
785 __setup("hugepagesz=", hugepage_setup_sz);
786
787 #ifdef CONFIG_FSL_BOOKE
788 struct kmem_cache *hugepte_cache;
789 static int __init hugetlbpage_init(void)
790 {
791 int psize;
792
793 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
794 unsigned shift;
795
796 if (!mmu_psize_defs[psize].shift)
797 continue;
798
799 shift = mmu_psize_to_shift(psize);
800
801 /* Don't treat normal page sizes as huge... */
802 if (shift != PAGE_SHIFT)
803 if (add_huge_page_size(1ULL << shift) < 0)
804 continue;
805 }
806
807 /*
808 * Create a kmem cache for hugeptes. The bottom bits in the pte have
809 * size information encoded in them, so align them to allow this
810 */
811 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
812 HUGEPD_SHIFT_MASK + 1, 0, NULL);
813 if (hugepte_cache == NULL)
814 panic("%s: Unable to create kmem cache for hugeptes\n",
815 __func__);
816
817 /* Default hpage size = 4M */
818 if (mmu_psize_defs[MMU_PAGE_4M].shift)
819 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
820 else
821 panic("%s: Unable to set default huge page size\n", __func__);
822
823
824 return 0;
825 }
826 #else
827 static int __init hugetlbpage_init(void)
828 {
829 int psize;
830
831 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
832 return -ENODEV;
833
834 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
835 unsigned shift;
836 unsigned pdshift;
837
838 if (!mmu_psize_defs[psize].shift)
839 continue;
840
841 shift = mmu_psize_to_shift(psize);
842
843 if (add_huge_page_size(1ULL << shift) < 0)
844 continue;
845
846 if (shift < PMD_SHIFT)
847 pdshift = PMD_SHIFT;
848 else if (shift < PUD_SHIFT)
849 pdshift = PUD_SHIFT;
850 else
851 pdshift = PGDIR_SHIFT;
852
853 pgtable_cache_add(pdshift - shift, NULL);
854 if (!PGT_CACHE(pdshift - shift))
855 panic("hugetlbpage_init(): could not create "
856 "pgtable cache for %d bit pagesize\n", shift);
857 }
858
859 /* Set default large page size. Currently, we pick 16M or 1M
860 * depending on what is available
861 */
862 if (mmu_psize_defs[MMU_PAGE_16M].shift)
863 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
864 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
865 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
866
867 return 0;
868 }
869 #endif
870 module_init(hugetlbpage_init);
871
872 void flush_dcache_icache_hugepage(struct page *page)
873 {
874 int i;
875 void *start;
876
877 BUG_ON(!PageCompound(page));
878
879 for (i = 0; i < (1UL << compound_order(page)); i++) {
880 if (!PageHighMem(page)) {
881 __flush_dcache_icache(page_address(page+i));
882 } else {
883 start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
884 __flush_dcache_icache(start);
885 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
886 }
887 }
888 }