]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/mm/hugetlbpage.c
mm: account pud page tables
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28
29
30 #ifdef CONFIG_HUGETLB_PAGE
31
32 #define PAGE_SHIFT_64K 16
33 #define PAGE_SHIFT_512K 19
34 #define PAGE_SHIFT_8M 23
35 #define PAGE_SHIFT_16M 24
36 #define PAGE_SHIFT_16G 34
37
38 unsigned int HPAGE_SHIFT;
39 EXPORT_SYMBOL(HPAGE_SHIFT);
40
41 #define hugepd_none(hpd) (hpd_val(hpd) == 0)
42
43 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
44 {
45 /*
46 * Only called for hugetlbfs pages, hence can ignore THP and the
47 * irq disabled walk.
48 */
49 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
50 }
51
52 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
53 unsigned long address, unsigned pdshift, unsigned pshift)
54 {
55 struct kmem_cache *cachep;
56 pte_t *new;
57 int i;
58 int num_hugepd;
59
60 if (pshift >= pdshift) {
61 cachep = hugepte_cache;
62 num_hugepd = 1 << (pshift - pdshift);
63 } else {
64 cachep = PGT_CACHE(pdshift - pshift);
65 num_hugepd = 1;
66 }
67
68 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
69
70 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
71 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
72
73 if (! new)
74 return -ENOMEM;
75
76 /*
77 * Make sure other cpus find the hugepd set only after a
78 * properly initialized page table is visible to them.
79 * For more details look for comment in __pte_alloc().
80 */
81 smp_wmb();
82
83 spin_lock(&mm->page_table_lock);
84
85 /*
86 * We have multiple higher-level entries that point to the same
87 * actual pte location. Fill in each as we go and backtrack on error.
88 * We need all of these so the DTLB pgtable walk code can find the
89 * right higher-level entry without knowing if it's a hugepage or not.
90 */
91 for (i = 0; i < num_hugepd; i++, hpdp++) {
92 if (unlikely(!hugepd_none(*hpdp)))
93 break;
94 else {
95 #ifdef CONFIG_PPC_BOOK3S_64
96 *hpdp = __hugepd(__pa(new) |
97 (shift_to_mmu_psize(pshift) << 2));
98 #elif defined(CONFIG_PPC_8xx)
99 *hpdp = __hugepd(__pa(new) |
100 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
101 _PMD_PAGE_512K) | _PMD_PRESENT);
102 #else
103 /* We use the old format for PPC_FSL_BOOK3E */
104 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
105 #endif
106 }
107 }
108 /* If we bailed from the for loop early, an error occurred, clean up */
109 if (i < num_hugepd) {
110 for (i = i - 1 ; i >= 0; i--, hpdp--)
111 *hpdp = __hugepd(0);
112 kmem_cache_free(cachep, new);
113 }
114 spin_unlock(&mm->page_table_lock);
115 return 0;
116 }
117
118 /*
119 * These macros define how to determine which level of the page table holds
120 * the hpdp.
121 */
122 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
123 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
124 #define HUGEPD_PUD_SHIFT PUD_SHIFT
125 #else
126 #define HUGEPD_PGD_SHIFT PUD_SHIFT
127 #define HUGEPD_PUD_SHIFT PMD_SHIFT
128 #endif
129
130 /*
131 * At this point we do the placement change only for BOOK3S 64. This would
132 * possibly work on other subarchs.
133 */
134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
135 {
136 pgd_t *pg;
137 pud_t *pu;
138 pmd_t *pm;
139 hugepd_t *hpdp = NULL;
140 unsigned pshift = __ffs(sz);
141 unsigned pdshift = PGDIR_SHIFT;
142
143 addr &= ~(sz-1);
144 pg = pgd_offset(mm, addr);
145
146 #ifdef CONFIG_PPC_BOOK3S_64
147 if (pshift == PGDIR_SHIFT)
148 /* 16GB huge page */
149 return (pte_t *) pg;
150 else if (pshift > PUD_SHIFT)
151 /*
152 * We need to use hugepd table
153 */
154 hpdp = (hugepd_t *)pg;
155 else {
156 pdshift = PUD_SHIFT;
157 pu = pud_alloc(mm, pg, addr);
158 if (pshift == PUD_SHIFT)
159 return (pte_t *)pu;
160 else if (pshift > PMD_SHIFT)
161 hpdp = (hugepd_t *)pu;
162 else {
163 pdshift = PMD_SHIFT;
164 pm = pmd_alloc(mm, pu, addr);
165 if (pshift == PMD_SHIFT)
166 /* 16MB hugepage */
167 return (pte_t *)pm;
168 else
169 hpdp = (hugepd_t *)pm;
170 }
171 }
172 #else
173 if (pshift >= HUGEPD_PGD_SHIFT) {
174 hpdp = (hugepd_t *)pg;
175 } else {
176 pdshift = PUD_SHIFT;
177 pu = pud_alloc(mm, pg, addr);
178 if (pshift >= HUGEPD_PUD_SHIFT) {
179 hpdp = (hugepd_t *)pu;
180 } else {
181 pdshift = PMD_SHIFT;
182 pm = pmd_alloc(mm, pu, addr);
183 hpdp = (hugepd_t *)pm;
184 }
185 }
186 #endif
187 if (!hpdp)
188 return NULL;
189
190 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
191
192 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
193 return NULL;
194
195 return hugepte_offset(*hpdp, addr, pdshift);
196 }
197
198 #ifdef CONFIG_PPC_BOOK3S_64
199 /*
200 * Tracks gpages after the device tree is scanned and before the
201 * huge_boot_pages list is ready on pseries.
202 */
203 #define MAX_NUMBER_GPAGES 1024
204 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
205 __initdata static unsigned nr_gpages;
206
207 /*
208 * Build list of addresses of gigantic pages. This function is used in early
209 * boot before the buddy allocator is setup.
210 */
211 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
212 {
213 if (!addr)
214 return;
215 while (number_of_pages > 0) {
216 gpage_freearray[nr_gpages] = addr;
217 nr_gpages++;
218 number_of_pages--;
219 addr += page_size;
220 }
221 }
222
223 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
224 {
225 struct huge_bootmem_page *m;
226 if (nr_gpages == 0)
227 return 0;
228 m = phys_to_virt(gpage_freearray[--nr_gpages]);
229 gpage_freearray[nr_gpages] = 0;
230 list_add(&m->list, &huge_boot_pages);
231 m->hstate = hstate;
232 return 1;
233 }
234 #endif
235
236
237 int __init alloc_bootmem_huge_page(struct hstate *h)
238 {
239
240 #ifdef CONFIG_PPC_BOOK3S_64
241 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
242 return pseries_alloc_bootmem_huge_page(h);
243 #endif
244 return __alloc_bootmem_huge_page(h);
245 }
246
247 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
248 #define HUGEPD_FREELIST_SIZE \
249 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
250
251 struct hugepd_freelist {
252 struct rcu_head rcu;
253 unsigned int index;
254 void *ptes[0];
255 };
256
257 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
258
259 static void hugepd_free_rcu_callback(struct rcu_head *head)
260 {
261 struct hugepd_freelist *batch =
262 container_of(head, struct hugepd_freelist, rcu);
263 unsigned int i;
264
265 for (i = 0; i < batch->index; i++)
266 kmem_cache_free(hugepte_cache, batch->ptes[i]);
267
268 free_page((unsigned long)batch);
269 }
270
271 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
272 {
273 struct hugepd_freelist **batchp;
274
275 batchp = &get_cpu_var(hugepd_freelist_cur);
276
277 if (atomic_read(&tlb->mm->mm_users) < 2 ||
278 mm_is_thread_local(tlb->mm)) {
279 kmem_cache_free(hugepte_cache, hugepte);
280 put_cpu_var(hugepd_freelist_cur);
281 return;
282 }
283
284 if (*batchp == NULL) {
285 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
286 (*batchp)->index = 0;
287 }
288
289 (*batchp)->ptes[(*batchp)->index++] = hugepte;
290 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
291 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
292 *batchp = NULL;
293 }
294 put_cpu_var(hugepd_freelist_cur);
295 }
296 #else
297 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
298 #endif
299
300 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
301 unsigned long start, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
303 {
304 pte_t *hugepte = hugepd_page(*hpdp);
305 int i;
306
307 unsigned long pdmask = ~((1UL << pdshift) - 1);
308 unsigned int num_hugepd = 1;
309 unsigned int shift = hugepd_shift(*hpdp);
310
311 /* Note: On fsl the hpdp may be the first of several */
312 if (shift > pdshift)
313 num_hugepd = 1 << (shift - pdshift);
314
315 start &= pdmask;
316 if (start < floor)
317 return;
318 if (ceiling) {
319 ceiling &= pdmask;
320 if (! ceiling)
321 return;
322 }
323 if (end - 1 > ceiling - 1)
324 return;
325
326 for (i = 0; i < num_hugepd; i++, hpdp++)
327 *hpdp = __hugepd(0);
328
329 if (shift >= pdshift)
330 hugepd_free(tlb, hugepte);
331 else
332 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
333 }
334
335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
336 unsigned long addr, unsigned long end,
337 unsigned long floor, unsigned long ceiling)
338 {
339 pmd_t *pmd;
340 unsigned long next;
341 unsigned long start;
342
343 start = addr;
344 do {
345 unsigned long more;
346
347 pmd = pmd_offset(pud, addr);
348 next = pmd_addr_end(addr, end);
349 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
350 /*
351 * if it is not hugepd pointer, we should already find
352 * it cleared.
353 */
354 WARN_ON(!pmd_none_or_clear_bad(pmd));
355 continue;
356 }
357 /*
358 * Increment next by the size of the huge mapping since
359 * there may be more than one entry at this level for a
360 * single hugepage, but all of them point to
361 * the same kmem cache that holds the hugepte.
362 */
363 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
364 if (more > next)
365 next = more;
366
367 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
368 addr, next, floor, ceiling);
369 } while (addr = next, addr != end);
370
371 start &= PUD_MASK;
372 if (start < floor)
373 return;
374 if (ceiling) {
375 ceiling &= PUD_MASK;
376 if (!ceiling)
377 return;
378 }
379 if (end - 1 > ceiling - 1)
380 return;
381
382 pmd = pmd_offset(pud, start);
383 pud_clear(pud);
384 pmd_free_tlb(tlb, pmd, start);
385 mm_dec_nr_pmds(tlb->mm);
386 }
387
388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
389 unsigned long addr, unsigned long end,
390 unsigned long floor, unsigned long ceiling)
391 {
392 pud_t *pud;
393 unsigned long next;
394 unsigned long start;
395
396 start = addr;
397 do {
398 pud = pud_offset(pgd, addr);
399 next = pud_addr_end(addr, end);
400 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
401 if (pud_none_or_clear_bad(pud))
402 continue;
403 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
404 ceiling);
405 } else {
406 unsigned long more;
407 /*
408 * Increment next by the size of the huge mapping since
409 * there may be more than one entry at this level for a
410 * single hugepage, but all of them point to
411 * the same kmem cache that holds the hugepte.
412 */
413 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
414 if (more > next)
415 next = more;
416
417 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
418 addr, next, floor, ceiling);
419 }
420 } while (addr = next, addr != end);
421
422 start &= PGDIR_MASK;
423 if (start < floor)
424 return;
425 if (ceiling) {
426 ceiling &= PGDIR_MASK;
427 if (!ceiling)
428 return;
429 }
430 if (end - 1 > ceiling - 1)
431 return;
432
433 pud = pud_offset(pgd, start);
434 pgd_clear(pgd);
435 pud_free_tlb(tlb, pud, start);
436 mm_dec_nr_puds(tlb->mm);
437 }
438
439 /*
440 * This function frees user-level page tables of a process.
441 */
442 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
443 unsigned long addr, unsigned long end,
444 unsigned long floor, unsigned long ceiling)
445 {
446 pgd_t *pgd;
447 unsigned long next;
448
449 /*
450 * Because there are a number of different possible pagetable
451 * layouts for hugepage ranges, we limit knowledge of how
452 * things should be laid out to the allocation path
453 * (huge_pte_alloc(), above). Everything else works out the
454 * structure as it goes from information in the hugepd
455 * pointers. That means that we can't here use the
456 * optimization used in the normal page free_pgd_range(), of
457 * checking whether we're actually covering a large enough
458 * range to have to do anything at the top level of the walk
459 * instead of at the bottom.
460 *
461 * To make sense of this, you should probably go read the big
462 * block comment at the top of the normal free_pgd_range(),
463 * too.
464 */
465
466 do {
467 next = pgd_addr_end(addr, end);
468 pgd = pgd_offset(tlb->mm, addr);
469 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
470 if (pgd_none_or_clear_bad(pgd))
471 continue;
472 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
473 } else {
474 unsigned long more;
475 /*
476 * Increment next by the size of the huge mapping since
477 * there may be more than one entry at the pgd level
478 * for a single hugepage, but all of them point to the
479 * same kmem cache that holds the hugepte.
480 */
481 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
482 if (more > next)
483 next = more;
484
485 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
486 addr, next, floor, ceiling);
487 }
488 } while (addr = next, addr != end);
489 }
490
491 struct page *follow_huge_pd(struct vm_area_struct *vma,
492 unsigned long address, hugepd_t hpd,
493 int flags, int pdshift)
494 {
495 pte_t *ptep;
496 spinlock_t *ptl;
497 struct page *page = NULL;
498 unsigned long mask;
499 int shift = hugepd_shift(hpd);
500 struct mm_struct *mm = vma->vm_mm;
501
502 retry:
503 ptl = &mm->page_table_lock;
504 spin_lock(ptl);
505
506 ptep = hugepte_offset(hpd, address, pdshift);
507 if (pte_present(*ptep)) {
508 mask = (1UL << shift) - 1;
509 page = pte_page(*ptep);
510 page += ((address & mask) >> PAGE_SHIFT);
511 if (flags & FOLL_GET)
512 get_page(page);
513 } else {
514 if (is_hugetlb_entry_migration(*ptep)) {
515 spin_unlock(ptl);
516 __migration_entry_wait(mm, ptep, ptl);
517 goto retry;
518 }
519 }
520 spin_unlock(ptl);
521 return page;
522 }
523
524 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
525 unsigned long sz)
526 {
527 unsigned long __boundary = (addr + sz) & ~(sz-1);
528 return (__boundary - 1 < end - 1) ? __boundary : end;
529 }
530
531 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
532 unsigned long end, int write, struct page **pages, int *nr)
533 {
534 pte_t *ptep;
535 unsigned long sz = 1UL << hugepd_shift(hugepd);
536 unsigned long next;
537
538 ptep = hugepte_offset(hugepd, addr, pdshift);
539 do {
540 next = hugepte_addr_end(addr, end, sz);
541 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
542 return 0;
543 } while (ptep++, addr = next, addr != end);
544
545 return 1;
546 }
547
548 #ifdef CONFIG_PPC_MM_SLICES
549 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
550 unsigned long len, unsigned long pgoff,
551 unsigned long flags)
552 {
553 struct hstate *hstate = hstate_file(file);
554 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
555
556 if (radix_enabled())
557 return radix__hugetlb_get_unmapped_area(file, addr, len,
558 pgoff, flags);
559 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
560 }
561 #endif
562
563 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
564 {
565 #ifdef CONFIG_PPC_MM_SLICES
566 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
567 /* With radix we don't use slice, so derive it from vma*/
568 if (!radix_enabled())
569 return 1UL << mmu_psize_to_shift(psize);
570 #endif
571 if (!is_vm_hugetlb_page(vma))
572 return PAGE_SIZE;
573
574 return huge_page_size(hstate_vma(vma));
575 }
576
577 static inline bool is_power_of_4(unsigned long x)
578 {
579 if (is_power_of_2(x))
580 return (__ilog2(x) % 2) ? false : true;
581 return false;
582 }
583
584 static int __init add_huge_page_size(unsigned long long size)
585 {
586 int shift = __ffs(size);
587 int mmu_psize;
588
589 /* Check that it is a page size supported by the hardware and
590 * that it fits within pagetable and slice limits. */
591 if (size <= PAGE_SIZE)
592 return -EINVAL;
593 #if defined(CONFIG_PPC_FSL_BOOK3E)
594 if (!is_power_of_4(size))
595 return -EINVAL;
596 #elif !defined(CONFIG_PPC_8xx)
597 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
598 return -EINVAL;
599 #endif
600
601 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
602 return -EINVAL;
603
604 #ifdef CONFIG_PPC_BOOK3S_64
605 /*
606 * We need to make sure that for different page sizes reported by
607 * firmware we only add hugetlb support for page sizes that can be
608 * supported by linux page table layout.
609 * For now we have
610 * Radix: 2M
611 * Hash: 16M and 16G
612 */
613 if (radix_enabled()) {
614 if (mmu_psize != MMU_PAGE_2M) {
615 if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
616 (mmu_psize != MMU_PAGE_1G))
617 return -EINVAL;
618 }
619 } else {
620 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
621 return -EINVAL;
622 }
623 #endif
624
625 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
626
627 /* Return if huge page size has already been setup */
628 if (size_to_hstate(size))
629 return 0;
630
631 hugetlb_add_hstate(shift - PAGE_SHIFT);
632
633 return 0;
634 }
635
636 static int __init hugepage_setup_sz(char *str)
637 {
638 unsigned long long size;
639
640 size = memparse(str, &str);
641
642 if (add_huge_page_size(size) != 0) {
643 hugetlb_bad_size();
644 pr_err("Invalid huge page size specified(%llu)\n", size);
645 }
646
647 return 1;
648 }
649 __setup("hugepagesz=", hugepage_setup_sz);
650
651 struct kmem_cache *hugepte_cache;
652 static int __init hugetlbpage_init(void)
653 {
654 int psize;
655
656 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
657 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
658 return -ENODEV;
659 #endif
660 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
661 unsigned shift;
662 unsigned pdshift;
663
664 if (!mmu_psize_defs[psize].shift)
665 continue;
666
667 shift = mmu_psize_to_shift(psize);
668
669 if (add_huge_page_size(1ULL << shift) < 0)
670 continue;
671
672 if (shift < HUGEPD_PUD_SHIFT)
673 pdshift = PMD_SHIFT;
674 else if (shift < HUGEPD_PGD_SHIFT)
675 pdshift = PUD_SHIFT;
676 else
677 pdshift = PGDIR_SHIFT;
678 /*
679 * if we have pdshift and shift value same, we don't
680 * use pgt cache for hugepd.
681 */
682 if (pdshift > shift)
683 pgtable_cache_add(pdshift - shift, NULL);
684 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
685 else if (!hugepte_cache) {
686 /*
687 * Create a kmem cache for hugeptes. The bottom bits in
688 * the pte have size information encoded in them, so
689 * align them to allow this
690 */
691 hugepte_cache = kmem_cache_create("hugepte-cache",
692 sizeof(pte_t),
693 HUGEPD_SHIFT_MASK + 1,
694 0, NULL);
695 if (hugepte_cache == NULL)
696 panic("%s: Unable to create kmem cache "
697 "for hugeptes\n", __func__);
698
699 }
700 #endif
701 }
702
703 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
704 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
705 if (mmu_psize_defs[MMU_PAGE_4M].shift)
706 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
707 else if (mmu_psize_defs[MMU_PAGE_512K].shift)
708 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
709 #else
710 /* Set default large page size. Currently, we pick 16M or 1M
711 * depending on what is available
712 */
713 if (mmu_psize_defs[MMU_PAGE_16M].shift)
714 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
715 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
716 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
717 else if (mmu_psize_defs[MMU_PAGE_2M].shift)
718 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
719 #endif
720 return 0;
721 }
722
723 arch_initcall(hugetlbpage_init);
724
725 void flush_dcache_icache_hugepage(struct page *page)
726 {
727 int i;
728 void *start;
729
730 BUG_ON(!PageCompound(page));
731
732 for (i = 0; i < (1UL << compound_order(page)); i++) {
733 if (!PageHighMem(page)) {
734 __flush_dcache_icache(page_address(page+i));
735 } else {
736 start = kmap_atomic(page+i);
737 __flush_dcache_icache(start);
738 kunmap_atomic(start);
739 }
740 }
741 }
742
743 #endif /* CONFIG_HUGETLB_PAGE */
744
745 /*
746 * We have 4 cases for pgds and pmds:
747 * (1) invalid (all zeroes)
748 * (2) pointer to next table, as normal; bottom 6 bits == 0
749 * (3) leaf pte for huge page _PAGE_PTE set
750 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
751 *
752 * So long as we atomically load page table pointers we are safe against teardown,
753 * we can follow the address down to the the page and take a ref on it.
754 * This function need to be called with interrupts disabled. We use this variant
755 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
756 */
757 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
758 bool *is_thp, unsigned *hpage_shift)
759 {
760 pgd_t pgd, *pgdp;
761 pud_t pud, *pudp;
762 pmd_t pmd, *pmdp;
763 pte_t *ret_pte;
764 hugepd_t *hpdp = NULL;
765 unsigned pdshift = PGDIR_SHIFT;
766
767 if (hpage_shift)
768 *hpage_shift = 0;
769
770 if (is_thp)
771 *is_thp = false;
772
773 pgdp = pgdir + pgd_index(ea);
774 pgd = READ_ONCE(*pgdp);
775 /*
776 * Always operate on the local stack value. This make sure the
777 * value don't get updated by a parallel THP split/collapse,
778 * page fault or a page unmap. The return pte_t * is still not
779 * stable. So should be checked there for above conditions.
780 */
781 if (pgd_none(pgd))
782 return NULL;
783 else if (pgd_huge(pgd)) {
784 ret_pte = (pte_t *) pgdp;
785 goto out;
786 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
787 hpdp = (hugepd_t *)&pgd;
788 else {
789 /*
790 * Even if we end up with an unmap, the pgtable will not
791 * be freed, because we do an rcu free and here we are
792 * irq disabled
793 */
794 pdshift = PUD_SHIFT;
795 pudp = pud_offset(&pgd, ea);
796 pud = READ_ONCE(*pudp);
797
798 if (pud_none(pud))
799 return NULL;
800 else if (pud_huge(pud)) {
801 ret_pte = (pte_t *) pudp;
802 goto out;
803 } else if (is_hugepd(__hugepd(pud_val(pud))))
804 hpdp = (hugepd_t *)&pud;
805 else {
806 pdshift = PMD_SHIFT;
807 pmdp = pmd_offset(&pud, ea);
808 pmd = READ_ONCE(*pmdp);
809 /*
810 * A hugepage collapse is captured by pmd_none, because
811 * it mark the pmd none and do a hpte invalidate.
812 */
813 if (pmd_none(pmd))
814 return NULL;
815
816 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
817 if (is_thp)
818 *is_thp = true;
819 ret_pte = (pte_t *) pmdp;
820 goto out;
821 }
822
823 if (pmd_huge(pmd)) {
824 ret_pte = (pte_t *) pmdp;
825 goto out;
826 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
827 hpdp = (hugepd_t *)&pmd;
828 else
829 return pte_offset_kernel(&pmd, ea);
830 }
831 }
832 if (!hpdp)
833 return NULL;
834
835 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
836 pdshift = hugepd_shift(*hpdp);
837 out:
838 if (hpage_shift)
839 *hpage_shift = pdshift;
840 return ret_pte;
841 }
842 EXPORT_SYMBOL_GPL(__find_linux_pte);
843
844 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
845 unsigned long end, int write, struct page **pages, int *nr)
846 {
847 unsigned long pte_end;
848 struct page *head, *page;
849 pte_t pte;
850 int refs;
851
852 pte_end = (addr + sz) & ~(sz-1);
853 if (pte_end < end)
854 end = pte_end;
855
856 pte = READ_ONCE(*ptep);
857
858 if (!pte_present(pte) || !pte_read(pte))
859 return 0;
860 if (write && !pte_write(pte))
861 return 0;
862
863 /* hugepages are never "special" */
864 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
865
866 refs = 0;
867 head = pte_page(pte);
868
869 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
870 do {
871 VM_BUG_ON(compound_head(page) != head);
872 pages[*nr] = page;
873 (*nr)++;
874 page++;
875 refs++;
876 } while (addr += PAGE_SIZE, addr != end);
877
878 if (!page_cache_add_speculative(head, refs)) {
879 *nr -= refs;
880 return 0;
881 }
882
883 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
884 /* Could be optimized better */
885 *nr -= refs;
886 while (refs--)
887 put_page(head);
888 return 0;
889 }
890
891 return 1;
892 }