]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/hugetlbpage.c
mm/hugetlb: reduce arch dependent code around follow_huge_*
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
31
32 unsigned int HPAGE_SHIFT;
33
34 /*
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
40 */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53
54 #define hugepd_none(hpd) ((hpd).pd == 0)
55
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62 /*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 *
66 * Defined in such a way that we can optimize away code block at build time
67 * if CONFIG_HUGETLB_PAGE=n.
68 */
69 int pmd_huge(pmd_t pmd)
70 {
71 /*
72 * leaf pte for huge page, bottom two bits != 00
73 */
74 return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76
77 int pud_huge(pud_t pud)
78 {
79 /*
80 * leaf pte for huge page, bottom two bits != 00
81 */
82 return ((pud_val(pud) & 0x3) != 0x0);
83 }
84
85 int pgd_huge(pgd_t pgd)
86 {
87 /*
88 * leaf pte for huge page, bottom two bits != 00
89 */
90 return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92 #else
93 int pmd_huge(pmd_t pmd)
94 {
95 return 0;
96 }
97
98 int pud_huge(pud_t pud)
99 {
100 return 0;
101 }
102
103 int pgd_huge(pgd_t pgd)
104 {
105 return 0;
106 }
107 #endif
108
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 /* Only called for hugetlbfs pages, hence can ignore THP */
112 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113 }
114
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 unsigned long address, unsigned pdshift, unsigned pshift)
117 {
118 struct kmem_cache *cachep;
119 pte_t *new;
120
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 int i;
123 int num_hugepd = 1 << (pshift - pdshift);
124 cachep = hugepte_cache;
125 #else
126 cachep = PGT_CACHE(pdshift - pshift);
127 #endif
128
129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
130
131 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133
134 if (! new)
135 return -ENOMEM;
136
137 spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
139 /*
140 * We have multiple higher-level entries that point to the same
141 * actual pte location. Fill in each as we go and backtrack on error.
142 * We need all of these so the DTLB pgtable walk code can find the
143 * right higher-level entry without knowing if it's a hugepage or not.
144 */
145 for (i = 0; i < num_hugepd; i++, hpdp++) {
146 if (unlikely(!hugepd_none(*hpdp)))
147 break;
148 else
149 /* We use the old format for PPC_FSL_BOOK3E */
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 }
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
157 }
158 #else
159 if (!hugepd_none(*hpdp))
160 kmem_cache_free(cachep, new);
161 else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 hpdp->pd = (unsigned long)new |
164 (shift_to_mmu_psize(pshift) << 2);
165 #else
166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
168 }
169 #endif
170 spin_unlock(&mm->page_table_lock);
171 return 0;
172 }
173
174 /*
175 * These macros define how to determine which level of the page table holds
176 * the hpdp.
177 */
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
185
186 #ifdef CONFIG_PPC_BOOK3S_64
187 /*
188 * At this point we do the placement change only for BOOK3S 64. This would
189 * possibly work on other subarchs.
190 */
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
192 {
193 pgd_t *pg;
194 pud_t *pu;
195 pmd_t *pm;
196 hugepd_t *hpdp = NULL;
197 unsigned pshift = __ffs(sz);
198 unsigned pdshift = PGDIR_SHIFT;
199
200 addr &= ~(sz-1);
201 pg = pgd_offset(mm, addr);
202
203 if (pshift == PGDIR_SHIFT)
204 /* 16GB huge page */
205 return (pte_t *) pg;
206 else if (pshift > PUD_SHIFT)
207 /*
208 * We need to use hugepd table
209 */
210 hpdp = (hugepd_t *)pg;
211 else {
212 pdshift = PUD_SHIFT;
213 pu = pud_alloc(mm, pg, addr);
214 if (pshift == PUD_SHIFT)
215 return (pte_t *)pu;
216 else if (pshift > PMD_SHIFT)
217 hpdp = (hugepd_t *)pu;
218 else {
219 pdshift = PMD_SHIFT;
220 pm = pmd_alloc(mm, pu, addr);
221 if (pshift == PMD_SHIFT)
222 /* 16MB hugepage */
223 return (pte_t *)pm;
224 else
225 hpdp = (hugepd_t *)pm;
226 }
227 }
228 if (!hpdp)
229 return NULL;
230
231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
232
233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 return NULL;
235
236 return hugepte_offset(*hpdp, addr, pdshift);
237 }
238
239 #else
240
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
242 {
243 pgd_t *pg;
244 pud_t *pu;
245 pmd_t *pm;
246 hugepd_t *hpdp = NULL;
247 unsigned pshift = __ffs(sz);
248 unsigned pdshift = PGDIR_SHIFT;
249
250 addr &= ~(sz-1);
251
252 pg = pgd_offset(mm, addr);
253
254 if (pshift >= HUGEPD_PGD_SHIFT) {
255 hpdp = (hugepd_t *)pg;
256 } else {
257 pdshift = PUD_SHIFT;
258 pu = pud_alloc(mm, pg, addr);
259 if (pshift >= HUGEPD_PUD_SHIFT) {
260 hpdp = (hugepd_t *)pu;
261 } else {
262 pdshift = PMD_SHIFT;
263 pm = pmd_alloc(mm, pu, addr);
264 hpdp = (hugepd_t *)pm;
265 }
266 }
267
268 if (!hpdp)
269 return NULL;
270
271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
272
273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 return NULL;
275
276 return hugepte_offset(*hpdp, addr, pdshift);
277 }
278 #endif
279
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages. This function is used in early
282 * boot before the buddy allocator is setup.
283 */
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
285 {
286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 int i;
288
289 if (addr == 0)
290 return;
291
292 gpage_freearray[idx].nr_gpages = number_of_pages;
293
294 for (i = 0; i < number_of_pages; i++) {
295 gpage_freearray[idx].gpage_list[i] = addr;
296 addr += page_size;
297 }
298 }
299
300 /*
301 * Moves the gigantic page addresses from the temporary list to the
302 * huge_boot_pages list.
303 */
304 int alloc_bootmem_huge_page(struct hstate *hstate)
305 {
306 struct huge_bootmem_page *m;
307 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 int nr_gpages = gpage_freearray[idx].nr_gpages;
309
310 if (nr_gpages == 0)
311 return 0;
312
313 #ifdef CONFIG_HIGHMEM
314 /*
315 * If gpages can be in highmem we can't use the trick of storing the
316 * data structure in the page; allocate space for this
317 */
318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
323
324 list_add(&m->list, &huge_boot_pages);
325 gpage_freearray[idx].nr_gpages = nr_gpages;
326 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 m->hstate = hstate;
328
329 return 1;
330 }
331 /*
332 * Scan the command line hugepagesz= options for gigantic pages; store those in
333 * a list that we use to allocate the memory once all options are parsed.
334 */
335
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
337
338 static int __init do_gpage_early_setup(char *param, char *val,
339 const char *unused)
340 {
341 static phys_addr_t size;
342 unsigned long npages;
343
344 /*
345 * The hugepagesz and hugepages cmdline options are interleaved. We
346 * use the size variable to keep track of whether or not this was done
347 * properly and skip over instances where it is incorrect. Other
348 * command-line parsing code will issue warnings, so we don't need to.
349 *
350 */
351 if ((strcmp(param, "default_hugepagesz") == 0) ||
352 (strcmp(param, "hugepagesz") == 0)) {
353 size = memparse(val, NULL);
354 } else if (strcmp(param, "hugepages") == 0) {
355 if (size != 0) {
356 if (sscanf(val, "%lu", &npages) <= 0)
357 npages = 0;
358 if (npages > MAX_NUMBER_GPAGES) {
359 pr_warn("MMU: %lu pages requested for page "
360 "size %llu KB, limiting to "
361 __stringify(MAX_NUMBER_GPAGES) "\n",
362 npages, size / 1024);
363 npages = MAX_NUMBER_GPAGES;
364 }
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
367 }
368 }
369 return 0;
370 }
371
372
373 /*
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
379 */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
385
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 &do_gpage_early_setup);
389
390 /*
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
395 */
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
401
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
406 }
407 }
408
409 #else /* !PPC_FSL_BOOK3E */
410
411 /* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy allocator is setup.
413 */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
423 }
424 }
425
426 /* Moves the gigantic page addresses from the temporary list to the
427 * huge_boot_pages list.
428 */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
437 m->hstate = hstate;
438 return 1;
439 }
440 #endif
441
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443 {
444 return 0;
445 }
446
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450
451 struct hugepd_freelist {
452 struct rcu_head rcu;
453 unsigned int index;
454 void *ptes[0];
455 };
456
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
460 {
461 struct hugepd_freelist *batch =
462 container_of(head, struct hugepd_freelist, rcu);
463 unsigned int i;
464
465 for (i = 0; i < batch->index; i++)
466 kmem_cache_free(hugepte_cache, batch->ptes[i]);
467
468 free_page((unsigned long)batch);
469 }
470
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472 {
473 struct hugepd_freelist **batchp;
474
475 batchp = this_cpu_ptr(&hugepd_freelist_cur);
476
477 if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 cpumask_equal(mm_cpumask(tlb->mm),
479 cpumask_of(smp_processor_id()))) {
480 kmem_cache_free(hugepte_cache, hugepte);
481 put_cpu_var(hugepd_freelist_cur);
482 return;
483 }
484
485 if (*batchp == NULL) {
486 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
487 (*batchp)->index = 0;
488 }
489
490 (*batchp)->ptes[(*batchp)->index++] = hugepte;
491 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
492 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
493 *batchp = NULL;
494 }
495 put_cpu_var(hugepd_freelist_cur);
496 }
497 #endif
498
499 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
500 unsigned long start, unsigned long end,
501 unsigned long floor, unsigned long ceiling)
502 {
503 pte_t *hugepte = hugepd_page(*hpdp);
504 int i;
505
506 unsigned long pdmask = ~((1UL << pdshift) - 1);
507 unsigned int num_hugepd = 1;
508
509 #ifdef CONFIG_PPC_FSL_BOOK3E
510 /* Note: On fsl the hpdp may be the first of several */
511 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
512 #else
513 unsigned int shift = hugepd_shift(*hpdp);
514 #endif
515
516 start &= pdmask;
517 if (start < floor)
518 return;
519 if (ceiling) {
520 ceiling &= pdmask;
521 if (! ceiling)
522 return;
523 }
524 if (end - 1 > ceiling - 1)
525 return;
526
527 for (i = 0; i < num_hugepd; i++, hpdp++)
528 hpdp->pd = 0;
529
530 #ifdef CONFIG_PPC_FSL_BOOK3E
531 hugepd_free(tlb, hugepte);
532 #else
533 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
534 #endif
535 }
536
537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 unsigned long addr, unsigned long end,
539 unsigned long floor, unsigned long ceiling)
540 {
541 pmd_t *pmd;
542 unsigned long next;
543 unsigned long start;
544
545 start = addr;
546 do {
547 pmd = pmd_offset(pud, addr);
548 next = pmd_addr_end(addr, end);
549 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
550 /*
551 * if it is not hugepd pointer, we should already find
552 * it cleared.
553 */
554 WARN_ON(!pmd_none_or_clear_bad(pmd));
555 continue;
556 }
557 #ifdef CONFIG_PPC_FSL_BOOK3E
558 /*
559 * Increment next by the size of the huge mapping since
560 * there may be more than one entry at this level for a
561 * single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
563 */
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565 #endif
566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 addr, next, floor, ceiling);
568 } while (addr = next, addr != end);
569
570 start &= PUD_MASK;
571 if (start < floor)
572 return;
573 if (ceiling) {
574 ceiling &= PUD_MASK;
575 if (!ceiling)
576 return;
577 }
578 if (end - 1 > ceiling - 1)
579 return;
580
581 pmd = pmd_offset(pud, start);
582 pud_clear(pud);
583 pmd_free_tlb(tlb, pmd, start);
584 }
585
586 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
587 unsigned long addr, unsigned long end,
588 unsigned long floor, unsigned long ceiling)
589 {
590 pud_t *pud;
591 unsigned long next;
592 unsigned long start;
593
594 start = addr;
595 do {
596 pud = pud_offset(pgd, addr);
597 next = pud_addr_end(addr, end);
598 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
599 if (pud_none_or_clear_bad(pud))
600 continue;
601 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
602 ceiling);
603 } else {
604 #ifdef CONFIG_PPC_FSL_BOOK3E
605 /*
606 * Increment next by the size of the huge mapping since
607 * there may be more than one entry at this level for a
608 * single hugepage, but all of them point to
609 * the same kmem cache that holds the hugepte.
610 */
611 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
612 #endif
613 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
614 addr, next, floor, ceiling);
615 }
616 } while (addr = next, addr != end);
617
618 start &= PGDIR_MASK;
619 if (start < floor)
620 return;
621 if (ceiling) {
622 ceiling &= PGDIR_MASK;
623 if (!ceiling)
624 return;
625 }
626 if (end - 1 > ceiling - 1)
627 return;
628
629 pud = pud_offset(pgd, start);
630 pgd_clear(pgd);
631 pud_free_tlb(tlb, pud, start);
632 }
633
634 /*
635 * This function frees user-level page tables of a process.
636 */
637 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
638 unsigned long addr, unsigned long end,
639 unsigned long floor, unsigned long ceiling)
640 {
641 pgd_t *pgd;
642 unsigned long next;
643
644 /*
645 * Because there are a number of different possible pagetable
646 * layouts for hugepage ranges, we limit knowledge of how
647 * things should be laid out to the allocation path
648 * (huge_pte_alloc(), above). Everything else works out the
649 * structure as it goes from information in the hugepd
650 * pointers. That means that we can't here use the
651 * optimization used in the normal page free_pgd_range(), of
652 * checking whether we're actually covering a large enough
653 * range to have to do anything at the top level of the walk
654 * instead of at the bottom.
655 *
656 * To make sense of this, you should probably go read the big
657 * block comment at the top of the normal free_pgd_range(),
658 * too.
659 */
660
661 do {
662 next = pgd_addr_end(addr, end);
663 pgd = pgd_offset(tlb->mm, addr);
664 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
665 if (pgd_none_or_clear_bad(pgd))
666 continue;
667 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
668 } else {
669 #ifdef CONFIG_PPC_FSL_BOOK3E
670 /*
671 * Increment next by the size of the huge mapping since
672 * there may be more than one entry at the pgd level
673 * for a single hugepage, but all of them point to the
674 * same kmem cache that holds the hugepte.
675 */
676 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
677 #endif
678 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
679 addr, next, floor, ceiling);
680 }
681 } while (addr = next, addr != end);
682 }
683
684 struct page *
685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
686 {
687 pte_t *ptep;
688 struct page *page;
689 unsigned shift;
690 unsigned long mask;
691 /*
692 * Transparent hugepages are handled by generic code. We can skip them
693 * here.
694 */
695 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
696
697 /* Verify it is a huge page else bail. */
698 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
699 return ERR_PTR(-EINVAL);
700
701 mask = (1UL << shift) - 1;
702 page = pte_page(*ptep);
703 if (page)
704 page += (address & mask) / PAGE_SIZE;
705
706 return page;
707 }
708
709 struct page *
710 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
711 pmd_t *pmd, int write)
712 {
713 BUG();
714 return NULL;
715 }
716
717 struct page *
718 follow_huge_pud(struct mm_struct *mm, unsigned long address,
719 pud_t *pud, int write)
720 {
721 BUG();
722 return NULL;
723 }
724
725 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
726 unsigned long sz)
727 {
728 unsigned long __boundary = (addr + sz) & ~(sz-1);
729 return (__boundary - 1 < end - 1) ? __boundary : end;
730 }
731
732 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
733 unsigned long end, int write, struct page **pages, int *nr)
734 {
735 pte_t *ptep;
736 unsigned long sz = 1UL << hugepd_shift(hugepd);
737 unsigned long next;
738
739 ptep = hugepte_offset(hugepd, addr, pdshift);
740 do {
741 next = hugepte_addr_end(addr, end, sz);
742 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
743 return 0;
744 } while (ptep++, addr = next, addr != end);
745
746 return 1;
747 }
748
749 #ifdef CONFIG_PPC_MM_SLICES
750 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
751 unsigned long len, unsigned long pgoff,
752 unsigned long flags)
753 {
754 struct hstate *hstate = hstate_file(file);
755 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
756
757 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
758 }
759 #endif
760
761 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
762 {
763 #ifdef CONFIG_PPC_MM_SLICES
764 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
765
766 return 1UL << mmu_psize_to_shift(psize);
767 #else
768 if (!is_vm_hugetlb_page(vma))
769 return PAGE_SIZE;
770
771 return huge_page_size(hstate_vma(vma));
772 #endif
773 }
774
775 static inline bool is_power_of_4(unsigned long x)
776 {
777 if (is_power_of_2(x))
778 return (__ilog2(x) % 2) ? false : true;
779 return false;
780 }
781
782 static int __init add_huge_page_size(unsigned long long size)
783 {
784 int shift = __ffs(size);
785 int mmu_psize;
786
787 /* Check that it is a page size supported by the hardware and
788 * that it fits within pagetable and slice limits. */
789 #ifdef CONFIG_PPC_FSL_BOOK3E
790 if ((size < PAGE_SIZE) || !is_power_of_4(size))
791 return -EINVAL;
792 #else
793 if (!is_power_of_2(size)
794 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
795 return -EINVAL;
796 #endif
797
798 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
799 return -EINVAL;
800
801 #ifdef CONFIG_SPU_FS_64K_LS
802 /* Disable support for 64K huge pages when 64K SPU local store
803 * support is enabled as the current implementation conflicts.
804 */
805 if (shift == PAGE_SHIFT_64K)
806 return -EINVAL;
807 #endif /* CONFIG_SPU_FS_64K_LS */
808
809 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
810
811 /* Return if huge page size has already been setup */
812 if (size_to_hstate(size))
813 return 0;
814
815 hugetlb_add_hstate(shift - PAGE_SHIFT);
816
817 return 0;
818 }
819
820 static int __init hugepage_setup_sz(char *str)
821 {
822 unsigned long long size;
823
824 size = memparse(str, &str);
825
826 if (add_huge_page_size(size) != 0)
827 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
828
829 return 1;
830 }
831 __setup("hugepagesz=", hugepage_setup_sz);
832
833 #ifdef CONFIG_PPC_FSL_BOOK3E
834 struct kmem_cache *hugepte_cache;
835 static int __init hugetlbpage_init(void)
836 {
837 int psize;
838
839 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
840 unsigned shift;
841
842 if (!mmu_psize_defs[psize].shift)
843 continue;
844
845 shift = mmu_psize_to_shift(psize);
846
847 /* Don't treat normal page sizes as huge... */
848 if (shift != PAGE_SHIFT)
849 if (add_huge_page_size(1ULL << shift) < 0)
850 continue;
851 }
852
853 /*
854 * Create a kmem cache for hugeptes. The bottom bits in the pte have
855 * size information encoded in them, so align them to allow this
856 */
857 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
858 HUGEPD_SHIFT_MASK + 1, 0, NULL);
859 if (hugepte_cache == NULL)
860 panic("%s: Unable to create kmem cache for hugeptes\n",
861 __func__);
862
863 /* Default hpage size = 4M */
864 if (mmu_psize_defs[MMU_PAGE_4M].shift)
865 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
866 else
867 panic("%s: Unable to set default huge page size\n", __func__);
868
869
870 return 0;
871 }
872 #else
873 static int __init hugetlbpage_init(void)
874 {
875 int psize;
876
877 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
878 return -ENODEV;
879
880 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
881 unsigned shift;
882 unsigned pdshift;
883
884 if (!mmu_psize_defs[psize].shift)
885 continue;
886
887 shift = mmu_psize_to_shift(psize);
888
889 if (add_huge_page_size(1ULL << shift) < 0)
890 continue;
891
892 if (shift < PMD_SHIFT)
893 pdshift = PMD_SHIFT;
894 else if (shift < PUD_SHIFT)
895 pdshift = PUD_SHIFT;
896 else
897 pdshift = PGDIR_SHIFT;
898 /*
899 * if we have pdshift and shift value same, we don't
900 * use pgt cache for hugepd.
901 */
902 if (pdshift != shift) {
903 pgtable_cache_add(pdshift - shift, NULL);
904 if (!PGT_CACHE(pdshift - shift))
905 panic("hugetlbpage_init(): could not create "
906 "pgtable cache for %d bit pagesize\n", shift);
907 }
908 }
909
910 /* Set default large page size. Currently, we pick 16M or 1M
911 * depending on what is available
912 */
913 if (mmu_psize_defs[MMU_PAGE_16M].shift)
914 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
915 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
916 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
917
918 return 0;
919 }
920 #endif
921 module_init(hugetlbpage_init);
922
923 void flush_dcache_icache_hugepage(struct page *page)
924 {
925 int i;
926 void *start;
927
928 BUG_ON(!PageCompound(page));
929
930 for (i = 0; i < (1UL << compound_order(page)); i++) {
931 if (!PageHighMem(page)) {
932 __flush_dcache_icache(page_address(page+i));
933 } else {
934 start = kmap_atomic(page+i);
935 __flush_dcache_icache(start);
936 kunmap_atomic(start);
937 }
938 }
939 }
940
941 #endif /* CONFIG_HUGETLB_PAGE */
942
943 /*
944 * We have 4 cases for pgds and pmds:
945 * (1) invalid (all zeroes)
946 * (2) pointer to next table, as normal; bottom 6 bits == 0
947 * (3) leaf pte for huge page, bottom two bits != 00
948 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
949 *
950 * So long as we atomically load page table pointers we are safe against teardown,
951 * we can follow the address down to the the page and take a ref on it.
952 */
953
954 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
955 {
956 pgd_t pgd, *pgdp;
957 pud_t pud, *pudp;
958 pmd_t pmd, *pmdp;
959 pte_t *ret_pte;
960 hugepd_t *hpdp = NULL;
961 unsigned pdshift = PGDIR_SHIFT;
962
963 if (shift)
964 *shift = 0;
965
966 pgdp = pgdir + pgd_index(ea);
967 pgd = ACCESS_ONCE(*pgdp);
968 /*
969 * Always operate on the local stack value. This make sure the
970 * value don't get updated by a parallel THP split/collapse,
971 * page fault or a page unmap. The return pte_t * is still not
972 * stable. So should be checked there for above conditions.
973 */
974 if (pgd_none(pgd))
975 return NULL;
976 else if (pgd_huge(pgd)) {
977 ret_pte = (pte_t *) pgdp;
978 goto out;
979 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
980 hpdp = (hugepd_t *)&pgd;
981 else {
982 /*
983 * Even if we end up with an unmap, the pgtable will not
984 * be freed, because we do an rcu free and here we are
985 * irq disabled
986 */
987 pdshift = PUD_SHIFT;
988 pudp = pud_offset(&pgd, ea);
989 pud = ACCESS_ONCE(*pudp);
990
991 if (pud_none(pud))
992 return NULL;
993 else if (pud_huge(pud)) {
994 ret_pte = (pte_t *) pudp;
995 goto out;
996 } else if (is_hugepd(__hugepd(pud_val(pud))))
997 hpdp = (hugepd_t *)&pud;
998 else {
999 pdshift = PMD_SHIFT;
1000 pmdp = pmd_offset(&pud, ea);
1001 pmd = ACCESS_ONCE(*pmdp);
1002 /*
1003 * A hugepage collapse is captured by pmd_none, because
1004 * it mark the pmd none and do a hpte invalidate.
1005 *
1006 * A hugepage split is captured by pmd_trans_splitting
1007 * because we mark the pmd trans splitting and do a
1008 * hpte invalidate
1009 *
1010 */
1011 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1012 return NULL;
1013
1014 if (pmd_huge(pmd) || pmd_large(pmd)) {
1015 ret_pte = (pte_t *) pmdp;
1016 goto out;
1017 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
1018 hpdp = (hugepd_t *)&pmd;
1019 else
1020 return pte_offset_kernel(&pmd, ea);
1021 }
1022 }
1023 if (!hpdp)
1024 return NULL;
1025
1026 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1027 pdshift = hugepd_shift(*hpdp);
1028 out:
1029 if (shift)
1030 *shift = pdshift;
1031 return ret_pte;
1032 }
1033 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1034
1035 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1036 unsigned long end, int write, struct page **pages, int *nr)
1037 {
1038 unsigned long mask;
1039 unsigned long pte_end;
1040 struct page *head, *page, *tail;
1041 pte_t pte;
1042 int refs;
1043
1044 pte_end = (addr + sz) & ~(sz-1);
1045 if (pte_end < end)
1046 end = pte_end;
1047
1048 pte = ACCESS_ONCE(*ptep);
1049 mask = _PAGE_PRESENT | _PAGE_USER;
1050 if (write)
1051 mask |= _PAGE_RW;
1052
1053 if ((pte_val(pte) & mask) != mask)
1054 return 0;
1055
1056 /* hugepages are never "special" */
1057 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1058
1059 refs = 0;
1060 head = pte_page(pte);
1061
1062 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1063 tail = page;
1064 do {
1065 VM_BUG_ON(compound_head(page) != head);
1066 pages[*nr] = page;
1067 (*nr)++;
1068 page++;
1069 refs++;
1070 } while (addr += PAGE_SIZE, addr != end);
1071
1072 if (!page_cache_add_speculative(head, refs)) {
1073 *nr -= refs;
1074 return 0;
1075 }
1076
1077 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1078 /* Could be optimized better */
1079 *nr -= refs;
1080 while (refs--)
1081 put_page(head);
1082 return 0;
1083 }
1084
1085 /*
1086 * Any tail page need their mapcount reference taken before we
1087 * return.
1088 */
1089 while (refs--) {
1090 if (PageTail(tail))
1091 get_huge_page_tail(tail);
1092 tail++;
1093 }
1094
1095 return 1;
1096 }