]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/hugetlbpage.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluet...
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
26
27 #define HPAGE_SHIFT_64K 16
28 #define HPAGE_SHIFT_16M 24
29
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32
33 unsigned int hugepte_shift;
34 #define PTRS_PER_HUGEPTE (1 << hugepte_shift)
35 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << hugepte_shift)
36
37 #define HUGEPD_SHIFT (HPAGE_SHIFT + hugepte_shift)
38 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
39 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
40
41 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
42
43 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
44 * will choke on pointers to hugepte tables, which is handy for
45 * catching screwups early. */
46 #define HUGEPD_OK 0x1
47
48 typedef struct { unsigned long pd; } hugepd_t;
49
50 #define hugepd_none(hpd) ((hpd).pd == 0)
51
52 static inline pte_t *hugepd_page(hugepd_t hpd)
53 {
54 BUG_ON(!(hpd.pd & HUGEPD_OK));
55 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
56 }
57
58 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
59 {
60 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
61 pte_t *dir = hugepd_page(*hpdp);
62
63 return dir + idx;
64 }
65
66 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
67 unsigned long address)
68 {
69 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
70 GFP_KERNEL|__GFP_REPEAT);
71
72 if (! new)
73 return -ENOMEM;
74
75 spin_lock(&mm->page_table_lock);
76 if (!hugepd_none(*hpdp))
77 kmem_cache_free(huge_pgtable_cache, new);
78 else
79 hpdp->pd = (unsigned long)new | HUGEPD_OK;
80 spin_unlock(&mm->page_table_lock);
81 return 0;
82 }
83
84 /* Base page size affects how we walk hugetlb page tables */
85 #ifdef CONFIG_PPC_64K_PAGES
86 #define hpmd_offset(pud, addr) pmd_offset(pud, addr)
87 #define hpmd_alloc(mm, pud, addr) pmd_alloc(mm, pud, addr)
88 #else
89 static inline
90 pmd_t *hpmd_offset(pud_t *pud, unsigned long addr)
91 {
92 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
93 return pmd_offset(pud, addr);
94 else
95 return (pmd_t *) pud;
96 }
97 static inline
98 pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr)
99 {
100 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
101 return pmd_alloc(mm, pud, addr);
102 else
103 return (pmd_t *) pud;
104 }
105 #endif
106
107 /* Modelled after find_linux_pte() */
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
109 {
110 pgd_t *pg;
111 pud_t *pu;
112 pmd_t *pm;
113
114 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
115
116 addr &= HPAGE_MASK;
117
118 pg = pgd_offset(mm, addr);
119 if (!pgd_none(*pg)) {
120 pu = pud_offset(pg, addr);
121 if (!pud_none(*pu)) {
122 pm = hpmd_offset(pu, addr);
123 if (!pmd_none(*pm))
124 return hugepte_offset((hugepd_t *)pm, addr);
125 }
126 }
127
128 return NULL;
129 }
130
131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
132 {
133 pgd_t *pg;
134 pud_t *pu;
135 pmd_t *pm;
136 hugepd_t *hpdp = NULL;
137
138 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
139
140 addr &= HPAGE_MASK;
141
142 pg = pgd_offset(mm, addr);
143 pu = pud_alloc(mm, pg, addr);
144
145 if (pu) {
146 pm = hpmd_alloc(mm, pu, addr);
147 if (pm)
148 hpdp = (hugepd_t *)pm;
149 }
150
151 if (! hpdp)
152 return NULL;
153
154 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
155 return NULL;
156
157 return hugepte_offset(hpdp, addr);
158 }
159
160 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
161 {
162 return 0;
163 }
164
165 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
166 {
167 pte_t *hugepte = hugepd_page(*hpdp);
168
169 hpdp->pd = 0;
170 tlb->need_flush = 1;
171 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
172 PGF_CACHENUM_MASK));
173 }
174
175 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
176 unsigned long addr, unsigned long end,
177 unsigned long floor, unsigned long ceiling)
178 {
179 pmd_t *pmd;
180 unsigned long next;
181 unsigned long start;
182
183 start = addr;
184 pmd = pmd_offset(pud, addr);
185 do {
186 next = pmd_addr_end(addr, end);
187 if (pmd_none(*pmd))
188 continue;
189 free_hugepte_range(tlb, (hugepd_t *)pmd);
190 } while (pmd++, addr = next, addr != end);
191
192 start &= PUD_MASK;
193 if (start < floor)
194 return;
195 if (ceiling) {
196 ceiling &= PUD_MASK;
197 if (!ceiling)
198 return;
199 }
200 if (end - 1 > ceiling - 1)
201 return;
202
203 pmd = pmd_offset(pud, start);
204 pud_clear(pud);
205 pmd_free_tlb(tlb, pmd);
206 }
207
208 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
209 unsigned long addr, unsigned long end,
210 unsigned long floor, unsigned long ceiling)
211 {
212 pud_t *pud;
213 unsigned long next;
214 unsigned long start;
215
216 start = addr;
217 pud = pud_offset(pgd, addr);
218 do {
219 next = pud_addr_end(addr, end);
220 #ifdef CONFIG_PPC_64K_PAGES
221 if (pud_none_or_clear_bad(pud))
222 continue;
223 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
224 #else
225 if (HPAGE_SHIFT == HPAGE_SHIFT_64K) {
226 if (pud_none_or_clear_bad(pud))
227 continue;
228 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
229 } else {
230 if (pud_none(*pud))
231 continue;
232 free_hugepte_range(tlb, (hugepd_t *)pud);
233 }
234 #endif
235 } while (pud++, addr = next, addr != end);
236
237 start &= PGDIR_MASK;
238 if (start < floor)
239 return;
240 if (ceiling) {
241 ceiling &= PGDIR_MASK;
242 if (!ceiling)
243 return;
244 }
245 if (end - 1 > ceiling - 1)
246 return;
247
248 pud = pud_offset(pgd, start);
249 pgd_clear(pgd);
250 pud_free_tlb(tlb, pud);
251 }
252
253 /*
254 * This function frees user-level page tables of a process.
255 *
256 * Must be called with pagetable lock held.
257 */
258 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
261 {
262 pgd_t *pgd;
263 unsigned long next;
264 unsigned long start;
265
266 /*
267 * Comments below take from the normal free_pgd_range(). They
268 * apply here too. The tests against HUGEPD_MASK below are
269 * essential, because we *don't* test for this at the bottom
270 * level. Without them we'll attempt to free a hugepte table
271 * when we unmap just part of it, even if there are other
272 * active mappings using it.
273 *
274 * The next few lines have given us lots of grief...
275 *
276 * Why are we testing HUGEPD* at this top level? Because
277 * often there will be no work to do at all, and we'd prefer
278 * not to go all the way down to the bottom just to discover
279 * that.
280 *
281 * Why all these "- 1"s? Because 0 represents both the bottom
282 * of the address space and the top of it (using -1 for the
283 * top wouldn't help much: the masks would do the wrong thing).
284 * The rule is that addr 0 and floor 0 refer to the bottom of
285 * the address space, but end 0 and ceiling 0 refer to the top
286 * Comparisons need to use "end - 1" and "ceiling - 1" (though
287 * that end 0 case should be mythical).
288 *
289 * Wherever addr is brought up or ceiling brought down, we
290 * must be careful to reject "the opposite 0" before it
291 * confuses the subsequent tests. But what about where end is
292 * brought down by HUGEPD_SIZE below? no, end can't go down to
293 * 0 there.
294 *
295 * Whereas we round start (addr) and ceiling down, by different
296 * masks at different levels, in order to test whether a table
297 * now has no other vmas using it, so can be freed, we don't
298 * bother to round floor or end up - the tests don't need that.
299 */
300
301 addr &= HUGEPD_MASK;
302 if (addr < floor) {
303 addr += HUGEPD_SIZE;
304 if (!addr)
305 return;
306 }
307 if (ceiling) {
308 ceiling &= HUGEPD_MASK;
309 if (!ceiling)
310 return;
311 }
312 if (end - 1 > ceiling - 1)
313 end -= HUGEPD_SIZE;
314 if (addr > end - 1)
315 return;
316
317 start = addr;
318 pgd = pgd_offset((*tlb)->mm, addr);
319 do {
320 BUG_ON(get_slice_psize((*tlb)->mm, addr) != mmu_huge_psize);
321 next = pgd_addr_end(addr, end);
322 if (pgd_none_or_clear_bad(pgd))
323 continue;
324 hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
325 } while (pgd++, addr = next, addr != end);
326 }
327
328 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
329 pte_t *ptep, pte_t pte)
330 {
331 if (pte_present(*ptep)) {
332 /* We open-code pte_clear because we need to pass the right
333 * argument to hpte_need_flush (huge / !huge). Might not be
334 * necessary anymore if we make hpte_need_flush() get the
335 * page size from the slices
336 */
337 pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
338 }
339 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
340 }
341
342 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
343 pte_t *ptep)
344 {
345 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
346 return __pte(old);
347 }
348
349 struct page *
350 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
351 {
352 pte_t *ptep;
353 struct page *page;
354
355 if (get_slice_psize(mm, address) != mmu_huge_psize)
356 return ERR_PTR(-EINVAL);
357
358 ptep = huge_pte_offset(mm, address);
359 page = pte_page(*ptep);
360 if (page)
361 page += (address % HPAGE_SIZE) / PAGE_SIZE;
362
363 return page;
364 }
365
366 int pmd_huge(pmd_t pmd)
367 {
368 return 0;
369 }
370
371 struct page *
372 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
373 pmd_t *pmd, int write)
374 {
375 BUG();
376 return NULL;
377 }
378
379
380 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
381 unsigned long len, unsigned long pgoff,
382 unsigned long flags)
383 {
384 return slice_get_unmapped_area(addr, len, flags,
385 mmu_huge_psize, 1, 0);
386 }
387
388 /*
389 * Called by asm hashtable.S for doing lazy icache flush
390 */
391 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
392 pte_t pte, int trap)
393 {
394 struct page *page;
395 int i;
396
397 if (!pfn_valid(pte_pfn(pte)))
398 return rflags;
399
400 page = pte_page(pte);
401
402 /* page is dirty */
403 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
404 if (trap == 0x400) {
405 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
406 __flush_dcache_icache(page_address(page+i));
407 set_bit(PG_arch_1, &page->flags);
408 } else {
409 rflags |= HPTE_R_N;
410 }
411 }
412 return rflags;
413 }
414
415 int hash_huge_page(struct mm_struct *mm, unsigned long access,
416 unsigned long ea, unsigned long vsid, int local,
417 unsigned long trap)
418 {
419 pte_t *ptep;
420 unsigned long old_pte, new_pte;
421 unsigned long va, rflags, pa;
422 long slot;
423 int err = 1;
424 int ssize = user_segment_size(ea);
425
426 ptep = huge_pte_offset(mm, ea);
427
428 /* Search the Linux page table for a match with va */
429 va = hpt_va(ea, vsid, ssize);
430
431 /*
432 * If no pte found or not present, send the problem up to
433 * do_page_fault
434 */
435 if (unlikely(!ptep || pte_none(*ptep)))
436 goto out;
437
438 /*
439 * Check the user's access rights to the page. If access should be
440 * prevented then send the problem up to do_page_fault.
441 */
442 if (unlikely(access & ~pte_val(*ptep)))
443 goto out;
444 /*
445 * At this point, we have a pte (old_pte) which can be used to build
446 * or update an HPTE. There are 2 cases:
447 *
448 * 1. There is a valid (present) pte with no associated HPTE (this is
449 * the most common case)
450 * 2. There is a valid (present) pte with an associated HPTE. The
451 * current values of the pp bits in the HPTE prevent access
452 * because we are doing software DIRTY bit management and the
453 * page is currently not DIRTY.
454 */
455
456
457 do {
458 old_pte = pte_val(*ptep);
459 if (old_pte & _PAGE_BUSY)
460 goto out;
461 new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
462 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
463 old_pte, new_pte));
464
465 rflags = 0x2 | (!(new_pte & _PAGE_RW));
466 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
467 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
468 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
469 /* No CPU has hugepages but lacks no execute, so we
470 * don't need to worry about that case */
471 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
472 trap);
473
474 /* Check if pte already has an hpte (case 2) */
475 if (unlikely(old_pte & _PAGE_HASHPTE)) {
476 /* There MIGHT be an HPTE for this pte */
477 unsigned long hash, slot;
478
479 hash = hpt_hash(va, HPAGE_SHIFT, ssize);
480 if (old_pte & _PAGE_F_SECOND)
481 hash = ~hash;
482 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
483 slot += (old_pte & _PAGE_F_GIX) >> 12;
484
485 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
486 ssize, local) == -1)
487 old_pte &= ~_PAGE_HPTEFLAGS;
488 }
489
490 if (likely(!(old_pte & _PAGE_HASHPTE))) {
491 unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
492 unsigned long hpte_group;
493
494 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
495
496 repeat:
497 hpte_group = ((hash & htab_hash_mask) *
498 HPTES_PER_GROUP) & ~0x7UL;
499
500 /* clear HPTE slot informations in new PTE */
501 #ifdef CONFIG_PPC_64K_PAGES
502 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
503 #else
504 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
505 #endif
506 /* Add in WIMG bits */
507 rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
508 _PAGE_COHERENT | _PAGE_GUARDED));
509
510 /* Insert into the hash table, primary slot */
511 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
512 mmu_huge_psize, ssize);
513
514 /* Primary is full, try the secondary */
515 if (unlikely(slot == -1)) {
516 hpte_group = ((~hash & htab_hash_mask) *
517 HPTES_PER_GROUP) & ~0x7UL;
518 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
519 HPTE_V_SECONDARY,
520 mmu_huge_psize, ssize);
521 if (slot == -1) {
522 if (mftb() & 0x1)
523 hpte_group = ((hash & htab_hash_mask) *
524 HPTES_PER_GROUP)&~0x7UL;
525
526 ppc_md.hpte_remove(hpte_group);
527 goto repeat;
528 }
529 }
530
531 if (unlikely(slot == -2))
532 panic("hash_huge_page: pte_insert failed\n");
533
534 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
535 }
536
537 /*
538 * No need to use ldarx/stdcx here
539 */
540 *ptep = __pte(new_pte & ~_PAGE_BUSY);
541
542 err = 0;
543
544 out:
545 return err;
546 }
547
548 void set_huge_psize(int psize)
549 {
550 /* Check that it is a page size supported by the hardware and
551 * that it fits within pagetable limits. */
552 if (mmu_psize_defs[psize].shift && mmu_psize_defs[psize].shift < SID_SHIFT &&
553 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
554 mmu_psize_defs[psize].shift == HPAGE_SHIFT_64K)) {
555 HPAGE_SHIFT = mmu_psize_defs[psize].shift;
556 mmu_huge_psize = psize;
557 #ifdef CONFIG_PPC_64K_PAGES
558 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
559 #else
560 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
561 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
562 else
563 hugepte_shift = (PUD_SHIFT-HPAGE_SHIFT);
564 #endif
565
566 } else
567 HPAGE_SHIFT = 0;
568 }
569
570 static int __init hugepage_setup_sz(char *str)
571 {
572 unsigned long long size;
573 int mmu_psize = -1;
574 int shift;
575
576 size = memparse(str, &str);
577
578 shift = __ffs(size);
579 switch (shift) {
580 #ifndef CONFIG_PPC_64K_PAGES
581 case HPAGE_SHIFT_64K:
582 mmu_psize = MMU_PAGE_64K;
583 break;
584 #endif
585 case HPAGE_SHIFT_16M:
586 mmu_psize = MMU_PAGE_16M;
587 break;
588 }
589
590 if (mmu_psize >=0 && mmu_psize_defs[mmu_psize].shift)
591 set_huge_psize(mmu_psize);
592 else
593 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
594
595 return 1;
596 }
597 __setup("hugepagesz=", hugepage_setup_sz);
598
599 static void zero_ctor(struct kmem_cache *cache, void *addr)
600 {
601 memset(addr, 0, kmem_cache_size(cache));
602 }
603
604 static int __init hugetlbpage_init(void)
605 {
606 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
607 return -ENODEV;
608
609 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
610 HUGEPTE_TABLE_SIZE,
611 HUGEPTE_TABLE_SIZE,
612 0,
613 zero_ctor);
614 if (! huge_pgtable_cache)
615 panic("hugetlbpage_init(): could not create hugepte cache\n");
616
617 return 0;
618 }
619
620 module_init(hugetlbpage_init);