]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/mm/hugetlbpage.c
Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10 #include <linux/mm.h>
11 #include <linux/io.h>
12 #include <linux/hugetlb.h>
13 #include <asm/pgtable.h>
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
16
17 #define PAGE_SHIFT_64K 16
18 #define PAGE_SHIFT_16M 24
19 #define PAGE_SHIFT_16G 34
20
21 #define MAX_NUMBER_GPAGES 1024
22
23 /* Tracks the 16G pages after the device tree is scanned and before the
24 * huge_boot_pages list is ready. */
25 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
26 static unsigned nr_gpages;
27
28 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
29 * will choke on pointers to hugepte tables, which is handy for
30 * catching screwups early. */
31
32 static inline int shift_to_mmu_psize(unsigned int shift)
33 {
34 int psize;
35
36 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
37 if (mmu_psize_defs[psize].shift == shift)
38 return psize;
39 return -1;
40 }
41
42 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
43 {
44 if (mmu_psize_defs[mmu_psize].shift)
45 return mmu_psize_defs[mmu_psize].shift;
46 BUG();
47 }
48
49 #define hugepd_none(hpd) ((hpd).pd == 0)
50
51 static inline pte_t *hugepd_page(hugepd_t hpd)
52 {
53 BUG_ON(!hugepd_ok(hpd));
54 return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
55 }
56
57 static inline unsigned int hugepd_shift(hugepd_t hpd)
58 {
59 return hpd.pd & HUGEPD_SHIFT_MASK;
60 }
61
62 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
63 {
64 unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
65 pte_t *dir = hugepd_page(*hpdp);
66
67 return dir + idx;
68 }
69
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
71 {
72 pgd_t *pg;
73 pud_t *pu;
74 pmd_t *pm;
75 hugepd_t *hpdp = NULL;
76 unsigned pdshift = PGDIR_SHIFT;
77
78 if (shift)
79 *shift = 0;
80
81 pg = pgdir + pgd_index(ea);
82 if (is_hugepd(pg)) {
83 hpdp = (hugepd_t *)pg;
84 } else if (!pgd_none(*pg)) {
85 pdshift = PUD_SHIFT;
86 pu = pud_offset(pg, ea);
87 if (is_hugepd(pu))
88 hpdp = (hugepd_t *)pu;
89 else if (!pud_none(*pu)) {
90 pdshift = PMD_SHIFT;
91 pm = pmd_offset(pu, ea);
92 if (is_hugepd(pm))
93 hpdp = (hugepd_t *)pm;
94 else if (!pmd_none(*pm)) {
95 return pte_offset_map(pm, ea);
96 }
97 }
98 }
99
100 if (!hpdp)
101 return NULL;
102
103 if (shift)
104 *shift = hugepd_shift(*hpdp);
105 return hugepte_offset(hpdp, ea, pdshift);
106 }
107
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
109 {
110 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
111 }
112
113 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
114 unsigned long address, unsigned pdshift, unsigned pshift)
115 {
116 pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
117 GFP_KERNEL|__GFP_REPEAT);
118
119 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
120 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
121
122 if (! new)
123 return -ENOMEM;
124
125 spin_lock(&mm->page_table_lock);
126 if (!hugepd_none(*hpdp))
127 kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
128 else
129 hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
130 spin_unlock(&mm->page_table_lock);
131 return 0;
132 }
133
134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
135 {
136 pgd_t *pg;
137 pud_t *pu;
138 pmd_t *pm;
139 hugepd_t *hpdp = NULL;
140 unsigned pshift = __ffs(sz);
141 unsigned pdshift = PGDIR_SHIFT;
142
143 addr &= ~(sz-1);
144
145 pg = pgd_offset(mm, addr);
146 if (pshift >= PUD_SHIFT) {
147 hpdp = (hugepd_t *)pg;
148 } else {
149 pdshift = PUD_SHIFT;
150 pu = pud_alloc(mm, pg, addr);
151 if (pshift >= PMD_SHIFT) {
152 hpdp = (hugepd_t *)pu;
153 } else {
154 pdshift = PMD_SHIFT;
155 pm = pmd_alloc(mm, pu, addr);
156 hpdp = (hugepd_t *)pm;
157 }
158 }
159
160 if (!hpdp)
161 return NULL;
162
163 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
164
165 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
166 return NULL;
167
168 return hugepte_offset(hpdp, addr, pdshift);
169 }
170
171 /* Build list of addresses of gigantic pages. This function is used in early
172 * boot before the buddy or bootmem allocator is setup.
173 */
174 void add_gpage(unsigned long addr, unsigned long page_size,
175 unsigned long number_of_pages)
176 {
177 if (!addr)
178 return;
179 while (number_of_pages > 0) {
180 gpage_freearray[nr_gpages] = addr;
181 nr_gpages++;
182 number_of_pages--;
183 addr += page_size;
184 }
185 }
186
187 /* Moves the gigantic page addresses from the temporary list to the
188 * huge_boot_pages list.
189 */
190 int alloc_bootmem_huge_page(struct hstate *hstate)
191 {
192 struct huge_bootmem_page *m;
193 if (nr_gpages == 0)
194 return 0;
195 m = phys_to_virt(gpage_freearray[--nr_gpages]);
196 gpage_freearray[nr_gpages] = 0;
197 list_add(&m->list, &huge_boot_pages);
198 m->hstate = hstate;
199 return 1;
200 }
201
202 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
203 {
204 return 0;
205 }
206
207 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
208 unsigned long start, unsigned long end,
209 unsigned long floor, unsigned long ceiling)
210 {
211 pte_t *hugepte = hugepd_page(*hpdp);
212 unsigned shift = hugepd_shift(*hpdp);
213 unsigned long pdmask = ~((1UL << pdshift) - 1);
214
215 start &= pdmask;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= pdmask;
220 if (! ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 hpdp->pd = 0;
227 tlb->need_flush = 1;
228 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
229 }
230
231 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
234 {
235 pmd_t *pmd;
236 unsigned long next;
237 unsigned long start;
238
239 start = addr;
240 pmd = pmd_offset(pud, addr);
241 do {
242 next = pmd_addr_end(addr, end);
243 if (pmd_none(*pmd))
244 continue;
245 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
246 addr, next, floor, ceiling);
247 } while (pmd++, addr = next, addr != end);
248
249 start &= PUD_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= PUD_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pmd = pmd_offset(pud, start);
261 pud_clear(pud);
262 pmd_free_tlb(tlb, pmd, start);
263 }
264
265 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268 {
269 pud_t *pud;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 pud = pud_offset(pgd, addr);
275 do {
276 next = pud_addr_end(addr, end);
277 if (!is_hugepd(pud)) {
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
281 ceiling);
282 } else {
283 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
284 addr, next, floor, ceiling);
285 }
286 } while (pud++, addr = next, addr != end);
287
288 start &= PGDIR_MASK;
289 if (start < floor)
290 return;
291 if (ceiling) {
292 ceiling &= PGDIR_MASK;
293 if (!ceiling)
294 return;
295 }
296 if (end - 1 > ceiling - 1)
297 return;
298
299 pud = pud_offset(pgd, start);
300 pgd_clear(pgd);
301 pud_free_tlb(tlb, pud, start);
302 }
303
304 /*
305 * This function frees user-level page tables of a process.
306 *
307 * Must be called with pagetable lock held.
308 */
309 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
310 unsigned long addr, unsigned long end,
311 unsigned long floor, unsigned long ceiling)
312 {
313 pgd_t *pgd;
314 unsigned long next;
315
316 /*
317 * Because there are a number of different possible pagetable
318 * layouts for hugepage ranges, we limit knowledge of how
319 * things should be laid out to the allocation path
320 * (huge_pte_alloc(), above). Everything else works out the
321 * structure as it goes from information in the hugepd
322 * pointers. That means that we can't here use the
323 * optimization used in the normal page free_pgd_range(), of
324 * checking whether we're actually covering a large enough
325 * range to have to do anything at the top level of the walk
326 * instead of at the bottom.
327 *
328 * To make sense of this, you should probably go read the big
329 * block comment at the top of the normal free_pgd_range(),
330 * too.
331 */
332
333 pgd = pgd_offset(tlb->mm, addr);
334 do {
335 next = pgd_addr_end(addr, end);
336 if (!is_hugepd(pgd)) {
337 if (pgd_none_or_clear_bad(pgd))
338 continue;
339 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
340 } else {
341 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
342 addr, next, floor, ceiling);
343 }
344 } while (pgd++, addr = next, addr != end);
345 }
346
347 struct page *
348 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
349 {
350 pte_t *ptep;
351 struct page *page;
352 unsigned shift;
353 unsigned long mask;
354
355 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
356
357 /* Verify it is a huge page else bail. */
358 if (!ptep || !shift)
359 return ERR_PTR(-EINVAL);
360
361 mask = (1UL << shift) - 1;
362 page = pte_page(*ptep);
363 if (page)
364 page += (address & mask) / PAGE_SIZE;
365
366 return page;
367 }
368
369 int pmd_huge(pmd_t pmd)
370 {
371 return 0;
372 }
373
374 int pud_huge(pud_t pud)
375 {
376 return 0;
377 }
378
379 struct page *
380 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
381 pmd_t *pmd, int write)
382 {
383 BUG();
384 return NULL;
385 }
386
387 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
388 unsigned long end, int write, struct page **pages, int *nr)
389 {
390 unsigned long mask;
391 unsigned long pte_end;
392 struct page *head, *page;
393 pte_t pte;
394 int refs;
395
396 pte_end = (addr + sz) & ~(sz-1);
397 if (pte_end < end)
398 end = pte_end;
399
400 pte = *ptep;
401 mask = _PAGE_PRESENT | _PAGE_USER;
402 if (write)
403 mask |= _PAGE_RW;
404
405 if ((pte_val(pte) & mask) != mask)
406 return 0;
407
408 /* hugepages are never "special" */
409 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
410
411 refs = 0;
412 head = pte_page(pte);
413
414 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
415 do {
416 VM_BUG_ON(compound_head(page) != head);
417 pages[*nr] = page;
418 (*nr)++;
419 page++;
420 refs++;
421 } while (addr += PAGE_SIZE, addr != end);
422
423 if (!page_cache_add_speculative(head, refs)) {
424 *nr -= refs;
425 return 0;
426 }
427
428 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
429 /* Could be optimized better */
430 while (*nr) {
431 put_page(page);
432 (*nr)--;
433 }
434 }
435
436 return 1;
437 }
438
439 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
440 unsigned long sz)
441 {
442 unsigned long __boundary = (addr + sz) & ~(sz-1);
443 return (__boundary - 1 < end - 1) ? __boundary : end;
444 }
445
446 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
447 unsigned long addr, unsigned long end,
448 int write, struct page **pages, int *nr)
449 {
450 pte_t *ptep;
451 unsigned long sz = 1UL << hugepd_shift(*hugepd);
452 unsigned long next;
453
454 ptep = hugepte_offset(hugepd, addr, pdshift);
455 do {
456 next = hugepte_addr_end(addr, end, sz);
457 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
458 return 0;
459 } while (ptep++, addr = next, addr != end);
460
461 return 1;
462 }
463
464 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
465 unsigned long len, unsigned long pgoff,
466 unsigned long flags)
467 {
468 struct hstate *hstate = hstate_file(file);
469 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
470
471 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
472 }
473
474 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
475 {
476 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
477
478 return 1UL << mmu_psize_to_shift(psize);
479 }
480
481 static int __init add_huge_page_size(unsigned long long size)
482 {
483 int shift = __ffs(size);
484 int mmu_psize;
485
486 /* Check that it is a page size supported by the hardware and
487 * that it fits within pagetable and slice limits. */
488 if (!is_power_of_2(size)
489 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
490 return -EINVAL;
491
492 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
493 return -EINVAL;
494
495 #ifdef CONFIG_SPU_FS_64K_LS
496 /* Disable support for 64K huge pages when 64K SPU local store
497 * support is enabled as the current implementation conflicts.
498 */
499 if (shift == PAGE_SHIFT_64K)
500 return -EINVAL;
501 #endif /* CONFIG_SPU_FS_64K_LS */
502
503 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
504
505 /* Return if huge page size has already been setup */
506 if (size_to_hstate(size))
507 return 0;
508
509 hugetlb_add_hstate(shift - PAGE_SHIFT);
510
511 return 0;
512 }
513
514 static int __init hugepage_setup_sz(char *str)
515 {
516 unsigned long long size;
517
518 size = memparse(str, &str);
519
520 if (add_huge_page_size(size) != 0)
521 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
522
523 return 1;
524 }
525 __setup("hugepagesz=", hugepage_setup_sz);
526
527 static int __init hugetlbpage_init(void)
528 {
529 int psize;
530
531 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
532 return -ENODEV;
533
534 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
535 unsigned shift;
536 unsigned pdshift;
537
538 if (!mmu_psize_defs[psize].shift)
539 continue;
540
541 shift = mmu_psize_to_shift(psize);
542
543 if (add_huge_page_size(1ULL << shift) < 0)
544 continue;
545
546 if (shift < PMD_SHIFT)
547 pdshift = PMD_SHIFT;
548 else if (shift < PUD_SHIFT)
549 pdshift = PUD_SHIFT;
550 else
551 pdshift = PGDIR_SHIFT;
552
553 pgtable_cache_add(pdshift - shift, NULL);
554 if (!PGT_CACHE(pdshift - shift))
555 panic("hugetlbpage_init(): could not create "
556 "pgtable cache for %d bit pagesize\n", shift);
557 }
558
559 /* Set default large page size. Currently, we pick 16M or 1M
560 * depending on what is available
561 */
562 if (mmu_psize_defs[MMU_PAGE_16M].shift)
563 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
564 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
565 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
566
567 return 0;
568 }
569
570 module_init(hugetlbpage_init);
571
572 void flush_dcache_icache_hugepage(struct page *page)
573 {
574 int i;
575
576 BUG_ON(!PageCompound(page));
577
578 for (i = 0; i < (1UL << compound_order(page)); i++)
579 __flush_dcache_icache(page_address(page+i));
580 }