]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/hugetlbpage.c
hugetlb: modular state for hugetlb page size
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 *
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
9
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
26
27 #define HPAGE_SHIFT_64K 16
28 #define HPAGE_SHIFT_16M 24
29
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
32
33 unsigned int hugepte_shift;
34 #define PTRS_PER_HUGEPTE (1 << hugepte_shift)
35 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << hugepte_shift)
36
37 #define HUGEPD_SHIFT (HPAGE_SHIFT + hugepte_shift)
38 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
39 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
40
41 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
42
43 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
44 * will choke on pointers to hugepte tables, which is handy for
45 * catching screwups early. */
46 #define HUGEPD_OK 0x1
47
48 typedef struct { unsigned long pd; } hugepd_t;
49
50 #define hugepd_none(hpd) ((hpd).pd == 0)
51
52 static inline pte_t *hugepd_page(hugepd_t hpd)
53 {
54 BUG_ON(!(hpd.pd & HUGEPD_OK));
55 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
56 }
57
58 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
59 {
60 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
61 pte_t *dir = hugepd_page(*hpdp);
62
63 return dir + idx;
64 }
65
66 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
67 unsigned long address)
68 {
69 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
70 GFP_KERNEL|__GFP_REPEAT);
71
72 if (! new)
73 return -ENOMEM;
74
75 spin_lock(&mm->page_table_lock);
76 if (!hugepd_none(*hpdp))
77 kmem_cache_free(huge_pgtable_cache, new);
78 else
79 hpdp->pd = (unsigned long)new | HUGEPD_OK;
80 spin_unlock(&mm->page_table_lock);
81 return 0;
82 }
83
84 /* Base page size affects how we walk hugetlb page tables */
85 #ifdef CONFIG_PPC_64K_PAGES
86 #define hpmd_offset(pud, addr) pmd_offset(pud, addr)
87 #define hpmd_alloc(mm, pud, addr) pmd_alloc(mm, pud, addr)
88 #else
89 static inline
90 pmd_t *hpmd_offset(pud_t *pud, unsigned long addr)
91 {
92 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
93 return pmd_offset(pud, addr);
94 else
95 return (pmd_t *) pud;
96 }
97 static inline
98 pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr)
99 {
100 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
101 return pmd_alloc(mm, pud, addr);
102 else
103 return (pmd_t *) pud;
104 }
105 #endif
106
107 /* Modelled after find_linux_pte() */
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
109 {
110 pgd_t *pg;
111 pud_t *pu;
112 pmd_t *pm;
113
114 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
115
116 addr &= HPAGE_MASK;
117
118 pg = pgd_offset(mm, addr);
119 if (!pgd_none(*pg)) {
120 pu = pud_offset(pg, addr);
121 if (!pud_none(*pu)) {
122 pm = hpmd_offset(pu, addr);
123 if (!pmd_none(*pm))
124 return hugepte_offset((hugepd_t *)pm, addr);
125 }
126 }
127
128 return NULL;
129 }
130
131 pte_t *huge_pte_alloc(struct mm_struct *mm,
132 unsigned long addr, unsigned long sz)
133 {
134 pgd_t *pg;
135 pud_t *pu;
136 pmd_t *pm;
137 hugepd_t *hpdp = NULL;
138
139 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
140
141 addr &= HPAGE_MASK;
142
143 pg = pgd_offset(mm, addr);
144 pu = pud_alloc(mm, pg, addr);
145
146 if (pu) {
147 pm = hpmd_alloc(mm, pu, addr);
148 if (pm)
149 hpdp = (hugepd_t *)pm;
150 }
151
152 if (! hpdp)
153 return NULL;
154
155 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
156 return NULL;
157
158 return hugepte_offset(hpdp, addr);
159 }
160
161 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
162 {
163 return 0;
164 }
165
166 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
167 {
168 pte_t *hugepte = hugepd_page(*hpdp);
169
170 hpdp->pd = 0;
171 tlb->need_flush = 1;
172 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
173 PGF_CACHENUM_MASK));
174 }
175
176 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
179 {
180 pmd_t *pmd;
181 unsigned long next;
182 unsigned long start;
183
184 start = addr;
185 pmd = pmd_offset(pud, addr);
186 do {
187 next = pmd_addr_end(addr, end);
188 if (pmd_none(*pmd))
189 continue;
190 free_hugepte_range(tlb, (hugepd_t *)pmd);
191 } while (pmd++, addr = next, addr != end);
192
193 start &= PUD_MASK;
194 if (start < floor)
195 return;
196 if (ceiling) {
197 ceiling &= PUD_MASK;
198 if (!ceiling)
199 return;
200 }
201 if (end - 1 > ceiling - 1)
202 return;
203
204 pmd = pmd_offset(pud, start);
205 pud_clear(pud);
206 pmd_free_tlb(tlb, pmd);
207 }
208
209 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
210 unsigned long addr, unsigned long end,
211 unsigned long floor, unsigned long ceiling)
212 {
213 pud_t *pud;
214 unsigned long next;
215 unsigned long start;
216
217 start = addr;
218 pud = pud_offset(pgd, addr);
219 do {
220 next = pud_addr_end(addr, end);
221 #ifdef CONFIG_PPC_64K_PAGES
222 if (pud_none_or_clear_bad(pud))
223 continue;
224 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
225 #else
226 if (HPAGE_SHIFT == HPAGE_SHIFT_64K) {
227 if (pud_none_or_clear_bad(pud))
228 continue;
229 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
230 } else {
231 if (pud_none(*pud))
232 continue;
233 free_hugepte_range(tlb, (hugepd_t *)pud);
234 }
235 #endif
236 } while (pud++, addr = next, addr != end);
237
238 start &= PGDIR_MASK;
239 if (start < floor)
240 return;
241 if (ceiling) {
242 ceiling &= PGDIR_MASK;
243 if (!ceiling)
244 return;
245 }
246 if (end - 1 > ceiling - 1)
247 return;
248
249 pud = pud_offset(pgd, start);
250 pgd_clear(pgd);
251 pud_free_tlb(tlb, pud);
252 }
253
254 /*
255 * This function frees user-level page tables of a process.
256 *
257 * Must be called with pagetable lock held.
258 */
259 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
262 {
263 pgd_t *pgd;
264 unsigned long next;
265 unsigned long start;
266
267 /*
268 * Comments below take from the normal free_pgd_range(). They
269 * apply here too. The tests against HUGEPD_MASK below are
270 * essential, because we *don't* test for this at the bottom
271 * level. Without them we'll attempt to free a hugepte table
272 * when we unmap just part of it, even if there are other
273 * active mappings using it.
274 *
275 * The next few lines have given us lots of grief...
276 *
277 * Why are we testing HUGEPD* at this top level? Because
278 * often there will be no work to do at all, and we'd prefer
279 * not to go all the way down to the bottom just to discover
280 * that.
281 *
282 * Why all these "- 1"s? Because 0 represents both the bottom
283 * of the address space and the top of it (using -1 for the
284 * top wouldn't help much: the masks would do the wrong thing).
285 * The rule is that addr 0 and floor 0 refer to the bottom of
286 * the address space, but end 0 and ceiling 0 refer to the top
287 * Comparisons need to use "end - 1" and "ceiling - 1" (though
288 * that end 0 case should be mythical).
289 *
290 * Wherever addr is brought up or ceiling brought down, we
291 * must be careful to reject "the opposite 0" before it
292 * confuses the subsequent tests. But what about where end is
293 * brought down by HUGEPD_SIZE below? no, end can't go down to
294 * 0 there.
295 *
296 * Whereas we round start (addr) and ceiling down, by different
297 * masks at different levels, in order to test whether a table
298 * now has no other vmas using it, so can be freed, we don't
299 * bother to round floor or end up - the tests don't need that.
300 */
301
302 addr &= HUGEPD_MASK;
303 if (addr < floor) {
304 addr += HUGEPD_SIZE;
305 if (!addr)
306 return;
307 }
308 if (ceiling) {
309 ceiling &= HUGEPD_MASK;
310 if (!ceiling)
311 return;
312 }
313 if (end - 1 > ceiling - 1)
314 end -= HUGEPD_SIZE;
315 if (addr > end - 1)
316 return;
317
318 start = addr;
319 pgd = pgd_offset(tlb->mm, addr);
320 do {
321 BUG_ON(get_slice_psize(tlb->mm, addr) != mmu_huge_psize);
322 next = pgd_addr_end(addr, end);
323 if (pgd_none_or_clear_bad(pgd))
324 continue;
325 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
326 } while (pgd++, addr = next, addr != end);
327 }
328
329 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
330 pte_t *ptep, pte_t pte)
331 {
332 if (pte_present(*ptep)) {
333 /* We open-code pte_clear because we need to pass the right
334 * argument to hpte_need_flush (huge / !huge). Might not be
335 * necessary anymore if we make hpte_need_flush() get the
336 * page size from the slices
337 */
338 pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
339 }
340 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
341 }
342
343 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
344 pte_t *ptep)
345 {
346 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
347 return __pte(old);
348 }
349
350 struct page *
351 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
352 {
353 pte_t *ptep;
354 struct page *page;
355
356 if (get_slice_psize(mm, address) != mmu_huge_psize)
357 return ERR_PTR(-EINVAL);
358
359 ptep = huge_pte_offset(mm, address);
360 page = pte_page(*ptep);
361 if (page)
362 page += (address % HPAGE_SIZE) / PAGE_SIZE;
363
364 return page;
365 }
366
367 int pmd_huge(pmd_t pmd)
368 {
369 return 0;
370 }
371
372 struct page *
373 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
374 pmd_t *pmd, int write)
375 {
376 BUG();
377 return NULL;
378 }
379
380
381 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
382 unsigned long len, unsigned long pgoff,
383 unsigned long flags)
384 {
385 return slice_get_unmapped_area(addr, len, flags,
386 mmu_huge_psize, 1, 0);
387 }
388
389 /*
390 * Called by asm hashtable.S for doing lazy icache flush
391 */
392 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
393 pte_t pte, int trap)
394 {
395 struct page *page;
396 int i;
397
398 if (!pfn_valid(pte_pfn(pte)))
399 return rflags;
400
401 page = pte_page(pte);
402
403 /* page is dirty */
404 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
405 if (trap == 0x400) {
406 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
407 __flush_dcache_icache(page_address(page+i));
408 set_bit(PG_arch_1, &page->flags);
409 } else {
410 rflags |= HPTE_R_N;
411 }
412 }
413 return rflags;
414 }
415
416 int hash_huge_page(struct mm_struct *mm, unsigned long access,
417 unsigned long ea, unsigned long vsid, int local,
418 unsigned long trap)
419 {
420 pte_t *ptep;
421 unsigned long old_pte, new_pte;
422 unsigned long va, rflags, pa;
423 long slot;
424 int err = 1;
425 int ssize = user_segment_size(ea);
426
427 ptep = huge_pte_offset(mm, ea);
428
429 /* Search the Linux page table for a match with va */
430 va = hpt_va(ea, vsid, ssize);
431
432 /*
433 * If no pte found or not present, send the problem up to
434 * do_page_fault
435 */
436 if (unlikely(!ptep || pte_none(*ptep)))
437 goto out;
438
439 /*
440 * Check the user's access rights to the page. If access should be
441 * prevented then send the problem up to do_page_fault.
442 */
443 if (unlikely(access & ~pte_val(*ptep)))
444 goto out;
445 /*
446 * At this point, we have a pte (old_pte) which can be used to build
447 * or update an HPTE. There are 2 cases:
448 *
449 * 1. There is a valid (present) pte with no associated HPTE (this is
450 * the most common case)
451 * 2. There is a valid (present) pte with an associated HPTE. The
452 * current values of the pp bits in the HPTE prevent access
453 * because we are doing software DIRTY bit management and the
454 * page is currently not DIRTY.
455 */
456
457
458 do {
459 old_pte = pte_val(*ptep);
460 if (old_pte & _PAGE_BUSY)
461 goto out;
462 new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
463 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
464 old_pte, new_pte));
465
466 rflags = 0x2 | (!(new_pte & _PAGE_RW));
467 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
468 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
469 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
470 /* No CPU has hugepages but lacks no execute, so we
471 * don't need to worry about that case */
472 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
473 trap);
474
475 /* Check if pte already has an hpte (case 2) */
476 if (unlikely(old_pte & _PAGE_HASHPTE)) {
477 /* There MIGHT be an HPTE for this pte */
478 unsigned long hash, slot;
479
480 hash = hpt_hash(va, HPAGE_SHIFT, ssize);
481 if (old_pte & _PAGE_F_SECOND)
482 hash = ~hash;
483 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
484 slot += (old_pte & _PAGE_F_GIX) >> 12;
485
486 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
487 ssize, local) == -1)
488 old_pte &= ~_PAGE_HPTEFLAGS;
489 }
490
491 if (likely(!(old_pte & _PAGE_HASHPTE))) {
492 unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
493 unsigned long hpte_group;
494
495 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
496
497 repeat:
498 hpte_group = ((hash & htab_hash_mask) *
499 HPTES_PER_GROUP) & ~0x7UL;
500
501 /* clear HPTE slot informations in new PTE */
502 #ifdef CONFIG_PPC_64K_PAGES
503 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
504 #else
505 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
506 #endif
507 /* Add in WIMG bits */
508 rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
509 _PAGE_COHERENT | _PAGE_GUARDED));
510
511 /* Insert into the hash table, primary slot */
512 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
513 mmu_huge_psize, ssize);
514
515 /* Primary is full, try the secondary */
516 if (unlikely(slot == -1)) {
517 hpte_group = ((~hash & htab_hash_mask) *
518 HPTES_PER_GROUP) & ~0x7UL;
519 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
520 HPTE_V_SECONDARY,
521 mmu_huge_psize, ssize);
522 if (slot == -1) {
523 if (mftb() & 0x1)
524 hpte_group = ((hash & htab_hash_mask) *
525 HPTES_PER_GROUP)&~0x7UL;
526
527 ppc_md.hpte_remove(hpte_group);
528 goto repeat;
529 }
530 }
531
532 if (unlikely(slot == -2))
533 panic("hash_huge_page: pte_insert failed\n");
534
535 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
536 }
537
538 /*
539 * No need to use ldarx/stdcx here
540 */
541 *ptep = __pte(new_pte & ~_PAGE_BUSY);
542
543 err = 0;
544
545 out:
546 return err;
547 }
548
549 void set_huge_psize(int psize)
550 {
551 /* Check that it is a page size supported by the hardware and
552 * that it fits within pagetable limits. */
553 if (mmu_psize_defs[psize].shift && mmu_psize_defs[psize].shift < SID_SHIFT &&
554 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
555 mmu_psize_defs[psize].shift == HPAGE_SHIFT_64K)) {
556 HPAGE_SHIFT = mmu_psize_defs[psize].shift;
557 mmu_huge_psize = psize;
558 #ifdef CONFIG_PPC_64K_PAGES
559 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
560 #else
561 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
562 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
563 else
564 hugepte_shift = (PUD_SHIFT-HPAGE_SHIFT);
565 #endif
566
567 } else
568 HPAGE_SHIFT = 0;
569 }
570
571 static int __init hugepage_setup_sz(char *str)
572 {
573 unsigned long long size;
574 int mmu_psize = -1;
575 int shift;
576
577 size = memparse(str, &str);
578
579 shift = __ffs(size);
580 switch (shift) {
581 #ifndef CONFIG_PPC_64K_PAGES
582 case HPAGE_SHIFT_64K:
583 mmu_psize = MMU_PAGE_64K;
584 break;
585 #endif
586 case HPAGE_SHIFT_16M:
587 mmu_psize = MMU_PAGE_16M;
588 break;
589 }
590
591 if (mmu_psize >=0 && mmu_psize_defs[mmu_psize].shift)
592 set_huge_psize(mmu_psize);
593 else
594 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
595
596 return 1;
597 }
598 __setup("hugepagesz=", hugepage_setup_sz);
599
600 static void zero_ctor(struct kmem_cache *cache, void *addr)
601 {
602 memset(addr, 0, kmem_cache_size(cache));
603 }
604
605 static int __init hugetlbpage_init(void)
606 {
607 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
608 return -ENODEV;
609
610 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
611 HUGEPTE_TABLE_SIZE,
612 HUGEPTE_TABLE_SIZE,
613 0,
614 zero_ctor);
615 if (! huge_pgtable_cache)
616 panic("hugetlbpage_init(): could not create hugepte cache\n");
617
618 return 0;
619 }
620
621 module_init(hugetlbpage_init);